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Abstract

Many data analytic systems have adopted a newly emerging
compute resource, serverless (SL), to handle data analytics
queries in a timely and cost-efficient manner, i.e., server-
less data analytics. While these systems can start process-
ing queries quickly thanks to the agility and scalability of
SL, they may encounter performance- and cost-bottlenecks
based on workloads due to SL’s worse performance and more
expensive cost than traditional compute resources, e.g., vir-
tual machine (VM). In this paper, we introduce Smartpick, a
SL-enabled scalable data analytics system that exploits SL
and VM together to realize composite benefits, i.e., agility
from SL and better performance with reduced cost from
VM. Smartpick uses a machine learning prediction scheme,
decision-tree based Random Forest with Bayesian Optimizer,
to determine SL and VM configurations, i.e., how many SL
and VM instances for queries, that meet cost-performance
goals. Smartpick offers a knob for applications to allow them
to explore a richer cost-performance tradeoff space opened
by exploiting SL and VM together. To maximize the benefits
of SL, Smartpick supports a simple but strong mechanism,
called relay-instances. Smartpick also supports event-driven
prediction model retraining to deal with workload dynam-
ics. A Smartpick prototype was implemented on Spark and
deployed on live test-beds, Amazon AWS and Google Cloud
Platform. Evaluation results indicate 97.05% and 83.49% pre-
diction accuracies respectively with up to 50% cost reduction
as opposed to the baselines. The results also confirm that
Smartpick allows data analytics applications to navigate the
richer cost-performance tradeoff space efficiently and to han-
dle workload dynamics effectively and automatically.

CCS Concepts: -+ Computer systems organization —
Cloud computing; - Computing methodologies — Ma-
chine learning approaches; Model development and analysis;
Distributed computing methodologies.
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1 Introduction
1.1 Motivation

Many Internet applications are running on cloud environ-
ments and generating large-scale data, e.g., Facebook [15],
Twitter [46] and Google [19]. For these Internet applications,
analyzing high volume of data is one of the most important
workloads. For example, Facebook and Twitter analyze users’
posts, users’ activity logs, systems’ logs to query trends, make
advertising decisions, and check overall cluster health. Since
the results of data analytics queries are usually used for
making important decisions that affect revenues and system
health, the queries must be processed promptly without a
performance bottleneck.

To meet the performance goals, data analytics systems
may deploy redundant compute resources, e.g., virtual ma-
chines (VMs), a prior. While this approach is simple and
works well, this will incur additional cost ($) for idle VMs.
To avoid cost for unused compute resources, many previous
works [1, 2, 17, 21, 40, 47, 61, 70, 77, 82] focused on determin-
ing optimal configurations, e.g., the number of VM instances
and their types, and storage types, by predicting required
compute resources for workloads. With these systems, ad-
ditional VMs can be deployed to handle incoming queries
without the performance bottleneck and idle VMs can be ter-
minated to reduce cost based on workloads, i.e., scalable data
analytics systems. These systems, however, may not handle
the latency-sensitive queries promptly due to the unavoidable
overhead of VM, i.e., boot-up latency (> 55 seconds) [30, 48].
If queries cause peak workload due to a lack of compute
resources, they must wait until additional VM instances are
fully deployed to be processed.

Many recent works [28, 31, 34, 38, 41, 64, 71, 72] focused on
adopting a newly emerging compute resource, serverless (SL),
such as Apache OpenWhisk [12], AWS Lambda [3], Azure
Functions [51], and Google Functions [24], for data analytics
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Table 1. Comparison between SL and VM with the same
amount of compute resources (2 vCPU with 2 GB RAM)

SL VM
Agility (Boot latency) High (< 100 ms) Low (> 55 seconds)
Performance Varying based on memory size | Relatively constant
. High (Pure pay-as-you-go : Low (Pay-as-you-go
Cost Efficiency only when executed) : when deployed)
Unit Time Cost ($) Expensive (up to 5.8X) Cheaper

to avoid the cold-boot latency problem, i.e., serverless data
analytics (SDA). Since SL offers agility, very small boot-up
time (< 100 ms), and a pure-pay-as-you-go cost model’, SDA
systems can deploy SL instances? immediately and handle
incoming queries without overprovisioned VMs in a cost-
efficient way. These SDA systems, unfortunately, may still
encounter cost- and performance bottlenecks based on data
analytic workloads because SL offers worse performance and
more expensive cost than VM [43, 44, 59].

Table 1 shows the comparisons between SL and VM, which
represents different cost-performance points. While data ana-
lytics systems may choose either one based on their resource
demands and goals, it would be highly desirable for them to
achieve composite benefits (bold in Table 1), i.e., agility and
cost-efficiency from SL and better performance and cheaper
cost from VM. However, determining compute resources
configurations, e.g., how many SL and VM instances, is chal-
lenging due to the complexities: 1) heterogeneous compute
resource characteristics, 2) workload prediction (how long a
query will be executed), 3) diverse cost-performance goals,
and 4) dynamics from workloads. While some recent works
[28, 31, 58, 59, 68, 84] tried to exploit SL and VM together
but they could not address these challenges as they have
focused on either simple workload (independent tasks) or
simple assumption without workload prediction. Thus, they
may not work well for data analytics.

In this paper, we introduce Smartpick, a serverless-enabled
data analytics system (SEDA), that helps data analytics appli-
cations achieve desired cost-performance goals by address-
ing aforementioned challenges. To determine optimal cloud
configurations of SL and VM, Smartpick uses a machine
learning technique, decision-tree based Random Forest (RF)
coupled with Bayesian Optimizer (BO), that predicts data
analytic workloads using historical information. Smartpick
provides a knob that allows applications to easily explore the
cost-performance tradeoff space opened by exploiting SL and
VM together. Smartpick supports a simple but strong mech-
anism called relay-instances to further improve performance
with reduced cost. To handle workload dynamics, Smart-
pick uses an event-driven approach that triggers a model
retraining task to automatically evolve prediction models.

IMost popular cloud providers charge for SL only when the code is executed
at either 1 millisecond (AWS) or 100 millisecond (GCP) granularity.
2We use the term serverless instances to refer serverless code invocations.
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Table 2. Feature comparison with state-of-the-art. A indi-
cates that metric is considered but with limitations

‘ ‘ Cocoa ‘ SplitServe H Smartpick ‘

Exploiting SL & VM v v v
Workload Prediction 4
Handling Dynamics v
Segueing (Relay-instances) A v
Cost-performance Tradeoff A v

A Smartpick prototype implementation was built on the
Spark [13], so that Spark applications can easily utilize our
system by setting diverse Smartpick’s properties without
any modification. We evaluated Smartpick on live-testbeds,
Amazon AWS and Google Cloud Platform (GCP), using well-
known benchmarks: TPC-DS [54], Word Count [74], and
TPC-H [73]. Evaluations show that Smartpick can accurately
characterize the TPC-DS workload performance with ac-
curacies of 97.05% on AWS and 83.49% on GCP. The ex-
perimental results show that Smartpick can reduce cost by
up to 50% without performance degradation by using the
relay-instances mechanism. The results also confirm that
Smartpick allows applications to easily explore the richer
cost-performance tradeoff space with a simple knob and
to handle workload dynamics by retraining the prediction
model automatically.

1.2 Research Contributions

Table 2 compares Smartpick approach to two recent SEDA
systems, i.e., Cocoa [59] and SplitServe [31]. While these
systems utilize both SL and VM, they do not predict queries’
workloads but just rely on external workload prediction
systems [1, 2, 17, 21, 40, 47, 61, 70, 77, 82]. However, these
prediction systems may not work well in SEDA due to their
SL-agnostic approach and workload dynamics, which sig-
nificantly affect overall cost and performance. Thus, we de-
signed the workload prediction module to easily work with
any SEDA system that needs performance prediction. Since
using SL for a long time would incur additional cost without
performance improvement [31, 59], Smartpick judiciously
and dynamically terminates SL instances using the mech-
anism called relay-instances. While SplitServe [31] uses a
similar technique called segueing, they use a static approach,
which leads to significant cost inflation. While Cocoa con-
siders exploring the cost-performance tradeoff space like
Smartpick, its performance is highly dependent on several
static parameters that may be hard to tune in SEDA.

To summarize, the research contributions are as follows:
e The design and implementation of Smartpick, the first
scalable data analytics system (to the best of our knowledge)
that predicts data analytics workloads with consideration of
SL and VM together to determine optimal compute resource
configurations.
o Flexibility that allows unmodified data analytics applica-
tions and other SEDA systems to reap the benefits.
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e A simple way to easily explore the cost-performance trade-
off space using diverse mechanisms embedded within the
workload prediction.

e Event-driven re-training of the prediction model to handle
workload dynamics, e.g., varying data size and new queries.
e Thoughtful empirical evaluations on AWS [4] and GCP
[25], showing the efficacy of Smartpick.

2 System Model and Motivation
2.1 System Model

Data center (DC) setting and compute resources: We
focus on a single DC environment in the public cloud, where
the network is not a performance bottleneck [9] and infinite
compute resources, i.e., serverless (SL) and virtual machine
(VM), are available. Each compute resource has different
characteristics in terms of performance, cost, and agility, as
shown in Table 1. Such compute resources heterogeneity
opens a rich cost-performance tradeoff space that applica-
tions can explore based on their demands. While data within
a DC can be accessed and processed without a performance
bottleneck, achieving memory-locality is important for per-
formance improvement [9]. Exploiting SL in data analytics
requires external storage systems, e.g., Redis [69] or AWS S3
[8], due to its limitations, e.g., limited network and storage,
which may incur performance overhead. We assume that per-
formance overhead from losing memory-locality is negligible
as we target queries with several tens of seconds granularity.
We will discuss potential performance improvement with
improved memory locality in Section 7.

Data analytics applications: We consider data analytics
applications that generate diverse classes of MapReduce-like
queries, e.g., reporting, ad-hoc, iterative, and data mining, as
classified in [62, 63]. These queries contain several map and
reduce stages that cannot start until all their dependencies
are resolved, i.e., dependent tasks. These queries can be pro-
cessed by de-facto distributed data processing frameworks,
e.g., Hadoop [11] and Spark [13]. While reporting queries
are somewhat predictable as they are regularly generated
based on the schedule, i.e., recurring (static) queries, the re-
maining classes of queries, especially ad-hoc queries, are
impromptu and dynamically constructed to answer imme-
diate and specific questions, i.e., dynamic queries. In this
work, we mainly consider dynamic queries that may cause
peak workloads. Applications may utilize infinite compute
resources, e.g., redundant VM instances, to handle dynamic
queries without the performance bottleneck, which incurs
additional cost for under-utilized or idle compute resources
[50]. We assume that they have limited operational budgets;
thus, minimizing the cost of processing queries within their
target performance goals is highly desirable.

Data analytics system (DAS): We assume that DAS de-
ploys an optimal number of long-lived VM instances as static
compute resources to handle static queries using workload
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prediction tools or systems [1, 2, 17, 21, 40, 47, 61, 70, 77, 82].
However, DAS may encounter a performance bottleneck due
to peak workloads (lack of compute resources) caused by the
dynamic queries, e.g., ad-hoc queries. While DAS can deploy
additional VM instances to handle the dynamic queries, ap-
plications may not achieve the desired performance goals
due to unavoidable overhead of VM, i.e., cold boot-up la-
tency (> 55 seconds) [30, 48]. Instead, DAS may deploy SL
instances to start processing queries immediately as done in
previous works [28, 31, 34, 38, 41, 64, 71, 72], i.e., serverless
data analytics (SDA). However, based on query workloads,
SDA may encounter the cost-bottleneck for little (or no) per-
formance improvement [59]. To handle dynamic queries in
a timely and cost-efficient way, we consider DAS that uses
a hybrid approach exploiting SL and VM together to achieve
composite benefits, i.e., agility and cost-efficiency from SL,
and better performance and cheaper cost from VM.
Determining optimal compute resource configuration
problem: While recent works [28, 31, 58, 59, 68, 84] have
introduced similar hybrid approaches, they adhere to simple
assumptions or workloads, e.g., static parameters without
workload prediction, dynamics-free prediction model, and
independent tasks, which would not work well for serverless-
enabled data analytics (SEDA). In this work, we focus on
determining the optimal compute resource configurations,
i.e., how many SL and VM instances need to dynamically be
spawned to handle incoming queries. However, this is chal-
lenging because many metrics must be considered, e.g., query
workload estimations (prediction), diverse applications’ cost-
performance goals, and heterogeneous compute resource
characteristics. To determine optimal configurations, diverse
approaches have been introduced to build performance pre-
diction models using historical data [1, 2, 17, 21, 40, 47, 61, 70,
717, 82]. Unfortunately, these systems do not consider SL, but
only VM for compute resources and thus do not work well
for SEDA. Furthermore, with a large search space for optimal-
ity, novel approaches are required to navigate the solution
space efficiently and ensure acceptable overhead/cost for the
decision-making. In this work, we use a machine learning
technique, decision-tree based Random Forest (RF), to pre-
dict data analytic workloads using historical information.
To efficiently explore the large search space, we incorporate
Bayesian Optimizer (BO) into our prediction model, i.e., RF
+ BO (Section 3). Given predicted workloads, we focus on
minimizing cost while meeting target performance goals, i.e.,
exploring a cost-performance tradeoff space (Section 3.3).
Dynamics: We assume that applications may send new
queries unknown to DAS at any time. In addition, data size
can be changed as more data is aggregated. To predict work-
load correctly, the prediction model must be updated by
incorporating these changes (Section 4.2).
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Figure 1. Exploring resource determination and tradeoff. e indicates best performance.

2.2 Illustrative Example For mid- and long-queries, however, the SL-only approach
Workloads in data analytics systems (DAS) have large vari- inﬂa‘Fes cost without performance improvemen't, while the
ance on query completion times. This stems from the fact that hybrid approach .leads to better performance with the aver-
each of them can have different query semantics and thus, age cost. Interestingly, the VM-only approach outperforms
dissimilar resource needs to process the given data. To ac- the SL-o.nIy approach for long-runnmg query d‘}e to th? het-
count for such scenarios and to handle the incoming queries erogeneity between SL and VM, as dlscusseq m Section 1.
efficiently, we highlight the need for performance predic- The results clearly show that a workload prediction scheme
tion through an interpretative example. Let’s assume three is extremely important to determine the optimal configura-
classes of dynamic queries: short-, mid-, and long-running tions of VMs and SLs for varying query classes. The results
queries, that incur peak workload. These queries have 100 also indicate that there is a richer cost-performance tradeoff

tasks (short), 250 tasks (mid), and 500 tasks (long) respec- space l.)ased on the query Worklofid& .
tively. Since all static compute instances are busy handling Relaying workloa.d: In the bybr id approach, 'SLS can l.)e 1n-
regular queries, DAS needs to deploy additional compute voked and used until a query is completed, which may incur
resources to handle them. In this case, DAS must determine additional cost without performance improvement due to
optimal configurations, i.e., how many SL and VM instances, SL’s characteristics, as discussed in Section 2.1. To avoid this,
that meet the applications’ cost-performance tradeoff prefer- SLs can be terminated when corresponding VM instances
ence. are ready to avoid cost inflation and performance degrada-
DAS has three options to deploy compute resources: 1) SL tion, i.e., relay-instances mechanism. For example, for a long-
instances only (SL-only), 2) VM instances only (VM-only), running query (500 tasks), 5 SLs and 5 VMs can be allocated
and 3) both VMs and SLs (Hybrid). For the sake of compari- simultaneously. The 5 SLs start running the tasks quickly
son, we consider AWS t3.small instance (2 vCPUs and 2 GB and will be terminated when the corresponding 5 VMs are
memory) and AWS Lambda with 2GB memory. Note that ready for the rest of the tasks, i.e., after VM’s cold-boot time.

AWS Lambda (2 GB) offers 2 vCPUs for each invocation. We This approach results in performance improvement to 198.8
take cost information from AWS [5, 6]. We consider storage seconds with a reduced cost of 5¢, which is a better approach

cost for each VM (gp2 8 GB) and Redis [69] (external) stor- than simply using SLs throughout the query execution. We
age cost (on master VM instance) whenever SL instances will discuss the relay-instances mechanism in Section 4.3 in
are involved. Note that we choose AWS t3 family for the detail.

same compute resources as SL instance, and we consider the
burstable costs ($0.05 per vCPU-hour) in our model. For the
performance of SL instances, we assume zero-boot latency 3 Determining Optimal Configurations
and include 30% performance overhead to task execution 3.1 Workload Prediction
time (based on experimental evidence as shown in Section
6.1). For the VM-only approach, we added 55 seconds to the
query completion time as the cold-boot overhead [30, 48].
Figure 1 presents the expected query execution time and
cost when DAS applies different approaches for an incoming
query, assuming that 5 instances (either SL, VM or combined)
are the optimal number of CPU cores. Here (0,5) and (5,0)
represent the two extremes of compute resources config-
uration, i.e., SL-only and VM-only approach, respectively.
For the short-query, the SL-only approach offers the best
performance with reduced cost, thanks to the agility of SL.

While many workload prediction systems have been pro-
posed [1, 2, 17, 21, 40, 47, 61, 70, 77, 82], none of these works
have considered SL to determine compute resource configu-
rations. In this section, we introduce how Smartpick predicts
query workload to determine the optimal configuration.

Feature Determination: Precisely predicting the query
completion time is one of the key aspects of Smartpick. To
this end, we thoroughly analyzed what parameters uniquely
determine query completion time. Based on multiple ini-
tial runs, we deduced the rich set of features that govern
this behavior, which are summarized in Table 3. When new
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queries are submitted to an already trained model, the query-
duration feature will act as the best estimation for comple-
tion time. Likewise, different instances will be traversed, and
the best combination of VMs and SLs will be determined
for efficiently executing a new incoming job. Having deter-
mined the features, we next explored several approaches
[16, 61, 77] for modeling these parameters into query com-
pletion time, however, all of these approaches rely heavily
on the implicit relationship across the parameters, which
can be very difficult to model. Therefore, in our design, we
incorporate black-box model for optimal compute-resource
determination.

Problem Formulation: We choose decision-tree based Ran-
dom Forest (RF) technique for quantifying the query comple-
tion time. This is preferred over other deep learning neural
networks because it is computationally less intensive and
requires significantly less training data [10, 23, 37, 75]. More-
over, it reduces model over-fitting through the technique of
ensemble learning [32]. Equation 1 provides the formulation
for the RF regressor, where f is the rich set of identified
features and RF; is the expected completion time.

f(P) =RF, 1)

Although this regressor can accurately model the underlying
system, the search space involved for exhaustive navigation
is huge. Our initial experiments show around 1 minute of
prediction latency when both VMs and SLs are involved
for optimality determination. Given the time-sensitivity of
data analytics workloads, exhaustive search proves a hin-
drance for efficient model performance. Therefore, we add
a Bayesian Optimizer (BO) module to navigate the search
space effectively. The BO in its raw form cannot be used
for workload prediction of ad-hoc queries since this leads to
a significant compute cost for the resource determination.
We discuss these challenges in detail in Section 3.2. Hence,
we modify the BO technique to tune it in accordance with
cost-effectiveness.

Two primary components are associated with the BO, i.e.,
objective and surrogate functions. Equation 2 defines the
objective function which is tailor-made for Smartpick. In
this equation, RF; is the predicted query completion time
from the RF regressor and § is the noise value which follows
normal distribution. The surrogate function is chosen to be
a Gaussian Process Regressor, since they demonstrate several
remarkable characteristics. First, the variance in prediction
accurately models the noise in observations, and second, it
can precisely generate values for newer data points [56].

@)

For the acquisition function, there are several choices - Ex-
pected Improvement (EI), Probability of Improvement (PI)
and Upper Confidence Bound (UCB) [81]. For Smartpick,
we incorporate PI over the other options because it is sim-
ilar to EI and simpler [49], as well as, it is one of the most

maximize : —(RF; + §)
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Table 3. Features for Workload Prediction

Feature Comments
instances Number of VMs and SLs used
input-size Size of input in bytes

start-time-epoch
total-memory
available-memory
memory-per-executor
num-waiting-apps
total-available-cores
query-duration

Initial job submit time in epoch

Total memory of available workers
Available memory of available workers
Memory assigned to each executor
Number of applications in wait state
Number of available cores

Completion time of a given query

B s

OptimusCloud

16

Ratio (x 100)
-
N}

Performance-Cost

o & ®

Smartpick Cherrypick

Figure 2. Comparison with known resource determination
techniques (higher is better)

widely used acquisition functions for optimizers [36]. Thus,
PI helps in efficiently exploiting/exploring the search space
for optimal/near-optimal compute resource configurations
in the form of tuples: {nVM, nSL}, where nVM is the de-
sired number of VMs and nSL is the desired number of SLs.
The termination criteria of the search are aligned with the
improvement to (estimated) query completion time. If the
improvement does not increase by 1% for 10 consecutive
searches, the model returns the accomplished core configu-
rations for VMs and SLs.

3.2 Why RF + BO is better than others?

Techniques proposed in latent factor collaborative filter-
ing [40], machine learning models [82], online fitting [61],
Bayesian optimization [2], sampling [77], and a mix of other
tools [17] - work great when the search space involves only
one type of compute resource (i.e., VMs). Some recent works
utilized RF and BO to predict the workloads, e.g., Optimus-
Cloud [47] uses RF and CherryPick [2] uses BO. Since they
considered a single instance type as compute resource, they
may simply add SLs as a new instance type in order to in-
corporate them. This approach, however, will lead to a huge
search space for optimality, which cannot be traversed in
a timely and cost-efficient way as they use RF and BO sepa-
rately. To understand the benefits of the RF + BO approach,
we tune our prediction model for OptimusCloud (RF-only)
and CherryPick (BO-only) to incorporate both VMs and SLs.
To compare different approaches, i.e., RF-only, BO-only, and
RF + BO, we use performance-cost ratio (PC,) [84] that can
be computed as shown in Equation 3. Here, Time denotes the
inference latency, whereas cost denotes the compute charges
incurred for model creation.

_ 1/Time

PC, =
1+ cost

®)
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We put same inputs (features) to each prediction model 10
times to see how each model works. Figure 2 shows our
preliminary simulation results that is scaled to a multiple
of 100 (higher is better). It is evident that OptimusCloud
[47] gives the worst PC, value because of the large overhead
arising from search complexity. Moreover, CherryPick [2]
has better search complexity because of the surrogate design
(of BO) but incurs a higher cost from the projected execution
runs on live VM and SL instances. Overall, we observed the
best PC, values for Smartpick since it not only reduces the
search time complexity but also incurs a lower cost from the
enhanced RF + BO approach.

3.3 Optimal Configurations with Preferences

Although optimal resource determination leads to minimum
query latency, this may not be feasible for some applica-
tions that are sensitive to budget requirements. For these
applications, some additional query latency would be tol-
erable for reducing operational cost, i.e., cost-performance
tradeoff. Therefore, Smartpick supports a cost-performance
tradeoff knob (€) that can be tuned as per the application’s
target cost-performance goals. Given the knob, Smartpick
may proportionally scale down the determined SLs and VMs.
For example, setting the € value to 0.5 halves the numbers
of SL and VM instances from the optimal configurations
determined for best performance. While this approach is
simple, we observed that this would lead to significantly
high query completion times without a smoother navigation
of cost-performance tradeoff.

Instead, Smartpick optimizes resource determination based
on the tolerance level set i.e., €. Smartpick uses a list of esti-
mated times (ET;) to track the candidate solutions explored
for the final optimum. This list is traversed before the final
resource determination to meet desired cost-performance
goals. Equation 4 shows the objective function that is mod-
eled for finer and more precise control of tradeoff; T,;. is
the estimated time under consideration, t,,, is the estimated
VM time, i is the estimated SL time, C,,, denotes compute
cost per instance of VM, Cy; denotes compute cost per in-
stance of SL, Cp; is the cost value associated with optimal
configuration and Tp.;; is the optimum time determined by
Smartpick.

max Teg; Tess. € ET
t

st. nVM Xty X Cym + nSL X tgp X Cgp < Chest
Tbest X (6 + 1) = Test.

©

It aims to find higher query estimation times (T,;.) that is
within the specified limits, i.e., tolerable additional latency
(2" constraint), but draws minimum compute cost (1% con-
straint). For instance, € = 0.2 specifies a tolerance level of 20%
above the optimum value (Tp;), but the actual cost could be
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Figure 3. Smartpick Architecture

lower for a reduced query latency. This is not always guar-
anteed though and the optimization problem helps ascertain
the required values as shown in Section 6.4.

4 Smartpick Overview

In this section, we present an overview of Smartpick.

4.1 Smartpick Architecture & Workflow

Figure 3 shows the Smartpick architecture in which the nu-
merical values show the order of query execution when a
new query is sent to Smartpick.

o The workload prediction (WP) component comprises two
sub-modules, i.e., RF and BO, that work together to efficiently
explore the large search space as discussed in Section 3.

o Similarity Checker (SC) parses the alien (unknown) queries
for extracting meaningful information such as the number
of tables, columns, and subqueries inferred in the request.
e Monitor and Feature Extraction (MFE) monitors job execu-
tion, and maintains a trained RF model and query features.
e History Server (HS) captures and stores the metrics out-
lined in Table 3.

e Resource Manager (RM) spawns and manages SL and VM
instances based on optimal compute resource configurations.
e Background Re-train creates a new model when the cur-
rent model is outdated due to workload dynamics.
Workflow: When a new query is received (step 0), Job Ini-
tializer (JI) asks WP to determine the optimal number of VMs
and SLs required for the job (step 1). To efficiently predict
query workload, WP maintains a list of queries against which
the current operating model is trained. If WP realizes that
the incoming query is not in the queries list, i.e., unknown
query, WP asks the SC to find the closest query/workload
(in step 2). To determine optimal configurations, WP needs
a trained RF model and query features as inputs except for
instances and query-duration, as explained in Section 3.1. WP
acquires these inputs from MFE (step 3) that pulls historical
data from the History Server (step 4). When all the inputs are
available (step 5), WP can determine the optimal number of
SLs and VMs. If the cost-performance tradeoff knob (¢) is set
to greater than 0, WP iterates the Estimated Time list (or ET;)
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to find a configuration that meets the cost-performance goal
as explained in Section 3.3. From our evaluation, WP can
determine compute configuration asynchronously (without
blocking the Spark [13] execution flow) within 1.5 seconds
for a known query and less than 2.5 seconds for an unknown
(alien) query. We assume that this overhead is ignorable as
we consider queries that take several tens of seconds. WP
returns the resource requirements of incoming query to JI
(in step 6). JI asks RM to spawn VMs and SLs based on the
determination (step 7). RM spawns the desired number of
VMs/SLs on the chosen cloud provider (step 8), following
which the query execution begins. If the prediction error in
query execution (examined by MFE on job completion in
step 9) is higher than the threshold, the prediction model is
retrained by Background Re-train.

4.2 Handling Dynamics

Workload dynamics could occur due to several reasons. For
example, data analytics applications may need to write new
queries to meet their needs [39]. In addition, applications
on the cloud store data in enormous volumes for decision-
making and health checks [53], i.e., increased data size. Smart-
pick is designed to handle such dynamics automatically.
Similarity check for alien queries: Determining compute
resources for alien queries is challenging since the predic-
tion model is completely unaware of their resource needs.
To make a reasonably accurate prediction for such unknown
queries, Smartpick maintains the known queries’ identifiers
and their attributes, such as the number of tables, columns,
subqueries, and map tasks. When queries are sent, Smartpick
extracts these attributes from the incoming queries and com-
putes the spatial cosine similarity to search for the closest
known-query identifier. This reference identifier, along with
other inputs (as discussed in Section 3.1), is then used to de-
duce the request’s resource-needs. We will show that Smart-
pick with similarity can help achieve good performance with
reduced cost for similar yet alien queries in Section 6.5.1.
Retraining prediction models: While Similarity Checker
works well for alike queries, it does not account for work-
loads that are completely different from the trained queries.
Thus, in the event of new/changed workloads, that is, when
the accuracy is below an acceptable threshold, we need to
retrain the prediction model. To achieve this, Smartpick mon-
itors the difference between actual- and predicted- query exe-
cution time. If the difference is greater than a specified thresh-
old, then Smartpick will spawn an asynchronous model re-
training task that will re-tune the prediction models (in back-
ground) for handling dynamics. In addition, this re-training
needs to be highly configurable so that any application with
specific needs can reap the maximum benefits out of it. We
will discuss these configurable options in detail in Section 5.
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Table 4. Smartpick Properties

Key Default Value
smartpick.cloud.compute.provider AWS
smartpick.cloud.compute.instanceFamily t3
smartpick.cloud.compute.relay True
smartpick.cloud.compute.knob 0
smartpick.train.max.batch 100
smartpick.train.pref.samelnstance False
smartpick.train.min.ram.gb 4
smartpick.train.errorDifference.trigger 50

4.3 Relay Instances

To reap the benefits from the hybrid approach, i.e., SL + VM,
they should be used in coordination. This is because utilizing
SL instances until when a query is completed may incur an
additional cost with little (or no) performance improvement
due to SL’s more expensive cost and worse performance
than VM, as discussed in Section 1. To avoid this, Smart-
pick uses a simple but efficient mechanism, relay-instances,
with which the SL instances start running the tasks quickly,
and will be terminated when corresponding VMs are ready
for the rest of the tasks. That is, SLs are only used during
the VM’s cold-boot time, and then terminated to maximize
the benefits of the hybrid approach, i.e., agility from SL
and better performance with reduced cost from VM. Con-
sequently, Smartpick’s prediction model incorporates the
relay-instances mechanism, and thus, the VM and SL re-
sources determined (which may be unequal but optimal)
account for these relaying workloads.

SplitServe [31] offers a similar approach, called segueing.
However, their approach relies on a static threshold to ter-
minate SLs, which may be costly with limited performance
improvement. In addition, they use the same numbers SL
and VM, which may not be optimal for a query. For example,
SLs can be idle during the static timeout in segueing, which
inflates overall cost significantly with limited performance
improvement. We present the benefits of relay instances and
cost-performance comparison between relay instances and
segueing in Section 6.3.

5 Smartpick Implementation

Smartpick is implemented on top of Spark 2.2.1 [13]. Table
4 shows Smartpick’s properties that applications can easily
set. Spark applications can easily utilize Smartpick by setting
these properties without any modification. We will explain
each property from the following explanation in detail. Most
components in Smartpick are implemented in Python 3.0
[66] if not otherwise specified.

Workload prediction module: We designed and imple-
mented the workload prediction module as a separate process
(server) using Thrift RPC [14]. Thus, other SEDA systems
can get benefits from Smartpick, i.e., workload prediction
and the cost-performance tradeoff feature. We will show how
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two recent SEDA systems, i.e., Cocoa and Smartpick, utilize
Smartpick as an external prediction system in Section 6.3.2.
Training prediction model: To kick-start Smartpick, the
first model training is invoked through a CLI (Command
Line Interface) script, tailor-made to initialize and create
models from scratch. When a prediction model needs to be
trained either initially or in handling dynamics, we devise
a heuristic to vary each training sample in the range of
+ 5% and create a reasonable dataset comprising around
10x samples (x being the original size). This task ensures
that Smartpick can function quickly and effectively with as
small as 100 representational workloads. Finally, the data
burst is preceded and succeeded by random shuffling so that
eventually, when the entire dataset is split into training and
test sets, an unbiased selection is performed [55].

Optimal cloud configurations: To determine the optimal
cloud configuration with the prediction, compute.knob can be
set. If the best performance is preferred regardless of cost, it
can be set to 0. Or it can be set any greater number than 0 to
explore the cost-performance tradeoff space discussed in Sec-
tion 3.3. Applications can set compute.instanceFamily prop-
erty to increase memory locality for further performance
improvement, as discussed in Section 7.

Query similarity check: To parse the alien queries, the sim-
ilarity checker (SC) uses the sql-metadata library [65], which
helps extract meaningful information such as the number of
tables, columns and subqueries inferred in the request. Next,
a 4-dimensional list is computed having all of the features
(along with the number of map tasks), followed by the de-
termination of spatial cosine similarity with respect to the
known queries that helps filter out the best match. Thus, the
closest query identifier is returned to the WP module, which
then uses it to deduce the request’s resource-needs.
Prediction model updates: Background re-training is nec-
essary when the model is out of course and the predictions de-
viate from actual values beyond a pre-defined threshold, i.e.,
errorDifference.trigger. An independent monitor thread in the
MFE evaluates this condition and if required, creates a new
model with warm_start, which is built as a pickle object for
up-to-date reference. On completion, the monitor replaces
this model in the referred directory, and all new workload
predictions point to this object. Smartpick allows users to
select where the new model will be trained based on user’s
preferences, i.e., pref.samelnstance and min.ram.gb. If the
same instance re-training is configured (pref.samelnstance)
and minimum memory (min.ram.gb) is available, Smartpick
spawns a new sub-process for re-training. Otherwise, a new
instance is started and used for this purpose. Smartpick also
supports batch-based re-training (batch size given by the
key max.batch) that works independently to keep the model
incrementally up-to-date.

Metrics collection and history server: To capture the met-
rics outlined in Table 3, Spark’s implementation of listener
classes (along with the dependent modules) are modified and

Mohapatra et al.

monitoring data is stored in JSON format. Once this model is
in place, any subsequent request for data processing triggers
asynchronous system-level events that have no (little) over-
head to the ongoing job. The history server provides internal
DNS (Domain Name System) as APIs for other components,
e.g., MFE, to request and process the targeted metrics.
Managing compute instances: Resource manager (RM)
is implemented on JDK 8 [60] using SDK libraries of AWS
[7] and Google Cloud [27]. Applications can point to the pri-
mary cloud provider by setting a Smartpick property - com-
pute.provider. RM communicates with the respective cloud
interface and launches the determined numbers of VMs and
SLs. Once these instances are up and running, it tracks their
charging statuses for statistics on cost monitoring to be used
later for performance/cost evaluation.

Relay-instances mechanism: To make the relay-instance
mechanism active, the property compute.relay can be set to
“True”. SLs are terminated when relayed VM instances are
ready to execute tasks. To this end, RM will use mapping be-
tween REQUEST ID (for SL) and INSTANCE ID (for VM) after
sending requests to cloud providers. When a VM instance is
ready to be used and connects to RM with its INSTANCE ID,
RM will find the corresponding target SL (REQUEST ID) us-
ing INSTANCE ID and let the task scheduler stop assigning
tasks to it. After checking that no task is running on the SL,
RM sends a termination message to it.

Cost estimation: To estimate the cost for queries, we modi-
fied Spark workers to send instance information such as ID,
cloud provider, region, type, storage type, and storage size to
the RM when they connect to it. While most information is
static, thus hard-coded in the images, IDs are generated dy-
namically when Smartpick sends requests to cloud providers,
e.g., REQUEST ID for SL and INSTANCE ID for VM. To iden-
tify each worker, a boot script for VM and a function code
for SL acquire these IDs and set them as an environment
variable. Using these IDs, Smartpick tracks instances’ execu-
tion time and calculates overall compute resource cost for
queries. Since VM instances are charged only when they are
in the “Running” state, Smartpick uses a dedicated thread
that checks their statuses. In our implementation, each VM
instance uses 8 GB (SSD) storage which is charged per sec-
ond. While SL does not charge for its volatile storage (2048
MB), the external storage cost, e.g., AWS t3.xlarge or GCP
e2-standard-4 for Redis, is added to the total cost if at least
one SL instance is running for a query. Note, data transfer
within a DC is free of charge in most cloud providers.

6 Evaluation

In this section, we present a detailed discussion of our evalu-
ation to show the efficacy of Smartpick.
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6.1 Experimental Setup

Compute resource setting: We deployed Smartpick pro-
totype implementation on live test-beds of AWS [4] (US
East region) and GCP (US East region) [25]. On AWS, we
use t3.xlarge instance (4 vCPUs and 16 GB RAM) for the
Spark master, Spark driver, and the external Redis server.
For workers that are dynamically deployed at run-time, we
use t3.small instances (2 vCPUs and 2 GB RAM) for VM and
Lambda [3] 2 GB RAM for SL. Note that each Lambda in-
stance provides 2 vCPUs. That is, each VM and SL instance
offer the same amount of CPU cores and memory in our eval-
uation. On GCP, we use a similar compute resource setting
to AWS, i.e., e2-standard-4 (4 vCPUs and 16 GB RAM) for
the master, the driver, and the Redis server, and e2-small (2
vCPUs and 2 GB RAM) and Function [24] with 2 GB RAM
for workers. All experimental results are an average of 10
runs, plotted with 90% confidence intervals. For cost, we
use cost information on AWS and GCP web pages for VMs
and SLs. We consider storage cost, e.g., local disk storage of
VM and external storage (Redis) instance for communica-
tion among SLs as explained in Section 5. We also consider
burstable costs of $0.05 per vCPU-hour as we use the ¢3 in-
stance family. Note that burstable costs of GCP e2-small is
free of charge, but users cannot control it.

Applications: For workloads to evaluate Smartpick, we use
three popular benchmarks, TPC-DS [54], TPC-H [73], and
Word Count (WC) [74]. TPC-DS suite comprises compute
and I/O intensive workloads with a high number of depen-
dent map and shuffle stages (6 ~ 16). TPC-H benchmark has
SQL-like query benchmarking (moderated compute and I/O)
with a lesser sequence of stages (2 ~ 6). Lastly, we use Word
Count as a simple query with I/O requirement. For input
data, we generate 100 GB of data in both AWS S3 and Google
storage for each benchmark. While we observed similar pat-
terns of results from these benchmarks, we mainly show the
results from TPC-DS queries due to space constraints. We
use WC and TPC-H benchmarks as new queries to evaluate
Smartpick’s performance on workload dynamics. In addition,
we generate separate 500 GB data for benchmarks to see how
Smartpick reacts with changes to data size.

Baselines: We compare Smartpick’s hybrid approach with
two extreme approaches, i.e., SL-only and VM-only. To mimic
VM-only and SL-only approaches, we tweak Smartpick’s
workload prediction module to choose either SL-only or VM-
only for comparison purposes. For the baselines, we compare
the Smartpick against two state-of-the-art serverless-enabled
data analytics systems, Cocoa [59] and SplitServe [31]. Note
that we obtained the source code of Cocoa and SplitServe
and integrated them into Smartpick’s implementation on
Spark for seamless comparisons.

Building Prediction Models: To train the prediction mod-
els, we run 20 randomly selected configurations of VMs and
SLs for each of the 5 TPC-DS queries i.e., 11, 49, 68, 74, and
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Table 5. Performance comparison between GCP and AWS

Provider | Cloud Storage | VM I/0O | VM I/O | Memory | VM CPU | SL CPU
(MiB/s) (writes/s) | (reads/s)| (1k-ops/s) | (events/s) | (events/s)
AWS 117.53 771.06 1156.59 | 4675.66 1109.07 811.13
GCP 51.64 764.14 1146.21 | 4182.49 906.67 714.87
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Figure 4. Accuracy on test dataset

82, as representational workloads, short-, mid-, and long-
running queries. We generate 1000 data samples, i.e., dif-
ferent SLs + VMs configurations, by the heuristic approach
discussed in Section 5. We use 800 samples to build predic-
tion models and 200 samples to evaluate the accuracies of
the models (Section 6.2). We build two prediction models,
Smartpick without relay-instances and Smartpick-r with the
relay-instances for comparison purpose.

Performance Comparison between AWS and GCP: To
clearly understand the experimental results, we first describe
the performance difference between AWS and GCP. Table
5 shows benchmark results between AWS and GCP; S3 and
Storage for cloud storage, t3.small and e2-small for VM, and
Lambda and Function for SL. Both of these VM and SL com-
pute resources have 2 GB memory with dual vCPUs. In or-
der to collect the bandwidth information for Cloud Storage
accesses, we upload a 1.5 GB text file onto AWS S3 and
GCP Storage and then capture the time taken for download
through a Python [66] script. For the remaining measures,
we use the Sysbench [42] with identical parameters on both
the cloud providers. The table shows that AWS S3 provides
better data transfer rate (bandwidth), which can affect over-
all query performance as input data is read from these cloud
storage. For CPU performance on VM, i.e., /O, Memory, and
VM CPU, AWS offers better performance than GCP. We ob-
serve that there is no significant difference in the boot-up
time of VM as both require 31 ~ 32 seconds. Similarly, for
CPU comparisons on SLs, AWS offers better performance
than GCP. Additionally, SL workers on GCP [24] do not have
ephemeral storage for source files other than the configured
RAM [26], which further reduces the available memory for
computation. In summary, the query execution times in GCP
are comparably higher than that in AWS, which offers better
performance for cloud resources we used in our evaluation.

6.2 Workload Prediction

In this experiment, we show how accurately Smartpick and
Smartpick-r models predict given queries’ workloads with
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Figure 5. Evaluation on AWS. (a), (b) - Lower is better. (c), (d) - Compactness is better.

900 900 900
mVM-only BsL-only 5 —e— Smartpick Predicted —e— Smartpick-r Predicted
3 O Smartpick @ Smartpick-r —e -VM-only SL-only z ! 7
g 600 T3 Smartpick Smartpick-r ] 600 4\ g 600
1 A 8 §
k) & N 3 2 [N /s 2
@ N = 8 P N N .
N7 F Y & — 3 =m—r Y S ~
o Y v Y Y e o e o o =
qll q49 q68 q74 q82 qll q49 q68 q74 q82 qll q49 q68 q74 q82 qll q49 q68 q74 q82
(a) Performance Comparison (b) Cost Comparison (c) Accuracy of Smartpick (d) Accuracy of Smartpick-r

Figure 6. Evaluation on GCP. (a), (b) - Lower is better. (c), (d) - Compactness is better.

the initial prediction models explained in Section 6.1. We the results on AWS. Figure 5(a) and Figure 5(b) show query
capture different key statistics from the model training phase. completion times and cost, respectively for five TPC-DS
First, we see a reasonable Root Mean Squared Error (RMSE) queries (11, 49, 68, 74, and 82) with 4 different approaches, i.e.,
for both the models, i.e., Smartpick and Smartpick-r. On AWS, VM-only, SL-only, Smartpick, and Smartpick-r. The results

we get RMSE scores of 6.2 and 8.2 respectively, where as on clearly show that both Smartpick models achieve better per-
GCP, we get the same as 12.8 and 7.59 respectively. Based on formance to that of VM-only and SL-only approaches with
the extensive statistical analysis, we take 2 times the standard reduced cost. While we can see similar performance from
error as an accurate enough prediction, since it considers Smartpick and Smartpick-r, Smartpick-r incurs less cost as
both the directions of error (positive and negative) [83]. Thus, expensive SLs are terminated when corresponding VMs are
we plot graphs for each of the above cases by considering ready, which shows the benefits of the relay-instances mech-
the distance from truth values on the test dataset. anism. Figure 5(c) and Figure 5(d) show predicted and actual

Figure 4 shows the frequency of test samples (200/1000 query completion times using Smartpick and Smartpick-r
in our experiments with an 80:20 hold-out split for train- respectively. These figures show that Smartpick can predict
ing and testing respectively) at varying distances from the given queries’ execution times accurately. Figure 6 shows the
truth values in seconds. It is observed that for Smartpick on similar patterns of results on GCP with more variance than
AWS, 98.5% of the predicted samples lie within 10 seconds AWS due to the different performance characteristics as ex-
difference of the actual query execution times, which shows plained in Section 6.1. For query 49 on GCP, we see a slightly
that the model yields accurate predictions [83]. Likewise, better performance/cost compared to other queries, which is
Smartpick-r provides a prediction accuracy of 97.05% on due to the persistent behavior of workload and significantly
AWS. Smartpick and Smartpick-r on GCP give prediction lesser variance. The VM-only cost on GCP is lower than
accuracies of 73.4% and 83.49%, respectively, which is due other approaches as the burstable feature is free of charge on
to higher query execution time on GCP that incurs more GCP. Overall, Smartpick-r shows better/similar performance
variance. We assume that these results are reliable enough with reduced cost compared to other approaches. In the rest
for prediction systems [33, 45, 57, 76]. Besides, the prediction of experiments, we use Smartpick to refer to Smartpick-r,
model will become more accurate as Smartpick considers unless otherwise mentioned.

workload dynamics (Section 6.5.2).

6.3.2 Comparisons with State-of-the-art Systems. In

6.3 Performance and Cost Comparisons this section, we compare Smartpick with state-of-the-art sys-
6.3.1 Comparisons with other approaches. In this ex- tems, i.e., Cocoa [59] and SplitServe [31]. Since they rely on
periment, we compare the performance of Smartpick and external workload prediction (WP) systems, we tweak our
Smartpick-r to two baselines, i.e., VM-only and SL-only ap- WP module to choose VM instead of SL + VM, and plug-in
proaches. Note that the cost-performance knob (¢) in this ex- the module into Cocoa and SplitServe respectively as we dis-
periment is set to 0, i.e., the best performance. Figure 5 shows cussed in Section 5. Figure 7 shows the evaluation on AWS
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and GCP. We observe that SplitServe tends to give compa-
rable query completion times, but at a high cost (VMs and
SLs combined) due to the underlying design of segueing, i.e.,
the same number of SL and VM, and static timeout thresh-
old for SL, as we discussed in Section 4.3. Similarly, Cocoa
gives comparable query completion times, but we see in-
flated costs for Cocoa as well. This is because Cocoa tends to
always favor SLs because of its dependency on other simply
assumed static values, such as the execution time for each
map/shuffle task, which significantly affects their decisions.
Thus, Smartpick can offer better query completion times
with much reduced cost than other systems.

6.4 Exploiting cost-performance tradeoff

For applications that have a limited budget, achieving the
target performance goal with the minimum cost is an impor-
tant task, as discussed in Section 3.3. In this experiment, we
show how such applications achieve their cost-performance
goals using Smartpick’s property compute.knob. Addition-
ally, systems, e.g., SplitServe [31] that did not account for
cost-performance tradeoff, can also benefit from Smartpick’s
design. Figure 8 shows the behavior of Smartpick and Split-
Serve (for query 11) with different values of the newly intro-
duced performance knob. As applications increase the value
of this knob from 0.2 - 0.8, the cost reduces significantly
by trading off the query latency, as discussed in Section 3.3.
Figure 8(b) also shows that other systems, e.g., SplitServe,
can benefit from Smartpick’s feature by exploring the cost-
performance tradeoff space. Note that we could see a similar
pattern of results from other queries on AWS and GCP, but
omitted to cite these results here due to space constraints.
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6.5 Handling Dynamics

6.5.1 New Queries from TPC-DS workload. To see how
Smartpick handles other queries of TPC-DS, we use the
queries 2, 4, 18, 55, and 62, as unknown queries to Smart-
pick that have similar workloads with the queries used for
building prediction models. Figure 9 shows the benefit from
Similarity Checker (SC), which helps achieve the best query
latency (e = 0) at a reduced cost for all new queries. This
highlights the significance of SC module for similar work-
loads, which was discussed in detail in Section 4.

6.5.2 Handling new workloads and increase in size.
One of the key aspects of Smartpick is to handle new queries
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by retraining models with the characteristics of new work-
load. In this section, we use Word Count (WC) as a new work-
load to Smartpick. Based on the early trials, we observe that
same instance re-training leads to an overhead on the ongo-
ing job (which is expected), and therefore, advocate the use of
different instance re-training (unless required otherwise). To
trigger the model retraining, we set errorDifference.trigger to
10. That is, if the difference between actual query execution
time and predicted time is more than 10 seconds, then model
retraining is triggered. When the new query is submitted at
first, Similarity Checker is invoked for each unknown query
and the job proceeds to termination based on the closest
match as discussed in Section 4.2. Upon job termination, an
independent monitor thread triggers background re-training
if the difference in predicted and actual values is higher than
the configured threshold (errorDifference.trigger). Figure 10
shows that Smartpick’s prediction model quickly converges
to new values by efficient (data-burst based) re-training, as
discussed in Section 4.2.

Another important aspect of handling dynamics is the
change in workload size. We follow the same set-up as above,
but instead use TPC-H query 3 workload as an alien query.
In addition, after 5 executions, we change the database to
point to a larger size of 500 GB and clean the event logs for
existing query. While such significant changes may be rare
in real environment, the dataset size grows eventually and
consistently with increasing use of the application. Figure
11 shows the results observed for query 3. Clearly, when the
data size shoots up, Smartpick can capture this change and
quickly converges to the actual execution times. This support
of handling dynamics asynchronously and quickly makes
Smartpick a robust application with enhanced reliability
even in the presence of workload dynamics. Note that the
larger spike in the case of GCP is because of the slowness of
cloud resources (as discussed in Section 6.1), which is further
aggravated by the large input data size of 500 GB.

7 Related Work

Exploiting SL and VM together: LIBRA [68], aims to re-
duce the cost of hybrid deployments by utilizing cost indif-
ference point, though actual costs can vary depending on the
granularity of estimated completion time, where Smartpick
comes into play. Cocoa [59] depends on static parameters
and does not support relaying of workloads from SLs to VMs,
which results in inflated cost. While SplitServe [31] incorpo-
rates segueing from SLs to VMs, it results in cost inflation due
to its design. It also demands the end-user to employ a cost
manager for determining the additional SL resources, which
is burdensome work. SplitServe [31], MArk [84], FEAT [58]
and Spock [29] aim at reactively launching the SL instances
whenever free cores are unavailable. Conversely, Smartpick’s
resource determination scheme optimizes the choice of VMs
and SLs together while meeting cost-performance goals.

Mohapatra et al.

Workload prediction for compute resource configura-
tions: Numerous prior works [1, 2, 17, 21, 40, 47, 61, 70, 77,
82] have proposed methodical workload prediction schemes
that help determine resource configurations for VM-based
workloads. Adding SLs to the supported compute instance
types leads to a huge search space for optimality and thus,
renders these techniques time-consuming and ineffective. In-
terestingly, PerfOrator [67] uses hardware-level statistics to
build performance model of big data queries, whereas Smart-
pick requires no advance knowledge of hardware settings
and even supports the hybrid model of SLs and VMs.
Handling dynamics: CherryPick [2] relies solely on the BO
model to incorporate cloud uncertainties into the decision-
making. This works fine for VM instance families but is not
well suited to the hybrid approach for ad-hoc alien queries.
Jockey [22], Morpheus [35], and ARIA [78] dynamically tune
resource allocations (based on historical data) to ensure time-
critical jobs with stringent SLOs are provided with required
compute resources. They are, however silent on types of com-
pute resources and do not consider the cold boot-up time
of VMs. Conversely, Optimus [61] does not depend on the
historical information and imposes a checkpoint-inspired
technique to handle changes in parameter servers, which
can lead to a huge overhead due to multiple restarts. Quasar
[20] updates its (VM) resource allocation approach based on
active monitoring and sensitivity of the application’s perfor-
mance. Smartpick, instead, can handle unknown requests
by employing spatial cosine similarity and course-grained
dynamics, as shown in Section 4.2.

Enhancing memory locality: Many serverless-enabled
data analytics systems [28, 31, 34, 38, 41, 64, 71, 72] have uti-
lized external storage systems, such as Redis and AWS S3, to
avoid SL’s limitation, i.e., limited network. However, this may
naturally cause performance degradation due to losing data
(memory) locality. Some recent works [18, 52, 79, 80] showed
that SL instances can communicate with each other directly
using TCP hole punching and socket-related library replace-
ment. We expect that using such techniques would improve
performance for diverse queries, especially short-running
queries. We plan to apply these techniques in Smartpick
for further performance improvement without additional
cost. To improve memory locality, we also consider using
larger (expensive) VM instance types (and families). We could
observe that applications can improve performance with ad-
ditional cost by using larger VM instance family, e.g., AWS
3, which opens another richer tradeoff space. However, we
omitted this result due to space constraints.

8 Conclusion

In this paper, we present Smartpick, a scalable data analytics
system that determines optimal compute resource config-
urations for given queries by predicting workloads with
consideration of hybrid compute resources, i.e., SL and VM.
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Smartpick utilizes decision-tree based Random Forest to pre-
dict workloads and Bayesian Optimizer to efficiently explore
the large search space for determining optimal configura-
tions. Smartpick is mindful of cost-performance tradeoff
space opened by exploiting SL and VM together, and incor-
porates workload dynamics. Experimental results on AWS
and GCP indicate high-precision resource determination for
Smartpick with prediction accuracies of 97.05% and 83.49%
respectively. The results confirm that Smartpick enables ap-
plications to achieve their target cost-performance goals,
handle workload dynamics automatically, and improve per-
formance without additional cost compared to baselines. The
results also show that other data analytics systems can ben-
efit from Smartpick.
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