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Time-Varying Optimization of Networked
Systems With Human Preferences

Ana M. Ospina

Abstract—This article considers a time-varying optimiza-
tion problem associated with a network of systems, with
each of the systems shared by (and affecting) a number
of individuals. The objective is to minimize cost functions
associated with the individuals’ preferences, which are un-
known, subject to time-varying constraints that capture
physical or operational limits of the network. To this end,
this article develops a distributed online optimization al-
gorithm with concurrent learning of the cost functions.
The cost functions are learned on-the-fly based on the
users’ feedback (provided at irregular intervals) by lever-
aging tools from the shape-constrained Gaussian process.
The online algorithm is based on a primal-dual method
and acts effectively in a closed-loop fashion where: First,
users’ feedback is utilized to estimate the cost, and second,
measurements from the network are utilized in the algo-
rithmic steps to bypass the need for sensing of (unknown)
exogenous inputs of the network. The performance of the
algorithm is analyzed in terms of dynamic network regret
and constraint violation. Numerical examples are presented
in the context of real-time optimization of distributed energy
resources.

Index Terms—Feedback, Gaussian process (GP), net-
worked systems, regret analysis, time-varying optimization.

[. INTRODUCTION

a network of systems, where each of the systems is
shared by a number of individuals. Typically, such a multiuser
problem includes a cost given by a sum of user-specific
functions, and a set of constraints that capture physical or
operational limits of the network (and, thus, that couple the
users’ decisions). For example, multiuser problems were
considered in [1] and solved via a primal—dual method based on
a regularization of the Lagrangian function, and a distributed
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resource allocation problem was investigated in [2] (where the
communications between users’ are susceptible to adversarial
attacks). Similar formulations arise in a time-varying setting,
where the cost and/or constraints evolve over time to reflect
changes in the constraints or problem inputs [3], [4], [5], [6].
Specifically, unconstrained problems with a known time-varying
cost are analyzed in [3] via a gradient descent method. A
time-varying multiuser problem is presented in [4], where a
double regularization both in the primal and in the dual space
is employed to increase the convergence rate of the algorithm.
In [5], convex optimization problems with known time-varying
objective functions are solved using a real-time self-triggered
control method. We refer the reader to the survey in [6] for a
complete list of references on time-varying convex optimization.

Generally, one prerequisite for solving these problems is that
the user-specific functions are known or properly crafted based
on synthetic or average models. Instead, we consider the case
where synthetic costs are not representative of the preferences of
individual users or fail to capture the diversity in their perception
of comfort, safety, or dissatisfaction [7], [8], [9]. In this context,
a learning method that leverages human feedback is explored
in [7], where a robot observes data in the form of state-action and
the discrete dynamics are learned during the execution of the
algorithm. An example of field research on occupant satisfaction
to the indoor temperature via recording of smiley-face polling
station is presented in [8]. Moreover, [9] presents an overview of
opportunities and risks of data-driven decision-making methods.

We tackle the problem of solving a network optimization
problem when the users’ cost functions are unknown and de-
velop an online algorithm where the cost functions are learned
concurrently with the execution of the algorithmic steps. In
particular, the learning procedure leverages “users’ feedback”
and utilizes learning tools from shape-constrained Gaussian pro-
cesses (GPs) [10]. The algorithm is implemented in a distributed
fashion; this allows users sharing a system to agree on a solution
that minimizes the sum of their (learned) functions, without
revealing their preferences or their feedback. In this work,
we consider the case where the users report their preferences
trustworthy (and we do not consider adversarial behaviors). In
addition to the feedback from the users, the algorithm leverages
the ideas from, e.g., [11] and [12] and utilizes measurements of
network outputs instead of the network model.

The endeavors are motivated by a number of problems arising
in power systems [11], [13], [14]; charging of electric vehicles
(EV) [15]; and human-aware robot systems [16], just to name
a few. While Section II will explain some examples, we stress
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here that an accurate model of the comfort/satisfaction level of
users is typically unknown, and it may vary not only across
individuals, but also for the same individual [7], [8]. In this con-
text, shape-constrained GP is a powerful tool for nonparametric
function estimation when the underlying function is presumed
to be convex or monotonic [10]; this implies that each user has
a preference for a set of solutions.

Contributions. Overall, the main contributions of this article
are as follows.

C1) We show how to estimate the users’ functions via GPs
and, in particular, how to handle asynchronous and noisy
data easily.

C2) We develop an online algorithm based on a primal—-dual
method to solve the formulated time-varying network
optimization problem; the algorithm is implemented on-
line, and it is modified to accommodate measurements
and learned functions.

C3) We propose a consensus-based formulation that leads
to a distributed online algorithm where users minimize
the sum of their (learned) functions, without revealing
their preferences or their feedback.

C4) For the performance analysis, we view the algorithm
as an inexact online primal-dual method where errors
are due to the shape-constrained GP approximation
and errors in the computation of the gradient of the
GP. We derive bounds for a dynamic extension of the
network regret [17], [18], and for the average constraint
violation (ACV) (see also, e.g., [19], [20], [21], [22] and
references therein for other notions of dynamic regret).

C5) We showcase the proposed methodology in an example
related to control of distributed energy resources (DER)
in power grids [14].

Prior works: In the context of bandit optimization, a static
regret analysis is performed in [19], where the objective is to
minimize a sequence of unknown convex cost functions and
one has access to functional evaluations. Time-varying cost
and constraints are considered in the context of a bandit setting
in [23] and online saddle-point algorithms are utilized, where
the gradient information is acquired via one-point or multipoint
estimates. In [24], a gradient-free approach is presented to solve
a multiagent distributed constrained optimization problem
where the goal is to cooperatively minimize the sum of
time-changing local cost functions subject to time-varying
coupled constraints. As an example of works in the context
of zeroth-order methods, a multiagent optimization problem is
analyzed in [25] where the objective is to minimize the average
of the nonconvex local costs that depends on the joint actions
of the agents. See also [26] for an overview of zeroth-order
algorithms. Our approach is different from zeroth-order or
bandit methods [19], [23], [24], [25], [26]; these would require
multiple functional evaluations at each step to estimate the
gradient of the users’ costs—something not feasible for our
problem. Our contribution is to use shape-constrained GPs to
process feedback that is provided parsimoniously and at irregular
intervals. The considered setting is different from that in [27],
where GPs are utilized to maximize an unknown function.

A similar problem setup was studied in [28]; however, no
constraints are considered (in fact, a gradient tracking scheme
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Fig. 1. We consider a network of systems, coupled through physical or
operational dependencies, where each system is shared by (and affects)
a number of users.

is utilized) and the user’s cost is assumed to have a known
quadratic structure a priori. We significantly extend our previous
works [29], [30] by considering a distributed setting and con-
strained problems. Relative to the works [17], [18] on distributed
online primal-dual algorithms, we consider problems where
the optimal solution set changes in time (and it is not fixed
in time) and with both consensus constraints and time-varying
constraints that capture operational limits of the network. We
also analyze the network regret when the online algorithm is
inexact. Indeed, we can recover an asymptotic bound of O(T'2)
as in [17] and [18] from our regret bound when the cost func-
tions are known, the gradients are computed exactly, and the
optimal solutions are not time varying (with 7" as the number
of time steps). Our analysis can also be utilized to extend [25]
to time-varying settings. Finally, we extend the findings of the
work in [11] and [12] by considering consensus constraints (and
accompanying distributed implementations) and by including
shape-constrained GPs in the overall algorithmic framework.

The rest of this article is organized as follows. Section II
presents the time-varying problem, and Section III outlines the
GP-based learning approach and the proposed online algorithm.
Section IV presents the performance analysis. The numerical
results for a demand response problem are in Section V. Finally,
Section VI concludes this article'.

II. PROBLEM STATEMENT

We consider a network of M systems or devices, with each
system interacting with (or shared by) a number of users, as illus-
trated in Fig. 1. In particular, we denote by Ny, = {1,..., N, }
the set of NV,;, > 1 users interacting with the mth system. The
input—output relationship of the network is modeled through the
time-varying map

y' = Alx! + B'w' (D)

where t is the time index; x, := [2%,...,2%,]", with 2!, € R
the controllable input of the mth system; y* € RY is a vector of

! Notation: Upper-case (lower-case) boldface letters will be used for matri-
ces (column vectors); ()T denotes transposition. For a given column vector

x € R™, ||x|| := VxTx; we denote with 1 and O the vectors of all ones and
zeros, respectively, where the dimension will be clear from the context. O(+)
refers to the big-O notation, whereas o(-) refers to the little-o notation. The
max operator is defined as [z] T := max{0, x}. The diameter of X'* is defined
as diam(X't) = max{|x — x/|| : x,x’ € At}. For a given random variable
¢ € R, E[€] denotes the expected value of &.
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observables or outputs of the network; wt € RWY is a vector
of unknown exogenous inputs; and A* and B? are possibly
time-varying matrices (with A® knownand A* # 0) of appropri-
ate dimensions. We assume thatt € 7 := {kA, k € N}, where
A > 0 is a given time interval.

Let U,,n : R — R be a convex function representing the
cost of a user n € N,, associated with the mth device;? this
function can capture a sense of dissatisfaction, discomfort, or
simply preferences depending on the specific application (a few
examples will be provided shortly). The goal is then to compute
the sequence of inputs that solves the following time-varying
optimization problem [3], [4], [5] associated with the network:

M N,
min o Z Z U’m,n (xm)

{emeX 3Ny m=1n=1

(2a)

s.to: Cf (A'x, +Bfw') <0,i=1,...,No (2b)

where {X! }M_  are time-varying convex and compact sets
for the inputs, and C! : RM — R is a time-varying function
parameterized by w'. In particular, (2b) models the operational
constraints associated with the network output y'*. The main goal
of (2) is to generate a sequence of inputs that minimizes the cost
of the users while respecting pertinent network constraints. To
this end, this article focuses on addressing the following four
main challenges related to (2).

1) Challenge 1: The variable x,, is coupled across the users

Nin. Our goal is to solve (2) in a distributed fashion,
where users are not required to share information about
their costs {U,,, ,, } (and their functional evaluations) with
the device or the network operator.
Challenge 2: The costs {U,, » } are unknown. One may
utilize synthetic cost functions for users’ preferences,
comfort, or satisfaction based on statistical models; how-
ever, these synthetic costs may fail to capture the diversity
in the users’ perception, preferences, and goals.

3) Challenge 3: The exogenous inputs w' may be unknown

or partially known.

4) Challenge 4: The constraints C! and the sets { X}, } may
change at each time ¢; the interval A may not be sufficient
to solve each instance of the time-varying problem (2) to
convergence.

To address the abovementioned challenges 1)—4), this article
will develop a consensus-based online algorithm where the
cost functions of the users are learned concurrently with the
execution of the algorithm, and measurements of y! are utilized
in the algorithmic updates.

Before proceeding, we list representative examples of appli-
cations in networked systems in which the problem (2) and the
accompanying online optimization framework considered in this
article are particularly well suited.

Example 1 (Power grids): In the context of power grids, (2)
may capture a demand response task [13], [14] or a real-time
optimal power flow problem [11]. In this case, x;j, are the

2

~

2We note that the problem formulation and solution approach proposed in
this article can be naturally extended to the case where the number of users
interacting with a device changes over time.

power setpoints of DER, w' is a vector of powers consumed
by uncontrollable loads, and y* may represent the total power
as y' = 1"x;, + 17w’ and/or voltage magnitudes (one can
also compute the matrix A? based on a linearized ac model).
Constraints (2b) may ensure that the net power follows a
given automatic gain control or demand response signal; e.g.,
CHy) = (y — yLy)? — ¢, where yl; is a given reference signal
and ¢ > 0 is an error tolerance. One may also have voltage
constraints. The costs {U,,, ,, } model discomfort, e.g., the indoor
temperature. The number of users depends on the particular
setting, for example, one may expect a large number of users
sharing a conference room in an office building. The users that
share a device m agree on the input x,,; for example, people
sharing a room agree on a temperature and, thus, on the use of
an HVAC system. U

Example 2 (EV charging): The formulation (2) may represent
the problem of charging a fleet of vehicles at a charging station,
the variable x,, represents the charging rate (or the expected
time for full charging) of a vehicle, constraint (2b) captures
limits on the total power consumed by the charging station while
{Upm,n} captures the dissatisfaction for a given expected time of
charging completion [15]. If an EV is shared by multiple users,
x,, represents the agreed expected charging time x,, . ]

Additional examples in transportation systems, communica-
tion systems, and human-aware robot systems are not included
for space limitations.

We now proceed with the reformulation of (2) into a
consensus-based problem. To this end, let x,, ,, be an auxiliary
variable representing the input for the mth system preferred by
user n € N,,; with the auxiliary variables in place, stack the
optimization variables in the column vector

t_ [t oot t to ot t T

x = [1’17951,1a s T Ny s DAL TR 7;vM’NM} .
Accordingly, (1) can be rewritten as y* = A'x’ + Bfw?, where
At is an augmented version of A? with appropriate zero entries.

Then, (2) can be equivalently reformulated as

M N,
min Z Z Um,n (xm,n) (321)
{&m, @m n €5} m=1n=1
st.:Cf (A'x+B'w') <0,i=1,...,N¢ (3b)

T = Tmp YVNEN, VYm=1,...,M (3c)
where (3c) defines consensus constraints for the mth system
and its users. We note that the choice of posing the consensus
constraints as in (3c) is not generic; the particular structure
of (3¢), which can be modeled as a star graph (with the system as
the central node), will facilitate the development of a closed-loop
algorithm where {z,,} will be physical inputs [as in (1)] and
{@m,n} Will be auxiliary control variables.

For future developments, define f(x):= S M_ S Nm
Unon(Tm.n) and X = X x -+ x X}, CRM. For each de-
vice m, we define the incidence matrix D,,, € RNm*(1+Nm)
which represents the relation between the device and the users
sharing that device. For example, if the device 1 is shared by
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two users we have that

D, _ [1 -1 o] .
1 0 -1
By organizing these incidence matrices in a block diago-
nal matrix, we construct the augmented incidence matrix
D = diag(Dy,Ds,...,Dy;). Then, (3¢) can be compactly
written as Dx = 0, capturing consensus constraints over M
systems.

The next section outlines the proposed algorithm to solve the
time-varying network optimization problem (2). We note that in
what follows we consider the case where N¢o = 1 to simplify
exposition and notation; however, the technical arguments of
this article straightforwardly extend to problems with multiple
constraints on y*.

[ll. DISTRIBUTED ONLINE ALGORITHM

In this section, we present our consensus-based online algo-
rithm for solving (3). We first explain how to derive a distributed
online algorithm based on a primal-dual method, then, we elab-
orate on how to estimate the cost functions based on feedback
received from the users at infrequent times.

A. Online Primal-Dual Algorithm

We start by defining the time-varying Lagrangian function

associated with (3) as follows:

£t (x!, 1 A1) o= £ (x!) +0 CF (Alxt+ Blw!) + (Dxt) " At
where ! € Ry, A" € RY are the dual variables associated
with the constraint (3b) and the M consensus constraints (3c),
respectively.

Recall thatt € 7 := {kA, k € N} (and take A = 1 for sim-
plicity of exposition). For a given step size o > 0, amodel-based
online projected primal—-dual algorithm involves the sequential
execution of the following steps:

t+1

X :projxt{x—a( xf( )

v' (A1) VX! (A'X' + B'w!) + DTAY) | (4a)

VI = projge {v' + aC' (A% + B'w')} (4b)
AL = proj. {A! + aDx'} (4c)
where W is a convex and compact set, and A" = Af | x - x

Ay, X oo X ANfy s With AL also a convex and compact
set constructed as explamed shortly in the Section IV (and in,
e.g., [1] and [17]).

We note that the steps (4a) and (4b) require one to know w and
B! (as explained in Challenges 3 and 4). To bypass this hurdle,
we adopt the strategy proposedin, e.g., [11] and [12]. To this end,
assume that x! are implemented as inputs to the systems at time
t, and let y represent a measurement of y* collected at time ¢.
Then, 1/”1 can be computed as v+ = projq {v! + aCt(y!)};
it is clear that information about wt and B! is not required
in this case. We also note that the step (4a) would require
the gradient of the functions {U,, ,}, which are not known

(see Challenge 2). Let U, ) Ut . (xt) represent an estimate of the
function U, ,,(z,) available at vn» and let g, . denote an
estimate of the gradient (or derivative, in this case) of U, ,, (z,)
at time ¢. With these definitions, the steps in (4) can be suitably
modified to accommodate measurements of y* and estimates of
the gradient of the cost function

zi =proj, . { fnoz<1/ ( m) VC’t JrZA )}

(5a)
a:f,ﬂl = projy:. {at, = (ghpn —Hun)} YREN, Vm

(5b)
V1 — projas {41+ aC" (57)) 50
)»Hl prO]At {Af,17n+a (xfnfxﬁnn)} VneN, Vm

(5d)
where a’, is the mth column of the matrix A?, and we note

that step (5a) is performed in parallel at each system. While
measurements of y! are utilized in the primal step (5a) and
the dual step (5c), an estimate of the gradient gfnﬁn will be
obtained by leveraging feedback from the users as explained in
the following section. Subsequently, Section III-C will overview
the steps of the proposed algorithm.

B. Online Learning via Shape-Constrained GPs

We assume that the feedback of the user comes in the form of
a (possibly noisy) functional evaluation, that is, for a given point
x, one may receive from a user n interacting with the device m a
rating z given by z = U, ,,(x) + €. With this model, a popular
way to obtain the gradient of U, ,, at a point x is via zeroth-order
methods (see, e.g., [23], [26], and references therein). However,
zeroth-order methods are not well suited for our algorithm,
because they would require feedback from each user at each
iteration of the algorithm (either a single functional evaluation or
more, depending on the particular method utilized). Instead, we
consider a more realistic case where users may provide feedback
more parsimoniously and at irregular intervals.

With this setting in mind, we consider utilizing the noisy
functional evaluations provided by a user to estimate the function
U, via GPs [31]. In particular, we apply a GP with specific
constraints on the shape of the function. As explained in [10],
shape-constrained GP offers a powerful tool for nonparametric
function estimation when the underlying function is presumed to
be convex or monotonic. In our case, convexity or monotonicity
implies that each user has a preference for a particular solution
(or a convex set of solutions), and the dissatisfaction or discom-
fort increases as the system deviates from such a preferred point.
In the following, we first briefly introduce GPs, and then, we pro-
vide the main equations to estimate Uy, ,, via shape-constrained
GPs. Since we utilize a GP per function Uy, ,, we drop the
subscripts m and n for simplicity of exposition. We also note
that the extension to the multidimensional shape-constrained GP
is possible (see, for example, [10]); however, it is left as future
work.
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A GP is a stochastic process U(x) and it is specified by its
mean function () and its covariance function k(x, 2’); where
k(-,-) is a given kernel, i.e., for any z,2’ € X C R, u(z) =
E[U(z)] and  k(z,2") = E[(U(z) — p(2))(U(2') = p(z'))]
[31]. Hereafter, we use the short-hand notation U(z) ~
GP(u(x), k(x,2")) for U(x) defined as a GP with mean p(z)
and covariance k(z,2'). Let x, = [#1 € X,...,x, € X]" be
the set of p sample points collected over a given period®; let
zi = U(x;) + €, with ¢; 1El]\f((), 0?) Gaussian noise, be the
noisy measurement at the sample point x;; define further
z=|[z1,...,2)". Then, the posterior distribution of
(U(z)|xp,2z) is a GP with mean p(x), covariance k(z,z’)
and variance o%(z) given by [31]

(

w(z) =k(z)" (K+0°I) z (6a)
k(z,2) = k(z,2) —k(z)" (K+0°T) "k(z/)  (6b)
o?(x) = k(z,z) (6¢)

where k(z) = [k(z1,2),...,k(xp,z)] "and K is the positive
definite kernel matrix [k(x,2’)]. Note that (6) depends on the
p sample points for a specific period of time. Thus, an esti-
mate of the unknown function U (z) can be written as U (x) ~
GP(u(x), k(x,2")). Using a squared exponential (SE) kernel
as an example, k(z, ) is given by k(z,z’) = a?e_ﬁ(”_wl)Z
for the univariate input case, where the hyperparameters are the
signal variance O'ch and the characteristic length scale /.

We now explain how to enforce shape constraints through the
use of derivative processes (noting that since differentiation is a
linear operator, derivatives of a GP remain a GP [31]). Because
the GP obtained from the SE kernel function has derivatives
of all orders, the mean and covariance function (jointly with
the original process and the second-order derivative process)
are [10]

02U () %p(x)
¢ [ D } = o (7a)
2 277 (0
K2(z,2') = cov [5803;(;)7 3;;;0 )] 2 gl

1 AW 1 1
= J?efﬁ(zﬂ” )? (64(1' —a2/)? — €2> . (7o)

We consider enforcing constraints on the second-order deriva-
tive at ¢ points s := [s1,...,,]" (and these points may be in
general different from x,,). Let U(x,) = [U(z1),...,U(zp)]"
andU”"(s) = [U"(s1),...,U"(s4)]", then, the joint distribution

31n the context of our work, the vector Xp associated with a system m and a
t
<y Tyh . Where {t;}0_| C T are the

user n would contain the points mf}hm .
times instants where the user provides feedback.

of the GP and its second-order derivative is

U(x,) plp K(xp, xp)
ol (] e

where

K(XP’ Xp) =K,

K02 (xpv S)
K?2(s,s)

K®(x,05) = [z, 5)]
K*(s,s) = [k (s, )] .

Next, assign to U(-) a GP prior, and consider aiming at an
estimated function that is Lg-smooth and vy -strongly con-
vex, for a given Ly > 0 and vy > 0. Then, following [10],
Lemma 3.1], the joint conditional posterior distribution of
(U(z°)|U"(s),x,,2), for a point x° € R, given the current
observations z, is a GP with mean, covariance, and standard
deviation given by

fi(2°) = p+ By (xp,2°,8) Bi(xp,8) " (z — pl,)
+ (A (2°,8)— Bs(xp, 2°,8) Bi(xp,8) A1 (xp,s))U"(s)

Kzo(sa Xp) =K (xpa S)Ty

(8a)
k (3:0, 170/) = A(xp,2°,8) (8b)
g(x°) =1/ A (xp,x°,8) (8c)

and the posterior distribution of (U”(s)|x,, z) is given by

(U"(s)[xp,2) o N(pa(s), (5, 8)) L, <v7(s)) <L i=1...00)

where 1., is asetindicator function, (U"(s)|x,, z) is atruncated
normal distribution and

u(s) = K*(s,%,) (01 + K ,))
S(s,s) = K?2(s,s)
—K*(s,%,) (0° T+ K(xp, %)) ' K*%(x,,5)
Ay (xp,d) = K% (x,,s)K?2(s,s)
Ay (2°,8) = K°2(2°,5)K?2(s,s) !
B1(xp,8) = o’ T+ K(x,,X,)
— K% (x,,8)K*(s,5) 7' K*°(s,%,)
Bo(2°,8) = K(2°,2°)
~K2(2°, 6)K?2(s,s) ' K20(s, 2°)
Bs(xp,2°%,s) = K(2°,%,)
— K% (2°,5)K?2(s,s) 'K?°(s,x,)
A(xp,x°,8)) = Ba(z°,s)

— B3(xp,2°,8)B1(%xp, S)_lBg(Xp, x°, s)T

(z — plp)

with 4 and o2 given parameters of the prior. The hyperparame-
ters ¢ and o]% of the GP can be estimated, for example, by using
the maximum likelihood estimator [31]. On the other hand, L,
and ~yy; can be estimated via cross validation. The locations of
the virtual derivative points are defined beforehand. Note that the
shape-constrained GP is a GP whose second-order derivative is
constrained on a set of points. When we consider a GP prior
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Algorithm 1: GP-Based Online Primal-Dual Method.

1

><!~2<\

v
X6

X x* x x?
!

Initialize: x*, A' = 0, ! = 0, set the constant step size «;
prior on {U}, ,, } if available.

I: fort=1,2,... do
2: Collect measurement of y*
3: for each system m = 1,2,... M do
4: Update the input 2%, via (5a)
5: Send z!, to users n € N,
6: Update vt via (5¢)
7: for each user n € N,,, do
8: if Feedback is given by user n
9: Update U’fnm via (8a)
10: else
11: Keep UL, ,, = Ut L
12: end if
13: Estimate gfmn via (9)
14: Update 7, ,, via (5b)
15: Update A}, ,, via (5d)
16: Send 7}, ,, to system m

17: end for (users)

18:  System m updates A}, ,, via (5d)
19: end for (systems)

20: end for (time)

with a differentiable kernel function, we have the advantage that
their derivative processes are also GPs and are jointly Gaussian
with the original processes [10].

In this context, shape-constrained GPs guarantee that the pos-
terior mean function ji(z°) is practically* smooth and strongly
convex [10]. We will now incorporate the estimates of the users’
function in the algorithm as explained next.

Remark 1: One may want to select a dense set of points s
that ensures a uniform covering of the domain. However, it is
important to note that the number of points ¢ influences the
dimensions of the matrices K22, K°2, and K?22; therefore, ¢
should be selected to ensure a sufficiently dense covering, but
based on computational complexity considerations.

Remark 2: In this article, we use the SE kernel. In this case,
two hyperparameters are required for U, ,,: £ and J?. These two
hyperparameters are learned by maximizing the likelihood [31].
Note that the ability to impose shape constraints on the posterior
GP is not affected by the kernel function or the hyperparameters,
see [10].

C. Distributed GP-Based Online Algorithm

Using the shape-constrained GPs machinery described in the
previous section, the idea is to utilize the posterior mean (8a) as
a surrogate for U,,, ,,. In particular, for a given user n € A,,,, the
posterior mean (8a) is computed based on the pﬁnm functional

evaluations {U,,, . (x%) + ;77" t; € {1,... ,t}, provided by

4With a limited number of enforcing points s, the mean has the functional
properties we require up to a very (almost negligible) small error, which is
smaller and smaller increasing the number of data points x,,. The error will be
incorporated into the gradient estimation inaccuracies.

V;/
b + 3 $ $ ¥ 3
NONIN NN SN S
| T | I
« 2 'y

P

n Se [ PN o,
" . =2 =2

Fig.2. Feedback (color coded in yellow) from users may come sporad-
ically, and each user may provide feedback at different times (green ticks
indicate that a functional evaluation is received, red crosses indicate
that a functional evaluation is not received). The functions {U,, } are
estimated concurrently with the execution of Algorithm 1.

the user up to time ¢, that is, we set Ufnn(x) = [ipt (). Aspic-
torially illustrated in Fig. 2, functional evaluations are provided
sporadically by each user, and each user may provide feedback
at different times. Furthermore, feedback is not required at each
step of the online algorithm as in zeroth-order methods.

Once the posterior mean is available, an estimate of the
gradient can be obtained via, e.g., multivariable zeroth-order
methods when x!, € R", or via finite difference when 2!, € R.
As an example of the latter, one way to obtain gfmn is

I = — A ©)

with § a preselected parameter. The overall algorithm with
feedback from both, users and the network, is tabulated as
Algorithm 1. In terms of operation, the updates (5a) and (5c)
are implemented at each system m, with {x! } being physical
inputs for the system; on the other hand, the update (5b) is im-
plemented at the user’s side. The updates (5d) are implemented
by both users and systems, and users and systems are required
to exchange the local variables x, and z/,, ..

IV. PERFORMANCE ANALYSIS

In this section, we investigate the convergence of the online
algorithm presented in Section III. To this end, the following
standard assumptions are presumed.

Assumption 1: The set X* is convex and compact for all £.

Assumption 2: The functions x — f(x) and x — C*(A’x
+ Bfw') are convex and continuously differentiable for all
{@m, T € XL}

The previous assumptions imply that f and C* are Lipschitz
continuous, their gradients are also bounded by their Lipschitz
constant, and they are uniformly bounded for all x* € X'* and for
all t. Let L be the Lipschitz constant of f. The next assumption
pertains to each user—system star network.

Assumption 3: Each system m is connected with its users
via a star network [induced by (3c)]. The largest singular value
of the incidence matrix D is .

Regarding Assumption 3, each system—user network has a
diameter h,,, < 2.

Assumption 4: Slater’s constraint qualification holds Vt.

Assumption 5 (see [17]): The convex set A? is included in
a 2-norm ball of radius B;, where By > Nyaxhmax LM + 1,
hmax = maxij—1, . m{h:}, and Npax = max;—1,_ a{N;} for
all t.
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Fig. 3. Example of the derivative estimation using shape-constrained
GPs with hyperparameters oy = 1 and £ = 10. As expected, the esti-
mated derivative error decreases with the increase of the number of
observations p. In this case, shape-constrained GP outperforms GP for
low numbers of samples (see also Section V).

Assumption 6 (see [1]): The set U for the dual variable v is
convex and compact for all ¢.

We note that, under the Slater’s constraint qualification, the
dual variables ! are bounded, as shown in [1], Sec. 3.1].
Additional comments on Assumptions 5-6 will be provided in
the next section.

We tackle the analysis by viewing our algorithm as an online
primal-dual with inexact gradient information [32]. In par-
ticular, the approximate gradient (obtained based on a finite
difference method based on the estimated functions {Ufnn})
can be expressed as g = Vf(x!) + €', where V f(x!) is the
true gradient and €' is a stochastic vector. Before stating appro-
priate assumptions, define the filtration F;, = {e!,... e},
The following assumption is made.

Assumption 7: 3E' < oo such that E[||e?||?|F;] < E! vt

Note that the error e’ is not assumed to have zero mean,
since the GP may introduce a bias in the estimated gradient.
Assumption 7 presumes that the expected value of ||e!||? is
bounded; this is consistent with standard assumptions in the con-
text of inexact gradient methods and stochastic gradient methods
(see, e.g., [32] and [33]). We also note that E! can be taken
to be the Bayes errors for regression with GPs; in fact, Wang
and Berger [10] showed that the error of the GP regression
is higher than the error incurred by the shape-constrained GP
regression. We point out that Assumption 7 is also supported by
empirical evidence; an example for the shape-constrained GP
is provided in Fig. 3, which illustrates the estimated function
and the estimated derivative for different numbers of noisy func-
tional evaluations. With these standard assumptions in place, the
next section will provide performance bounds for the proposed
algorithm.

A. Dynamic Regret

We characterize the performance of Algorithm 1 using the
so-called dynamic regret (see, e.g., [17], [18], [21], [22], and
references therein). In particular, given the distributed nature
of our algorithm, we consider an extension of the network
regret [17], [18] to a time-varying setting. To this end, define
the dynamic regret per user j € N, interacting with the system
m, with respect to an optimal solution of (3) for the system m
at time ¢, i.e., xﬁz, as

N,

ZZU,M al, ZT: Up,i () .

t=1 i=1 t=1

3

mu .

(10)

s
Il
_

Then, based on (10), we define the dynamic network regret for
the system m as [17], [18]

i Reg’ J

Regh =

T N
Z U, i t*).
t=1

(11

By using (11), the dynamic global network regret after T itera-
tions can be defined as

3

j 1
1 - ™
FZ ZlUmz
t=114,j=

N
Il
_

M
Reg, := Z Reg’7'.

m=1

12)

To analyze the global network regret, let x** be an optimal
solution of (3) at time ¢, and consider the following standard
definitions of the path length, which captures the drift of the
optimal solutions over 7' time steps

T T
T:Zth*_x :Z”Xt*—x
t=1 t=1

Furthermore, consider the following definitions for the cumula-
tive expected error in the gradient:

T T B
=> E[le'|IF], => E".
t=1 t=1

With these metrics in place, we start by bounding the norm of
the true gradient of the time-varying Lagrangian with respect to
the primal variable for any x € X%, v € U, and A € A’. Let
J := sup;cr maxyxeyt | VO (y'(x))|| by Assumptions 1 and
2, By := sup,cy max;cat||A|| and B, := sup,cr max || under

t+1*||7 TT . t+1*||2.

(13)

(14)

Assumptions 5 and 6, then we have
[V L (x,0, )| < [IVF)| 4+ v[VCH (y" (X)) + DA
<L+ B,JJ+0QB, =1, (15)

where the last inequality holds by using the triangle and Cauchy—
Schwarz inequality and Assumption 3. The term I', = L +
B, J + QB, is anupper bound for the gradient of the Lagrangian
with respect to x.

Similarly, we bound the norm of the gradient of the
Lagrangian with respect to the dual variables A and v for any
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x € Xt veTUandr € Al Letk = [,AT]T, |CH(yt (x))| <
H < oo for all t by Assumptions 1 and 2, and B, := sup,cr
maxyeyt||x| under  Assumption 1. Then, ||V,
L!(x, k)||? can be bounded by
2

t 2 V)LE X v, X

19 )P = [
<O’B2+H?:=T, (16)

where we used the Cauchy—Schwarz inequality, Assumptions 1
and 3. Furthermore, let diam(X'*) < D! where D!, < D, < oo
by Assumption 1. The term ', = Q2 B2 + H?is an upper bound
for the gradient of the Lagrangian with respect to k.

With these notations in place, we are now ready to state the
main result for the dynamic regret.

Theorem 1: Let Assumptions 1-7 hold. Set Ab=0,1t=0.
Then, the dynamic network regret after 7" iterations is upper
bounded by

1
ElRegs] < o (I = x>+ B2+ B2) + ST (12 + 1)

1 1
+ 22T 16T (2B, +aly)+ — YT + —D, a7,
2 2 a
(17)

The proof of this theorem will be provided in Section IV-C.
Theorem 1 asserts that the bound on the expected dynamic
network regret E[Reg,] after T' time steps depends on the
temporal variability of the solutions (through the terms %TT
and éDw@T) and the errors associated with the estimation of
the gradient [through the terms %ET and ¢T(2B, + al',)].
The remaining terms are in line with standard regret results
(e.g., [17]). In particular, we can observe the following.

1) Persistent variations and gradient errors: Suppose that
YT and ®7 grow as O(T), modeling a persistent tem-
poral variation of the constraints and/or the vector w?;
suppose further that =7 and ¢7' grow as O(T'), modeling
a persistent error in the gradient g'. Then, E[Reg,]/T
behaves as O(1).

2) Vanishing gradient errors: If 27 and ¢7 grow sublinearly,
i.e., as o(T), then the asymptotic average regret is in
general E[Regy] =0 (1+ T YT +T7107). Note
that if the algorithm is executed over a finite interval
of T steps and the step size is chosen as « = %
then, E[Reg;]/T behaves as ~E[Regs] = O(T 7 +
T-:YT + 77297,

3) Vanishing variations and errors: It YT, ®T, =T and ¢7
all grow as o(T), then, we recover the asymptotic result
of [17].

Remark 3: Regarding the errors in the gradient, if the function
Upn,n is strongly convex, then the estimation error yielded by
shape-constrained GPs will decrease with the increase of the
number of functional evaluations, see the illustrative example
in Fig. 3 and the discussion in [10]. However, zeroth-order
and finite-different methods will still generate an error in the
estimation of the gradient, and thus, =7 and ¢7 would generally
increase as O(T'). To obtain a trend as o(7T'), one has to increase
the accuracy in the gradient estimation to make e’ arbitrarily
small. U

Remark 4: Assumption 4 guarantees boundedness of the dual
variable »?, at each ¢, as shown in [1], Sec. 3.1]. On the other
hand, we note that Assumption 5 does not provide an analytical
expression for an upper bound on the radius of A’. This is one
limitation of the technical findings of this article. However, we
note that in our algorithm, we project the dual variables A* onto
A?;if At is not “large enough” to contain the optimal multipliers
A", then one would incur a consensus error due to clipping
of the multipliers. This is in the spirit of a relaxation of the
constraints with dual smoothing; see, for example, [24], where
a regularization term is added to the Lagrange function to avoid
the growth of the dual multiplier. In a practical implementation
of the algorithm, clipping leads to an increased consensus error,
in the case of persistent and large consensus errors, the radius
of A? can be increased. A detailed analysis of the boundedness
of this set is a future work direction.

B. Average Constraint Violation

We now consider a bound on the violation of the constraint
on the network output y. To this end, we consider the so-called
ACYV, which we define here as

T

Acvr =S [0t (v ()]

t=1

(18)
We note that some prior works in context (e.g., [19] and [34])

+
consider the modified definition {Zle Ct(y' (xt))] , which
may lead to looser bounds.

Theorem 2: Let Assumptions 1-7 hold. Then, the ACV
incurred by the algorithm (5) can be bounded as follows:

E[ACVy] < B,'T (DL + B,QB,)

1 1
+ B (227 + €7 (2B, + ol'y) + — YT + =D, a7
2 2c «

§a§+H%).

The second and third terms of (19) exhibit the same asymp-
totic behavior of the dynamic regret under persistent variations
and gradient errors, and with vanishing variations and errors.
In the case of vanishing variations and gradient errors, the
bottlenecks are the two terms T'D,. L and T' B, Q) B,., which make
E[ACV1]/T behave as O(1).

1
+B'T (a (4BZ + B2) + (19)

C. Proofs of the Results

To streamline exposition, define ¢! := ||x* — x**1*|| and
' := E[||e'|||F]. To derive our main results, we will utilize
the following lemma.

Lemma 1: Let Assumptions 1-7 hold, and set Al =o,
vl = 0. Then, for any k € U! x A’ the following holds:

E i £t x K) U(x nt))

t=1
< (st = xR 4 ) + 2T (12 4 1)
~ 2a 2 z
1 1
+ 22T 4 T (2B, + aly) + —Y7 + =D, 37, (20)
2 20 o
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Proof: Note first that

IV L! (x', v, 0) = VoLl (x', v, A) | = [le']] @21
where V, L' (x!, v, ) is the inexact gradient of the Lagrangian
function (where we utilize g* instead of V f(x*)). Recall that x**
denotes an optimal solution at time ¢. Using the primal update,

adding and subtracting x*, we get:

||Xt+1 _ Xt+1*||2 _ ||Xt+1 _ Xt* + Xt* Xt+1*H2
_ th+1 _ Xt*HQ +2 (Xt+l _ Xt*)T (Xt* _ Xt+1*)

+ ||Xt* _ Xt+1*H2

~ 2
= Hproj){t {xt —aVy L (xt, Vt,lt)} — x| + ((bt)2
T
) (Xt+1 _ X(*,t)) (xt* _ Xt+1*)
= 2

< th _ Oévxﬁt (Xt,Vt,lt) _ Xt*||2 + (d)t)

+ 2||Xt+1 o Xt*” th* o Xt+1*”

< |Ixt = x"* — aV, L (x", V" A |2 4 (¢")? + 2D, '

(22)

where (22) holds by the nonexpansiveness property of the projec-
tion operator, the Cauchy—Schwarz inequality, and the definition
of ¢t.

By adding and subtracting aVxL" (x',vf,1") [to simplify
notation we use Vi L' = Vi L' (x, %, 1")), and expanding the
first term of the right-hand side (RHS) of (22), we get

”Xt . Xt* . a@xﬁt”2
— |Ix = x* — V4Lt + (v ct - @xct) I2

=[xt — x" — aV LY + ?|| Vi L — V, LY]?
+ 2« (x —x* —aVv ﬁt) (Vx[,t — @xﬁt)
< JIxF - %™ — an£t|\2 + 042||Vx£t — @xﬁtﬂz

+ 20xt — x* — aV, L[| VL L — VLY. (23)

By using (21), we have that (23) can be bounded as
”Xt _ xt* _ a@xﬁtHQ
< Ixt = x™ — aV, L2 + o?e|?

+ 2]’ [Ix' — x"* — aVL!|

< |Ixt — x" — aV, LY + o?|let||?
+2alle’]| ([lx" —x"|| + o[ VL)
< [x =x" —aVxL'|* +a?|[e']|* +2alle’|| (2B, +als)

(24)

where the last inequality is derived using (15) and the triangle
inequality. By expanding the first term on the RHS of (24), we
get

”Xt o Xt* o anﬁtHQ
= [Ix" —x"||? + a?|| Vi L!|? — 20 (x" — X ) Vi L
< x" -

— 2 [/jt (Xt, l/t,kt)

Xt*H2+a21—\i
— L (x", v A0)]. (25)

Since the function f(x) is convex, the time-varying Lagrangian
is convex in x. Thus, from the first-order characterization of
convexity (25) holds.

Using (25) the bound (24), one has that
”Xt o Xt* _ a@xctHQ

< [lx" = x"[* + o’TF + o®||e'||* + 2a]le[| (2B, + aT)
— 2a[L(x", vh AT — £ (x" vh A (26)
By using (26) in (22), we have

||Xt+l o Xt+1*||2

< [lx" = x"[* + oI5 + o®||e']|* + 2a]le[| (2B, + aT)

_rt (Xt*’yt7xt)} + (qf)t)? + 2Dz¢t-
(27

— 2« [Et (Xt, Vt,)»t)

It thus follows that

Lt (Xt, l/t,A.t> _ ﬁt (Xt*7 Vt’xt)

1
< % (”Xt o Xt*H2 o th+1 o Xt+1*||2) + %Fi

Qg2 ¢ 1 ne 1 t

— 2B r — —D_ o

S + ] (2B, + ala) + 5o (6)° + 2Dy
(28)

Now, we proceed with a similar analysis for the distance between
the updates of the dual variables A!*1, »**1 and an arbitrary dual
variable, i.e., for any A € A and any v € ¥'. We start with the
following:

6 = &[* < [I&" + V. L' — &[]
<&'= &|* + ?| VLY + 2oV, LT (k' — k)
<&'= K|* + a’Tx + 2oV, L' (k' — k) (29)
where V. L' = V. L! (x*, k") for brevity.

The time-varying Lagrangian is concave in A and v, i.e., any
K, which implies that the time-varying Lagrangian difference
for a fixed x' € X satisfies

ct (xt, K,t) -t (Xt, h:) > (nt — R)T V.. L (Xt, n) .
Substituting (30) into (29) for any k € W' x At, we get
Lt (xt7 mt) -t (xt7 K)
1

t+1 t o2y @
> — % (||I<.; K| ) QFK'

By subtracting the results in (28) and (31), we have
Lt (xt, F-',) — Lt (xt*, K:t)

(30)

kI~ I (3D

1
< t_ Stk)|12 t4+1 _ t+1x)2
< g (e =2 = x4 417 2)
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1
+ o= (6" = s)* -

% I — &%) + [le*[| (2B; + aT)

+ S lletl? + % (6")% + épmt +5 (24100, (32
Assume that k! = 0. Then, summing (32) over time, using the
telescopic property for the first two terms on the RHS, and by
taking the expectation of both sides, the result follows. |
Based on Lemma 1, in the following, we provide the proof
for Theorem 1.
1) Proof for Theorem 1: First, we can rewrite £(x!, k) —

LH(x™, kt) as

LM (x' k) = L8 (x", k") = f (x') = £ (x")
kT [Ct (%;(txt))} T {Ct %;E’:”))} 33)

=41

where we recall that Dx** = 0 and C* (y* (x*)) < 0.
By using the definition of the cost function f(x) and summing
(33) over time, we have

T
Z,Ctxn — L' (x", k)

t=1

S
DDo IMENE i%vmmm).

m=1n=1 m=1n=1
(34)

Taking the expected value and using Lemma 1 in (34), we
have

T M m M N,, T
E z(z S Ut -3 S U t*>)+zat]
t=1 \m=1n=1 m=1n=1 t=1
< (= X+ f?) + ST (12 4 T)
~ 2a 2 ®
+%ET+§ (2B, +aly) + —YT + LD, a7, (35)

In order to bound the global network regret, we add and
subtract the RHS of (34) in (12), to obtain

Regp
T | M 1 N N,

:Z Z N, Z Umﬂ(m ’J) o Z Um.n (x;%n) _5t
t=1|m=1 myi=1 n=1

(3 3t

m=1n=1

(36)

The expected value of the last term of (36) is bounded by (35).
Next, focus on the first term in (36). Assumption 2 implies that

N
Z Un,i (heg) = D Unin (@)
i,j=1 n=1
< i Lm l|xmj mi‘ (37)
,j=1

where L, ; < L,, < L per each network composed of a system
and the users interacting with such a system. Maximizing over
the RHS of (37) we can get an expression for the worst case
disagreement per system m as

N,
Z Lm,i|$fn7j -

ij=1

boil € N2 Lyho | Dix (38)

|

where max|a?, i xt, .| can be upper bounded using Assump-
ing ; ;

tion 3, and X, := [Tm, Trn 15 - - -, Tin,N,, | V2
Back to the first term in (36), we have that

T N, N,
Z Z ZUmz ZUmn mn 7ﬁt

t=1 |m=1 7,] 1
T M 1 No,
=D 120 7 2o Ui (@) ~Umn (2,,)) =5
t=1 [m=1""""ij=1
T M 1 T
<Y 5 (VL Dax,l) =8
t=1m=1""" t=1

Nonaxmax L M| Dx'| (39)

E

T
_Zﬁt_
t=1

By the fact that at optimality ' ' Dx** = 0and v'C*(y*(x"*)) <
0, we can rewrite the RHS of (39) as

T T
3 3 Ct (y' (x1)
t T
| NmathaxLM”DX || — 2 K |: Dxt

-
— k) Dx!

o~
I

1

Dx!
= NmathaxLMi
2 ( [ Dx*|]

t=1

T
—Zth

t=1

(40)

By construction, we can choose a feasible dual variable A using
the compactness of X in[17],
so that the first term in (40) equals 0. Similarly, we can set v = 0.
With this choice for & = [7, XT]T, the expression on (40) is equal
to 0. Then, the expected value of the regret defined in (12) is
bounded, as shown in (17). |

2) Proof for Theorem 2: We start by bounding the distance
between the update of the dual variable /™! and an arbitrary
dual variable, i.e., for any v € W'

| — v <t 4 aVv, Ll — v

< W — v+ a?H? + 22V, LNV — V) (41)
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where V,L! =V, L' (x!,v,X) = O (y' (x*
L. Reorganizing (41) for any v € U, we get

)) for any feasible

B t 1 12t g2y Yoo
(V' =v)V,L %0 — (v vl = vt —u?) 2H .

(42)

The time-varying Lagrangian differences for a fixed x! € X!
and A € A satisfies

Lt (xt, yt,xt) - Lt (xt, v, Xt) = (I/t — 1/) V.. (xt, v, X) .
(43)

Replacing (43) in (42), and subtracting the results in (28), for
any v € U, we get

Lt (Xt7y’ )‘t) _rt (Xt*7yt7xt)

t*||2 _ ||Xt+1 _ Xt+1*H2)

5 (||xt —x
1
+ % (|1/t - V|2 - |1/t+1 - 1/\2) + le*]| (2B, + al',)

1 1
+5- ()" + ~Dy¢' + -

t||2
2c0 2

(T2 +H?).
(44)

+ 5”6

Since A'"Dx" = 0, we can also express L (x!,1,1") —
t tx t 9t
L (x 70 ) as

[,t (Xt,l/, A.t) _ Et (Xt*,l/t,).t) — (f (Xt) _ f (Xt*))
+ Uct (yt (xt)) + A,tTDXt _ l/tCt (yt (Xt*)) .

Reorganizing terms in (45), and by the fact that v!C*
(y! (x™*)) <0, we have

vt (yt (Xt)) < (ﬁt (xtﬂj’ )‘t) _rt (Xt*vytv)‘t))
. (f (Xt) o f (xt*)) o XtTDxt.

On the other hand, since the cost function is convex, we have
F) = () < lx" =x"[IVf (x") | < D.L (47

and because X'* and A* are compact sets uniformly in time, we
further get

(45)

(46)

ATDx'| < [A"|D][lx"|| < BiQ2B.. (48)

By using (44), (47), and (48) in (46), and reorganizing terms

1
o (v () < vt (3 (B2 + B + .1+ B,
+5 (02 + H2) + [le'] (2B, + aly) + S [’
L+ ling
+2a (¢") +aDm¢>. (49)

We now take the max operator, sum over time, and take the
expectation of both sides of (49), then

iwwmw

<Tv ! (é (4B2 + BZ) + D, L

+B,QB, + 5 (12 + H?)) +v7! (7 2B, + al,))

120

€
=
o (=3
(=] (=]

Active Power
s o

f=] f=]

"3

6
Time (hours)

(a)

10! i

Battery
——HVAC
——EV

Time (hours)

(b)

Fig. 4. (a) Tracking of y,e by the GP-based online primal-dual method
and (b) local network regret (solid line corresponds to true {Up, n},
dashed line to estimate {U,,,,} via shape-constrained GPs, and dotted
line to estimate {U,,.} via GPs).
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Fig. 5. Disagreement between system and users (zoom for the first

hour of simulation where each user is represented by a different line
style). The primal variables z,, and ., ,, are normalized such that 1072
corresponds to 1% error.

1 1
+u (22T 4 =T+ ZD,a7 ) Yu e (0,B,].
2 2a «
The previous inequality implies that the tightest result happens
at v = B, then (19) holds. |

V. NUMERICAL RESULTS

In this section, the proposed algorithm is numerically eval-
uated on a problem related to real-time management of DERSs
at the power distribution level. In particular, we consider the
aggregation of controllable DERs as well as uncontrollable
loads connected to a distribution transformer. DERs include
HVAC systems, EV, and energy storage systems. We consider
M = 3 DERs shared among N = 6 users, specifically, N1 = 2,
N5 =3, N3 = 1. The goal is to minimize the discomfort or
dissatisfaction for each user while enabling the aggregation
of DERs to actively emulate a virtual power plant where the
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Fig. 6. Behavior of ¢t and =t over time.

total power y* = 1"x! + 17w follows a given automatic gain

control or demand response reference signal y’,;. The opera-
tional sets for the devices are battery X; = [—8, 8] kW, HVAC
Xy = [0,10] kW, and EV X5 = [2,30] kW. We note that, in the
context of inverter-interfaced DERs, the set of feasible active
power setpoints is typically convex. The discomfort functions
{Upn,n } are assumed to be quadratic, the minimum of each of the
functions is inside the set constraints X,,,, and it corresponds to a
preferred setting of the user. For example, for EVs they represent
a preferred charging rate, for HVac systems, they represent a
preferred temperature setpoint (converted into a preferred power
setpoint) [14].

The time-varying constraint is C*(x/,) = g(lTfo + 1w
—yts)? — ¢t where (! is a given tolerance, which is set to 5%
of the value of y’,. The power of the uncontrollable loads is
taken from the Anatolia dataset (National Renewable Energy
Laboratory, Tech. Rep. NREL/TP-5500-56610) and has a gran-
ularity of 1 s (see Fig. 4). In this case, the evaluation of the
gradient of C"* requires measurements of the total power at each
step t. We evaluate the performance of the online algorithm at
a period of time equivalent to 12 h, each step of Algorithm 1
is performed every 5 s (except for the HVAC systems, which
are updated at a slower rate). The priors {Umn} are determined
from some noisy measurements (¢ = 1.5) and the discomfort
function is updated through the user’s feedback every 30 min.
In this case, the parameter L;; and «y are defined beforehand;
however, these values can be estimated via cross-validation. In
Fig. 4(a), it can be seen that the trajectory y is within 5% of the
reference setpoint y,.r most of the time, despite the variation of
the uncontrollable loads.

The local network regret is presented in Fig. 4(b). It can be
seen that the jumps in the dynamic regret correspond to instants
where the reference y..¢ changes abruptly. The regret of the
proposed algorithm is, as one would expect, higher than the
clairvoyant case where the functions {U,, ,, } are known. How-
ever, the difference diminishes over time, as the estimation error
decreases. Furthermore, Fig. 5 shows the behavior of the users’
disagreement during the first hour of the simulation. In addition,
Fig. 6 shows numerically how the metrics in (14), related to the
accuracy of the gradient estimation of the cost function, decrease
over time. Finally, Fig. 7 illustrates the sensitivity of the proposed
method to the choice of the parameter § in (9), we also provide
the trajectory for the online algorithm with perfect knowledge
of the users’ function (Online PD) for comparison purposes.

—6=1_ 0=01_0=001__ 0=000l — Online PD
6L |
Bt
&
o0
D
~
2+
0 2 4 6 8 10 12
Time (hours)
Fig. 7. Global network regret for different values of 4.

VI. CONCLUSION

In this work, we presented an online consensus-based al-
gorithm to solve a time-varying optimization problem associ-
ated with a network of systems shared by multiple users. The
cost functions that represent the individuals’ preferences were
learned concurrently with the execution of the algorithm via
shape-constrained GPs using users’ feedback. We developed an
online algorithm based on a primal—-dual method, properly modi-
fied to accommodate feedback from the users and measurements
from the network. We analyzed the performance via dynamic
network regret and ACV, and we showed that the bounds of
these metrics depend on the temporal variability of the optimal
solution set, and the errors associated with the estimation of the
gradients. Numerical results were presented in the context of
real-time management of DER. Future efforts include investi-
gating the convergence of multitime-scale algorithms, and the
case where the users’ cost functions are time-varying to reflect
preferences that change over time.
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