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STOCHASTIC SADDLE POINT PROBLEMS WITH
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Abstract. This paper focuses on stochastic saddle point problems with decision-dependent
distributions. These are problems whose objective is the expected value of a stochastic payoff function
and whose data distribution drifts in response to decision variables—a phenomenon represented by a
distributional map. A common approach to accommodating distributional shift is to retrain optimal
decisions once a new distribution is revealed, or repeated retraining. We introduce the notion of
equilibrium points, which are the fixed points of this repeated retraining procedure, and provide
sufficient conditions for their existence and uniqueness. To find equilibrium points, we develop
deterministic and stochastic primal-dual algorithms and demonstrate their convergence with constant
step size in the former and polynomial decay step-size schedule in the latter. By modeling errors
emerging from a stochastic gradient estimator as sub-Weibull random variables, we provide error
bounds in expectation and in high probability that hold for each iteration. Without additional
knowledge of the distributional map, computing saddle points is intractable. Thus we propose
a condition on the distributional map—which we call opposing mixture dominance—that ensures
that the objective is strongly-convex—strongly-concave. Finally, we demonstrate that derivative-free
algorithms with a single function evaluation are capable of approximating saddle points.
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1. Introduction. The broad goal of stochastic optimization is to find an optimal
decision for an objective with uncertainty in some parameters [30, 36, 42]. For exam-
ple, in statistical learning, parameters may be taken to be data-label pairs in large
data sets [8, 17]; in the context of optimization of physical and dynamical systems,
they may model externalities and random exogenous inputs, or system parameters
that are predicted from data and are accompanied by given error statistics [4]. A
key assumption that is typically leveraged for providing theoretical guarantees for
stochastic optimization algorithms is that the distributions of random parameters are
stationary [5]. However, in modern machine learning and cyber-physical systems ap-
plications, data may be subject to decision-dependent shift, whereby the distribution
is inextricably tied to the decision variables.

We are interested in solving a stochastic saddle point problem where the data
distribution shifts in response to decision variables. This feature yields the problem

(L1) mipmas {#a) = B (ot}
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where X C R™ and Y C R™ are compact constraint sets, ¢ : R” x R™ — R is a scalar-
valued function of the decision variables (z,y) parameterized by a random vector w,
D is a distribution inducing map, and w is supported on a complete and separable
metric space M with metric d. Hereafter, we refer to ® as the objective and the
function ¢ as the minimax function. We remark that the distribution of w depends
on the decision variables (z,y). When solutions to the problem (1.1) exist, we will
denote these solutions as (z*,y*). Additional notational conventions may be found
below.!

For general distributional maps D, solving (1.1) directly is intractable. Indeed,
® may be nonconvex-nonconcave even when ¢ is strongly-convex—strongly-concave.
A common heuristic when dealing with nonstationary data distributions is to recom-
pute optimal decisions each time a new data distribution is revealed. For minimax
problems, this corresponds to generating a sequence of decisions {(z,y:)}+>0 such
that
" Tit1 € argr;g;{lgleagww%hyt)[cb(x,y,w)],

€ i E Ly, w)).
Yr+1 €argmaxmin - (%yt)[qﬁ(w Yy, w)]

We will refer to fixed points of this sequence as equilibrium points. These can be seen
as the counterparts of the so-called performatively stable points in [11, 31, 41] in our
stochastic minimax setup (1.1). A primary objective of this work is illustrating suffi-
cient conditions for the existence and uniqueness of equilibrium points. In particular,
existence of the set equilibrium points is shown when the minimax function is convex
in x and concave in y for a given w, and under continuity of the distributional map.
Building on these results, and focusing on strongly-convex—strongly-concave functions
¢, we then develop deterministic and stochastic projected primal-dual algorithms that
can determine equilibrium points.

However, as discussed in the paper, equilibrium points and saddle points are qual-
itatively distinct. Equilibrium points are saddle points for the stationary problem
that they induce, but need not be necessarily optimal. For this reason, we investi-
gate a sufficient condition on the distributional map D that allows us to guarantee
strong-convexity—strong-concavity of the objective ®. We call this condition opposing
mizture dominance, and provide a detailed example of a practical class of distribu-
tions that satisfy this assumption. Since gradient based algorithms will require us to
have knowledge of the explicit dependence D has on the decision variables, we turn
to zeroth order algorithms. We demonstrate that derivative-free algorithms with a
single function evaluation are capable of approximating saddle points provided that
® is strongly-convex—strongly-concave.

I Notation. We let R denote the set of real numbers, and [n] = {1,2,...,n}. For given column
vectors € R™ and y € R™, we let (x,y) denote their concatenation; that is, [z7,37]T with T denoting
transposition; for z,y € R™, we let (z,y) denote the inner product. For a given column vector z € R",
|lz|| is the Euclidean norm; for a matrix X € R"*™ || X||r denotes the Frobenius norm and ||X||«
the nuclear norm. Given a differentiable function f: R"™ — R, V f(z) denotes the gradient of f at
z (taken to be a column vector). For a function f:R™ X R™ — R, V; f(z,z) denotes the partial
derivatives of f with respect to x. Given a closed convex set C' C R™, II¢ : R™ — R™ denotes the
Euclidean projection of y onto C, namely, Il (y) :=argmin,cc ||y — v||. Given a set C CR", P(C)
denotes its power set. For a given random variable w € R, we write w ~ p to mean that w is a
random variable with law p, a probability measure supported on R. Hence u(A) =P(w € A) for all
A CR. Furthermore, E[w] denotes the expected value of w, and P(w < €) denotes the probability of
w taking values smaller than or equal to ¢ ||w]|p := E[jw[P]'/? for any p > 1.
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1.1. Motivation. Saddle point problems arise in a variety of areas, including
stochastic constrained optimization problems [22, 33], strategic classification [31], and
games [13], and are relevant in several applications that span finance, energy systems,
transportation networks, and ride sharing, just to mention a few. Our work natu-
rally contributes modeling and algorithmic approaches in these areas and applications
whenever the uncertainty can be considered to be decision dependent. For example,
in the energy systems context, the problem of finding an optimal charging policy for
a fleet of electric vehicles involves uncertainty in the price of energy; indeed, real-time
prices are subject to change due to the demand itself as well as on external factors
such as spot market behavior [14]. As representative examples, in the following we
provide a brief description of the problem formulations in competitive markets and
strategic classification.

1.1.1. Relative cost maximization in competitive markets. Consider a
game in which two competing service providers aim to maximize their relative profits
in a region partitioned into n zones. This applies to, for example, ride sharing [4] and
power providers [1]. Focusing on electric vehicle charging station providers [23], at
each zone i € [n] we denote the average baseline price as p; and the price differential to
charge per minute set by provider one as z;. The revenue of provider one is a;(z; +p;),
based on their demand a;. However, they must incorporate a zone based utility cost
0;(z; + p;), as well as a term enforcing quality of service v; ;27 (the quadratic term
balances the utility of the provider with the cost of ensuring quality of service by
penalizing large deviations from the baseline price).

In total, the profit for provider one over all n zones is given by uj(z,a) = (a +
0, x+p)—||T12||? with 'y = diag{"1 1,...,71,n}. If the price and demand of service for
provider two are given by y and b, respectively, then their profit is similarly represented
as ua(y,b) = (b+ 0,y + p) — ||[T2y||?>. Each provider has finite bounds on the prices
they are willing to set in each zone and, hence, their prices are constrained to the
closed rectangles X = X?zl[—pi,c17ipi] and Y = X:;l[—pi, ¢2,p;] with multiplicative
factors c¢j; > 0. The service demand vectors a and b are unknown quantities that
will depend not only on the price set by their respective providers, but also their
competition. One such example of a dependence is a best response model. It has been
shown that best response models with linear utility and quadratic cost associated with
changing features give rise to location-scale models of the form a 4 ag+Aiz+Asy, b 4
bo+ B1x+ Bay, where ag ~ Dy and by ~ D5, for which D, and D5 represent stationary
prior distributions for the demand associated with providers one and two, respectively
[31]. In order to maximize their expected profits relative to provider two, provider
one will minimize the negative of their relative profit given by u;(z,a) —u2(y,b) and,
hence, the optimal strategies for both providers are solutions to the saddle point
problem

1.3 i E x| = |Teyl* — 0, b+0,y),

(13 migmax Bl = [Pyl = (a0,5) + (0+0.9)

where the dependence on baseline price p has been removed as it has no impact on
the optimality criterion.

1.1.2. Multitask strategic classification. A second application is a multitask
strategic classification problem [31]. Consider the problem of learning a collection of
N tasks for a strategic population simultaneously. Such a framework is especially
helpful in problems such as spam filtering; in this case, a classifier is learned for each
user, however, it is expected that spam email designers will adapt to spam filters in
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order to be misclassified [24, 37, 39]. Each user has a dataset D; = {(a; ;, b; ; }?;1 with
features from their emails and labels of either spam or not spam. The goal is to learn
classifiers { i} that will predict spam based not only on the available data, but on
the anticipated changes spammers will make to their features. To learn {f;},, we
pose the nuclear norm regularized minimization problem

N

(1.4) ,, oo ; B (o B fila@i za)) + [z, on]]

A challenge in solving (1.4) is that the nuclear norm is not differentiable. To avoid
using proximal methods, we can introduce dual variables by observing that the nuclear
norm is the dual of the operator norm and hence || X ||, = maxyry <y —(X,Y)r, where
(-, p : R x R¥Xm 5 R is the Frobenius inner product defined by (X,Y)p =
trace(XTY) [32]. Thus, the problem in (1.4) can be rewritten as

T

1.5 i E b, fila;ze)) = (X, Y)F,
(15) XexTVEy ;m,b)wt(m( Julas)) = (XY

where XN =X~ X CR™N and Y ={Y| YTY < I}.

1.2. Related works. In this subsection, we review the literature on saddle point
problems and stochastic optimization that is most relevant to our work.

Saddle point problems. Saddle point problems have been well investigated, with
theoretical guarantees in distance metrics (squared Euclidean metric) and dual-gap
metrics. Common approaches for these problems are either proximal methods or
primal-dual methods, with version existing for both deterministic and stochastic prob-
lems. Proximal methods include mirror-prox [29] and extragradient [27] for determin-
istic objectives and stochastic mirror-prox [30] for stochastic objectives; primal-dual
methods include primal-dual or gradient descent-ascent [20] and optimistic gradient
descent-ascent [27]. Stochastic primal-dual methods and their accelerated varieties are
studied in [43]. Convergence guarantees for stochastic optimization algorithms typi-
cally come in the form of convergence with a diminishing step-size policy [28, 29, 30],
or convergence to a neighborhood with fixed step size [20, 43].

Decision-dependent distributions. Our work is most closely related to the litera-
ture on stochastic optimization with decision-dependent distributions—also referred
to as performative prediction in the machine learning community. These are two re-
lated paradigms for stochastic programs where the data distribution is a function of
the decision variables. In this context, equilibrium problems are presented and solved
via conceptual deterministic algorithms in [31]; second moment analysis for stochastic
algorithms with access to a sampling oracle is provided in [25]; and proximal first-
order algorithms for regularized objectives are studied in [11]. In [41], first moment
and high probability tracking analysis are provided under a sub-Weibull gradient error
for a time-varying optimization problem.

Sub-Weibull error models. Sub-Gaussian and subexponential gradient error mod-
els are common in the literature on stochastic gradient methods. Empirical and
theoretical results have demonstrated that heavier tailed distributions arise naturally
in deep learning. The class of sub-Weibull distributions subsumes the sub-Guassian
and subexponential classes of distributions, while also including heavier tailed distri-
butions as well as distributions with bounded support [21, 38, 40]. Given their broad
application, this model has been receiving increased use in the literature. See, for
example, [3, 21, 41].
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1.3. Contributions. In this paper, we offer the following main contributions.
(1) The minimaz equilibrium problem. We propose a notion of equilibrium points
for the saddle point problem in (1.1). We then provide conditions to guarantee their
existence and uniqueness, and we provide bounds for the distance between the unique
equilibrium point and saddle points of (1.1).

(2) Algorithms. We demonstrate that primal-dual algorithms, using the gradients
of ¢, are effective at finding equilibrium points when the stochastic objective ¢ is
strongly-convex—strongly-concave. First, we demonstrate convergence of a concep-
tual algorithm using full gradient information. We then demonstrate that stochastic
algorithms with fixed step size converge to a noise-dominated neighborhood of the
equilibrium point, as well as provide expectation bounds and high probability bounds
that hold for each iteration. Additionally, we show convergence of the stochastic
algorithm for decaying step size.

(3) Saddle points. We propose a sufficient condition for distributional maps that pre-
serve the strong-convexity—strong-concavity of ¢. Hence when ¢ is strongly-convex—
strongly-concave, so too is ®. We then discuss a zeroth-order algorithm capable of
finding an approximate saddle point using only a single function evaluation.

(4) Ezperiments. We illustrate our results on the electric vehicle charging problem
in (1.3) by incorporating synthetic demand data from [16] for a location-scale family
based distributional map.

Connection to related works. Relative to the referenced work on stochastic saddle
point problems, we consider the case where the function ¢(z,y,w) is strongly-convex—
strongly-concave in the decisions (z,y) and the randomness captured by w is governed
by a family of distributions (z,y) — D(z,y). To measure performance of our algo-
rithms we use the Euclidean distance to the solution. Contrary to most of the work
on the stochastic saddle point problems that use the distance metric, we analyze using
both the first moment and the second moment. We note that, however, bounds on
the first moment do not need stochastic filtrations as an underlying working assump-
tion. We also provide bounds in high probability that hold for each iteration, under
a sub-Weibull model.

The prior body of work on optimization with decision dependent-distribution has
studied both equilibrium points and minimizers, as well as stochastic algorithms for
finding them. Hence, our results extend those found in the setting of [11, 25, 26, 31]
by casting the problem into a more general variational inequality framework. The
study of saddle point problems is a unique contribution of this paper. Relative to [26],
we continue the study of stochastic orders and location-scale families by proposing a
condition on the distributional map that is suitable for convex-concave objectives. To
approximate saddle points, we analyze a zeroth-order algorithm adapted from works
such as [7, 10, 15, 26] to suit our setting.

Organization. The paper is organized as follows. In section 2 we define and solve
the equilibrium point problem in the static setting. Section 3 investigates the time-
varying equilibrium point problem via online optimization methods. Section 4 offers
sufficient conditions for which the saddle point problem can be solved. In section 5,
we illustrate our results on a bilinear matrix game.

2. The equilibrium problem. Recall the decision-dependent stochastic saddle
point problem provided in (1.1),

(2.1) mipma {0(r.0)i= B[]},

zEX yey w~D(z,y)
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where the sets X CR™ and Y C R™ are convex and compact. Let P(M) be the set of
Radon probability measures on a complete and separable metric space M with finite
first moment, and observe that the objective function can be written in integral form
as ®(z,y) = fM &(x, Y, W) fh(z,y) (dw), Where p, y € P(M) is given as the output of
the distributional map D for each (z,y) € X x ). Classical solutions to this problem
take the form of saddle points, as defined next.

DEFINITION 2.1 (saddle points). A pair (z*,y*) € X x Y is a saddle point for
the problem in (1.1) provided that ®(z*,y) < ®(z*,y*) < P(z,y*) Ve e X,y ).

Sufficient conditions for the existence of saddle points consist of ® being convex-
concave while X’ and ) are convex and compact [34, Example 11.52]. When minimax
equality holds, we can equivalently characterize saddle points as a pair that satisfies

¥ € argminmax ®(x,y), y* € argmaxmin®(x,y).
g min max (x.9), v g max min (z,9)
In practice, computing saddle points directly is computationally intractable. Namely,
the dependence of the distributional map on the decision variables implies that even
when ¢ is convex-concave ® may not be and hence saddle points will not even exist.
Hence, we direct our attention to the fixed point of the repeated retraining heuristic
in (1.2).

DEFINITION 2.2 (equilibrium points). A pair (Z,§) € X x Y is an equilibrium
point if

r E i ]E b ) b
” 7 argggg{rynea;wm)[¢<x y w)]}

y € argmax {gg}g NG w)]} :
Intuitively, (Z,7) are saddle points for the stationary saddle point problem induced
by the distribution D(Z,y). These are desirable as alternative solutions as they exist
under mild convexity assumptions for problems with compact decision sets. Fur-
thermore, we note that compactness here is not a limitation, as even unconstrained
problems can be artificially constrained to a sufficiently large compact set without
changing the solutions [20].

Our first objective in this work will be to provide conditions for the existence
and uniqueness of these equilibrium points. Later, we develop first-order algorithms
and demonstrate their convergence to equilibrium points. Crucial to our analysis will
be the properties of the “decoupled objective,” which is defined as ®(z,y;2’,y’) =
Eynpar gy ld(z,y,w)] for z,2" € X and y,y" € Y. Here, the distribution is fixed for
given points (2’,y"). With these definitions, we consider a correspondence H : X' X)) —
P(X x)), defined by

(2.3)  H(w,y)= <arg min g}g§®(x’,y/;x,y), argmax min (', y; z,y))

which maps pairs in the product space to its power set P(X x )). In light of Defini-

tion 2.2, the equilibrium points are fixed points of the map H; that is, (z,7) € H(Z, 7).
For notional convenience, we will introduce the stacked vector in the product

space z = (z,y) € X x Y (consequently, we can identify H(z) and ®(2';z) with the

above functions whenever convenient). In the following section, we provide sufficient

conditions for the existence of equilibrium points.
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2.1. Existence of equilibrium points. Our goal is to demonstrate the exis-
tence and uniqueness of equilibrium points. First, we demonstrate the existence of
equilibrium points by showing that the fixed point set of H, defined as Fix(H) :=
{z € X x Y| z€ H(z)}, is nonempty. The crux of our proof is showing that, under
appropriate assumptions, H is an upper hemicontinous function. Next, we provide
this definition as well as the notion of a topological neighborhood.

DEFINITION 2.3 (neighborhood [2, sect. 17.2]). If A is a topological space and
x € A, then a neighborhood of x is a set V. C A such that there exists an open set U
with x €¢ U C V. If the set V is open, then we say that V is an open neighborhood.

DEFINITION 2.4 (upper hemicontinuity [2, sect. 17.2]). If A and B are two
topological metric spaces, then a set-valued function ¢ : A P(B) is upper hemicon-
tinuous (uhc) at x € A provided that for every neighborhood U of p(x) C B, the upper
inverse set o*(U) ={z: p(x) CU} is a neighborhood of x. If ¢ is uhc at every x in
A, then we say that ¢ is uhc on A.

We next state our result for the existence of equilibrium points.

THEOREM 2.5 (existence of equilibrium points). Suppose that the following as-
sumptions hold:
(1) x> ¢(x,y,w) is convex in x for all y €Y and for all realizations of w;
(ii) y— o(x,y,w) is concave in y for all x € X and for all realizations of w;
(iii) ¢ is continuous on X x Y for all w;
(iv) X CR%,Y CR™ are conver compact subsets;
(iv) the distributional map D : Z — (P(M),W7) is continuous.
Then the fized point set Fix(H) is nonempty and compact.

Proof. The proof amounts to showing that H satisfies the hypotheses of Kaku-
tani’s fixed point theorem [2, Corollary 17.55] for correspondences (set-valued func-
tions). Since the domain X x ) is convex and compact by hypothesis, we show that
H has a closed graph and nonempty convex and compact set values in P(X x )).
Following the closed graph theorem [2, Theorem 17.11], compactness of X x J implies
that H has a closed graph if and only if it is closed valued and upper hemicontinous.
Hence our proof reduces to showing that (i) H has nonempty closed values, (ii) H is
upper hemicontinuous, and (iii) H has convex values.

Define the intermediate functions

(2.4) f(@';2) =max®(2',y';2) and g(y';2) =min®(2’',y';2)
y'ey zeX

as well as the realization functions

2.5 F(z)= i ', d G(z)= ',
(2.5) (2) arg;pelgf(wyz) an (2) argggga(yyz)

for all 2’ € X, v € Y, and 2 € X x ). Using this convention, H can be written
compactly as H(z) = (F(z),G(2)). It follows from continuity of ¢ and D on X x ), as
well as compactness of X and ), that f and g are continuous [2, Theorem 17.31]. The
maximum theorem applied to F’ and GG implies that F' and G are upper hemicontinuous
and have nonempty compact set values. Here, compactness implies closedness. Thus
the values of H are closed since the Cartesian product of closed sets is closed. This
proves (i).

To see that H is upper hemicontinuous, fix z € X x ) and let U be an open set
such that H(z) C U. Then H will be upper hemicontinuous provided that we can
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show that there exists an open neighborhood W of z such that H(W) C U. Given
that H(z) is a compact subset of U, [2, Theorem 2.62] guarantees the existence of
open sets V, C X and V,, C ) such that H(z) C V, xV, C U. Since F and G are
upper hemicontinuous, then the upper inverse sets F*(V,) = {z : F(z) C V,} and
G"(Vy) ={z:G(2) CV,} are open in X x Y. Let W = F*(V,)NG*(V,). Then ze W
by construction, so W, H(W) # (. Furthermore, W is an open neighborhood of z and
H(W)CV, xV,CU. Thus condition (ii) holds.

Observe that since 2’ — f(2';2) is convex for all z and X is convex, then F(z)
is convex for all z € X x Y. Similarly, G(z) is convex for all z. Since the Cartesian
product of convex sets is convex, then condition (iii) follows. |

Recall that the intuition for the equilibrium points is that they are the saddle
points of the stationary saddle point problem that they induce. In this next results,
we summarize this characterization.

PROPOSITION 2.6 (saddle point and equilibrium equivalence). Suppose that an
equilibrium point exists. Then (Z,§) € X x Y is an equilibrium point if and only if

(2.6) o(z,y;2,9) < (z,7;2,9) < (2,5 Z,7)

forallzx e X andye ).

We omit the proof as it amounts to the same proof technique for the classical
saddle point characterization result.

We will leverage the results of this section in the analysis of first-order methods
that will be utilized to solve the stochastic minmax problem. In the following, we
outline some working assumptions used in the algorithmic synthesis and analysis, and
provide additional intermediate results.

2.2. Equilibrium points for strongly monotone gradient maps. In what
follows, we outline relevant assumptions that we use in this paper for the synthesis and
analysis of first-order deterministic and stochastic algorithms to identify equilibrium
points.

Assumption 1 (strong-convexity—strong-concavity). The function ¢ is is continu-
ously differentiable over for any realization of w. The function ¢ is y-strongly-convex—
strongly-concave, for any realization of w; that is, ¢ is y-strongly-convex in x for all
y € R™ and 7-strongly-concave in y for all € R%.

Assumption 2 (joint smoothness). The stochastic gradient map 1 given by (z,w) :=
(Vao(z,w),—Vyé(z,w)) is L-Lipschitz in z and w. Namely,

||7/}(Zﬂ w) - ¢(Zl» w)

for any z,z’ € R™ x R™ and w,w’ supported on M. Here d: M x M — R denotes the
metric on M.

| SL”’Zi'Z/”v ||1/1(z,w) *ﬁ’(szl)” SLd(waw/)

Assumption 3 (distributional sensitivity). The distributional map D :RY x R™ —
P(M) is e-Lipschitz. Namely,

Wi(D(2),D(2)) <ellz = 2|

for any z,z’ € R™ x R™, where W is the Wasserstein-1 distance.

Assumption 4 (compact convex sets). The sets X CR™ and ) C R™ are compact
and convex.
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Typically, the assumption of strong-convexity—strong-concavity enables linear con-
vergence to saddle points in standard primal-dual methods [20]. Furthermore, strong-
convexity—strong-concavity implies uniqueness of saddle point solutions; this allows
one to derive convergence results to the unique saddle point in the static case, and
tracking results in the context of time-varying minmax problems [9]. We also note
that this assumption is useful in this paper in order to characterize the intrinsic re-
lationship between optimal solutions to (1.1) and equilibrium points. We also note
that, for simplicity, the assumption imposes a common geometry parameter in ¢ for
both the x and y values; however, our analysis is the same for functions ¢ being ~1-
strongly-convex in x and ~y,-strongly-concave in y (as we can take v =min{~vy;,72}).

Assuming that the distributional map is e-Lipschitz and the gradient is Lipschitz
in the random variable is commonplace in the literature on decision-dependent distri-
butions to characterize the overall effects of the distributional maps on the random
variables [11, 31, 41]. Since we assume the support of our random variables w reside
in a complete and separable metric space (Polish space), then a natural way to relate
the resulting distributions is via the Wasserstein-1 metric. Following Kantorovich—
Rubenstein duality [6, 19], this metric can be written as

Wi(p,v) =sup {w@u[g(w)} — E lg(w)] | g: M =R, Lip(g) < 1}
for all pu,v € P(M). Here the supremum is taken over all Lipschitz-continuous func-
tionals on M with a Lipschitz constant less than or equal to one.

Closed and convex constraint sets are common in the literature on primal-dual
methods, which are the main algorithms that will be considered shortly [18, 20]. Due
to Heine—Borel, compactness of X and ) simply means closed and bounded. The
addition of boundedness here is not restrictive; one can assume boundedness while
the underlying sets can still be made arbitrarily large to include the saddle points.
As an illustration, consider the closed rectangles X = [—r,r]" and Y = [—r,r]™ for
some 7 > 0. Then X and ) are compact and convex for any r > 0, and r can be made
an arbitrarily large positive number. See, e.g., [20] for an example in the context of
constrained optimization problems.

To proceed, we cast the equilibrium point problem into the variational inequality
framework. We show that the equilibrium problem is equivalent to a variational
inequality over Z := X x ), where we use the stacked variable z = (x,y) when
convenient. We then demonstrate uniqueness of the equilibrium points for saddle
point problems that satisfy the above assumptions.

Recall that in Assumption 2, we introduce the stochastic gradient map ¢(z,w) =
(Vao(z,w),—Vyé(z,w)). Using this convention, we denote the decoupled gradient
map as

W)= E W)

This motivates the following characterization, which highlights the fact that equi-

librium points are solutions to the decoupled gradient variational inequality.

THEOREM 2.7 (equilibrium variational inequality). A point zZ € Z is an equilib-
rium point provided that

(2.7) (z—2,0(52)>0 VzeZ.

Proof of this fact follows steps that are similar to the ones in [34, Example 12.50].
In light of Definition 2.2, this result suggests that the Z are solutions to variational
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inequality induced by the stationary distribution D(Z). In the following, we show that
when z — ¥(z; 2’) is strongly monotone for all 2/ € R® xR™, a unique equilibrium point
exists. Furthermore, under this assumption, we can show that the distance between
the saddle points for the original problem in (1.1) and the unique equilibrium point
is bounded.

PRrROPOSITION 2.8 Suppose that Assumption 1 holds. Then, for any w € M,
z > Y(z,w) is y-strongly-monotone. Furthermore, for any 2/ € R x R™, 2z — U(z;2")
18 y-strongly-monotone.

Proof of this result is immediate. Below we provide a lemma that allows us to
characterize the changes in the distributional argument of the decoupled gradient map
V. This amounts to the decoupled gradient map being Lipschitz continuous in the
distributional argument.

LEMMA 2.9 (gradient deviations). Suppose that Assumptions 2 to 4 hold. Then,
for any z € R*xR™, the map z +— V(Z, 2) is e L-Lipschitz. Furthermore, the restriction
to Z is bounded in the following way: for any Z2€ Z

(2.8) 1@ (2 2) — W(2)|| <eLDz

for all z,2' € Z, where Dz = diam(Z) < 0.

Proof. Let v € R™ x R™ be an arbitrary unit vector and fix 2, z,2’ € R® x R™. It
follows that

(0,U(2,2) - ¥(%2))= B [(v,dZw)] - E [(v4(2w))].

By our assumption, we have that w — (v,1%(2,w)) is Lipchitz with constant L||v|| = L.
Thus, from Kantorivich and Rubenstein, we have that

E [<v,w(2,w))] - E [<va(27w)>] SLWl(D(Z)vD(Z/)) SELHZ_Z/‘lv
w~D(z) w~D(z")
where that last inequality follows from e-sensitivity of D. Thus we have that for
any unit vector v, (v, (¥(2,2) — U(2;2)) <eL|z — 2’|. Hence, choosing v= (V(%,2) —
U(2;2")/(¥(2,2) — U(2;2"))| yields the result. Last, by Assumption 4, Z is compact
and hence ||z — 2'|| < Dz < oo for any z, 2’ € Z. Thus, (2.8) follows. 0

In what follows, we demonstrate existence and uniqueness of equilibrium points.
Similarly to the statement of existence, we show that H satisfies the Banach—Picard
fixed point theorem by providing conditions for which H is a strict contraction.

THEOREM 2.10 (existence and uniqueness of equilibrium points). Suppose that

Assumptions 1 to 4 hold. Then
1. forall 2,2 € Z, ||[H(z) — H(2")|| < %Hz —2|I;
2. if % <1, then there exists a unique equilibrium point (T,j) € X X Y.

Proof. Let 2,2 € Z be fixed. Then the maps z — ¥(z;2) and z — ¥(z;2)
are ~-strongly-monotone. Furthermore, our strong-convexity and strong-concavity
assumptions on ¢ imply that H(2) and H(Z) are single valued in X x ). Recall from
our definition of H that H(2) and H(Z) are solutions to the variational inequalities
induced by Z and Zz, respectively. That is, for all z€e X x ),

(2.9) (z—H(2),VU(H(%);2)) >0 and (z— H(2),¥(H(3);Z))>0.
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It follows from strong monotonicity that (H(2) — H(Z), ¥ Z
v|[H(2) — H(Z)||? and (2.9) imply that (H(Z) — H(2), ¥ (H(2);2) > 0. Hence,

(2.10) (H(2) - H(2)),V(H(2);2) < —y[|H(2) — H(Z)|*.

To proceed, we provide a lower bound for the quantity on the left-hand side. By
applying Cauchy—Schwarz and Lemma 2.9, we get that

(H(2) — H(2),V(H(2);2) — W(H(2);2)) <eL||H(2) - H(Z)||l|Z - ]|
Since (2.9) implies that (H(2) — H(Z), W(H(%); ) >0, then we get that
(211) (H(2) — H(2),V(H(Z);2) > —eL[|H(2) - H(Z)[[||z — 2]|.
Combining inequalities (2.10) and (2.11) yields
W H(2) - H(Z)|* = —eL|H(2) - HZ)|12 - 2],

and simplifying yields the result.
Since H is Lipschitz continuous, it is a strict contraction if eL/y < 1. Uniqueness
of the fixed point follows from the Banach—Picard fixed-point theorem. ]

We have demonstrated existence and uniqueness of equilibrium points for some
classes of problems; next, we characterize the relationship between equilibrium points
and solutions of the original problem in (1.1). First, an important observation is that
when ¢ =0, the problem statement in (2.1) has a stationary probability distribution
with respect to the decisions. Hence, saddle points coincide with equilibrium points.
When € > 0, we provide a guarantee on the distance between solutions of the two
problems.

PROPOSITION 2.11 (bounded distance). Suppose that Assumptions 1 to 4 hold.
Let z* be the optimal solution of (1.1), and let Z be the equilibrium point. Then,

L
(2.12) 2% — 2| < == Dg.
Y

Proof. From the optimality conditions, we have that the decoupled gradient map
satisfies (Z — 2*, ¥ (z*;2*)) > 0 and (z* — z,¥(Z;z)) > 0. By combining these results
with results with our gradient deviation bound in Lemma 2.9, we obtain the following,

(z—2"U(z;2) =V (2%;2)) =(2— 2%, 0(z;2)) — (2 — 2", U(z"; 2))
(2= 2 (=" 2") — W(z":2)

12— 27| 11T (2";27) — ¥ (2" 2)
eLDzl||z— 2",

IA A CIA

where the second to last step follows from the Cauchy—Schwarz inequality. It follows
from ~y-strong-monotonicity that

Yz = 2P < (2 - 2", (5 2) — U(2*;2)) SeLDz||z - 2|

so that canceling terms and dividing by ~y yields the result. ]
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2.3. Finding the equilibrium point via a primal-dual algorithm. In this
section, we focus on a primal-dual method for finding the equilibrium point, and we
provide results in terms of convergence at a linear rate. In particular, we focus on the
equilibrium primal-dual (EPD) algorithm, which is based on the algorithmic map,

(2.13) G(2;2) =Mz (2 —n¥(z;2"))

for all z,2’ € R x R™, where we recall that I1z(z) = argmin,/cz ||z — 2’||? is the
projection map and 1 > 0 is a positive step size. Given an initial point zg € R"™ x R™,
the algorithm then generates a sequence via the Banach—Picard iteration

(2.14) 241 =Gz 20) =z (2 — P (2452¢)), t=1,2,...,

where we recall that W(z¢; 2¢) = Eoywp(z,) [ (2, w)] with D(z;) the distribution induced
by z¢. A key feature of this method is that each step projects onto the constraint sets
and, hence, z; € Z for all ¢t > 1 for any initial condition zy. In the following we
demonstrate that the equilibrium points are fixed points of the algorithmic map. We
then provide linear convergence results for the case when our assumptions hold on
just the constraint sets Z, and then later globally.

PROPOSITION 2.12 (fixed point characterization). Let Assumptions 1 to 4 hold
and suppose that % < 1. A point Z € Z is an equilibrium point if and only if
z2=0(z;2).

Proof. We want to show that Z solving the variational inequality in (2.7) is equiv-
alent to z=1IIz(2—n¥(Z; 2)) for n > 0. From [12, Theorem 1.5.5], for any 2 € R” xR™,
I1z(Z2) is the unique element of Z such that

(2.15) <Z—HZ(2),H3(2)—2>20

holds for any z € Z. As for the forward direction, if Z is an equilibrium point, then
(2.7) is equivalent to

(2.16) (z— 22— (2 —nU(22))) > 0.

In setting 2=z —n¥(z;2) in (2.15), we get that Z=1Iz(Z —n¥(z;2)). Conversely, if
Z is such that Z =1Iz(Z — nV¥(Z; 2)), then by substituting 2 =z — n¥(z) into (2.16),
we have that z satisfies (2.7). o

Now that we can equivalently characterize equilibrium points of the EPD map,
we can leverage fixed point theory to analyze the EPD algorithm. In the following,
we demonstrate convergence to the unique equilibrium point.

THEOREM 2.13 (EPD convergence). Suppose that Assumptions 1 to 4 hold and
that % < 1. Then the sequence zi+1 = G(z¢;2¢) satisfies the bound

(217) lze = Z|| < @'[|z0 — ]|
for any initial point zg € Z and for a.:= /1 — 21y +n2L2 + neL. Furthermore, if

(2.18) ne (0, M) ,

then z; converges linearly to the unique equilibrium point z.
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Proof. By applying our fixed point result in Proposition 2.12 and using the tri-
angle inequality, we get that

(2.19)
l2t+1 = 2l = 1G (2 2¢) — G(Z: 2| G (215 2¢) — G (23 2) || + (|G (245 2) — G(2:2)].

Bounding the first quantity amounts to applying our gradient deviation result in
Lemma 2.9. Hence, ||G(2t;2t) — G265 2) || < nl|U(2e; 20) — U245 2) || <melllz — Z]|.
The second quantity is the standard analysis for stationary primal-dual. Namely,

1G(2252) = (' D)7 < |I(2¢ — 2) = (P (215 2) — V(2 2) |
= llze = 217 + 0?[[(¥ (2 2) — V(2 2)|
—2n{z — 2,V (z;2) — U(z;2))
<1 =20y +0*L?)||z — 2|

Hence, adding yields ||z; — z|| < (1—2ny+n?L?)||2;—1 — Z|| so that repeated application
yields the result in (2.17). Convergence requires choosing step size n > 0 such that
0 < a < 1. We observe that if 0 <7 < 2v/L?, then the quantity /1 — 2y + n2L2 is
real valued.

Additionally, we find that o < 1 provided that 0 < n(nL?(e®> —1) —2(eL —+)) and
hence we must have that nL?(e? — 1) — 2(eL — ~) > 0. Finally, we note that

20y—el) _ 2y
L2(1—¢2) — L%
thus the result follows. 0

In the next section, we focus on a stochastic algorithm. This stochastic method
operates as an inexact version of the primal-dual algorithm, a fact which we highlight
in our results.

2.4. Stochastic projected primal-dual method. In the previous section,
we showed convergence of a primal-dual algorithm. However, this algorithm re-
quires the computation of the gradient; that is, one can either compute the function
Ey~p(z)[¥(z,w)] in closed form, or we have access to a black box evaluator that can
compute this exactly for for any z’ € R™ x R™. In the first case, this means that we
have explicit knowledge of the distributional map D. The latter assumes that the
integral expression can be computed exactly or approximated to machine precision.
However, this integral approximation problem is known to suffer from the curse of
dimensionality.

When the computation of the gradient is not possible, a common approach is to
utilize a stochastic gradient estimate. Accordingly, in this work we assume access to
an oracle :R"™ x R™ — R™ x R™ that returns a gradient estimator at a given point
in the domain. Conceptually, ) is a stochastic process indexed over Z and may take
the form of common estimators used in the stochastic optimization literature,

Y(z,wi), w1~ D(z),
Qz) = 1 —N i.i.d.
NZ'=1¢(vai)7 wyy...,WN =~ D(Z)a
where {w;}¥ | are random samples drawn from D(z). These estimators represent the

stochastic gradient and minibatch gradient estimator, respectively. Assuming access
to Q, we define the stochastic EPD (SEPD) method via the algorithmic map

G(z) =1z (z = nf(2))
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so that the SEPD algorithm generates the sequence z;y1 = Q(zt), t > 0, starting
from a point zg € R™ x R™. In our analysis, we associate the gradient error with a
class of potentially heavy tailed probability distributions. We consider the class of
sub-Weibull random variables as defined next.

DEFINITION 2.14 (sub-Weibull random variable [38]). The distribution of a ran-
dom wvariable & is sub-Weibull, denoted £ ~ subW (0,v), if there exists 6 > 0,v > 0
such that ||z||n < vok? for all k> 1.

In this definition, # measures the heaviness of the tail (higher values of 6 corre-
spond to heavier tails); for example, # =1 and § =1/2 correspond to subexponential
and sub-Gaussian random variables, respectively. The parameter v represents a proxy
for the variance of £ [38, 40].

In addition to the fact that heavy tailed distributions are well-motivated in the
literature on stochastic gradient methods [8, 17], they allow us to derive results that
are also applicable to subexponential and sub-Gaussian random variables, as well as
random variables whose distribution has a finite support.

In the following we provide results for the first moment and second moment.
These results will require some of the next assumptions.

Assumption 5 (stochastic framework). Let Q be a gradient estimator with random
variables w defined over the probability space (S, F,P), where S is a sample space
with o-algebra F, and probability measure P. Suppose that the following hold.

1. Filtration. Let (S, F,F,P) be a filtered probability space with filtration F =
{Fi}t>0, where Fy={0,Q} and Q is F; measurable for all ¢ > 0.

2. Sub-Weibull error. Let  be such that there exist a tail parameter § > 0 and
bounded variance proxy function v :R? x R™ — R>q such that

(2:20) €6 =190) ~ | E [z w)]] ~sibW(o,v(2)

for all z € Z. Denote v € (0,00) such that v(z) < for all z€ Z.
3. Unbiased Gradient Estimator. The gradient estimator 2 is unbiased in that
Eyon(2)Q2(2) =¥(z;2) for all z € Z.

While we assume that the gradient estimator may be defined over the whole space
R™ x R™ notice that we only place the sub-Weibull assumption on the restriction of
Q to the constraint set Z. A typical assumption in the literature is that the norm of £
is uniformly bounded in expectation. Here, we assume that the norm of the gradient
error is distributed according to a heavy tailed distribution. If the variance proxy
function v is continuous over the compact set Z, we retrieve the uniform boundedness
property. By assuming 6 is fixed for any z € Z, we assume that all realizations of the
process belong to the same sub-Weibull class.

THEOREM 2.15 (first moment). Suppose that Assumptions 1 to 4 hold and % <
1. If Q satisfies Assumption 5.2, and n satisfies the bound in (2.18) then the following
hold:
1. Expectation. The sequence {z }1>0 satisfies the bound in expectation,

vn

1—

(2.21) E|lz — 2| < at||z0 — 2| +

for all t>0.
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2. High probability. For any § € (0,1) and t >0,

(2.22) P(nztznsdnz()znw(o)loge <§) 71 >216

1—«

with ¢(60) == (2)°.

Before proving the result of the theorem, we provide the following supporting
lemmas that will be utilized in the proof.

LEMMA 2.16 (equivalent characterizations). If & is a sub- Weibull random vari-
able with tail parameter 0 > 0, then the following characterizations are equivalent (we
recall that || 2|, = E[|z[¥]'/*):

(c1) Tail probability: 3 v1 > 0 such that P(|z] > €) < 2exp(—(e/11))"/? for all e > 0.
(c2) Moment: 3 vy >0 such that ||z||x < vok? for all k> 1.
Moreover, if (c2) holds for a given vy >0, then (cl) holds with vy = (%)91/2.

LEMMA 2.17 (sub-Weibull inclusion). If € ~subW(6,v) based on (c2) and ¢',v" >
0 such that 6 <0, and v <V, then £ ~subW (8’ ,v/).

LEMMA 2.18 (sub-Weibull closure). If & ~ subW(601,v1), &3 ~ subW (02,1v5) are
(possibly coupled) sub-Weibull random variables based on (c2) and ¢ € R, then the
following hold:

1. 51 + 52 ~ subW(max{01,92}7 v + 1/2),'
2. E1€9 ~subW (0 + 0o, 0 (601, 02)v112), ¥(01,02) = (01 + 02)01102 /(9 652);
3. ¢&1 ~subW (0, |c|vy).

The proofs of these lemmas can be found in [38, 40].

Proof. Proof of Theorem 2.15. For notational convenience, we denote the equi-
librium error as e; = ||z, — Z|| throughout. We proceed by treating the stochastic
gradient step as an inexact step using the triangle inequality:

(2.23) e = [1G(z) = G(2:2) [ < 1G(20) = G(ze20) | + G (265.20) — G(:2)|-
To bound the first quantity, applying nonexpansiveness and Assumption 5.2 yield

16 (2¢) — G(ze5 20) | < MlIQA(ze) — V(25 20) || =M€ (1)

Tt follows from Theorem 2.13 that ||G(z+;2¢) — G(Z;2)|| < af|zt — Z||-

Combining these results yields ;1 < a'tleg+n > r_, '€ ;. Taking the expecta-
tion yields Efes41] < aftleg+3.'_, o’ E[¢;_;], and applying the results of Lemmas 2.17
and 2.18 gives us the expected result in (2.21).

Now, denote w;y1 = attleg and oy = 7]2521 a’é,_; so that e;41 < wiyq + 0y
From our sub-Weibull assumption, we have that &_; ~ subW(0,v;_;), where v;_; =
v(z—;). It follows from the closure under product and addition in Lemma 2.18 that
o ~subW (0, A) with A =n(1 —a)~!. Hence,

(2.24) P (0, > €) < 2exp (—i (Z)é)

By setting the right-hand side equal to J, we find that e = ¢(6)log’ (%) A where
c(0) = (%)9. Now, observe that our stochastic recursion implies that for any a > 0,
P(wit1 + o1 > a) > P(er41 > a). It follows that setting a = wi 1 + € yields

Pler41 Swip1 +€) > P(wiyr +0r Swipr +€) =P(oy <e) >1—6;

thus the result follows by substituting the expression for w;y; and e. ]
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The bounds naturally translate to convergence results by considering the limit supre-
mum. Now we demonstrate that the algorithm converges to a neighborhood of the
equilibrium in expectation and almost surely.

THEOREM 2.19 (neighborhood convergence). Suppose that Assumptions 1-4 hold,
and ) satisfies Assumption 5.2. Assume that n satisfies condition (2.18). Then, the
sequence of iterates {z }1>0 converges to a neighborhood of Z in expectation and almost
surely. In particular,

limsupE||z; — z|| < Y and P <limsup lz: — 2|l < i ) =1.
t—o0 1-a t—00 11—«

Proof. The limit of the expectation follows immediately from the above. As for
almost sure convergence, we simply apply the Borel-Cantelli lemma. As before we
let e; = ||z: — Z||, so that the result in (2.21) can be compactly written as E[e;] <
aleg +n(1 —a)~t. Denote E; = max{0,e;} so that E[E;] < alep.

By Markov’s inequality, P(F; <€) < % < %160 for any € > (0. Summing over ¢
yields Y22 P(E; > ¢€) < Ty <oo. It follows from the Borel-Cantelli lemma that,
since the sum of tail probabilities is finite, then P(limsup,_, . E; <€) =1. Since this
is true for any € > 0, then the result follows. ]

Notice that Theorem 2.15 requires only Assumption 5.2 (and it does not require
the filtration in Assumption 5.1). However, a drawback to this first-moment analysis
is that it only demonstrates convergence to a neighborhood whose radius is dictated
by the proxy variance and, hence, the quality of the estimator. In what follows, we
demonstrate that we are able to obtain stronger convergence results at the expense of
requiring our estimator to be unbiased and introducing a filtration on the probability
space.

THEOREM 2.20 (second moment convergence). Suppose Assumptions 1 to 5 are
satisfied and we denote By =E,p(z,)| -|Ft]. Then the following inequalities hold:
1. One step bound. The sequence {z}1>0 generated by SEPD satisfies

Eil|zep1 — 21 < (1= 2(y — eL)me + 2(1 +€)°Ln7) || 2 — 2I|° + nf 7227,
2. Convergence. If the step size is ny = {(rk + 1)1, where

1 (1+¢)2L2
2.25 > —— d —
229 R

then the sequence {z}1>0 generated by SEPD satisfies

22051426
(2.26) Elz — 5||2 < i where ¢ :=max 1 K|zo — 5||2 L
TRt "2(y—eL)l—1

Proof. By applying the algorithmic map, and using the nonexpansiveness of the
projection operator we obtain the following relationship:

Eillzepr — 2l < llze = 212 = 20620 — 2, @ (245 2¢) — W(2; 2)) + 07 Be|Q(20) — ¥ (23 2) 1.
To bound the inner product term, we use ~-strong-monotonicity and the gradient devi-

ations result from Lemma 2.8: (z;—Zz, U(24;2)—V(z; 2)) < (y—¢eL)||z; — 2||?. From the
properties of the sub-Weibull random variables, we have that E;||[Q(z;) — ¥(z4;2¢)||? <
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72229 where 7 is an upper bound on the variance proxy function, and @ is a uniform
tail parameter. By applying this result, as well as Young’s inequality, we get that
E[|Q(z) — U(2)[* = Eef|(z) — Uzi:20) + U(2152) — U(2:2)|?
< 2E4[|Q(ze) — (265 20) |12+ 2E4 | W (245 20) — U (2 2) ||
<M £ 2(1 4 )22 2 — 2%,

where the last inequality follows from the fact that z — ¥(z;z) is (1 + €)L-Lipschitz
continuous. Combining yields the one step improvement bound.

To prove convergence, we first bound the quadratic contraction parameter using
convexity. Observe that 0 <n; < (y—eL)(2(1+¢)?L?)~! implies that

1—2(y —eLl)ns +2(1 + )’ L?n? <1 —2(y — L)
Denoting C' = 2(y — L), and A = 7?1?21%2% it follows that
(2.27) Etllze1 — 2[1* < (1= One)llze — 2||* +m7 A

We proceed by induction. Clearly the bound in (2.26) holds for ¢ = 0. Supposing it
holds for ¢, we have that

ce ¢ AL
E —Z[|< 11—
l2e41 ZH_( /€+t)/{+t+(/{+t)2
k+t—1 cl—-1 AVA
< _
ST vt T
<k +t—1
~ (k+1)?
¢
[ —
T (k+(t+1))%
where the penultimate step follows from the fact that (C¢ — 1)¢ + Af? <0. d

This concludes our analysis of equilibrium points. In the following section, we
discuss how to compute saddle points.

3. Saddle points and mixture dominance. By introducing the equilibrium
point problem, we have shifted attention to a class of solutions that are less compu-
tationally burdensome to obtain while still serving as meaningful solutions within the
context of decision-dependent stochastic problems. In this section, we demonstrate
that finding saddle points is still possible for some well-behaved distributional maps.
In particular, we consider a condition which we call opposing mizture dominance.
To outline the main arguments, we focus on the saddle point problem (1.1). In the
following, we define the notion of opposing mixture dominance.

Assumption 6 (opposing mixture dominance). For any z,z’, 29 € R?, y, 9/, 30 € R",
and 7 € [0, 1], the distributional map satisfies a convez shift in x,

l’ b 7w S ]:E x s 7ru} s
wND(er(l_T)w,’y)W( 0,Y0,W)] wNTD(aL‘,y)-‘r(l—T)D(x’,y)[¢( 0,Y0, W)]
and concave shift in y
x ) ’w S ]E x s ’w .
wNTD(r,y)J,»(l—T)D(Z’y,)[(b( 0,Y0,W)] wwD(z,‘ry%»(lfT)y’)[(b( 0, Y0, W)]

As an example, we show that Bernoulli mixtures satisfies this assumption.
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Ezample 3.1 (Bernoulli mixtures). If the distributional map D : R" xR"™ — P (M)
is given by D(z,y) = Bernoulli(p(z,y)), where p: R™ x R™ — R is the bilinear function

p(x,y) = (z, Ay) + (b,x) + (¢, y) + d,

then Assumption 6 is satisfied since D(rz + (1 — 7)2’,y) =7D(x,y) + (1 —7)D (', y)
and 7D(z,y) + (1 —7)D(z,y’) = D(z, 7y + (1 — 7)y/).

Ezample 3.2 (location-scale families). A distributional map D : R” xR™ — P(R™)
induces a location-scale family provided that for any z € R™ x R™, w ~ D(z) if and
only if w 4 Awg + Bz + ¢, where wy is some stationary zero-mean random variable.
A sufficient condition for Assumption 6 to hold is that ¢ is convex in the random
variable w. A detailed proof of this fact is provided in the next section.

In the previous section, we made the assumption that our random variables are
supported on some general Polish space and are induced by a Radon probability mea-
sure parameterized by z = (z,y) € R xR™. Here, we assume without loss of generality
that the distributional map induces a probability density function p(w;z,y) and write
the objective as ®(z,y) = fM o(z,y, w)p(w;x,y)dw. The analysis that follows is iden-
tical for the case when the density p(w,;z,y) corresponds to a discrete probability
distribution parameterized by (z,y) and the proofs follow mutatis mutandis.

Below, we demonstrate that the opposing mixed dominance assumption is suffi-
cient to guarantee that the objective is convex-concave in the distribution inducing
arguments. The crux of this proof is observing that convex combinations of proba-
bility distributions have a density function defined by the convex combination of the
underlying density functions.

LEMMA 3.3. Let Assumption 6 hold. Then, for any zy € R™ x R™, the function
(2,y) = Eyn D(2,)[@(20, w)] is convez-concave on R™ x R™.

Proof. Fix zg € Z, z,2’ € X, and y,y’ € Y and let 7 € [0,1]. Observe that since
the distribution 7D(x,y) + (1 — 7)D(2',y) is a convex mixture, then its probability
density function is a convex sum of the probability density functions for D(z,y) and
D(z',y). That is, if p, is the density function for the convex mixture, and p; and
po are the density functions for D(x,y) and D(z’,y), respectively, then p,(w) =
7p1(w) + (1 = 7)p2(w). From this, we conclude that

zo,w)| <7 E zo,w)|+ (1 —7 E zg,w)].
wNTD(I,y)+(1—T)D(a:’,y)[¢( 0 )} wND(I,y)[¢( 0 )] ( )wNTD(m’,y)[¢( 0 )]

Combining this with Assumption 6, we get that

< E 1-— E .
u;wD(Tx+(1—T)x’,y)[¢(ZO7w)} - TwND(ac,y)[qb(ZO’w)] * ( T)wNTD(x/7y)[¢(ZO7w)]

This proves the convexity of @ — Eqp(zy)[¢(20,w)] for any y. The concavity in y
can be shown using similar steps. ]

We can then utilize this result in conjunction with our previous assumptions to
get strong-convexity—strong-concavity of the objective ®.

THEOREM 3.4 (strong-convexity—strong-concavity). If Assumptions 1 to 3 and
Assumption 6 hold, then (x,y) — ®(z,y) is (y—2eL)-strongly-convez—strongly-concave
over R™ x R™.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/27/23 to 75.166.162.148 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

DECISION-DEPENDENT STOCHASTIC MINIMAX PROBLEMS 1961

Proof. We prove the assertion by first demonstrating that strong-convexity holds
in x for y fixed. Strong-concavity will follow similarly. By applying y-strong-concavity
of ¢ in =, we get that

(3.1) q’(mﬁy;x’y)—‘b(%y;x’,y)z<m’—x, E [Vm¢(w7y,w)]>+gllw—w’l2-

w~D(z’,y)
By the L-smoothness of the gradient, we get that

/ 1112
(¢-2., B Weblaywl- E Cowpol)<elle|
which is equivalent to
(3.2)

0> <x e, E [Vedleyw)- E [vm¢<x,y,w>1> S
w~D(z,y) w~D(z’,y) 2

Since for any zg € R” xR™ the function (z,y) = Eyyp(a,y) [¢(20,w)] is convex-concave,
we have that

83) 0r.yiy) - Wia') 2 (v, B (o) Valogplwia) )

by setting zg = (z,y). By adding inequalities (3.1)—(3.3) we obtain

v —2¢eL
CI)(I'/,y) - (I)(.’E,y) > <£L'/ - x,Vﬁﬁ(m,y)) + TH:B - xl||2’
which is equivalent to strong-convexity in x. Proof of strong-concavity in y follows
similarly and is omitted due to space limitations. ]

3.1. Location-scale families. In this section, we are interested in solidifying
the claims made in Example 3.2 on location-scale families, which have seen much
attention in the literature on decision-dependent distributions as it arises naturally
in many common examples [26]. A formal definition is provided next.

DEFINITION 3.5 (location-scale family). The distributional map D : R™ x R™ —
P(R™) forms a location-scale family provided that for every z € R™ x R™ and w ~
D(z), w 2 Awg + Bz + ¢, where wg ~ Dq. In this model, Dy € P(R™) is a zero-
mean stationary distribution while Ag € R™*™ B e R™*@+1) " gnd ¢ € R™ are model
parameters.

To demonstrate that location-scale families satisfy Assumption 6, we introduce
the notion of convex stochastic orders. This is an ordering of random variables induced
by convex functions.

DEFINITION 3.6 (convex order [35, Definition 7.A.1]). If two m-dimensional
random vectors u and w are such that E[f(u)] < E[f(w)], for all convex functions
f:R™ =R, then we say that u is less than w in the convex order and write u <., w.

Demonstrating an ordering from this definition alone proves difficult. Instead,
we look to the following theorem that characterizes random variables in the convex
stochastic order via couplings.

THEOREM 3.7 ([35, Theorem 7.A.1]). The random vectors u ~ p and w ~ v
satisfy u < oo w if and only if there exist i Ly and o L w such that E[w|a] =4 a.s.

Following this characterization, we demonstrate that location-scale families have

a special relationship between the convex-combination family and the corresponding
convex-mixture.
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LEMMA 3.8. Let the distributional map D :R? x R™ — P(R™) be a location scale
family. Then for any z,2' € R? x R and T € [0,1],

[f (w)]

E = E
z~vD(T24+(1—7)2") z2~1D(2)+(1-7)D(2')

[f (w)]

for any convex function f:R™ — R.

Proof. Fix 7 € [0,1] and 2,2’ € R x R". In this proof, we use Theorem 3.7 to
show that if w~ D(7z+ (1 —7)2') and w’ ~7D(2)+ (1 —7)D(2’), then we can define
couplings that imply that w <., w’ and w’ <., w. To this end, a key observation is
that, if we denote the discrete random variable T' as

T {z w.p. T,

Zwpl—r,

then w’ ~7D(z) + (1 — 7)D(2') if and only if w £ Awy + BT +c.

First, we suppose that w ~ D(7z + (1 — 7)2’). Then let w’ Low— B(rz+ (1 -
7)2') + BT. Tt follows that E[w'|w] = w and w’ 2L Awg + BT + c. Hence w' ~
7D(2) + (1 —7)D(2’). This proves that w <., w’.

Conversely, if we suppose that w’ ~ 7D(z)+ (1 —7)D(z’) and set w 2w +B(rtz+
(1—7)2") — BT, then w' <., w follows. The statement follows from the definition of
the convex order. a

Since this lemma holds for any convex function f, it holds for stochastic payoff ¢
provided that it is convex in w. This combined with the fact that location-scale fam-
ilies are e-Lipschitz with e = || B||2 is sufficient for ® to be strongly-convex—strongly-
concave.

THEOREM 3.9. Suppose that ¢ satisfies Assumptions 1 and 2, and the constraint
sets X and Y satisfy Assumption 4. If D if a location-scale family and ¢ is convex in
w, then ® is (v — 2eL)- strongly-convexz—strongly-concave.

Proof. The proof amounts to demonstrating that D being a location-scale family
and ¢ being convex in w is sufficient to satisfy Assumptions 6 and 3. The result
then follows by Theorem 3.4. We observe that Lemma 3.8 implies that Assumption 6
holds. As for D being e-Lipschitz, Assumption 3, we claim that Wi(D(z),D(z2’)) <
| Bll2llz — #’||. Then the assumption holds with & = || B||2. By definition,

Wi(D(z),D(z") = inf E —
UPEDED = o B ) oyl 1 ™ l2)

where the infimum is taken over all couplings of the distributions D(z) and D(z').
We find that if wg ~ Dy, then setting w 4 Awg + Bz + ¢ and v’ 4 Awg + Bz +¢
implies that w ~ D(z) and w’ ~ D(2’) and |Jw — w'|| = ||B(z — 2’)||. Thus, the result
follows. ad

3.2. A zeroth-order algorithm. In this section we consider the use of a zeroth-
order algorithm, which we refer to as DFO, where a stochastic gradient estimator is
built only using function evaluations. This algorithm is suitable in the setting where
opposing mixture dominance in Assumption 6 is known to hold, but a model for
the distributional map is not available. The use of zeroth-order algorithms has been
studied extensively within the context of derivative-free games in [7, 10]. Denote By,
and Sj, as the uniform distributions over the unit ball, By = {z € R*| ||z| < 1}, and
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unit sphere, Sy = {z € R¥| ||z|| = 1}, in R*, respectively. Additionally, denote S and
B as joint distributions such that v = (vy,v2) ~ B, u = (u1,us) ~ S with vy ~ By,
vg ~ B, and uj ~Sg, ug ~S,. The algorithmic map is then given by

(3.4) Fz) =gz (z — ms(2))

for n; > 0 with zeroth-order gradient map

(3.5) Os(z) = (gqb(z + du,w)uq, —Ecé(z + du, w)uz> )

(%)

where § > 0, and u = (u1,us2) with uy ~ Sy and ug ~ S,,. Note that by projecting
onto the restricted set (1 — §)Z we retain feasibility throughout the iterations of the
algorithm. Since we are evaluating the stochastic objective at points perturbed by
vectors on the unit sphere, we must introduce an additional assumption to ensure
that the domain of our function is appropriate.

Assumption 7. There exist positive radii r, R > 0 such that Z satisfies rBg4,, C
ZC RBd+n-

The gradient estimator in (3.5) naturally arises when considering the smoothed
objective over the unit ball, given by

(3.6) Os5(z) = UINEB[CI)(Z +6v)] = UIEIB WNDI(EZMU) [6(2 + dv,w)]

and its associated gradient map ¥;s(z) = (Vy®5(2), =V, ®s(2)). These together form
the perturbed saddle point problem

37 i (b b b
(3.7) pein e  @s(z,y)

whose solutions we will we denote zf = (z},y}). It follows that Qs is an unbiased
estimator of this gradient map and, hence, it will allow us to find saddle points
without requiring more information about the objective or distributional map. We
formalize this in the following.

LEMMA 3.10 (gradient estimator). If § > 0, then Ey s[Ey,~p(:)Qs(2)] = ¥5(2)
for all ze R™ x R™.

Proof of this result follows from [7, Lemma C.1]. The the fact that we can estimate
the gradient map using only a single function evaluation is an attractive feature of
(3.4). There are alternative multipoint estimators that use more function evaluations,
but since the expectation in our problem also depends on the decision variables, they
are biased. Furthermore, in the following we show that the considered perturbed
gradient map retains strong monotonicity.

LEMMA 3.11 (strong monotonicity). If the gradient of the objective ®, given by
U(z) = (Vo ®(2),—V,®(2)) is (v — 2eL)-strongly-monotone, then ¥s is (y — 2eL)-
strongly-monotone for any § > 0.

Indeed, by perturbing the objective and the constraint set by §, the solution of
the perturbed saddle point problem may be different from the solutions of the original
problem. In the following, we bound the discrepancy between solutions.
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LEMMA 3.12 (bounded approximation). If § < r and U is (v — eL)-strongly
monotone, then

. V2L . 2L
(3.8) = —z5||S6<<l+m_25L)> I= ||+(7—25L)>'

Finally, we are ready to demonstrate the performance of the algorithm. Here we
impose the additional restriction that § may not exceed the radius of the largest ball
completely contained in Z, which we denoted as 7.

THEOREM 3.13 (convergence to the perturbed solution). Suppose that § <r and
ne =Lk +1)"t for £ > (2(y —2¢L))™! k> 0. Then, the sequence of iterates {z:}t>0
generated by the derivative-free stochastic method satisfies

(3.9) E”Ztizng%—kt’ where C:max{nzoz(}kﬂz,

B*(n® +m?) (2
52(2(y —2¢L)l — 1) } ’

where B =max.cz wem |0z, w)].

Proof. For notational convenience, we write 4 =y —2¢L and C' = B?(n?+m?)6 2.

By applying nonexpansiveness of the projection map, we get
Eillzer1 — 2512 <Billze — 2511 — 200 (20 — 25, Q5 (20)) + B[ Qs (20) |12
<llze — 251> = 29mellze — 23 |” + Ci
= (1—29m)l|z — z5|° + Cni.-

In substituting the step size n; = (¢y(k + 1)) ™!, we find that

K+t—29¢ C
E |2 < 2 .
tllze41 — 25| ST |2t — 25| +4(I€—‘rt)2
As in the proof of Theorem 2.20, the result follows by induction. O

This concludes our proof of convergence to the perturbed saddle point z5. Obtain-
ing convergence to the saddle point z* is a matter of applying the stochastic algorithm
in stages with a geometrically decaying step size.

4. Numerical experiments for electric vehicle charging. To illustrate our
results, we apply our algorithms to the electric vehicle charging problem outlined in
subsection 1.1.1. This is a competition between two providers in which each provider
seeks to maximize their profit.

In our simulation, each provider has access to three distinct regions, each of which
has one station. The demand for each station is dictated by the data distributions
from [16]. Each station is comprised of 50, 150, or 350 kW chargers with either 2
or 6 ports. We randomize this allocation at initialization. Data are processed by
averaging the demand over each hour-long time window. After picking an hour block,
we rescale the data by subtracting the mean and dividing by the variance. We choose
the demand change in the 12-1 pm block, and depict data for the year in Figure 1.
Our simulations use charging utility values of v;, = 1 for j € [2],i € [3], elasticity
values of (Al)i,j = (—0.3)(52'7]'7 (Ag)l'yj = (03)(527]7 Bl = AQ, and BQ = Al, and location
utility values r; = 0 for each station. The price deviations x and y are restricted to the
interval [—1,2] for each station, representing a nominal price of $1 and a maximum
price change of twice the nominal price. Hence X =) =[-1,2]3.
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FI1G. 1. Data and results from numerical experiments. In (a) deviation in average demand for
provider one’s stations between 12 and 1 pm over 365 days. (b) The error of each algorithm depicted
over 300 iterations. Error of the derivative-free method is depicted in both distance to the saddle
point z* as well as distance to the perturbed saddle point z5.

We run each algorithm for 10,000 iterations, and depict the first 3,000 iterations
in Figure 1 to provide a side-by-side comparison. The equilibrium points and saddle
points are computed via primal-dual with constant step size 7 = 0.001 as a means
to compute the norm squared errors ||z, — z||? and ||z, — z*||?. We run SEPD and
the zeroth-order algorithm with the polynomial decay step-size schedules described in
(2.26) and Theorem 3.13. In the latter, we choose a fixed ¢ value of 0.05. Relative to
EPD, our results for these stochastic algorithms only guarantee sublinear convergence
at best; the step size effectively converges to zero faster than the error resulting in
the plateau of our error curves. The Python code is publicly available.?

5. Concluding remarks. This paper focused on stochastic saddle point prob-
lems with decision-dependent distributions. We introduced the notion of equilibrium
points and provided conditions for their existence and uniqueness. We showed that
the distance between the two classes of solutions is bounded provided that the ob-
jective has a strongly-convex—strongly-concave payoff and Lipschitz continuous distri-
butional map. We developed and analyzed deterministic and stochastic primal-dual
algorithms. In particular, using a sub-Weibull model for the errors emerging in the
gradient computation, we provided error bounds in expectation and in high proba-
bility that hold for each iteration; we also showed convergence to a neighborhood in
expectation and a.s. Finally, we investigate an opposing mixture dominance condition
that ensures the objective is strongly-convex-strongly—concave, and we focused on a
zeroth-order algorithm.

Future directions will explore proximal-based methods for problems with a more
general geometry. We will also consider alternative derivative-free methods and
approaches that incorporate gradient information by estimating the distributional
map.
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