
Smartpick: Workload Prediction for
Serverless-enabled Scalable Data Analytics Systems

Anshuman Das Mohapatra
University of Nebraska at Omaha

Omaha, Nebraska, USA
adasmohapatra@unomaha.edu

Kwangsung Oh
University of Nebraska at Omaha

Omaha, Nebraska, USA
kwangsungoh@unomaha.edu

Abstract
Many data analytic systems have adopted a newly emerging
compute resource, serverless (SL), to handle data analytics
queries in a timely and cost-efficient manner, i.e., server-
less data analytics. While these systems can start process-
ing queries quickly thanks to the agility and scalability of
SL, they may encounter performance- and cost-bottlenecks
based on workloads due to SL’s worse performance and more
expensive cost than traditional compute resources, e.g., vir-
tual machine (VM). In this paper, we introduce Smartpick, a
SL-enabled scalable data analytics system that exploits SL
and VM together to realize composite benefits, i.e., agility
from SL and better performance with reduced cost from
VM. Smartpick uses a machine learning prediction scheme,
decision-tree based Random Forest with Bayesian Optimizer,
to determine SL and VM configurations, i.e., how many SL
and VM instances for queries, that meet cost-performance
goals. Smartpick offers a knob for applications to allow them
to explore a richer cost-performance tradeoff space opened
by exploiting SL and VM together. To maximize the benefits
of SL, Smartpick supports a simple but strong mechanism,
called relay-instances. Smartpick also supports event-driven
prediction model retraining to deal with workload dynam-
ics. A Smartpick prototype was implemented on Spark and
deployed on live test-beds, Amazon AWS and Google Cloud
Platform. Evaluation results indicate 97.05% and 83.49% pre-
diction accuracies respectively with up to 50% cost reduction
as opposed to the baselines. The results also confirm that
Smartpick allows data analytics applications to navigate the
richer cost-performance tradeoff space efficiently and to han-
dle workload dynamics effectively and automatically.

CCS Concepts: • Computer systems organization →
Cloud computing; • Computing methodologies→ Ma-
chine learning approaches; Model development and analysis;
Distributed computing methodologies.

Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 24th International Middleware Conference (Middleware ’23), December
11–15, 2023, Bologna, Italy, https://doi.org/10.1145/3590140.3592850.

Keywords: serverless-enabled, machine learning, prediction
model, cost-performance tradeoff, relay

ACM Reference Format:
Anshuman Das Mohapatra and Kwangsung Oh. 2023. Smartpick:
Workload Prediction for Serverless-enabled Scalable Data Analytics
Systems. In 24th International Middleware Conference (Middleware
’23), December 11–15, 2023, Bologna, Italy.ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3590140.3592850

1 Introduction
1.1 Motivation
Many Internet applications are running on cloud environ-
ments and generating large-scale data, e.g., Facebook [15],
Twitter [46] and Google [19]. For these Internet applications,
analyzing high volume of data is one of the most important
workloads. For example, Facebook and Twitter analyze users’
posts, users’ activity logs, systems’ logs to query trends, make
advertising decisions, and check overall cluster health. Since
the results of data analytics queries are usually used for
making important decisions that affect revenues and system
health, the queries must be processed promptly without a
performance bottleneck.
To meet the performance goals, data analytics systems

may deploy redundant compute resources, e.g., virtual ma-
chines (VMs), a prior. While this approach is simple and
works well, this will incur additional cost ($) for idle VMs.
To avoid cost for unused compute resources, many previous
works [1, 2, 17, 21, 40, 47, 61, 70, 77, 82] focused on determin-
ing optimal configurations, e.g., the number of VM instances
and their types, and storage types, by predicting required
compute resources for workloads. With these systems, ad-
ditional VMs can be deployed to handle incoming queries
without the performance bottleneck and idle VMs can be ter-
minated to reduce cost based on workloads, i.e., scalable data
analytics systems. These systems, however, may not handle
the latency-sensitive queries promptly due to the unavoidable
overhead of VM, i.e., boot-up latency (> 55 seconds) [30, 48].
If queries cause peak workload due to a lack of compute
resources, they must wait until additional VM instances are
fully deployed to be processed.

Many recent works [28, 31, 34, 38, 41, 64, 71, 72] focused on
adopting a newly emerging compute resource, serverless (SL),
such as Apache OpenWhisk [12], AWS Lambda [3], Azure
Functions [51], and Google Functions [24], for data analytics

1

ar
X

iv
:2

30
7.

13
67

7v
1

 [c
s.D

C
]

25
 Ju

l 2
02

3

https://orcid.org/0000-0002-5578-7109
https://orcid.org/0000-0003-3281-7325
https://doi.org/10.1145/3590140.3592850
https://doi.org/10.1145/3590140.3592850

Middleware ’23, December 11–15, 2023, Bologna, Italy Mohapatra et al.

Table 1. Comparison between SL and VM with the same
amount of compute resources (2 vCPU with 2 GB RAM)

SL VM
Agility (Boot latency) High (< 100 ms) Low (> 55 seconds)

Performance Varying based on memory size Relatively constant

Cost Efficiency High (Pure pay-as-you-go :
only when executed)

Low (Pay-as-you-go
: when deployed)

Unit Time Cost ($) Expensive (up to 5.8X) Cheaper

to avoid the cold-boot latency problem, i.e., serverless data
analytics (SDA). Since SL offers agility, very small boot-up
time (< 100 ms), and a pure-pay-as-you-go cost model1, SDA
systems can deploy SL instances2 immediately and handle
incoming queries without overprovisioned VMs in a cost-
efficient way. These SDA systems, unfortunately, may still
encounter cost- and performance bottlenecks based on data
analytic workloads because SL offers worse performance and
more expensive cost than VM [43, 44, 59].

Table 1 shows the comparisons between SL and VM, which
represents different cost-performance points.While data ana-
lytics systems may choose either one based on their resource
demands and goals, it would be highly desirable for them to
achieve composite benefits (bold in Table 1), i.e., agility and
cost-efficiency from SL and better performance and cheaper
cost from VM. However, determining compute resources
configurations, e.g., how many SL and VM instances, is chal-
lenging due to the complexities: 1) heterogeneous compute
resource characteristics, 2) workload prediction (how long a
query will be executed), 3) diverse cost-performance goals,
and 4) dynamics from workloads. While some recent works
[28, 31, 58, 59, 68, 84] tried to exploit SL and VM together
but they could not address these challenges as they have
focused on either simple workload (independent tasks) or
simple assumption without workload prediction. Thus, they
may not work well for data analytics.

In this paper, we introduce Smartpick, a serverless-enabled
data analytics system (SEDA), that helps data analytics appli-
cations achieve desired cost-performance goals by address-
ing aforementioned challenges. To determine optimal cloud
configurations of SL and VM, Smartpick uses a machine
learning technique, decision-tree based Random Forest (RF)
coupled with Bayesian Optimizer (BO), that predicts data
analytic workloads using historical information. Smartpick
provides a knob that allows applications to easily explore the
cost-performance tradeoff space opened by exploiting SL and
VM together. Smartpick supports a simple but strong mech-
anism called relay-instances to further improve performance
with reduced cost. To handle workload dynamics, Smart-
pick uses an event-driven approach that triggers a model
retraining task to automatically evolve prediction models.

1Most popular cloud providers charge for SL only when the code is executed
at either 1 millisecond (AWS) or 100 millisecond (GCP) granularity.
2We use the term serverless instances to refer serverless code invocations.

Table 2. Feature comparison with state-of-the-art. △ indi-
cates that metric is considered but with limitations

Cocoa SplitServe Smartpick
Exploiting SL & VM ✓ ✓ ✓

Workload Prediction ✓

Handling Dynamics ✓

Segueing (Relay-instances) △ ✓

Cost-performance Tradeoff △ ✓

A Smartpick prototype implementation was built on the
Spark [13], so that Spark applications can easily utilize our
system by setting diverse Smartpick’s properties without
any modification. We evaluated Smartpick on live-testbeds,
Amazon AWS and Google Cloud Platform (GCP), using well-
known benchmarks: TPC-DS [54], Word Count [74], and
TPC-H [73]. Evaluations show that Smartpick can accurately
characterize the TPC-DS workload performance with ac-
curacies of 97.05% on AWS and 83.49% on GCP. The ex-
perimental results show that Smartpick can reduce cost by
up to 50% without performance degradation by using the
relay-instances mechanism. The results also confirm that
Smartpick allows applications to easily explore the richer
cost-performance tradeoff space with a simple knob and
to handle workload dynamics by retraining the prediction
model automatically.

1.2 Research Contributions
Table 2 compares Smartpick approach to two recent SEDA
systems, i.e., Cocoa [59] and SplitServe [31]. While these
systems utilize both SL and VM, they do not predict queries’
workloads but just rely on external workload prediction
systems [1, 2, 17, 21, 40, 47, 61, 70, 77, 82]. However, these
prediction systems may not work well in SEDA due to their
SL-agnostic approach and workload dynamics, which sig-
nificantly affect overall cost and performance. Thus, we de-
signed the workload prediction module to easily work with
any SEDA system that needs performance prediction. Since
using SL for a long time would incur additional cost without
performance improvement [31, 59], Smartpick judiciously
and dynamically terminates SL instances using the mech-
anism called relay-instances. While SplitServe [31] uses a
similar technique called segueing, they use a static approach,
which leads to significant cost inflation. While Cocoa con-
siders exploring the cost-performance tradeoff space like
Smartpick, its performance is highly dependent on several
static parameters that may be hard to tune in SEDA.

To summarize, the research contributions are as follows:
• The design and implementation of Smartpick, the first
scalable data analytics system (to the best of our knowledge)
that predicts data analytics workloads with consideration of
SL and VM together to determine optimal compute resource
configurations.
• Flexibility that allows unmodified data analytics applica-
tions and other SEDA systems to reap the benefits.

Author’s preprint version
2

Smartpick: Workload Prediction for Serverless-enabled Scalable Data Analytics Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

• A simple way to easily explore the cost-performance trade-
off space using diverse mechanisms embedded within the
workload prediction.
• Event-driven re-training of the prediction model to handle
workload dynamics, e.g., varying data size and new queries.
• Thoughtful empirical evaluations on AWS [4] and GCP
[25], showing the efficacy of Smartpick.

2 System Model and Motivation
2.1 System Model
Data center (DC) setting and compute resources: We
focus on a single DC environment in the public cloud, where
the network is not a performance bottleneck [9] and infinite
compute resources, i.e., serverless (SL) and virtual machine
(VM), are available. Each compute resource has different
characteristics in terms of performance, cost, and agility, as
shown in Table 1. Such compute resources heterogeneity
opens a rich cost-performance tradeoff space that applica-
tions can explore based on their demands. While data within
a DC can be accessed and processed without a performance
bottleneck, achieving memory-locality is important for per-
formance improvement [9]. Exploiting SL in data analytics
requires external storage systems, e.g., Redis [69] or AWS S3
[8], due to its limitations, e.g., limited network and storage,
which may incur performance overhead. We assume that per-
formance overhead from losingmemory-locality is negligible
as we target queries with several tens of seconds granularity.
We will discuss potential performance improvement with
improved memory locality in Section 7.
Data analytics applications:We consider data analytics
applications that generate diverse classes of MapReduce-like
queries, e.g., reporting, ad-hoc, iterative, and data mining, as
classified in [62, 63]. These queries contain several map and
reduce stages that cannot start until all their dependencies
are resolved, i.e., dependent tasks. These queries can be pro-
cessed by de-facto distributed data processing frameworks,
e.g., Hadoop [11] and Spark [13]. While reporting queries
are somewhat predictable as they are regularly generated
based on the schedule, i.e., recurring (static) queries, the re-
maining classes of queries, especially ad-hoc queries, are
impromptu and dynamically constructed to answer imme-
diate and specific questions, i.e., dynamic queries. In this
work, we mainly consider dynamic queries that may cause
peak workloads. Applications may utilize infinite compute
resources, e.g., redundant VM instances, to handle dynamic
queries without the performance bottleneck, which incurs
additional cost for under-utilized or idle compute resources
[50]. We assume that they have limited operational budgets;
thus, minimizing the cost of processing queries within their
target performance goals is highly desirable.
Data analytics system (DAS): We assume that DAS de-
ploys an optimal number of long-lived VM instances as static
compute resources to handle static queries using workload

prediction tools or systems [1, 2, 17, 21, 40, 47, 61, 70, 77, 82].
However, DAS may encounter a performance bottleneck due
to peak workloads (lack of compute resources) caused by the
dynamic queries, e.g., ad-hoc queries. While DAS can deploy
additional VM instances to handle the dynamic queries, ap-
plications may not achieve the desired performance goals
due to unavoidable overhead of VM, i.e., cold boot-up la-
tency (> 55 seconds) [30, 48]. Instead, DAS may deploy SL
instances to start processing queries immediately as done in
previous works [28, 31, 34, 38, 41, 64, 71, 72], i.e., serverless
data analytics (SDA). However, based on query workloads,
SDA may encounter the cost-bottleneck for little (or no) per-
formance improvement [59]. To handle dynamic queries in
a timely and cost-efficient way, we consider DAS that uses
a hybrid approach exploiting SL and VM together to achieve
composite benefits, i.e., agility and cost-efficiency from SL,
and better performance and cheaper cost from VM.
Determining optimal compute resource configuration
problem: While recent works [28, 31, 58, 59, 68, 84] have
introduced similar hybrid approaches, they adhere to simple
assumptions or workloads, e.g., static parameters without
workload prediction, dynamics-free prediction model, and
independent tasks, which would not work well for serverless-
enabled data analytics (SEDA). In this work, we focus on
determining the optimal compute resource configurations,
i.e., how many SL and VM instances need to dynamically be
spawned to handle incoming queries. However, this is chal-
lenging becausemanymetrics must be considered, e.g., query
workload estimations (prediction), diverse applications’ cost-
performance goals, and heterogeneous compute resource
characteristics. To determine optimal configurations, diverse
approaches have been introduced to build performance pre-
diction models using historical data [1, 2, 17, 21, 40, 47, 61, 70,
77, 82]. Unfortunately, these systems do not consider SL, but
only VM for compute resources and thus do not work well
for SEDA. Furthermore, with a large search space for optimal-
ity, novel approaches are required to navigate the solution
space efficiently and ensure acceptable overhead/cost for the
decision-making. In this work, we use a machine learning
technique, decision-tree based Random Forest (RF), to pre-
dict data analytic workloads using historical information.
To efficiently explore the large search space, we incorporate
Bayesian Optimizer (BO) into our prediction model, i.e., RF
+ BO (Section 3). Given predicted workloads, we focus on
minimizing cost while meeting target performance goals, i.e.,
exploring a cost-performance tradeoff space (Section 3.3).
Dynamics: We assume that applications may send new
queries unknown to DAS at any time. In addition, data size
can be changed as more data is aggregated. To predict work-
load correctly, the prediction model must be updated by
incorporating these changes (Section 4.2).

Author’s preprint version
3

Middleware ’23, December 11–15, 2023, Bologna, Italy Mohapatra et al.

(a) 100 tasks (SL-only is best) (b) 250 tasks (Hybrid is best) (c) 500 tasks (Hybrid is best)

Figure 1. Exploring resource determination and tradeoff. • indicates best performance.

2.2 Illustrative Example
Workloads in data analytics systems (DAS) have large vari-
ance on query completion times. This stems from the fact that
each of them can have different query semantics and thus,
dissimilar resource needs to process the given data. To ac-
count for such scenarios and to handle the incoming queries
efficiently, we highlight the need for performance predic-
tion through an interpretative example. Let’s assume three
classes of dynamic queries: short-, mid-, and long-running
queries, that incur peak workload. These queries have 100
tasks (short), 250 tasks (mid), and 500 tasks (long) respec-
tively. Since all static compute instances are busy handling
regular queries, DAS needs to deploy additional compute
resources to handle them. In this case, DAS must determine
optimal configurations, i.e., how many SL and VM instances,
that meet the applications’ cost-performance tradeoff prefer-
ence.

DAS has three options to deploy compute resources: 1) SL
instances only (SL-only), 2) VM instances only (VM-only),
and 3) both VMs and SLs (Hybrid). For the sake of compari-
son, we consider AWS t3.small instance (2 vCPUs and 2 GB
memory) and AWS Lambda with 2GB memory. Note that
AWS Lambda (2 GB) offers 2 vCPUs for each invocation. We
take cost information from AWS [5, 6]. We consider storage
cost for each VM (gp2 8 GB) and Redis [69] (external) stor-
age cost (on master VM instance) whenever SL instances
are involved. Note that we choose AWS t3 family for the
same compute resources as SL instance, and we consider the
burstable costs ($0.05 per vCPU-hour) in our model. For the
performance of SL instances, we assume zero-boot latency
and include 30% performance overhead to task execution
time (based on experimental evidence as shown in Section
6.1). For the VM-only approach, we added 55 seconds to the
query completion time as the cold-boot overhead [30, 48].
Figure 1 presents the expected query execution time and

cost when DAS applies different approaches for an incoming
query, assuming that 5 instances (either SL, VM or combined)
are the optimal number of CPU cores. Here (0,5) and (5,0)
represent the two extremes of compute resources config-
uration, i.e., SL-only and VM-only approach, respectively.
For the short-query, the SL-only approach offers the best
performance with reduced cost, thanks to the agility of SL.

For mid- and long-queries, however, the SL-only approach
inflates cost without performance improvement, while the
hybrid approach leads to better performance with the aver-
age cost. Interestingly, the VM-only approach outperforms
the SL-only approach for long-running query due to the het-
erogeneity between SL and VM, as discussed in Section 1.
The results clearly show that a workload prediction scheme
is extremely important to determine the optimal configura-
tions of VMs and SLs for varying query classes. The results
also indicate that there is a richer cost-performance tradeoff
space based on the query workloads.
Relaying workload: In the hybrid approach, SLs can be in-
voked and used until a query is completed, which may incur
additional cost without performance improvement due to
SL’s characteristics, as discussed in Section 2.1. To avoid this,
SLs can be terminated when corresponding VM instances
are ready to avoid cost inflation and performance degrada-
tion, i.e., relay-instances mechanism. For example, for a long-
running query (500 tasks), 5 SLs and 5 VMs can be allocated
simultaneously. The 5 SLs start running the tasks quickly
and will be terminated when the corresponding 5 VMs are
ready for the rest of the tasks, i.e., after VM’s cold-boot time.
This approach results in performance improvement to 198.8
seconds with a reduced cost of 5¢, which is a better approach
than simply using SLs throughout the query execution. We
will discuss the relay-instances mechanism in Section 4.3 in
detail.

3 Determining Optimal Configurations
3.1 Workload Prediction
While many workload prediction systems have been pro-
posed [1, 2, 17, 21, 40, 47, 61, 70, 77, 82], none of these works
have considered SL to determine compute resource configu-
rations. In this section, we introduce how Smartpick predicts
query workload to determine the optimal configuration.
Feature Determination: Precisely predicting the query
completion time is one of the key aspects of Smartpick. To
this end, we thoroughly analyzed what parameters uniquely
determine query completion time. Based on multiple ini-
tial runs, we deduced the rich set of features that govern
this behavior, which are summarized in Table 3. When new

Author’s preprint version
4

Smartpick: Workload Prediction for Serverless-enabled Scalable Data Analytics Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

queries are submitted to an already trained model, the query-
duration feature will act as the best estimation for comple-
tion time. Likewise, different instances will be traversed, and
the best combination of VMs and SLs will be determined
for efficiently executing a new incoming job. Having deter-
mined the features, we next explored several approaches
[16, 61, 77] for modeling these parameters into query com-
pletion time, however, all of these approaches rely heavily
on the implicit relationship across the parameters, which
can be very difficult to model. Therefore, in our design, we
incorporate black-box model for optimal compute-resource
determination.
Problem Formulation: We choose decision-tree based Ran-
dom Forest (RF) technique for quantifying the query comple-
tion time. This is preferred over other deep learning neural
networks because it is computationally less intensive and
requires significantly less training data [10, 23, 37, 75]. More-
over, it reduces model over-fitting through the technique of
ensemble learning [32]. Equation 1 provides the formulation
for the RF regressor, where 𝛽 is the rich set of identified
features and 𝑅𝐹𝑡 is the expected completion time.

𝑓 (𝛽) = 𝑅𝐹𝑡 (1)

Although this regressor can accurately model the underlying
system, the search space involved for exhaustive navigation
is huge. Our initial experiments show around 1 minute of
prediction latency when both VMs and SLs are involved
for optimality determination. Given the time-sensitivity of
data analytics workloads, exhaustive search proves a hin-
drance for efficient model performance. Therefore, we add
a Bayesian Optimizer (BO) module to navigate the search
space effectively. The BO in its raw form cannot be used
for workload prediction of ad-hoc queries since this leads to
a significant compute cost for the resource determination.
We discuss these challenges in detail in Section 3.2. Hence,
we modify the BO technique to tune it in accordance with
cost-effectiveness.

Two primary components are associated with the BO, i.e.,
objective and surrogate functions. Equation 2 defines the
objective function which is tailor-made for Smartpick. In
this equation, 𝑅𝐹𝑡 is the predicted query completion time
from the RF regressor and 𝛿 is the noise value which follows
normal distribution. The surrogate function is chosen to be
a Gaussian Process Regressor, since they demonstrate several
remarkable characteristics. First, the variance in prediction
accurately models the noise in observations, and second, it
can precisely generate values for newer data points [56].

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 : −(𝑅𝐹𝑡 + 𝛿) (2)

For the acquisition function, there are several choices - Ex-
pected Improvement (EI), Probability of Improvement (PI)
and Upper Confidence Bound (UCB) [81]. For Smartpick,
we incorporate PI over the other options because it is sim-
ilar to EI and simpler [49], as well as, it is one of the most

Table 3. Features for Workload Prediction

Feature Comments
instances Number of VMs and SLs used
input-size Size of input in bytes
start-time-epoch Initial job submit time in epoch
total-memory Total memory of available workers
available-memory Available memory of available workers
memory-per-executor Memory assigned to each executor
num-waiting-apps Number of applications in wait state
total-available-cores Number of available cores
query-duration Completion time of a given query

Figure 2. Comparison with known resource determination
techniques (higher is better)

widely used acquisition functions for optimizers [36]. Thus,
PI helps in efficiently exploiting/exploring the search space
for optimal/near-optimal compute resource configurations
in the form of tuples: {𝑛𝑉𝑀,𝑛𝑆𝐿}, where nVM is the de-
sired number of VMs and nSL is the desired number of SLs.
The termination criteria of the search are aligned with the
improvement to (estimated) query completion time. If the
improvement does not increase by 1% for 10 consecutive
searches, the model returns the accomplished core configu-
rations for VMs and SLs.

3.2 Why RF + BO is better than others?
Techniques proposed in latent factor collaborative filter-
ing [40], machine learning models [82], online fitting [61],
Bayesian optimization [2], sampling [77], and a mix of other
tools [17] - work great when the search space involves only
one type of compute resource (i.e., VMs). Some recent works
utilized RF and BO to predict the workloads, e.g., Optimus-
Cloud [47] uses RF and CherryPick [2] uses BO. Since they
considered a single instance type as compute resource, they
may simply add SLs as a new instance type in order to in-
corporate them. This approach, however, will lead to a huge
search space for optimality, which cannot be traversed in
a timely and cost-efficient way as they use RF and BO sepa-
rately. To understand the benefits of the RF + BO approach,
we tune our prediction model for OptimusCloud (RF-only)
and CherryPick (BO-only) to incorporate both VMs and SLs.
To compare different approaches, i.e., RF-only, BO-only, and
RF + BO, we use performance-cost ratio (𝑃𝐶𝑟) [84] that can
be computed as shown in Equation 3. Here, Time denotes the
inference latency, whereas cost denotes the compute charges
incurred for model creation.

𝑃𝐶𝑟 =
1/𝑇𝑖𝑚𝑒

1 + 𝑐𝑜𝑠𝑡 (3)

Author’s preprint version
5

Middleware ’23, December 11–15, 2023, Bologna, Italy Mohapatra et al.

We put same inputs (features) to each prediction model 10
times to see how each model works. Figure 2 shows our
preliminary simulation results that is scaled to a multiple
of 100 (higher is better). It is evident that OptimusCloud
[47] gives the worst 𝑃𝐶𝑟 value because of the large overhead
arising from search complexity. Moreover, CherryPick [2]
has better search complexity because of the surrogate design
(of BO) but incurs a higher cost from the projected execution
runs on live VM and SL instances. Overall, we observed the
best 𝑃𝐶𝑟 values for Smartpick since it not only reduces the
search time complexity but also incurs a lower cost from the
enhanced RF + BO approach.

3.3 Optimal Configurations with Preferences
Although optimal resource determination leads to minimum
query latency, this may not be feasible for some applica-
tions that are sensitive to budget requirements. For these
applications, some additional query latency would be tol-
erable for reducing operational cost, i.e., cost-performance
tradeoff. Therefore, Smartpick supports a cost-performance
tradeoff knob (𝜖) that can be tuned as per the application’s
target cost-performance goals. Given the knob, Smartpick
may proportionally scale down the determined SLs and VMs.
For example, setting the 𝜖 value to 0.5 halves the numbers
of SL and VM instances from the optimal configurations
determined for best performance. While this approach is
simple, we observed that this would lead to significantly
high query completion times without a smoother navigation
of cost-performance tradeoff.

Instead, Smartpick optimizes resource determination based
on the tolerance level set i.e., 𝜖 . Smartpick uses a list of esti-
mated times (𝐸𝑇𝑙) to track the candidate solutions explored
for the final optimum. This list is traversed before the final
resource determination to meet desired cost-performance
goals. Equation 4 shows the objective function that is mod-
eled for finer and more precise control of tradeoff; 𝑇𝑒𝑠𝑡 . is
the estimated time under consideration, 𝑡𝑣𝑚 is the estimated
VM time, 𝑡𝑠𝑙 is the estimated SL time, 𝐶𝑣𝑚 denotes compute
cost per instance of VM, 𝐶𝑠𝑙 denotes compute cost per in-
stance of SL, 𝐶𝑏𝑒𝑠𝑡 is the cost value associated with optimal
configuration and 𝑇𝑏𝑒𝑠𝑡 is the optimum time determined by
Smartpick.

max
𝑡

𝑇𝑒𝑠𝑡 .; 𝑇𝑒𝑠𝑡 . ∈ 𝐸𝑇𝑙

s.t. 𝑛𝑉𝑀 × 𝑡𝑣𝑚 ×𝐶𝑣𝑚 + 𝑛𝑆𝐿 × 𝑡𝑠𝑙 ×𝐶𝑠𝑙 ≤ 𝐶𝑏𝑒𝑠𝑡

𝑇𝑏𝑒𝑠𝑡 × (𝜖 + 1) ≥ 𝑇𝑒𝑠𝑡 .

(4)

It aims to find higher query estimation times (𝑇𝑒𝑠𝑡 .) that is
within the specified limits, i.e., tolerable additional latency
(2𝑛𝑑 constraint), but draws minimum compute cost (1𝑠𝑡 con-
straint). For instance, 𝜖 = 0.2 specifies a tolerance level of 20%
above the optimum value (𝑇𝑏𝑒𝑠𝑡), but the actual cost could be

Figure 3. Smartpick Architecture

lower for a reduced query latency. This is not always guar-
anteed though and the optimization problem helps ascertain
the required values as shown in Section 6.4.

4 Smartpick Overview
In this section, we present an overview of Smartpick.

4.1 Smartpick Architecture & Workflow
Figure 3 shows the Smartpick architecture in which the nu-
merical values show the order of query execution when a
new query is sent to Smartpick.
• The workload prediction (WP) component comprises two
sub-modules, i.e., RF and BO, that work together to efficiently
explore the large search space as discussed in Section 3.
• Similarity Checker (SC) parses the alien (unknown) queries
for extracting meaningful information such as the number
of tables, columns, and subqueries inferred in the request.
• Monitor and Feature Extraction (MFE) monitors job execu-
tion, and maintains a trained RF model and query features.
• History Server (HS) captures and stores the metrics out-
lined in Table 3.
• Resource Manager (RM) spawns and manages SL and VM
instances based on optimal compute resource configurations.
• Background Re-train creates a new model when the cur-
rent model is outdated due to workload dynamics.
Workflow:When a new query is received (step 0), Job Ini-
tializer (JI) asksWP to determine the optimal number of VMs
and SLs required for the job (step 1). To efficiently predict
query workload,WPmaintains a list of queries against which
the current operating model is trained. If WP realizes that
the incoming query is not in the queries list, i.e., unknown
query, WP asks the SC to find the closest query/workload
(in step 2). To determine optimal configurations, WP needs
a trained RF model and query features as inputs except for
instances and query-duration, as explained in Section 3.1. WP
acquires these inputs from MFE (step 3) that pulls historical
data from the History Server (step 4). When all the inputs are
available (step 5), WP can determine the optimal number of
SLs and VMs. If the cost-performance tradeoff knob (𝜖) is set
to greater than 0, WP iterates the Estimated Time list (or 𝐸𝑇𝑙)

Author’s preprint version
6

Smartpick: Workload Prediction for Serverless-enabled Scalable Data Analytics Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

to find a configuration that meets the cost-performance goal
as explained in Section 3.3. From our evaluation, WP can
determine compute configuration asynchronously (without
blocking the Spark [13] execution flow) within 1.5 seconds
for a known query and less than 2.5 seconds for an unknown
(alien) query. We assume that this overhead is ignorable as
we consider queries that take several tens of seconds. WP
returns the resource requirements of incoming query to JI
(in step 6). JI asks RM to spawn VMs and SLs based on the
determination (step 7). RM spawns the desired number of
VMs/SLs on the chosen cloud provider (step 8), following
which the query execution begins. If the prediction error in
query execution (examined by MFE on job completion in
step 9) is higher than the threshold, the prediction model is
retrained by Background Re-train.

4.2 Handling Dynamics
Workload dynamics could occur due to several reasons. For
example, data analytics applications may need to write new
queries to meet their needs [39]. In addition, applications
on the cloud store data in enormous volumes for decision-
making and health checks [53], i.e., increased data size. Smart-
pick is designed to handle such dynamics automatically.
Similarity check for alien queries: Determining compute
resources for alien queries is challenging since the predic-
tion model is completely unaware of their resource needs.
To make a reasonably accurate prediction for such unknown
queries, Smartpick maintains the known queries’ identifiers
and their attributes, such as the number of tables, columns,
subqueries, and map tasks. When queries are sent, Smartpick
extracts these attributes from the incoming queries and com-
putes the spatial cosine similarity to search for the closest
known-query identifier. This reference identifier, along with
other inputs (as discussed in Section 3.1), is then used to de-
duce the request’s resource-needs. We will show that Smart-
pick with similarity can help achieve good performance with
reduced cost for similar yet alien queries in Section 6.5.1.
Retraining prediction models: While Similarity Checker
works well for alike queries, it does not account for work-
loads that are completely different from the trained queries.
Thus, in the event of new/changed workloads, that is, when
the accuracy is below an acceptable threshold, we need to
retrain the prediction model. To achieve this, Smartpick mon-
itors the difference between actual- and predicted- query exe-
cution time. If the difference is greater than a specified thresh-
old, then Smartpick will spawn an asynchronous model re-
training task that will re-tune the prediction models (in back-
ground) for handling dynamics. In addition, this re-training
needs to be highly configurable so that any application with
specific needs can reap the maximum benefits out of it. We
will discuss these configurable options in detail in Section 5.

Table 4. Smartpick Properties

Key Default Value
smartpick.cloud.compute.provider AWS
smartpick.cloud.compute.instanceFamily t3
smartpick.cloud.compute.relay True
smartpick.cloud.compute.knob 0
smartpick.train.max.batch 100
smartpick.train.pref.sameInstance False
smartpick.train.min.ram.gb 4
smartpick.train.errorDifference.trigger 50

4.3 Relay Instances
To reap the benefits from the hybrid approach, i.e., SL + VM,
they should be used in coordination. This is because utilizing
SL instances until when a query is completed may incur an
additional cost with little (or no) performance improvement
due to SL’s more expensive cost and worse performance
than VM, as discussed in Section 1. To avoid this, Smart-
pick uses a simple but efficient mechanism, relay-instances,
with which the SL instances start running the tasks quickly,
and will be terminated when corresponding VMs are ready
for the rest of the tasks. That is, SLs are only used during
the VM’s cold-boot time, and then terminated to maximize
the benefits of the hybrid approach, i.e., agility from SL
and better performance with reduced cost from VM. Con-
sequently, Smartpick’s prediction model incorporates the
relay-instances mechanism, and thus, the VM and SL re-
sources determined (which may be unequal but optimal)
account for these relaying workloads.

SplitServe [31] offers a similar approach, called segueing.
However, their approach relies on a static threshold to ter-
minate SLs, which may be costly with limited performance
improvement. In addition, they use the same numbers SL
and VM, which may not be optimal for a query. For example,
SLs can be idle during the static timeout in segueing, which
inflates overall cost significantly with limited performance
improvement. We present the benefits of relay instances and
cost-performance comparison between relay instances and
segueing in Section 6.3.

5 Smartpick Implementation
Smartpick is implemented on top of Spark 2.2.1 [13]. Table
4 shows Smartpick’s properties that applications can easily
set. Spark applications can easily utilize Smartpick by setting
these properties without any modification. We will explain
each property from the following explanation in detail. Most
components in Smartpick are implemented in Python 3.0
[66] if not otherwise specified.
Workload prediction module: We designed and imple-
mented theworkload predictionmodule as a separate process
(server) using Thrift RPC [14]. Thus, other SEDA systems
can get benefits from Smartpick, i.e., workload prediction
and the cost-performance tradeoff feature. We will show how

Author’s preprint version
7

Middleware ’23, December 11–15, 2023, Bologna, Italy Mohapatra et al.

two recent SEDA systems, i.e., Cocoa and Smartpick, utilize
Smartpick as an external prediction system in Section 6.3.2.
Training prediction model: To kick-start Smartpick, the
first model training is invoked through a CLI (Command
Line Interface) script, tailor-made to initialize and create
models from scratch. When a prediction model needs to be
trained either initially or in handling dynamics, we devise
a heuristic to vary each training sample in the range of
± 5% and create a reasonable dataset comprising around
10x samples (x being the original size). This task ensures
that Smartpick can function quickly and effectively with as
small as 100 representational workloads. Finally, the data
burst is preceded and succeeded by random shuffling so that
eventually, when the entire dataset is split into training and
test sets, an unbiased selection is performed [55].
Optimal cloud configurations: To determine the optimal
cloud configuration with the prediction, compute.knob can be
set. If the best performance is preferred regardless of cost, it
can be set to 0. Or it can be set any greater number than 0 to
explore the cost-performance tradeoff space discussed in Sec-
tion 3.3. Applications can set compute.instanceFamily prop-
erty to increase memory locality for further performance
improvement, as discussed in Section 7.
Query similarity check: To parse the alien queries, the sim-
ilarity checker (SC) uses the sql-metadata library [65], which
helps extract meaningful information such as the number of
tables, columns and subqueries inferred in the request. Next,
a 4-dimensional list is computed having all of the features
(along with the number of map tasks), followed by the de-
termination of spatial cosine similarity with respect to the
known queries that helps filter out the best match. Thus, the
closest query identifier is returned to the WP module, which
then uses it to deduce the request’s resource-needs.
Prediction model updates: Background re-training is nec-
essarywhen themodel is out of course and the predictions de-
viate from actual values beyond a pre-defined threshold, i.e.,
errorDifference.trigger. An independent monitor thread in the
MFE evaluates this condition and if required, creates a new
model with warm_start, which is built as a pickle object for
up-to-date reference. On completion, the monitor replaces
this model in the referred directory, and all new workload
predictions point to this object. Smartpick allows users to
select where the new model will be trained based on user’s
preferences, i.e., pref.sameInstance and min.ram.gb. If the
same instance re-training is configured (pref.sameInstance)
and minimum memory (min.ram.gb) is available, Smartpick
spawns a new sub-process for re-training. Otherwise, a new
instance is started and used for this purpose. Smartpick also
supports batch-based re-training (batch size given by the
key max.batch) that works independently to keep the model
incrementally up-to-date.
Metrics collection and history server: To capture the met-
rics outlined in Table 3, Spark’s implementation of listener
classes (along with the dependent modules) are modified and

monitoring data is stored in JSON format. Once this model is
in place, any subsequent request for data processing triggers
asynchronous system-level events that have no (little) over-
head to the ongoing job. The history server provides internal
DNS (Domain Name System) as APIs for other components,
e.g., MFE, to request and process the targeted metrics.
Managing compute instances: Resource manager (RM)
is implemented on JDK 8 [60] using SDK libraries of AWS
[7] and Google Cloud [27]. Applications can point to the pri-
mary cloud provider by setting a Smartpick property - com-
pute.provider. RM communicates with the respective cloud
interface and launches the determined numbers of VMs and
SLs. Once these instances are up and running, it tracks their
charging statuses for statistics on cost monitoring to be used
later for performance/cost evaluation.
Relay-instances mechanism: To make the relay-instance
mechanism active, the property compute.relay can be set to
“True”. SLs are terminated when relayed VM instances are
ready to execute tasks. To this end, RM will use mapping be-
tween REQUEST ID (for SL) and INSTANCE ID (for VM) after
sending requests to cloud providers. When a VM instance is
ready to be used and connects to RM with its INSTANCE ID,
RM will find the corresponding target SL (REQUEST ID) us-
ing INSTANCE ID and let the task scheduler stop assigning
tasks to it. After checking that no task is running on the SL,
RM sends a termination message to it.
Cost estimation: To estimate the cost for queries, we modi-
fied Spark workers to send instance information such as ID,
cloud provider, region, type, storage type, and storage size to
the RM when they connect to it. While most information is
static, thus hard-coded in the images, IDs are generated dy-
namically when Smartpick sends requests to cloud providers,
e.g., REQUEST ID for SL and INSTANCE ID for VM. To iden-
tify each worker, a boot script for VM and a function code
for SL acquire these IDs and set them as an environment
variable. Using these IDs, Smartpick tracks instances’ execu-
tion time and calculates overall compute resource cost for
queries. Since VM instances are charged only when they are
in the “Running” state, Smartpick uses a dedicated thread
that checks their statuses. In our implementation, each VM
instance uses 8 GB (SSD) storage which is charged per sec-
ond. While SL does not charge for its volatile storage (2048
MB), the external storage cost, e.g., AWS t3.xlarge or GCP
e2-standard-4 for Redis, is added to the total cost if at least
one SL instance is running for a query. Note, data transfer
within a DC is free of charge in most cloud providers.

6 Evaluation
In this section, we present a detailed discussion of our evalu-
ation to show the efficacy of Smartpick.

Author’s preprint version
8

Smartpick: Workload Prediction for Serverless-enabled Scalable Data Analytics Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

6.1 Experimental Setup
Compute resource setting: We deployed Smartpick pro-
totype implementation on live test-beds of AWS [4] (US
East region) and GCP (US East region) [25]. On AWS, we
use t3.xlarge instance (4 vCPUs and 16 GB RAM) for the
Spark master, Spark driver, and the external Redis server.
For workers that are dynamically deployed at run-time, we
use t3.small instances (2 vCPUs and 2 GB RAM) for VM and
Lambda [3] 2 GB RAM for SL. Note that each Lambda in-
stance provides 2 vCPUs. That is, each VM and SL instance
offer the same amount of CPU cores and memory in our eval-
uation. On GCP, we use a similar compute resource setting
to AWS, i.e., e2-standard-4 (4 vCPUs and 16 GB RAM) for
the master, the driver, and the Redis server, and e2-small (2
vCPUs and 2 GB RAM) and Function [24] with 2 GB RAM
for workers. All experimental results are an average of 10
runs, plotted with 90% confidence intervals. For cost, we
use cost information on AWS and GCP web pages for VMs
and SLs. We consider storage cost, e.g., local disk storage of
VM and external storage (Redis) instance for communica-
tion among SLs as explained in Section 5. We also consider
burstable costs of $0.05 per vCPU-hour as we use the t3 in-
stance family. Note that burstable costs of GCP e2-small is
free of charge, but users cannot control it.
Applications: For workloads to evaluate Smartpick, we use
three popular benchmarks, TPC-DS [54], TPC-H [73], and
Word Count (WC) [74]. TPC-DS suite comprises compute
and I/O intensive workloads with a high number of depen-
dent map and shuffle stages (6 ∼ 16). TPC-H benchmark has
SQL-like query benchmarking (moderated compute and I/O)
with a lesser sequence of stages (2 ∼ 6). Lastly, we use Word
Count as a simple query with I/O requirement. For input
data, we generate 100 GB of data in both AWS S3 and Google
storage for each benchmark. While we observed similar pat-
terns of results from these benchmarks, we mainly show the
results from TPC-DS queries due to space constraints. We
use WC and TPC-H benchmarks as new queries to evaluate
Smartpick’s performance on workload dynamics. In addition,
we generate separate 500 GB data for benchmarks to see how
Smartpick reacts with changes to data size.
Baselines: We compare Smartpick’s hybrid approach with
two extreme approaches, i.e., SL-only and VM-only. Tomimic
VM-only and SL-only approaches, we tweak Smartpick’s
workload prediction module to choose either SL-only or VM-
only for comparison purposes. For the baselines, we compare
the Smartpick against two state-of-the-art serverless-enabled
data analytics systems, Cocoa [59] and SplitServe [31]. Note
that we obtained the source code of Cocoa and SplitServe
and integrated them into Smartpick’s implementation on
Spark for seamless comparisons.
Building Prediction Models: To train the prediction mod-
els, we run 20 randomly selected configurations of VMs and
SLs for each of the 5 TPC-DS queries i.e., 11, 49, 68, 74, and

Table 5. Performance comparison between GCP and AWS

Provider Cloud Storage
(MiB/s)

VM I/O
(writes/s)

VM I/O
(reads/s)

Memory
(1k-ops/s)

VM CPU
(events/s)

SL CPU
(events/s)

AWS 117.53 771.06 1156.59 4675.66 1109.07 811.13
GCP 51.64 764.14 1146.21 4182.49 906.67 714.87

(a) Smartpick (b) Smartpick-r

Figure 4. Accuracy on test dataset

82, as representational workloads, short-, mid-, and long-
running queries. We generate 1000 data samples, i.e., dif-
ferent SLs + VMs configurations, by the heuristic approach
discussed in Section 5. We use 800 samples to build predic-
tion models and 200 samples to evaluate the accuracies of
the models (Section 6.2). We build two prediction models,
Smartpick without relay-instances and Smartpick-r with the
relay-instances for comparison purpose.
Performance Comparison between AWS and GCP: To
clearly understand the experimental results, we first describe
the performance difference between AWS and GCP. Table
5 shows benchmark results between AWS and GCP; S3 and
Storage for cloud storage, t3.small and e2-small for VM, and
Lambda and Function for SL. Both of these VM and SL com-
pute resources have 2 GB memory with dual vCPUs. In or-
der to collect the bandwidth information for Cloud Storage
accesses, we upload a 1.5 GB text file onto AWS S3 and
GCP Storage and then capture the time taken for download
through a Python [66] script. For the remaining measures,
we use the Sysbench [42] with identical parameters on both
the cloud providers. The table shows that AWS S3 provides
better data transfer rate (bandwidth), which can affect over-
all query performance as input data is read from these cloud
storage. For CPU performance on VM, i.e., I/O, Memory, and
VM CPU, AWS offers better performance than GCP. We ob-
serve that there is no significant difference in the boot-up
time of VM as both require 31 ∼ 32 seconds. Similarly, for
CPU comparisons on SLs, AWS offers better performance
than GCP. Additionally, SL workers on GCP [24] do not have
ephemeral storage for source files other than the configured
RAM [26], which further reduces the available memory for
computation. In summary, the query execution times in GCP
are comparably higher than that in AWS, which offers better
performance for cloud resources we used in our evaluation.

6.2 Workload Prediction
In this experiment, we show how accurately Smartpick and
Smartpick-r models predict given queries’ workloads with

Author’s preprint version
9

Middleware ’23, December 11–15, 2023, Bologna, Italy Mohapatra et al.

(a) Performance Comparison (b) Cost Comparison (c) Accuracy of Smartpick (d) Accuracy of Smartpick-r

Figure 5. Evaluation on AWS. (a), (b) - Lower is better. (c), (d) - Compactness is better.

(a) Performance Comparison (b) Cost Comparison (c) Accuracy of Smartpick (d) Accuracy of Smartpick-r

Figure 6. Evaluation on GCP. (a), (b) - Lower is better. (c), (d) - Compactness is better.

the initial prediction models explained in Section 6.1. We
capture different key statistics from the model training phase.
First, we see a reasonable Root Mean Squared Error (RMSE)
for both the models, i.e., Smartpick and Smartpick-r. On AWS,
we get RMSE scores of 6.2 and 8.2 respectively, where as on
GCP, we get the same as 12.8 and 7.59 respectively. Based on
the extensive statistical analysis, we take 2 times the standard
error as an accurate enough prediction, since it considers
both the directions of error (positive and negative) [83]. Thus,
we plot graphs for each of the above cases by considering
the distance from truth values on the test dataset.
Figure 4 shows the frequency of test samples (200/1000

in our experiments with an 80:20 hold-out split for train-
ing and testing respectively) at varying distances from the
truth values in seconds. It is observed that for Smartpick on
AWS, 98.5% of the predicted samples lie within 10 seconds
difference of the actual query execution times, which shows
that the model yields accurate predictions [83]. Likewise,
Smartpick-r provides a prediction accuracy of 97.05% on
AWS. Smartpick and Smartpick-r on GCP give prediction
accuracies of 73.4% and 83.49%, respectively, which is due
to higher query execution time on GCP that incurs more
variance. We assume that these results are reliable enough
for prediction systems [33, 45, 57, 76]. Besides, the prediction
model will become more accurate as Smartpick considers
workload dynamics (Section 6.5.2).

6.3 Performance and Cost Comparisons
6.3.1 Comparisons with other approaches. In this ex-
periment, we compare the performance of Smartpick and
Smartpick-r to two baselines, i.e., VM-only and SL-only ap-
proaches. Note that the cost-performance knob (𝜖) in this ex-
periment is set to 0, i.e., the best performance. Figure 5 shows

the results on AWS. Figure 5(a) and Figure 5(b) show query
completion times and cost, respectively for five TPC-DS
queries (11, 49, 68, 74, and 82) with 4 different approaches, i.e.,
VM-only, SL-only, Smartpick, and Smartpick-r. The results
clearly show that both Smartpick models achieve better per-
formance to that of VM-only and SL-only approaches with
reduced cost. While we can see similar performance from
Smartpick and Smartpick-r, Smartpick-r incurs less cost as
expensive SLs are terminated when corresponding VMs are
ready, which shows the benefits of the relay-instances mech-
anism. Figure 5(c) and Figure 5(d) show predicted and actual
query completion times using Smartpick and Smartpick-r
respectively. These figures show that Smartpick can predict
given queries’ execution times accurately. Figure 6 shows the
similar patterns of results on GCP with more variance than
AWS due to the different performance characteristics as ex-
plained in Section 6.1. For query 49 on GCP, we see a slightly
better performance/cost compared to other queries, which is
due to the persistent behavior of workload and significantly
lesser variance. The VM-only cost on GCP is lower than
other approaches as the burstable feature is free of charge on
GCP. Overall, Smartpick-r shows better/similar performance
with reduced cost compared to other approaches. In the rest
of experiments, we use Smartpick to refer to Smartpick-r,
unless otherwise mentioned.

6.3.2 Comparisons with State-of-the-art Systems. In
this section, we compare Smartpick with state-of-the-art sys-
tems, i.e., Cocoa [59] and SplitServe [31]. Since they rely on
external workload prediction (WP) systems, we tweak our
WP module to choose VM instead of SL + VM, and plug-in
the module into Cocoa and SplitServe respectively as we dis-
cussed in Section 5. Figure 7 shows the evaluation on AWS

Author’s preprint version
10

Smartpick: Workload Prediction for Serverless-enabled Scalable Data Analytics Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

(a) Performance on AWS (b) Cost on AWS (c) Performance on GCP (d) Cost on GCP

Figure 7. Performance and cost comparisons with state-of-the-art (Cocoa and SplitServe). Lower is better.

(a) Smartpick (b) SplitServe

Figure 8. Cost-performance tradeoff on AWS

and GCP. We observe that SplitServe tends to give compa-
rable query completion times, but at a high cost (VMs and
SLs combined) due to the underlying design of segueing, i.e.,
the same number of SL and VM, and static timeout thresh-
old for SL, as we discussed in Section 4.3. Similarly, Cocoa
gives comparable query completion times, but we see in-
flated costs for Cocoa as well. This is because Cocoa tends to
always favor SLs because of its dependency on other simply
assumed static values, such as the execution time for each
map/shuffle task, which significantly affects their decisions.
Thus, Smartpick can offer better query completion times
with much reduced cost than other systems.

6.4 Exploiting cost-performance tradeoff
For applications that have a limited budget, achieving the
target performance goal with the minimum cost is an impor-
tant task, as discussed in Section 3.3. In this experiment, we
show how such applications achieve their cost-performance
goals using Smartpick’s property compute.knob. Addition-
ally, systems, e.g., SplitServe [31] that did not account for
cost-performance tradeoff, can also benefit from Smartpick’s
design. Figure 8 shows the behavior of Smartpick and Split-
Serve (for query 11) with different values of the newly intro-
duced performance knob. As applications increase the value
of this knob from 0.2 - 0.8, the cost reduces significantly
by trading off the query latency, as discussed in Section 3.3.
Figure 8(b) also shows that other systems, e.g., SplitServe,
can benefit from Smartpick’s feature by exploring the cost-
performance tradeoff space. Note that we could see a similar
pattern of results from other queries on AWS and GCP, but
omitted to cite these results here due to space constraints.

(a) New TPC-DS queries on AWS (b) New TPC-DS queries on GCP

Figure 9. Behavior with new TPC-DS queries

(a) Word Count on AWS (b) Word Count on GCP

Figure 10.Word Count problem on Smartpick

(a) TPC-H on AWS (b) TPC-H on GCP

Figure 11. TPC-H on Smartpick with change in data size

6.5 Handling Dynamics
6.5.1 NewQueries from TPC-DS workload. To see how
Smartpick handles other queries of TPC-DS, we use the
queries 2, 4, 18, 55, and 62, as unknown queries to Smart-
pick that have similar workloads with the queries used for
building prediction models. Figure 9 shows the benefit from
Similarity Checker (SC), which helps achieve the best query
latency (𝜖 = 0) at a reduced cost for all new queries. This
highlights the significance of SC module for similar work-
loads, which was discussed in detail in Section 4.

6.5.2 Handling new workloads and increase in size.
One of the key aspects of Smartpick is to handle new queries

Author’s preprint version
11

Middleware ’23, December 11–15, 2023, Bologna, Italy Mohapatra et al.

by retraining models with the characteristics of new work-
load. In this section, we useWord Count (WC) as a newwork-
load to Smartpick. Based on the early trials, we observe that
same instance re-training leads to an overhead on the ongo-
ing job (which is expected), and therefore, advocate the use of
different instance re-training (unless required otherwise). To
trigger the model retraining, we set errorDifference.trigger to
10. That is, if the difference between actual query execution
time and predicted time is more than 10 seconds, then model
retraining is triggered. When the new query is submitted at
first, Similarity Checker is invoked for each unknown query
and the job proceeds to termination based on the closest
match as discussed in Section 4.2. Upon job termination, an
independent monitor thread triggers background re-training
if the difference in predicted and actual values is higher than
the configured threshold (errorDifference.trigger). Figure 10
shows that Smartpick’s prediction model quickly converges
to new values by efficient (data-burst based) re-training, as
discussed in Section 4.2.
Another important aspect of handling dynamics is the

change in workload size. We follow the same set-up as above,
but instead use TPC-H query 3 workload as an alien query.
In addition, after 5 executions, we change the database to
point to a larger size of 500 GB and clean the event logs for
existing query. While such significant changes may be rare
in real environment, the dataset size grows eventually and
consistently with increasing use of the application. Figure
11 shows the results observed for query 3. Clearly, when the
data size shoots up, Smartpick can capture this change and
quickly converges to the actual execution times. This support
of handling dynamics asynchronously and quickly makes
Smartpick a robust application with enhanced reliability
even in the presence of workload dynamics. Note that the
larger spike in the case of GCP is because of the slowness of
cloud resources (as discussed in Section 6.1), which is further
aggravated by the large input data size of 500 GB.

7 Related Work
Exploiting SL and VM together: LIBRA [68], aims to re-
duce the cost of hybrid deployments by utilizing cost indif-
ference point, though actual costs can vary depending on the
granularity of estimated completion time, where Smartpick
comes into play. Cocoa [59] depends on static parameters
and does not support relaying of workloads from SLs to VMs,
which results in inflated cost. While SplitServe [31] incorpo-
rates segueing from SLs to VMs, it results in cost inflation due
to its design. It also demands the end-user to employ a cost
manager for determining the additional SL resources, which
is burdensome work. SplitServe [31], MArk [84], FEAT [58]
and Spock [29] aim at reactively launching the SL instances
whenever free cores are unavailable. Conversely, Smartpick’s
resource determination scheme optimizes the choice of VMs
and SLs together while meeting cost-performance goals.

Workload prediction for compute resource configura-
tions: Numerous prior works [1, 2, 17, 21, 40, 47, 61, 70, 77,
82] have proposed methodical workload prediction schemes
that help determine resource configurations for VM-based
workloads. Adding SLs to the supported compute instance
types leads to a huge search space for optimality and thus,
renders these techniques time-consuming and ineffective. In-
terestingly, PerfOrator [67] uses hardware-level statistics to
build performance model of big data queries, whereas Smart-
pick requires no advance knowledge of hardware settings
and even supports the hybrid model of SLs and VMs.
Handling dynamics: CherryPick [2] relies solely on the BO
model to incorporate cloud uncertainties into the decision-
making. This works fine for VM instance families but is not
well suited to the hybrid approach for ad-hoc alien queries.
Jockey [22], Morpheus [35], and ARIA [78] dynamically tune
resource allocations (based on historical data) to ensure time-
critical jobs with stringent SLOs are provided with required
compute resources. They are, however silent on types of com-
pute resources and do not consider the cold boot-up time
of VMs. Conversely, Optimus [61] does not depend on the
historical information and imposes a checkpoint-inspired
technique to handle changes in parameter servers, which
can lead to a huge overhead due to multiple restarts. Quasar
[20] updates its (VM) resource allocation approach based on
active monitoring and sensitivity of the application’s perfor-
mance. Smartpick, instead, can handle unknown requests
by employing spatial cosine similarity and course-grained
dynamics, as shown in Section 4.2.
Enhancing memory locality: Many serverless-enabled
data analytics systems [28, 31, 34, 38, 41, 64, 71, 72] have uti-
lized external storage systems, such as Redis and AWS S3, to
avoid SL’s limitation, i.e., limited network. However, this may
naturally cause performance degradation due to losing data
(memory) locality. Some recent works [18, 52, 79, 80] showed
that SL instances can communicate with each other directly
using TCP hole punching and socket-related library replace-
ment. We expect that using such techniques would improve
performance for diverse queries, especially short-running
queries. We plan to apply these techniques in Smartpick
for further performance improvement without additional
cost. To improve memory locality, we also consider using
larger (expensive) VM instance types (and families).We could
observe that applications can improve performance with ad-
ditional cost by using larger VM instance family, e.g., AWS
c3, which opens another richer tradeoff space. However, we
omitted this result due to space constraints.

8 Conclusion
In this paper, we present Smartpick, a scalable data analytics
system that determines optimal compute resource config-
urations for given queries by predicting workloads with
consideration of hybrid compute resources, i.e., SL and VM.

Author’s preprint version
12

Smartpick: Workload Prediction for Serverless-enabled Scalable Data Analytics Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

Smartpick utilizes decision-tree based Random Forest to pre-
dict workloads and Bayesian Optimizer to efficiently explore
the large search space for determining optimal configura-
tions. Smartpick is mindful of cost-performance tradeoff
space opened by exploiting SL and VM together, and incor-
porates workload dynamics. Experimental results on AWS
and GCP indicate high-precision resource determination for
Smartpick with prediction accuracies of 97.05% and 83.49%
respectively. The results confirm that Smartpick enables ap-
plications to achieve their target cost-performance goals,
handle workload dynamics automatically, and improve per-
formance without additional cost compared to baselines. The
results also show that other data analytics systems can ben-
efit from Smartpick.

References
[1] Hani Al-Sayeh, Bunjamin Memishi, Muhammad Attahir Jibril, Mar-

cus Paradies, and Kai-Uwe Sattler. 2022. Juggler: Autonomous Cost
Optimization and Performance Prediction of Big Data Applications.
In Proceedings of the 2022 International Conference on Management of
Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Comput-
ing Machinery, New York, NY, USA, 1840–1854. https://doi.org/10.
1145/3514221.3517892

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Ana-
lytics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 469–
482. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/alipourfard

[3] Amazon AWS. [n.d.]. https://aws.amazon.com/lambda/.
[4] Amazon AWS. [n.d.]. https://aws.amazon.com/.
[5] Amazon AWS. [n.d.]. https://aws.amazon.com/ec2/instance-types/t3/.
[6] Amazon AWS. [n.d.]. https://aws.amazon.com/lambda/pricing/.
[7] Amazon AWS. [n.d.]. AWS SDK for Java. https://aws.amazon.com/sdk-

for-java/.
[8] Amazon Simple Storage Service. [n.d.]. https://aws.amazon.com/s3/.
[9] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica.

2011. Disk-locality in datacenter computing considered irrelevant.. In
HotOS, Vol. 13. 12–12.

[10] Omer Anisfeld, Erez Biton, Ruven Milshtein, Mark Shifrin, and Omer
Gurewitz. 2018. Scaling of Cloud Resources-Principal Component
Analysis and Random Forest Approach. In 2018 IEEE International
Conference on the Science of Electrical Engineering in Israel (ICSEE). 1–5.
https://doi.org/10.1109/ICSEE.2018.8646134

[11] Apache Hadoop. [n.d.]. https://hadoop.apache.org/.
[12] Apache OpenWhisk. [n.d.]. http://https://openwhisk.apache.org/.
[13] Apache Spark. [n.d.]. https://spark.apache.org/docs/2.2.1/.
[14] Apache Thrift. [n.d.]. https://thrift.apache.org/.
[15] Avantika Monnappa. 2022. https://www.simplilearn.com/how-

facebook-is-using-big-data-article.
[16] Janki Bhimani, Ningfang Mi, Miriam Leeser, and Zhengyu Yang. 2017.

FiM: Performance Prediction Model for Parallel Computation in Itera-
tive Data Processing Applications. https://doi.org/10.1109/CLOUD.
2017.53

[17] Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues. 2020. Finding
the Right Cloud Configuration for Analytics Clusters. In Proceedings
of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY, USA,
208–222. https://doi.org/10.1145/3419111.3421305

[18] Roman Böhringer. 2022. FMI: The FaaS Message Interface. Master’s
thesis. ETH Zurich.

[19] Branka Vuleta. 2021. https://seedscientific.com/how-much-data-is-
created-every-day/.

[20] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. SIGPLAN Not. 49, 4
(feb 2014), 127–144. https://doi.org/10.1145/2644865.2541941

[21] Wei Fang, ZhiHui Lu, Jie Wu, and ZhenYin Cao. 2012. RPPS: A Novel
Resource Prediction and Provisioning Scheme in Cloud Data Center.
In 2012 IEEE Ninth International Conference on Services Computing.
609–616. https://doi.org/10.1109/SCC.2012.47

[22] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin,
and Rodrigo Fonseca. 2012. Jockey: Guaranteed Job Latency in Data
Parallel Clusters. In Proceedings of the 7th ACM European Conference
on Computer Systems (Bern, Switzerland) (EuroSys ’12). Association
for Computing Machinery, New York, NY, USA, 99–112. https://doi.
org/10.1145/2168836.2168847

[23] Soumi Ghosh and Chandan Banerjee. 2020. A Predictive Analy-
sis Model of Customer Purchase Behavior using Modified Random
Forest Algorithm in Cloud Environment. In 2020 IEEE 1st Interna-
tional Conference for Convergence in Engineering (ICCE). 239–244.
https://doi.org/10.1109/ICCE50343.2020.9290700

[24] Google Cloud. [n.d.]. https://cloud.google.com/functions.
[25] Google Cloud. [n.d.]. https://cloud.google.com/.
[26] Google Cloud. [n.d.]. https://cloud.google.com/functions/docs/

concepts/execution-environment#file_system.
[27] Google Cloud. [n.d.]. Java Cloud Client Libraries. https://cloud.google.

com/java/docs/reference/.
[28] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar, G.

Kesidis, and C. Das. 2019. Spock: Exploiting Serverless Functions
for SLO and Cost Aware Resource Procurement in Public Cloud. In
2019 IEEE 12th International Conference on Cloud Computing (CLOUD).
199–208.

[29] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Tay-
lan Kandemir, Bhuvan Urgaonkar, George Kesidis, and Chita Das.
2019. Spock: Exploiting Serverless Functions for SLO and Cost Aware
Resource Procurement in Public Cloud. In 2019 IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD). 199–208. https:
//doi.org/10.1109/CLOUD.2019.00043

[30] Jianwei Hao, Ting Jiang,WeiWang, and In Kee Kim. 2021. An Empirical
Analysis of VM Startup Times in Public IaaS Clouds: An Extended
Report.

[31] Aman Jain, Ata F. Baarzi, George Kesidis, Bhuvan Urgaonkar, Nader
Alfares, and Mahmut Kandemir. 2020. SplitServe: Efficiently Splitting
Apache Spark Jobs Across FaaS and IaaS. In Proceedings of the 21st Inter-
national Middleware Conference (Delft, Netherlands) (Middleware ’20).
Association for Computing Machinery, New York, NY, USA, 236–250.
https://doi.org/10.1145/3423211.3425695

[32] Tammy Jiang, Jaimie L. Gradus, and Anthony J. Rosellini. 2020. Su-
pervised Machine Learning: A Brief Primer. Behavior Therapy 51, 5
(2020), 675–687. https://doi.org/10.1016/j.beth.2020.05.002

[33] Anshul Jindal, Mohak Chadha, Shajulin Benedict, and Michael Gerndt.
2021. Estimating the Capacities of Function-as-a-Service Functions. In
Proceedings of the 14th IEEE/ACM International Conference on Utility
and Cloud Computing Companion (Leicester, United Kingdom) (UCC
’21). Association for Computing Machinery, New York, NY, USA, Arti-
cle 19, 8 pages. https://doi.org/10.1145/3492323.3495628

[34] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. 2017. Occupy the Cloud: Distributed Computing for
the 99%. In Proceedings of the 2017 Symposium on Cloud Computing.
Association for Computing Machinery, New York, NY, USA, 445–451.
https://doi.org/10.1145/3127479.3128601

[35] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, RuslanMavlyutov,

Author’s preprint version
13

https://doi.org/10.1145/3514221.3517892
https://doi.org/10.1145/3514221.3517892
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://aws.amazon.com/lambda/
https://aws.amazon.com/
https://aws.amazon.com/ec2/instance-types/t3/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/s3/
https://doi.org/10.1109/ICSEE.2018.8646134
https://hadoop.apache.org/
http://https://openwhisk.apache.org/
https://spark.apache.org/docs/2.2.1/
https://thrift.apache.org/
https://www.simplilearn.com/how-facebook-is-using-big-data-article
https://www.simplilearn.com/how-facebook-is-using-big-data-article
https://doi.org/10.1109/CLOUD.2017.53
https://doi.org/10.1109/CLOUD.2017.53
https://doi.org/10.1145/3419111.3421305
https://seedscientific.com/how-much-data-is-created-every-day/
https://seedscientific.com/how-much-data-is-created-every-day/
https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1109/SCC.2012.47
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1109/ICCE50343.2020.9290700
https://cloud.google.com/functions
https://cloud.google.com/
https://cloud.google.com/functions/docs/concepts/execution-environment#file_system
https://cloud.google.com/functions/docs/concepts/execution-environment#file_system
https://cloud.google.com/java/docs/reference/
https://cloud.google.com/java/docs/reference/
https://doi.org/10.1109/CLOUD.2019.00043
https://doi.org/10.1109/CLOUD.2019.00043
https://doi.org/10.1145/3423211.3425695
https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1145/3127479.3128601

Middleware ’23, December 11–15, 2023, Bologna, Italy Mohapatra et al.

Íñigo Goiri, Subru Krishnan, Janardhan Kulkarni, and Sriram Rao.
2016. Morpheus: Towards Automated SLOs for Enterprise Clusters.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX
Association, USA, 117–134.

[36] Takuya Kanazawa. 2021. One-parameter family of acquisition func-
tions for efficient global optimization. https://doi.org/10.48550/ARXIV.
2104.12363

[37] Veena Khandelwal, Anand Kishore Chaturvedi, and Chandra Prakash
Gupta. 2020. Amazon EC2 Spot Price Prediction Using Regression
Random Forests. IEEE Transactions on Cloud Computing 8, 1 (2020),
59–72. https://doi.org/10.1109/TCC.2017.2780159

[38] Y. Kim and J. Lin. 2018. Serverless Data Analytics with Flint. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD). 451–
455.

[39] Gabriela Kiryakova, Nadezhda Angelova, and Lina Yordanova. 2015.
Application of cloud computing services in business. Trakia Journal of
Science 13 (01 2015), 392–396. https://doi.org/10.15547/tjs.2015.s.01.067

[40] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta:
Heterogeneous Cloud Storage Configuration for Data Analytics. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX Associa-
tion, Berkeley, CA, USA, 759–773. http://dl.acm.org/citation.cfm?id=
3277355.3277429

[41] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral
Storage for Serverless Analytics. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (Carlsbad,
CA, USA) (OSDI’18). USENIX Association, Berkeley, CA, USA, 427–444.
http://dl.acm.org/citation.cfm?id=3291168.3291200

[42] Alexey Kopytov. 2021. sysbench. https://github.com/akopytov/
sysbench.

[43] J. Kuhlenkamp, S. Werner, and S. Tai. 2020. The Ifs and Buts of Less
is More: A Serverless Computing Reality Check. In 2020 IEEE Inter-
national Conference on Cloud Engineering (IC2E). 154–161. https:
//doi.org/10.1109/IC2E48712.2020.00023

[44] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. 2018. Evaluation of
Production Serverless Computing Environments. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). 442–450. https:
//doi.org/10.1109/CLOUD.2018.00062

[45] Yao Lu, John Panneerselvam, Lu Liu, and Yan Wu. 2016. RVLBPNN: A
workload forecasting model for smart cloud computing. Scientific Pro-
gramming 2016 (11 2016), 1–9. https://doi.org/10.1155/2016/5635673

[46] Lu Zhang and Diuto Malife. [n.d.]. https://blog.twitter.com/
engineering/en_us/\topics/infrastructure/2021/processing-billions-
of-events-in-real-time-at-twitter-.

[47] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Sub-
rata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020.
OPTIMUSCLOUD: Heterogeneous Configuration Optimization for
Distributed Databases in the Cloud. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). USENIX Association, 189–203.
https://www.usenix.org/conference/atc20/presentation/mahgoub

[48] Ming Mao and Marty Humphrey. 2012. A Performance Study on
the VM Startup Time in the Cloud. In 2012 IEEE Fifth International
Conference on Cloud Computing. 423–430. https://doi.org/10.1109/
CLOUD.2012.103

[49] MathWorks. 2022. Bayesian Optimization Algorithm. https://www.
mathworks.com/help/stats/bayesian-optimization-algorithm.html.

[50] Avinash Mehta, Mukesh Menaria, Sanket Dangi, and Shrisha Rao. 2011.
Energy conservation in cloud infrastructures. In 2011 IEEE International
Systems Conference. 456–460. https://doi.org/10.1109/SYSCON.2011.
5929050

[51] Microsoft Azure. [n.d.]. https://azure.microsoft.com/en-us/services/
functions/.

[52] Daniel William Moyer. 2021. Punching Holes in the Cloud: Direct
Communication between Serverless Functions Using NAT Traversal. Ph.D.
Dissertation. Virginia Tech.

[53] Manoj Muniswamaiah, Tilak Agerwala, and Charles Tappert. 2019.
Big Data in Cloud Computing Review and Opportunities. International
Journal of Computer Science and Information Technology 11, 4 (aug
2019), 43–57. https://doi.org/10.5121/ijcsit.2019.11404

[54] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making
of TPC-DS. In Proceedings of the 32nd International Conference on
Very Large Data Bases (Seoul, Korea) (VLDB ’06). VLDB Endowment,
1049–1058.

[55] Thao Truong Nguyen, François Trahay, Jens Domke, Aleksandr Drozd,
Emil Vatai, Jianwei Liao, Mohamed Wahib, and Balazs Gerofi. 2022.
Why globally re-shuffle? Revisiting data shuffling in large scale deep
learning. In IPDPS 2022: 36th International Parallel & Distributed Pro-
cessing Symposium. IEEE, Lyon (virtual), France. https://hal.archives-
ouvertes.fr/hal-03599740

[56] Rodolphe Le Riche Nicolas Durrande. 2017. Introduction to Gaussian
Process Surrogate Models.

[57] Farhan Nisar, Samad Baseer, and Arshad khan. 2019. Survey on ARIMA
Model Workloads in a DataCenter with respect to Cloud Architecture.
In 2019 International Symposium on Recent Advances in Electrical Engi-
neering (RAEE), Vol. 4. 1–4. https://doi.org/10.1109/RAEE.2019.8887075

[58] Joe H. Novak, Sneha Kumar Kasera, and Ryan Stutsman. 2019. Cloud
Functions for Fast and Robust Resource Auto-Scaling. In 2019 11th
International Conference on Communication Systems & Networks (COM-
SNETS). 133–140. https://doi.org/10.1109/COMSNETS.2019.8711058

[59] KwangsungOh andMyoungkyu Song. 2021. Cocoa: Towards a Scalable
Compute Cost-aware Data Analytics System. In 2021 IEEE International
Conference on Cloud Engineering (IC2E). 110–117. https://doi.org/10.
1109/IC2E52221.2021.00025

[60] OpenJDK. [n.d.]. JDK 8. https://openjdk.org/projects/jdk8/.
[61] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanx-

iong Guo. 2018. Optimus: An Efficient Dynamic Resource Sched-
uler for Deep Learning Clusters. In Proceedings of the Thirteenth
EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for
Computing Machinery, New York, NY, USA, Article 3, 14 pages.
https://doi.org/10.1145/3190508.3190517

[62] Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007.
Why You Should Run TPC-DS: A Workload Analysis. In Proceedings
of the 33rd International Conference on Very Large Data Bases (Vienna,
Austria) (VLDB ’07). VLDB Endowment, 1138–1149.

[63] Meikel Pöss, T. Rabl, and Hans-Arno Jacobsen. 2017. Analysis of
TPC-DS: the first standard benchmark for SQL-based big data systems.
Proceedings of the 2017 Symposium on Cloud Computing.

[64] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 193–206. https://www.
usenix.org/conference/nsdi19/presentation/pu

[65] PyPI. [n.d.]. sql-metadata. https://pypi.org/project/sql-metadata/.
[66] Python. [n.d.]. https://www.python.org/.
[67] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru Krish-

nan. 2016. PerfOrator: Eloquent Performance Models for Resource
Optimization. In Proceedings of the Seventh ACM Symposium on Cloud
Computing (Santa Clara, CA, USA) (SoCC ’16). Association for Com-
puting Machinery, New York, NY, USA, 415–427. https://doi.org/10.
1145/2987550.2987566

[68] A. Raza, Z. Zhang, N. Akhtar, V. Isahagian, and I. Matta. 2021. LIBRA:
An Economical Hybrid Approach for Cloud Applications with Strict
SLAs. In 2021 IEEE International Conference on Cloud Engineering (IC2E).
IEEE Computer Society, Los Alamitos, CA, USA, 136–146. https:
//doi.org/10.1109/IC2E52221.2021.00028

[69] Redis. [n.d.]. https://redis.io/.

Author’s preprint version
14

https://doi.org/10.48550/ARXIV.2104.12363
https://doi.org/10.48550/ARXIV.2104.12363
https://doi.org/10.1109/TCC.2017.2780159
https://doi.org/10.15547/tjs.2015.s.01.067
http://dl.acm.org/citation.cfm?id=3277355.3277429
http://dl.acm.org/citation.cfm?id=3277355.3277429
http://dl.acm.org/citation.cfm?id=3291168.3291200
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://doi.org/10.1109/IC2E48712.2020.00023
https://doi.org/10.1109/IC2E48712.2020.00023
https://doi.org/10.1109/CLOUD.2018.00062
https://doi.org/10.1109/CLOUD.2018.00062
https://doi.org/10.1155/2016/5635673
https://blog.twitter.com/engineering/en_us/\topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-
https://blog.twitter.com/engineering/en_us/\topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-
https://blog.twitter.com/engineering/en_us/\topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-
https://www.usenix.org/conference/atc20/presentation/mahgoub
https://doi.org/10.1109/CLOUD.2012.103
https://doi.org/10.1109/CLOUD.2012.103
https://www.mathworks.com/help/stats/bayesian-optimization-algorithm.html
https://www.mathworks.com/help/stats/bayesian-optimization-algorithm.html
https://doi.org/10.1109/SYSCON.2011.5929050
https://doi.org/10.1109/SYSCON.2011.5929050
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://doi.org/10.5121/ijcsit.2019.11404
https://hal.archives-ouvertes.fr/hal-03599740
https://hal.archives-ouvertes.fr/hal-03599740
https://doi.org/10.1109/RAEE.2019.8887075
https://doi.org/10.1109/COMSNETS.2019.8711058
https://doi.org/10.1109/IC2E52221.2021.00025
https://doi.org/10.1109/IC2E52221.2021.00025
https://openjdk.org/projects/jdk8/
https://doi.org/10.1145/3190508.3190517
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://pypi.org/project/sql-metadata/
https://www.python.org/
https://doi.org/10.1145/2987550.2987566
https://doi.org/10.1145/2987550.2987566
https://doi.org/10.1109/IC2E52221.2021.00028
https://doi.org/10.1109/IC2E52221.2021.00028
https://redis.io/

Smartpick: Workload Prediction for Serverless-enabled Scalable Data Analytics Systems Middleware ’23, December 11–15, 2023, Bologna, Italy

[70] Li Ruan, Yu Bai, Shaoning Li, Shuibing He, and Limin Xiao. 2021.
Workload time series prediction in storage systems: a deep learning
based approach. Cluster Computing (2021), 1–11.

[71] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram
Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley.
2018. numpywren: serverless linear algebra. arXiv:1810.09679 [cs.DC]

[72] Spark on Lambda. [n.d.]. https://github.com/qubole/spark-on-
lambda/.

[73] TPC. [n.d.]. TPC-H Vesion 2 and Version 3.
[74] RIP Tutorial. [n.d.]. Word Count Example in Hive.
[75] Rafael Brundo Uriarte, Francesco Tiezzi, and Sotirios A. Tsaftaris. 2016.

Supporting Autonomic Management of Clouds: Service Clustering
With Random Forest. IEEE Transactions on Network and Service Man-
agement 13, 3 (2016), 595–607. https://doi.org/10.1109/TNSM.2016.
2569000

[76] Rafael Valero-Fernandez, David J. Collins, K.P. Lam, Colin Rigby, and
James Bailey. 2017. Towards Accurate Predictions of Customer Pur-
chasing Patterns. In 2017 IEEE International Conference on Computer
and Information Technology (CIT). 157–161. https://doi.org/10.1109/
CIT.2017.58

[77] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Prediction
for Large-Scale Advanced Analytics. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). USENIXAsso-
ciation, Santa Clara, CA, 363–378. https://www.usenix.org/conference/
nsdi16/technical-sessions/presentation/venkataraman

[78] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. 2011.
ARIA: Automatic Resource Inference and Allocation for Mapreduce
Environments. In Proceedings of the 8th ACM International Conference
on Autonomic Computing (Karlsruhe, Germany) (ICAC ’11). Association

for Computing Machinery, New York, NY, USA, 235–244. https://doi.
org/10.1145/1998582.1998637

[79] Michael Wawrzoniak, Ingo Müller, Rodrigo Bruno, Ana Klimovic, and
Gustavo Alonso. 2022. Short-lived Datacenter. https://doi.org/10.
48550/ARXIV.2202.06646

[80] Mike Wawrzoniak, Ingo Müller, Rodrigo Fraga Barcelos Paulus Bruno,
and Gustavo Alonso. 2021-01. Boxer: Data Analytics on Network-
enabled Serverless Platforms. https://doi.org/10.3929/ethz-b-
000456492 11th Annual Conference on Innovative Data Systems Re-
search (CIDR 2021); Conference Location: online; Conference Date:
January 11-15, 2021; The conference lecture was held on January 12,
2021. Due to the Coronavirus (COVID-19) the conference was con-
ducted virtually.

[81] James T. Wilson, Frank Hutter, and Marc Peter Deisenroth. 2018. Max-
imizing acquisition functions for Bayesian optimization. https:
//doi.org/10.48550/ARXIV.1805.10196

[82] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton
Smith, and Randy H. Katz. 2017. Selecting the Best VMAcross Multiple
Public Clouds: A Data-driven Performance Modeling Approach. In
Proceedings of the 2017 Symposium on Cloud Computing (Santa Clara,
California) (SoCC ’17). ACM, New York, NY, USA, 452–465. https:
//doi.org/10.1145/3127479.3131614

[83] Zach. 2019. Understanding the Standard Error of the Regression.
https://www.statology.org/standard-error-regression/.

[84] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. MArk:
Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 1049–
1062. https://www.usenix.org/conference/atc19/presentation/zhang-
chengliang

Author’s preprint version
15

https://arxiv.org/abs/1810.09679
https://github.com/qubole/spark-on-lambda/
https://github.com/qubole/spark-on-lambda/
https://doi.org/10.1109/TNSM.2016.2569000
https://doi.org/10.1109/TNSM.2016.2569000
https://doi.org/10.1109/CIT.2017.58
https://doi.org/10.1109/CIT.2017.58
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://doi.org/10.1145/1998582.1998637
https://doi.org/10.1145/1998582.1998637
https://doi.org/10.48550/ARXIV.2202.06646
https://doi.org/10.48550/ARXIV.2202.06646
https://doi.org/10.3929/ethz-b-000456492
https://doi.org/10.3929/ethz-b-000456492
https://doi.org/10.48550/ARXIV.1805.10196
https://doi.org/10.48550/ARXIV.1805.10196
https://doi.org/10.1145/3127479.3131614
https://doi.org/10.1145/3127479.3131614
https://www.statology.org/standard-error-regression/
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Research Contributions

	2 System Model and Motivation
	2.1 System Model
	2.2 Illustrative Example

	3 Determining Optimal Configurations
	3.1 Workload Prediction
	3.2 Why RF + BO is better than others?
	3.3 Optimal Configurations with Preferences

	4 Smartpick Overview
	4.1 Smartpick Architecture & Workflow
	4.2 Handling Dynamics
	4.3 Relay Instances

	5 Smartpick Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Workload Prediction
	6.3 Performance and Cost Comparisons
	6.4 Exploiting cost-performance tradeoff
	6.5 Handling Dynamics

	7 Related Work
	8 Conclusion
	References

