D2S2: Drag 'n’ Drop Mobile App Screen Search

Soumik Mohian

soumik.mohian@mavs.uta.edu
University of Texas at Arlington
Arlington, Texas, USA

Don Dang
dpd5574@mavs.uta.edu
University of Texas at Arlington
Arlington, Texas, USA

ABSTRACT

The lack of diverse UI element representations in publicly avail-
able datasets hinders the scalability of sketch-based interactive
mobile search. This paper introduces D2S2, a novel approach that
addresses this limitation via drag-and-drop mobile screen search, ac-
commodating visual and text-based queries. D2S2 searches 58k Rico
screens for relevant Ul examples based on Ul element attributes,
including type, position, shape, and text. In an evaluation with
10 novice software developers D2S2 successfully retrieves target
screens within the top-20 search results in 15/19 attempts within a
minute. The tool offers interactive and iterative search, updating
its search results each time the user modifies the search query. In-
terested users can freely access D2S2 (http://pixeltoapp.com/D2S2),
build on D2S2 or replicate results via D252’s open-source imple-
mentation (https://github.com/toni-tang/D2S2), or watch D2S2’s
video demonstration (https://youtu.be/fdoYiw8lAn0).

CCS CONCEPTS

« Human-centered computing — Interface design prototyping;
Software and its engineering — Software prototyping; Search-
based software engineering,.

KEYWORDS

User interface design, prototyping, information retrieval, design
examples, interactive screenshot search

ACM Reference Format:

Soumik Mohian, Tony Tang, Tuan Trinh, Don Dang, and Christoph Csallner.
2023. D2S2: Drag 'n’ Drop Mobile App Screen Search. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE °23), December 3-9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3611643.3613100

1 INTRODUCTION

Iterative app screen search, while an exciting area of recent work [ 16,
17, 18], still faces many challenges. First, Google image search is fast,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °23, December 39, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0327-0/23/12.

https://doi.org/10.1145/3611643.3613100

Tony Tang
ttt9489@mavs.uta.edu
University of Texas at Arlington
Arlington, Texas, USA

Tuan Trinh
tqt5663@mavs.uta.edu
University of Texas at Arlington
Arlington, Texas, USA

Christoph Csallner
csallner@uta.edu
University of Texas at Arlington
Arlington, Texas, USA

searches many images from the open web, and supports text-based
search queries. But searching for an app screen via text queries
remains clumsy, especially when looking for screens that contain
certain Ul elements in specific locations. Such searches result in
long text queries and produce few relevant results. Recent work
has searched the widely-used Rico dataset via a combination of
text search [18] and sketched element doodles [16, 17]. These ap-
proaches support a few Ul element types via deep learning. Expand-
ing their scope would require additional specialized training data,
which must be collected and curated.

When designing mobile applications, studying real-world exam-
ples aids in gathering requirements, analyzing current trends, and
cultivating motivation to develop a compelling mobile app [9, 10].
Given the broad and rapidly expanding market for mobile apps, an
efficient mobile app screen search tool becomes valuable.

Designers commonly use drag-and-drop tools (e.g., Figma [2]) to
create wireframes. Similarly, software developers utilize drag-and-
drop-based visual kits (e.g., the Android Layout Editor [1] or Proto-
typr [3]) for UI development. The popularity of these techniques is
growing due to their user-friendly nature, intuitive interfaces, and
since they do not require specialized technical expertise [13]. D252
offers an interactive solution via drag and drop for mobile screen
search.

D2S2 is for novice users who want help creating a complete UI
design during the early software development stages. Users can
search for mobile screens by dragging and dropping UI elements
on the canvas. The tool’s search interface includes basic features
such as undo and redo. Users can also add plain text and put text
in a text-button. As a user adds, removes, resizes, and moves Ul
elements, D2S2 searches through 58k Rico [7] screens to fetch UI
examples based on Ul element type, position, element shape, and
texts as shown in Figure 1. D2S2 fetches the top-20 screens and
displays them in its website’s top-pick screen search results section.

We recruited 10 software developers without prior Ul/UX design
training to assess D2S2’s effectiveness. The participants searched
for a given target Rico screen with D2S2 until the screen appeared in
D2S2’s top-20 search results. In our experiment, D2S2 successfully
obtained 15/19 target screens within a minute and 19/19 within
four minutes. D2S2 further retrieved more relevant mobile screens
than the other closely related competitor, Google image search. In
summary, this paper makes the following major contributions.

e D2S2 is the first interactive drag-and-drop app screen search
tool. After each query change it updates its search results.


https://orcid.org/0000-0003-4818-1210
https://orcid.org/0009-0003-3568-3307
https://orcid.org/0009-0006-0833-8956
https://orcid.org/0009-0005-2086-3369
https://orcid.org/0000-0003-0896-6902
http://pixeltoapp.com/D2S2
https://github.com/toni-tang/D2S2
https://youtu.be/fdoYiw8lAn0
https://doi.org/10.1145/3611643.3613100
https://doi.org/10.1145/3611643.3613100
https://doi.org/10.1145/3611643.3613100

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

@OnEONEOEOERRR ¥504»

< Settings & Feedback < Settings Q

App Features & Updates Enal

Nearby open houses

&— [Feedback

Sounds

Lights

Vibrate

Android Wear

Legal Information

Soumik Mohian, Tony Tang, Tuan Trinh, Don Dang, and Christoph Csallner

O R A

snowoaes @EROAON@N® *0W: 0104
& VoiceFeedback < Settings & & Settings
& auickswiten °
Devi ting: [
@  Feedback
Volume o ®
.
@  Lensuaseopions
Updateon
Updateintervl
Total distance °
Totatime °

Calories Bured

Pace/Speed, Average

Figure 1: Sample D2S2 search query consisting of 3 UI elements (left); searching through 58k mobile app screens, D2S2’s top-five
search result screens (right) all contain the query’s UI elements at about the locations where they appear in the query screen.

e D2S2 searches 58k Android screens and is freely available
(http://pixeltoapp.com/D2S2).

o In a preliminary user study, D2S2 performed similarly as the
deep-learning based TpD (but without requiring training)
and better than Google image search.

e D2S2’s implementation (https://github.com/toni-tang/D2S2)
is available under a permissive open-source license.

2 BACKGROUND

D2S2 searches 58k mobile Android app screenshots from the Rico
dataset by Deka et al. [7]. Each screenshot has a corresponding
DOM-tree container hierarchy, where each Ul element is described
by its Android class name, x/y coordinates, textual information,
and on-screen visibility. Liu et al. expanded on this dataset by
collecting 73k screen elements, categorizing them into 25 types
of UI components, and further dividing text buttons into 197 and
icon into 135 sub-classes [15]. D2S2 incorporates several common
Android UI elements identified by Liu et al.

Previous studies have explored using sketches and wireframe
images to search for relevant mobile screens. However, wireframe-
based approaches such as Swire rely on complete wireframe im-
ages to identify screens with similar visual characteristics, often
not considering Ul element type and text within the screen [4, 5].
Dependence on an entire wireframe image does not support the
iterative nature of the design process.

Besides Google Image Search, our closest competitors are PSDoo-
dle [16, 17] and TpD [18], which offer an interactive and iterative
approach to searching mobile screens. PSDoodle employs a deep
neural network to identify sketched Ul elements and then computes
a ranking score for Rico’s screens based on various factors, includ-
ing Ul element type, position, and shape. TpD extends PSDoodle by
adding a text-based search that matches a text query with visible
text on the mobile screen and UI element descriptions. Notably,
TpD allows queries to contain text, UI element sketches, or both.

3 OVERVIEW AND DESIGN

To create a search system that is easy to use, we followed a user-
centric approach. Via the Figma [2] graphical design tool, we thus
first created a Ul prototype (Figure 2), showed the prototype to
11 computer science undergraduate students, and collected their

feedback. By incorporating their feedback, we then iteratively en-
hanced D2S2’s user experience, mostly by refining D2S2’s UL All
user feedback is in D2S2’s repository.

NEYE

Drag & Drop

Q

Bookmark

Canvas Suggestion

Search

% 1

Close Pause

7 =

Checkbox Menu

Settings  Pictures

g I

Container Text

Figure 2: Initial D2S2 UI mock-up.

3.1 User Interface & Query Language

In D2S2, a search query consists of a set of Ul elements arranged on
a canvas that models the screenshot of a mobile app. Starting with
an empty canvas, the user interactively refines this canvas, adding
and adjusting UI elements as they should appear on the desired
app screens. Each time the user modifies this search query, D2S2
retrieves matching app screens that have the query’s Ul elements
at about the location the user placed them on the canvas. A part of
the search is matching any texts the user added to the search query
with screens’ text contents and descriptions of their UI elements.
Figure 3 shows D2S2’s current Ul Besides moving the app bar to
the bottom, the biggest change is allowing users to search D2S2’s
library of 52 built-in UI elements by the UI element’s name and
various synonyms. Figure 4 lists these 52 UI elements in the order
D2S2’ UI presents them. The order is TpD’s UI elements first, then


http://pixeltoapp.com/D2S2
https://github.com/toni-tang/D2S2

D2S2: Drag 'n’ Drop Mobile App Screen Search

Ul elements identified by Liu et al., ordered by how common they
appear in Rico screens [15].

(2 [search

Backward

A M

Avatar Checkbox

%

Arrow
Forward

>+

Menu

TEXT [ ~

Figure 3: D2S2’s webpage: Searchable UI elements (left), can-
vas with 3 user-placed Ul elements (right), app bar (bottom).
Cropped screenshot (from http://pixeltoapp.com/D2S2), not
shown: D2S2’s top-20 search result screen gallery.

Liu et al. classified the UI elements of Rico’s screens into 25
categories. 11/25 categories are various container types, which
D2S2 represents via a single general container. D2S2 directly sup-
ports 11/14 of the remaining categories, plus 44/135 icon types.
Combining 3/56 of these UI elements due to their similar visual
representation with another UI element (e.g., slider vs. slider icon)
yields D2S2’s 52 Ul element types plus text.

X AM-=D + Qg -0
Oy @O TREEEY ¢ Ele
OO § FRV200 YT
ARYONO=N—LHEN

Figure 4: A user builds an app screen search query on D2S2’s
canvas by dragging and adjusting text or these 52 UI elements.

The user searches (or scrolls) the Ul element list, selects a UL
element and drags and drops it on the canvas. The user can interact
with the Ul element, i.e., to move or resize it there. The app bar
at the bottom of the canvas allows undoing and redoing the last
element modifications and clearing the screen. The user can add
text either via a text-button from the UI element collection or via
the app bar’s “TEXT” feature. The latter adds a text element to the
canvas the user can manipulate like any other UI element. Clicking
on such a text element enables modifying its text content.

As in the earlier PSDoodle and TpD, Ul elements may be nested,
i.e., to support Ul elements grouped in a container element. D252
encodes the canvas’s current state as a set of 6-tuples of the form
(x,y, w, h,c, t), one tuple per Ul element on the canvas. The tuple
lists an element’s left-top corner’s location in pixel-space, the UI

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

element’s width, height, category, and text content (for text and
text buttons). The D2S2 webpage is written in React, as it provides
client-side rendering [14] and efficiently manages various events
such as drag-start, drag-end, and the undo/redo functionality.

3.2 D2S2’s Back-end

Figure 5 illustrates D2S2’s overall architecture, which consists of
D2S2’s webpage front-end and its AWS-hosted back-end. Each time
the user modifies the query, D2S2 sends the updated query’s tuple
encoding via HTTP post request to AWS EC2. For the current query,
the D2S2 back-end ranks its 58k Rico screens and sends the IDs
of the top-20 ranked screens back to the front end. The front-end
then retrieves a lower-resolution version of the 20 corresponding
screen images from D2S2’s AWS S3 bucket and displays them in
the top-pick gallery. When clicking on a result screen, D2S2 fetches
and displays a higher-resolution version of the result screen.

s AWS
HTTP POST % EC2
|

Drag and Canvas ‘
drop icon Elemenrts Elasticsearch

enter or

updat(}_‘ text, Top-N

irce(?:]ze move screen ids Screen @

] Similarity Screen
N Metric | piciiona
Top-N screen
. images - Screen images
Top-pick in AWS S3
Il
- gallery bucket
HTTP POST

Web Browser AWS

Figure 5: D2S2’s architecture: A user drags or adjusts Figure 4
UI elements on the Figure 3 D2S2 front-end webpage (left),
which communicates with its AWS-hosted back-end (right).

To rank its 58k screens, D2S2 uses TpD’s infrastructure, which
in turn builds on PSDoodle’s. For non-text UI elements, D2S2 uses
PSDoodle’s screen scoring scheme (which TpD similarly reused).
Specifically, D2S2 divides a mobile app screen into 24 equally sized
tiles (6 along the width and 4 along the height) and maintains TpD’s
tile configuration. The main change is in more than doubling TpD’s
23 Ul element classes to D2S2’s 52. In the back-end, this is straight-
forward by adding one screen ID index for each of the additional
Ul element classes to allow fast screen lookup.

For text elements, D2S2 reuses TpD’s pipeline [18], which pre-
processes the Rico screens’ text contents and UI element descrip-
tions (remove stop words, identify names, lemmatization, adding
synonyms via contextual analysis, and tagging text content with
on-screen location). As for text contents TpD only supports four
different screen areas (top-left, top-right, bottom-left, and bottom-
right), D2S2 first maps the location of a text element to one of these
four TpD screen areas. As TpD, D2S2 then uses ElasticSearch with
Levenshtein edit distance one, to heuristically also match slightly
mis-typed user-provided text to screen contents.


http://pixeltoapp.com/D2S2

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

4 D2S2 USAGE

To compare with its closest competitors TpD and Google Image
Search, we enlisted 10 computer science students who did not have
formal UI/UX design training. While the participants differ, we
recruited them using the same criteria the TpD study used. To
ensure diversity, we selected five individuals with and five without
previous mobile app development experience. All participants were
early-stage undergraduates aged 20-25. As a token of appreciation,
each participant received USD 10 compensation. Specifically, we
are interested in the following research questions.

RQ1 How does D2S2 compare with TpD, in terms of total time
of the interactive search, final queries’ UI element counts,
and final queries’ top-k screen retrieval accuracy?

RQ2 How does D2S2 compare with Google Image Search on a
free user query, for producing relevant top-20 search results?

For each participant, we had one video conference of about
30 minutes that started with us explaining D2S2’s objectives. We
then demonstrated the search process for an icon, dragging the
icon to the canvas, resizing and adjusting the icon’s position on
the canvas, the functionality of the undo/redo/clear-screen buttons,
and how to add text using the text and text-button features. Each
participant accessed D2S2 over the internet via a web browser on
their personal machine. We used D2S2’s standard setup as a website
hosted on an Amazon AWS EC2 general-purpose instance (t2.large),
featuring two virtual CPUs and 8GB RAM. D2S2’s repository con-
tains all experimental results.

4.1 Similar Screen Search Performance as TpD

For this second part of a participant meeting, we used the 26 ran-
domly selected Rico target screens used by TpD’s evaluation. For
each participant, we randomly selected from this pool one target
screen per search session. We instructed the participant to create
a query that would retrieve the target screen and refine the query
until the target screens appeared in D2S2’s top-20 results.

Table 1: Participants’ search sessions for target screens via
D282 (left) and free search via D2S2 and Google Images (right):
t = search session’s total time; n = final query’s Ul elements
(including texts); r = target screen’s rank for final query;
G/D = top-20 Google/D2S2 results participant judged relevant.

Target 1 Target 2 Free1 Free2
ts] n r tfs] n r|{G D G D
1 40 4 2 27 3 112 18 18 0
21120 9 1 52 3 2|1 3 3 4
3 37 3 4 48 4 3|5 20 0 20
4| 50 3 10 23 2 4|18 16 10 20
5 70 4 1 240 2 110 7 4 13
6 59 3 12 196 15 14| 3 16 4 20
7 63 3 18 51 3 217 11 1 3
8| 42 4 16 51 3 717 10 0
9 39 3 9 42 7 17|11 10 1 19
10 50 4 8 - - -12 5 - -

Nine participants used D2S2 twice, and one used it once, yielding
19 D2S2 search sessions. For each such search session, we recorded

Soumik Mohian, Tony Tang, Tuan Trinh, Don Dang, and Christoph Csallner

the total time, the number of UI elements and texts in the partic-
ipant’s final query, and the target screen’s rank in D2S2’s results
for that final query. D2S2’s top-k retrieval accuracy is the number
of search sessions in which D2S2 ranks the target screen in its
answer to the participant’s final query in the top-k. We use top-k
retrieval accuracy, as the metric is widely used to evaluate related
work [6, 8, 11] and correlates with user satisfaction [12].

Table 1 summarizes the results. Comparing with TpD’s results
is a little tricky as TpD’s participants were instructed to search
until the target screen appears in TpD’s top-10 search results or the
search exceeds 3 minutes. So TpD participants were encouraged to
spend a bit of additional time to refine a query. With this caveat, the
overall results for D2S2 and TpD are similar. D2S2’s top-20 screen
retrieval accuracy is 100% (19/19) vs. TpD’s 97% (29/30).

D2S2’s total search session time was at least 23 seconds, 240s
maximum, 68s average, and 50s median. This compares to a 5s
minimum, 156s maximum, average 45s, and 35s median for TpD.
Contributing to TpD shorter search sessions are TpD’s experimental
setup (which allowed participants to practice using TpD for some
10 minutes before collecting results) and D2S2 having more than
twice the number of UI elements to choose from for a search query.
We observed participants using significant time browsing the UI
elements available in D2S2 and selecting the correct UI element.

4.2 More Targeted Than Google Image Search

In this final meeting part, we instructed each participant to for-
mulate a Google-style search query and perform a corresponding
search using both D2S2 and Google image search (an example of a
participant’s query is “mobile screen menu icon top left and search
icon top right”). We then asked the participant to rate each result in
both tools’ top-20 results as relevant or non-relevant to the query.

Participants judged 20% (77/380) of Google image search’s re-
sults as relevant and 58% (222/380) of D2S2’s result screens. D252’s
58% relevance here is largely in line with TpD’s 52% reported for
searches for a given target screen [18]. Given D2S2’s and TpD’s
slightly different experimental setups, it is hard to draw conclu-
sions about their relative performance. For the search scenario over
58k Rico screens, both tools clearly perform better than Google
Image Search.

5 CONCLUSIONS

Current sketch-based iterative mobile screen search has limitations
in supporting many UI elements. Drag-and-drop provides a flexible
alternative. D2S2’ provides an interactive, drag-and-drop search
that displays results interactively. The tool is freely available and has
undergone user testing, demonstrating its effectiveness. D2S2 is a
promising solution for novice users who require assistance creating
a comprehensive Ul design in the initial development phases.

ACKNOWLEDGEMENTS

Christoph Csallner has a potential research conflict of interest
due to a financial interest with Microsoft and The Trade Desk.
A management plan has been created to preserve objectivity in
research in accordance with UTA policy. This material is based
upon work supported by the National Science Foundation (NSF)
under Grant No. 1911017.



D2S2: Drag 'n’ Drop Mobile App Screen Search

REFERENCES

(1]

(6]

=

=

[10]

2009. Android Developers. https://developer.android.com/studio/write/layout-
editor. Accessed: Aug 2023.

2019. Figma. https://www.figma.com. Accessed: Aug 2023.

2022. Prototypr. https://prototypr.io. Accessed: Aug 2023.

Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif
Seif El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In Proc.
CHI Conference on Human Factors in Computing Systems. 1-14.

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu, John
Grundy, and Jinshui Wang. 2020. Wireframe-based UI design search through
image autoencoder. ACM Transactions on Software Engineering and Methodology
(TOSEM) 29, 3 (2020), 1-31.

John Collomosse, Tu Bui, and Hailin Jin. 2019. Livesketch: Query perturbations
for guided sketch-based visual search. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2879-2887.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset for
building data-driven design applications. In Proc. 30th Annual ACM Symposium
on User Interface Software and Technology (UIST). ACM, 845-854.

Sounak Dey, Pau Riba, Anjan Dutta, Josep Llados, and Yi-Zhe Song. 2019. Doodle
to search: Practical zero-shot sketch-based image retrieval. In Proc. IEEE/CVF
conference on computer vision and pattern recognition. 2179-2188.

Claudia Eckert and Martin Stacey. 2000. Sources of inspiration: a language of
design. Design studies 21, 5 (2000), 523-538.

Scarlett R Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P Bailey. 2009.
Getting inspired! Understanding how and why examples are used in creative

[11

[12

(13

[14

[15

[16

(18

]

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

design practice. In Proc. SIGCHI conference on human factors in computing systems.
87-96.

Forrest Huang, John F. Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based
user interface retrieval. In Proc. CHI Conference on Human Factors in Computing
Systems. ACM.

Scott B Huffman and Michael Hochster. 2007. How well does result relevance pre-
dict session satisfaction?. In Proc. 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 567-574.
Johnsymol Joy. 2018. Review on different types of drag and drop mobile app de-
velopment platforms. International Journal of Computer Sciences and Engineering
6, 11 (Nov. 2018), 864-866.

Mochammad Fariz Syah Lazuardy and Dyah Anggraini. 2022. Modern Front End
Web Architectures with React.Js and Next.Js. International Research Journal of
Advanced Engineering and Science 7, 1 (2022), 132-141.

Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proc. 31st Annual
ACM Symposium on User Interface Software and Technology (UIST). 569-579.
Soumik Mohian and Christoph Csallner. 2022. PSDoodle: Fast app screen search
via partial screen doodle. In Proc. 9th IEEE/ACM International Conference on Mobile
Software Engineering and Systems. 89-99.

Soumik Mohian and Christoph Csallner. 2022. PSDoodle: Searching for app
screens via interactive sketching. In Proc. 9th IEEE/ACM International Conference
on Mobile Software Engineering and Systems. 84-88.

Soumik Mohian and Christoph Csallner. 2023. Searching Mobile App Screens via
Text + Doodle. arXiv:2305.06165 [cs.IR]

Received 2023-05-11; accepted 2023-07-20


https://developer.android.com/studio/write/layout-editor
https://developer.android.com/studio/write/layout-editor
https://www.figma.com
https://prototypr.io
https://arxiv.org/abs/2305.06165

	Abstract
	1 Introduction
	2 Background
	3 Overview and Design
	3.1 User Interface & Query Language
	3.2 D2S2's Back-end

	4 D2S2 usage
	4.1 Similar Screen Search Performance as TpD
	4.2 More Targeted Than Google Image Search

	5 Conclusions
	References

