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Abstract—We revisit the online dynamic acknowledgment
problem. In the problem, a sequence of requests arrive over
time to be acknowledged, and all outstanding requests can
be satisfied simultaneously by one acknowledgement. The goal
of the problem is to minimize the total request delay plus
acknowledgement cost. This elegant model studies the trade-
off between acknowledgement cost and waiting experienced by
requests. The problem has been well studied and the tight
competitive ratios have been determined. For this well-studied
problem, we focus on how to effectively use machine-learned
predictions to have better performance.

We develop algorithms that perform arbitrarily close to the
optimum with accurate predictions while concurrently having the
guarantees arbitrarily close to what the best online algorithms
can offer without access to predictions, thereby achieving simul-
taneous optimum consistency and robustness. This new result is
enabled by our novel prediction error measure. No error measure
was defined for the problem prior to our work, and natural
measures failed due to the challenge that requests with different
arrival times have different effects on the objective. We hope
our ideas can be used for other online problems with temporal
aspects that have been resisting proper error measures.

Index Terms—Online Algorithms, Competitive Ratio, Approx-
imation Algorithms, Learning-augmented Algorithms

I. INTRODUCTION

In a typical communication setting where a client receives a
sequence of packets from the server, she needs to acknowledge
the receipt of the packets to update the server regarding the
current communication status. There are two desirable goals in
conflict. On the one hand, the server would like to get prompt
feedback from the client, which means the client should make
more acknowledgements. On the other hand, acknowledging
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frequently incurs a huge communication cost, and therefore it
is desirable to make fewer acknowledgements, which results
in prolonged latency in feedback. Thus, there is a fundamental
trade-off between making fewer acknowledgements and reduc-
ing acknowledgement latency.

The online dynamic acknowledgement problem! (DAP) is
an elegant model that was introduced in [17] to study the
above trade-off of fundamental importance. An instance of
DAP is a sequence of n requests (or demands) arriving online.
Succinctly, it can be represented as (Pt)te[T]a where p; is
the number of demands (equivalently packets or requests)
that arrive at time ¢ € [T] and it is unknown to the algo-
rithm. The requests must be acknowledged. When the client
acknowledges (acks for short), all outstanding® requests are
simultaneously satisfied. An outstanding request incurs 1/d
delay cost each time, where d is an input parameter, and each
ack costs 1. The objective is to minimize the total ack cost
plus the delay cost of all requests.

The DAP admits a simple 2-competitive® greedy algorithm
[17] that acks when the outstanding requests have accumu-
lated delay cost equal to 1. Also there is a _“;-competitive
randomized algorithm [13], [20], [32]. The competitive ratios
are tight for both deterministic and randomized algorithms.
The offline version of the problem can be solved optimally
via dynamic programming or linear programming as the LP
has no integrality gap [13].

While DAP is well understood, the traditional study of on-
line algorithms using competitive ratios is often criticized for
its pessimistic view of the instances. On the one hand, optimiz-
ing the competitive ratio gives robust guarantees against any
possible inputs. On the other hand, algorithms that optimize

I'This problem is also called the Dynamic TCP Acknowledgement problem.

2A request is said to be outstanding if it has arrived yet has not been
acknowledged (or equivalently satisfied).

3 An online algorithm is said to be c-competitive if its objective is at most
c times the optimum for all inputs.
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the competitive ratio could be highly tailored toward working
well against worst-case instances, sacrificing performance for
typical instances that tend not to be adversarial.

The framework of augmenting discrete optimization algo-
rithms with machine learning [21], [26] has recently emerged
as a powerful framework for algorithm analysis. Such algo-
rithms leverage machine learned parameters to give beyond-
worst case performance guarantees while providing robustness
guarantees even when given inaccurate parameters from the
machine learning. The goal is to develop algorithms that per-
form extremely well using ML for typical instances and exhibit
robustness against exceptional—even adversarial—instances
as traditional worst-case algorithms do.

This model has been used for various online problems. The
predicted parameters can be used to cope with the uncertainty
in the input. For example, caching [19], [26], [31], [34], buy-
or-rent [2], [22], load balancing [23], [24], scheduling [8],
[18], [22], [28], secretary problem [4], metrical task systems
[3], to name a few.

ML augmented algorithms typically take an input I and a
prediction P on the input. The prediction may be revealed at
the beginning or gradually over time as the input is. There is
an error function 7(I, P) defined to measure the quality of
the prediction. The prediction is of high quality when 7 is
small. The algorithm’s objective—if it is to be minimized—is
commonly bounded by a quantity of the following form:

min{aOPT(I) + n(I, P),yOPT(I)}, (1)

where OPT(I) denotes the optimal objective on input . The
algorithm is then said to be a-consistent and ~y-robust. In
other words, the algorithm is almost a-competitive when the
prediction is very accurate and always at most y-competitive
simultaneously.

This paper seeks to study the DAP assuming we have
learned predictions on the arriving requests. Specifically, tak-
ing access to prediction, (p¢)c[r], we would like to achieve
consistency and robustness for a certain error measure 7).

a) Simultaneous Optimum Consistency and Robustness:
The above parameters, «, /3, and « are correlated, and the
guarantees differ depending on the correlation. Ideally, the
guarantees should have the following form.

min{(1 + ¢)OPT + ¢en, (¢* + €)OPT}, ()

where c¢* is the best competitive ratio that can be achieved
without using predictions and c is a constant depending on e.
That is, we would like to achieve two goals simultaneously: on
the one hand, we achieve near optimality when the predictions
are almost perfect; on the other hand, we simultaneously
achieve the best robustness against any inputs regardless of
the prediction quality. We say this guarantee is simultaneous
optimum consistency and robustness.

Intuitively, this kind of guarantee can be achieved as
follows. We have two algorithms, A that closely follows
predictions and B that is robust against all inputs. If we know
that 7 is large, then we use B—otherwise, A. However, 7 is a

function that depends on the whole input I and the prediction
P. Therefore, we can only estimate its value before seeing
the entire input. Of course, one can design a trivial algorithm
that uses B as soon as she notices that the prediction is not
perfect. However, the algorithm will then rarely benefit from
predictions. Thus, it is critical to define an error measure
that grows graciously as the actual instance deviates from
the predictions to be able to develop an algorithm that still
outperforms B for mild prediction errors. The algorithm
crucially relies on the error measure 7).

The primary goal of this paper is to develop an ML-
augmented algorithm for the DAP, which seems to resist a
reasonable definition of 7. Further, it is one of the most
fundamental online problems with temporal aspects where
defining a good error measure has been elusive.

A. Critical Need for Prediction Error

Bamas et al. [9] gave a very elegant framework to smoothly
combine various primal-dual algorithms with an arbitrary
solution. In particular, for DAP, they assume access to a
complete solution as advice and let the primal-dual algorithm
mimic the prediction. At a high level, they increase each out-
standing request’s ‘potential’ and acks when their aggregated
potential justifies it. If the algorithm is behind the prediction
for a request, it increases its potential more aggressively to
catch up with it. The combined algorithm has cost at most
min{—=2-5A, ;== OPT} for any A € (0,1], where A is
cost of the given solution on the instance.

Unfortunately, the result has two critical issues. First, it
assumes that we are given a complete solution for the input as
advice. Thus, if we are only given the number of demands at
each time as a prediction, we still have to devise an algorithm.
It is possible to use the optimum solution for the predicted
instance as a solution for the actual instance, although it is un-
clear if it is the best way to use the prediction. Another issue is
that it does not provide simultaneous optimum consistency and
robustness: To achieve near-optimum consistency, one cannot
help but make # — 1, but it will make 17i,x — 00,
resulting a poor robust guarantee. The error measure serves as
a barometer for the prediction’s accuracy, and the algorithm
cannot change its behavior agilely without it.

B. Challenges in Defining Prediction Error

Despite the critical need for an error measure, it is non-
trivial to define for DAP—more broadly, problems that involve
temporal aspects; see Section I-D. This is because requests
with different arrival times could have different contributions
to the objective, and the interaction between the delay cost and
the ack cost is subtle. For instance, a few requests arriving later
may make the optimal solution switch most of its cost from
acks to delay cost and change the solution structure.

Intuitively, if the error is small, there should be a solution
that is simultaneously good for both the actual and predicted
instances. It is not difficult to see that naive error measures
fail to satisfy it. For example, say we use the ¢;-norm,
the aggregate sum of the prediction error at each time, i.e.,
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(1,0 = >_te|Pt —Pe|. But even if the instance is different
from the prediction by only one request, the optimum can
change a lot depending on whether the request is close to other
requests. In short, this is because the ¢;-norm is oblivious to
the arrival times. We discuss other natural error measures in
Section II-B3 in detail and why they are unsatisfactory.

C. Our Contributions
Our contributions are summarized as follows.

1) We give simultaneous optimum consistency and robust-
ness for DAP for the first time (Section III and Sec-
tion IV).

2) We propose a novel error measure, which enables our
algorithm and guarantees (Section II-B1).

3) We show that the predictions are learnable with respect
to the error measure (Section V).

4) Our experiments show that our new algorithm beats
known learning augmented algorithms and remains on
par with the algorithms with the best competitive ratio at
the most time (Section VI). The experiments demonstrate
the theory is predictive of practice.

Our main theoretical result is the following for our new
error 7, which will be shortly described.

Theorem 1. For any € > 0, there is a randomized algo-
rithm whose objective is bounded by min{(1 + €)OPT +
O(&5)n, (4 + €)OPT} in expectation. Further, there is
a deterministic algorithm whose objective is bounded by
min{(1 + €)OPT + O(%)n, (2 + €)OPT}.

In other words, we obtain simultaneous optimum consis-
tency and robustness both deterministically and randomly. We
also complement this result by showing that no determinis-
tic algorithms have a cost smaller than min{(1 + A — ¢) -
OPT(I),(1 + #)} for any constant A > 0 and sufficiently
small € > 0; see Theorem 4.

Our new guarantees and algorithm crucially rely on our
novel error measure. At a high level, we use the optimal objec-
tive to define 7, inspired by [18]. Following their idea, we can
try to measure the difference between OPT((max{p¢, pt})+)
and OPT((min{p, pt})¢). The former (the latter, resp.) is
the optimal objective assuming the number of requests is the
maximum (minimum, resp.) of the actual number and the
prediction at each time. Although this satisfies the desiderata
proposed by them, Monotonicity and Lipschitzness,* it fails
to capture the temporal aspects of the problem as requests
with different arrival times could have a different effect; see
Section II-B3 for more detail. In particular, we show it could
mistakenly label some bad predictions as good, making the
error unusable in guiding the algorithm’s decision. Therefore,
we partition the time horizon and aggregate the error measured
in each sub-interval. The maximum aggregate error over all
partitions is what we adopt.

4Monotonicity means the error should get smaller if the predictions are
more correct; and Lipschitzness means the error should change as much as
the objective to successfully distinguish between good and poor predictions.

Under the new error measure, we successfully design a
novel algorithm that quickly switches between exploiting the
predictions and running robust algorithms. The algorithm is
subtle. At a high level, the algorithm first computes a nearly
optimal solution that is stable in that adding extra acks
cannot significantly reduce the cost. Intuitively this gives us
an interval where we can measure the error without worrying
too much about the interaction between the delay and ack
costs. We set a budget we can use until the first time ¢; when
the nearly optimal solution acks. Until the time ¢;, at each
time we ack if we are still within the budget and the optimal
solution on the actual instance would ack right now. Note that
we only loosely follow the prediction as the actual instance
could be quite different from the prediction. Rather, we use the
budget to figure out how much we should tolerate the errors.
If we run out of the budget before ¢; we switch to a robust
algorithm, which can be the 2-competitive greedy algorithm
or the —<;-competitive randomized algorithm. The algorithm
is recursively defined from ¢; or from the time it exhausts the
budget.

The prediction (p;)¢c|7) We use in our paper is natural and
provably learnable. We show that the best prediction can be
learned from polynomially many samples in 7' if instances
follow a certain unknown distribution. Due to space limits,
some proofs are omitted and can be found in the full version.

D. Other Related Work

Balancing the communication cost and delay cost has been
studied extensively due to its fundamental importance in com-
munication network, such as multicast acknowledgment [10],
[11], [15], [29]; broadcast scheduling [25], [33], etc. DAP is
one of the elegant models that captures the trade-offs between
communication cost and delay cost, and therefore it also has
been studied in many previous works [1], [5], [14], [16].

Due to the explosive volume of work in the area of
the learning-augmented algorithm, we only discuss the most
closely related work. As discussed, [9] gave a framework that
combines an arbitrary solution and a primal-dual algorithm for
various problems, such as online set cover and DAP. More gen-
erally, [27] showed how to be competitive against two online
algorithms simultaneously. In general, such approaches cannot
achieve simultaneous optimum consistency and robustness.

We briefly discuss online problems with temporal aspects.
To our knowledge, no work prior to ours assumes predictions
on jobs or requests’ arrival time. Our error measure is inspired
in part by the recent work by [18] for non-clairvoyant schedul-
ing where the goal is to better minimize average completion
time using predictions on job processing times. However, their
work assumes all jobs arrive at the same time. Its preceding
work [30] uses the same prediction model but a different
error measure. For average response time, see [6]. For various
problems involving latency, see [7] and the pointers therein.
For connection to inventory management problems, see [12].
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II. PRELIMINARIES & PREDICTION ERROR
A. Notations

To formally study the DAP, we set up some notations that
will be used throughout the paper. We use a set of points
in time to denote a solution X = {xy,...,2% } where the
time points in the set are sorted in increasing order. We say
it is feasible to instance I = (pt):er if (1) X C [T] and (ii)
max X > argmax[p; > 0]. Let n = argmax,[p; > 0]. Let
xo = 0 and let F(I, X) be the objective value of the solution
X applied to instance I:

| X| ED

PEX) =X+ 53 (0 wlei—1),

=1 t=x;_1+1

where each additional time unit of latency incurs a cost of é.

For an arbitrary instance I, let OPT(I) denote the optimal
solution or its objective depending on the context. Similarly,
let ALG(T) denote the solution of our algorithm, which will
be discussed later, or its objective. Let D(I, X) and #(I, X)
be the total delay cost and ack cost of the F(I, X).

In the analysis, we will frequently partition the time horizon
[1,T] according to a solution X = {z1,...,xy }. The parti-
tion Px = (Py,..., Py) is called a (time) partition induced
by X if and only if P, = {¢t | ;1 <t <ux; } forall i € [k].
Note that P is a partition of the time interval [1, n].

B. Error Measure

Given an actual instance I = (p;)ici7) of DAP and its
predicted instance [ = (pt),c(7, we would like to define

a sound and effective error measure. Let n = max{7T,T}.
We can always assume that both the actual instance and the
predicted instance have n time points by adding zero package
points. As discussed in Section I-C, we would like to satisfy
the Monotonicity and Lipschitzness properties proposed by
[18]:

Definition 1 ( [18]). The error function ERR is monotone if
for any S C [n)],

ERR ((pt)te[n] 7(ﬁt)te[n]>

> ERR((pt)teru (Pt)eers) U (ﬁt)te[n]\s)
while it has Lipschitzness if
|OPT((pt)sein]) —OPT((Pt)ren))|

< ERR((pt)te[n]7 (ﬁt)tdn])'

Intuitively, monotonicity ensures that if more request predic-
tions are correct, then the error must decrease. Lipschitzness
ensures that the error measure can upper bound the difference
between the optimal values of the actual instance and the
predicted instance.

However, a natural extension of the error measure used in
[18] exhibits a critical weakness—although it satisfies the two

properties—that it labels poor predictions as good. This is
because the extension fails to capture the requests’ arrival time
effectively; see Section II-B3 for the details. To address this
challenge, we propose a novel error measure.

1) New Error Measure: Given an instance I = (p¢)ic|7)
and it prediction I = (ﬁt)te[f]’ define O(I,1) :=
(max{ps, Pt} )rem) and U(L, 1) = (min{ps,pt})ecin) to be
the overpredicted and underpredicted instances respectively.
Assuming that we take the max and min at every time step,
we can write O(I, ) = max{I, I} and U(I,I) = min{I, I}.

Let I(t1,t) be the subinstance of I from
time t; to tp, ie., (Pt)ieft,,..to}. Define P =
{Ll:{lo,...,ll},LQ:{ll+1,...,l2},"',} to be

a partition of the integer set [T]. The set of consecutive
time steps, L;, is called an interval. A partition P is called
non-empty for instance I if and only if I(L;) includes at
least one request for every L; € P. Let [[(I) be the set of
all non-empty partitions for instance . Note that different
partitions may have a different number of intervals. We are
now ready to define our error measure.

Definition 2. (Error Measure) Gi\ien an instance I =
(pt)terr) and its predicted instance I = (ﬁt)te[f]’ the error
measure is defined as follows:

3 (OPT (O(I<Li>7f<Li>))

L;eP

n(I,I)=  max

Pel1(U(,I))

_ OPT (U(I(Li>af<Li>)) )

To understand 7, for a moment, assume that P has only
one interval. Then, 1 measures how much the optimal ob-
jective changes when the number of requests increases from
min{p;, p; } to max{ps, P} at all times. Although it satisfies
Monotonicity and Lipschitzness, it fails to capture how re-
quests arriving at different times affect the ack times—if they
change the ack times significantly, intuitively, the prediction
is not so good. Thus, we partition the time horizon [T'] into
intervals and apply the same measure to each interval in P.
Intuitively, if the error is big for some partition, it means [
and I have significantly different optimal solution structures.

When the parameters are clear in the context, we may write
n(I,1) as 7 for brevity. We claim the following lemma.

Lemma 1. n([,f) can be efficiently computed by dynamic
programming and satisfies both monotonicity and Lipschitz-
ness.

2) Auxiliary Prediction Error: For the sake of analysis, we
define another error measure called Auxiliary Error.

Definition 3. (Auxiliary Error) Given I = (pi)ie(1), I=
(D) ey the auxiliary error in time interval [t1,t5] is defined
as follows:

. ([tl, ta], 1, f) — OPT (0(1<t1,t2>, f(tl,t2>)>
— OPT (U(I(tl, ta), 111, t2>)>
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Note that n(I,I) = MaXp e 11(0(1,1)) doLep (T(Li, I, I))
When the parameters are clear from the context, we may write
7([1,n],1,1) as 7 for simplicity, where n = max{T,T"}. The
auxiliary error can be used to lower bound 7 and will be useful
for the analysis.

Lemma 2. For any instance I and its prediction I and for any
non-empty partition P = { L1, La,...} of U(I,I), we have
dL.ep (T(Li, I, f)) < n(I,1). Moreover, the axiliary error
7([1,n],I,1) satisfies Monotonicity and Lipschitzness.

3) Comparison with Other Prediction Errors: Below we
compare our error measure with other natural measures and
discuss their shortcomings.

ERR(I,I) = |OPT(I) — OPT(I)|. This definition measures
the difference of the optimal objectives of I and I. Tt satisfies
Lipschitzness but violates the Monotonicity: Consider instance
I = (2d,2d,0) and its predicted instance I = (0,2d,2d).
Clearly, |OPT(I) — OPT(I)| = 0, as OPT(I) = OPT(I) =
2. However, if we replace p; with p; to get a more accurate
prediction (2d, 2d,2d), ERR(I, I) increases to 1 from 0.
ERR(I,]) = >_teylPt — Pe|. This definition linearly aggre-
gates the difference of the actual number of requests from
prediction over all times. This ¢;-norm measure satisfies
Monotonicity but violates Lipschitzness: Consider instance
I = (pt = €)¢eir) Where % < 1; thus the optimal
solution only acks at the last time. The prediction is [ =
(Pt)terr) where p; = 0 for all ¢ € [T — 1] and pr = e
Clearly, the optimal solution for I is the same as that for
I but it incurs no delay cost for I. In this case, we have
|OPT(I) — OPT(I)| = “%-1< But, ERR(Z, I) = (n — 1)e,
so we have |OPT(I) — OPT(I)| > 55ERR(Z, I). Thus, we
need to add ©(n) multiplier to the measure to make it usable.
ERR(I,1) = 7([1,n],I,I). This error measures how much
the optimal objective changes when increasing min{p;, p;}
to max{ps, p;} at all times. This error measure satisfies both
Monotonicity and Lipschitzness but is short of capturing the
structure of the optimal solution. In particular, it may tag poor
predictions as good. To see this, consider an instance I where a
cluster of requests arrive initially until time ¢; and one request
arrives at a very late time ¢5. Then, we can set parameters
appropriately, so the optimal solution makes only one ack at
time to and has cost 2 — €. Suppose the prediction Iis perfect
except at time ¢1, and p,, is very large. Then, it is easy to see
that acking at both times ¢; and ¢, is optimal and has cost 2.
Thus, the error is at most €, yet I and I have very different
optimal solution structures. We can amplify their structural
difference by repeating this example over time.

ITI. CONSISTENCY BOUND

In this section, we present an algorithm and prove the
consistency. More precisely, we show that for any instance I,
the algorithm always returns a solution with the cost at most
(14¢€)-OPT(I)4O(%)-n for any e > 0. When the prediction

error 1 = 0, the competitive ratio is (1+4-¢). Later in Section IV,
we show how to refine the algorithm to obtain robustness
simultaneously. We begin by introducing a crucial definition
that is necessary to understand our algorithmic intuition.

A. Stability of Instances

Let Y be a feasible solution of an instance I = (pt)iec[1y)»
i.e., the set of ack time points. Use D(I,Y’) to denote the
total delay cost of solution Y and define A(I,Y,t) :=
D(I,Y)—D(I,YU{t}) to be the decrease of the delay cost
when making an extra ack at time ¢ in addition to an existing
solution Y.

Definition 4. For a parameter ), let an instance I = (p;)ic|1)
be a \-stable interval if the solution X which sends only one
ack at time T has A(I,X,t) < 1— )\ Vt € [T]. Define an
instance’s stability factor as the maximum value of \ such that
it is a A-stable interval. Further, the instance is stable if its
stability factor is at least O; otherwise, it is unstable.

Clearly, any instance where the optimal solution X sends
only one ack at time 7' is at least O-stable because for any time
t, A(I,X,t) < 1; otherwise, making an extra ack at time ¢
decreases the total cost. Suppose that the stability factor of the
instance is exactly 0. Namely, there exists at least one time ¢
such that A(I, X,t) = 1. We see that increasing p; slightly
will force the optimal solution to make an extra ack. Thus,
for a stable interval, the stability factor A measures how much
noise can change the structure of the optimal solution on it.

Defining stability is critical for our algorithm. Intuitively,
when the predicted instance is a stable interval, it is convenient
to detect a considerable prediction and justify the extra acks.
Thus, if we can partition the predicted instance into several
stable intervals without incurring too much cost, handling each
stable interval independently gives a consistent algorithm.

In the following, Section III-B presents an algorithm to deal
with the case that the predicted instance is a stable interval,
and then Section III-C shows how to do partitioning in the
general case and obtain a desirable competitive ratio.

B. Stable Prediction Case

This subsection considers a special case that the predicted
instance is a A-stable interval, i.e., the optimal solution X
only sends one ack, and A(I, X,t) < 1— A for all t € [T].
The algorithm is stated in Algorithm 1. It consists of two
phases. The first phase is concerned with “good” prediction
cases, while the second phase runs a traditional competitive
algorithm to handle inputs that turn out to be far off from the
prediction. The pseudo-code uses the 2-competitive algorithm
that is deterministic, but it can also be replaced with the efl
competitive algorithm that is randomized.

To decide if the predictions are reliable or not, the algorithm
uses (1 + A)OPT(I) as “budget”. The algorithm does not
switch to the second phase if it has paid within the budget.
For each time ¢ in the first phase, the algorithm acks if the
subinstance 7(j+ 1,¢+ 1) is unstable, where j is the last time
an ack was made. Using the fact that the prediction makes only
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Algorithm 1. Predicted-Budget-Based Algorithm

Input: Online Instance I = (p;)icr), prediction [ =
(Pt)ye(y> and parameter A > 0
Output: A feasible solution .S
1S+ 0,7+ 0;t« 1.
2: Compute OPT(I) for the predicted instance.
3: // Phase-1.
4: while F(I(1,t),SU{t}) <
instance does not end do
5. if I{(j +1,t + 1) is unstable then
6: S« SU{t}. // Send an ack at time point ¢.
7: j <« t.
8
9

(1+X)OPT(I) and the online

end if
o t—t+ 1

10: end while

11: // Phase-2.

12: if the online instance does not end then

13:  Run the traditional 2-competitive online algorithm for
the remaining instance and let Y be the returned solu-
tion. Let S+~ SUY.

14: end if

15: return S

one ack at the end of a single interval in a stable instance, we
can show that the prediction has a considerable error. Thus,
we can charge the cost for making extra acks to the error.
Also, the algorithm makes an ack when it is forced to finish
the first phase due to running out of budget. It is worth noting
that the switched time point may be larger than T', which is
the last time point in the predicted instance.

Theorem 2. Let ALG(I) be the objective value obtained by
Algorithm 1. If the predtcted instance is a A-stable interval
(A > 0), ALG(I) < (1+ ) - OPT({ )JrO( ) - 7, where
T = T([l,n],Lf) is the auxiliary error (see Definition 3),
which is a lower bound of the prediction error 1.

We sketch the proof of Theorem 2. Use X to denote the
solution returned by Algorithm 1. As stated in Algorithm 1, the
algorithm consists of two phases. Let e be the last time in the
first phase; then e € X by the algorithm. Time e partitions 7]
into two parts: S, = {1,...,e} and S, = {e+1,...,T}
It is worth to note that e may equal T, which makes S, = ().
Define X, :={t € X |t <e}, Xp := X\ X, 1o := (pi)ies,
and Ij := (pi):es,- Then, we can split the objective value into
two parts: ALG(I) = F(1,, X,) + F(I, Xp), where the first
and second terms are the cost incurred for the algorithm in
the first and second phases, respectively. Theorem 2 can be
proved by the following two lemmas.

Lemma 3. F(I,, X,) < (14 \)- (OPT(I) + 7).

Proof. This lemma is easy to prove because the first phase is
budget limited, that is, all cost incurred in this phase is at most
the budget (1 + A\)OPT(]). Then due to the Lipschitzness of
the auxiliary error (Lemma 2), we have OPT(I) < OPT(I)+

T, completing the proof. O

Lemma 4. F(I,, X;) <2-OPT(l,) < (2+ %) -7

Proving Lemma 4 is a bit subtle. Before describing it, we
first state a claim critical to the analysis.

Claim 1. Consider an arbitrary instance 1. Partition it into
k intervals (subinstances) {I1, I, ..., I }. For any such par-
tition, We have 3,y OPT(;) < k: — 14 OPT(I).

Proof. Let t; be the last time point of subinstance ;. We,
w.l.o.g., assume that the optimal solution X* sends an ack at
the last time point, implying that £, € X™*. Construct a new
solution Y := X* U {t1,ta,...,tk—1}. Clearly, F(I,Y) <
k — 1+ OPT(I) because the number of acks increases at
most k — 1 and the total delay cost is non-increasing.

Now partition solution Y into k groups Y7,..., Y%, where
Y; is the set of the ack time points in the time interval of I;.
Since t; € Y for any i € [k], we have t; € Y;, and thus, the
objective value of solution Y is exactly the sum of its values
in k subinstances, i.e., F(I,Y) = Z 1 F(1;,Y5). Then due to
F(I;,Y;) > OPT(I;) for any ¢ € [k], we prove the claim. [J

Proof of Lemma 4. The first inequality uses the fact that the
second phase runs the traditional 2-competitive algorithm. So
we only need to focus on the second inequality. We distinguish
two cases according to the existence of phase-2. The first case
is that the algorithm is still in phase-1 at time T, i.e., I, = {).
Then the second inequality is trivial since OPT(;) = 0. For
the second case that I, # 0, since {I,, [} is a partition of
instance I, by Claim 1, OPT(I,) < 14+ OPT(I) — OPT(1,).

In phase-1, according to the “if-condition” in Algorithm 1,
the subinstance between any two adjacent acks is a stable
interval, implying that the algorithm obtains the optimal solu-
tion for each subinstance. Thus, using Claim 1 again gives a
lower bound of OPT(I,): OPT(I,) > F(I,,X,) — ko + 1,
where k, is the number of acks in phase-1. Since I, # (),
the first phase must run out of the predicted budget, which
indicates that F(I,, X,) ~ (1 + A)OPT(I). Without loss
of generality, we can assume F(I,, X,) > OPT(I). Hence,
OPT(I;) < 1+OPT(I) —OPT(I) 4 kq—1 < 7+ kg, where
the last inequality is due to the Lipschitzness of 7.

The remaining piece of proof is to bound the value of k,. Up
to this point, we have not used the condition that the predicted
instance I is a A-stable interval. The following analysis uses
this condition to prove k, < 27/A.

Use {I,...,Ir,,...,Ix} to denote the subinstances in-
duced by solution X. Let T; = [s;,t;] be the time interval
of subinstance I;. Recall that O(I, I) is the over-predicted in-
stance (max{p;, Pt })ien, Where n = maX{T T'}. For brevity,
denote O(I,1) by I° = (p)en, where p? = = max{p;, Pt}
Let X be the optimal solution of the predicted instance I.
Since we assume that I is A-stable, X = {7}.

Claim 2. The optimal solution of instance 1© sends at least
one ack in interval T; for any i € [kq).
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Claim 3. For any interval partition {I,, ..., I;} of instance I,
use Y; = {y;} to denote the solution that only sends an ack at
the last time point of I;. We have D(I, X) < Zf::l D(I;,Y:)+
f PO
Zi:l A(Ia X7 yl)
We directly use the above two claims and defer their proofs
to the full version of this paper. Use solution Y = {y1,...,y;}

to denote the optimal solution of instance /. By Claim 2, we
know that solution Y sends at least k, acks, i.e.,

1> kq. 3)
Thus, we turn to upper bound the value of [. Notice that
1=0PT(I°) —D(I°,Y), 4)

Use {IQ,...,IP} to denote the subinstances of instance I°
induced by solution Y. Then, D(1°,Y) = Zé:i D(IP, {y:}).
We further define fi to be the subinstance of I which shares
the same time interval of I¥. Clearly,

l
D(I°,Y) = D(I

By Claim 3, we can connect the above quantity to OPT(f ):

l

Z (Ii{w}).

2 A}

l

i=1

l
Z D(li;{yi}) > D(1, X) —
i=1
Due to the assumption that I is a A-stable interval and the fact
that A(, X,y;) =0,
D(I,X)=0PT() -1, (7)
and
Z AL X < (1
Combining the above inequalities, we have

7
I+ ZD(L,{%‘}) < OPT(I°)

—\) - (—1). ®)

(Eq. () & (5))

i=1
1
[+D(I,X) <OPT(I®) + > A(I,X,y) (Eq. (6)
i=1
A-1—A<OPT(I°) —OPT() (Eq.(7) & (8))

.
ke < —+1.
_/\Jr

The last piece is to carefully show that 7/ is always at least
1, which implies that k, < 27/X and completes the proof. If
ko > 2, we have 7/A > k, — 1 > 1. Then if k, = 1, the
algorithm sends only one ack in phase-1. Thus, I, is a stable
interval and F(I,,X,) = OPT(I,) < OPT(I?). Since the
algorithm runs out of the predicted budget (1 + \)OPT(I)
and enters phase-2, we have OPT(I?) > (1+ \) - OPT(I).
Again, due to Def. 3, 7 > \- OPT(f) > )\, indicating that
7/A is still at least 1.

(Eq. (3) & Def. 3)

O

Proof of Theorem 2. Combining Lemma 3 and Lemma 4 di-
rectly proves the theorem. [

Algorithm 2. Adaptive Predicted-Budget-Based Algorithm

Input: Online Instance I = (p;)icir), prediction I =
(Pt) ey and parameter A > 0.
Output: A feasible solution X.
X 0t «0.
2: Let Y be a A-stable ﬁ
3: while ¢ < 7 and I(t',T) is not a A-stable interval do
4:  Let { be the minimum time point in Y which is larger
than ¢'.
5. Run Algorithm 1 on the input {I(¢' + 1,T),1{t' +
1,£), A} until the first phase ends.
6:  Let Z be the returned solution and ¢’ be the termination
time.
if ¢ < { then
Run the traditional 2-competitive algorithm for in-
stance I(t” 4-1,%) and let Y be the returned solution
9: end if
1. X+ XUZUY;t' « max{t" t}.
11: end while
12: if ¢ < T and the online instance does not end then
13:  Run Algorithm 1 on the input {I(t' + 1,T),I{t' +
1,7), A} and let Z be the returned solution.
14: X+ XUZ.
15: end if
16: return X

-approximation solution of I.

C. General Algorithm

Now we consider the general case. As mentioned above,
the basic idea is partitioning the instance into several stable
prediction subinstances and dealing with each subinstance
separately. The key challenge here is how to partition the
instance such that the sum of the subinstances’ optimal values
is close to the optimal value of the original instance. We first
give the following statements to show that it is not ridiculous
that such a partition exists.

Definition 5. For an instance I, a feasible solution Y with k
acks partitions it into k subinstances {I1, I, ..., I }. We say
solution Y is A-stable if any subinstance induced by it is a
A-stable interval, i.e., for any time t of the whole instance I,
A(LLY,t) <1-—\

Lemma 5. For any instance I = (pi)icr) of DAP and any

A € [0,1), there exists a A-stable solution which is ﬁ-

approximation and can be computed in polynomial time.

The proof is technically simple and omitted here. The
upshot is that we start from an optimal solution and always
make an extra ack at time ¢t where the A value is larger than
1 — . Clearly, each extra ack increases the objective value by
at most \. Thus, the newly incurred cost is at most A times the
number of acks in the new solution, implying the total cost of
the new solution can be bounded.

According to Lemma 5, we can easily split the predicted
instance I into several A-stable intervals and the incurred
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cost is at most O(\)OPT(]). Then due to the Lipschitzness
of our prediction error (Lemma 1), the cost is at most
O\ (OPT(I) + 7).

The main algorithm is given in Algorithm 2. It iteratively
treats an interval of A-stable O(\)-approximation solution as
an instance of the stable prediction case and calls Algorithm 1.

From the description, we see that iterations are handled
independently. In each iteration, the algorithm always starts by
trusting the prediction regardless of the states in the previous
iterations and enters the next iteration if (i) Algorithm 1 runs
out of the predicted budget of the current iteration; and (ii)
Algorithm 1 has processed requests until the last time point
of the current predicted interval. Since the algorithm adapts
in each iteration, we refer to it as an adaptive algorithm. We
claim the following theorem.

Theorem 3. For an instance I = (pi)icr) and its pre-
diction T = (D) ey let the ALG(I) be the cost of the
solution returned by Algorithm 2 with A = O(e), then we
have:ALG(I) < (1 +¢€) - OPT(I) + O(2) - 0. Further, the
running time is O(n?), where n = max{T,T'}.

The analysis follows from aggregating the bounds over all
the intervals. We can easily show that Zi(OPT(fi)) <(1+
O(\)) - OPT(I) and > ;T < n, where I; is the i-th stable
prediction subinstance and 7; is its auxiliary error. Then, using
Theorem 2 and Lemma 5 proves the claimed competitive ratio
in Theorem 3. For the running time, the most time-consuming
part is computing the optimal offline solution of the predicted
instance, while all other operations can be implemented in the
linear time. Since the optimal solution can be computed by
a O(n?) dynamic programming algorithm [17], the running
time can be proved easily. The whole proof of Theorem 3 is
straightforward. Due to space, we omit the details here.

D. Optimality of Consistency

We claim the following theorem to show that the depen-
dence of the prediction error 7 in Algorithm 2 is almost the
best possible. The detailed proof is deferred to the full version.

Theorem 4. Given an instance I and its prediction I, the
solution of any deterministic algorithm is at least min{(1 +
A) - OPT(I),OPT(I) + 1}, where X\ > 0 is a parameter.

IV. ROBUSTNESS BOUND

This section refines Algorithm 2 to obtain robustness bounds
in addition to the consistency bound. Here we only discuss
the high-level ideas. For each time ¢, define I := I(1,¢) and
n := n(I; UI{t +1,n),1). Due to the monotonicity of the
error, 7, increases as t increases. An intuitive way to gain
robustness is switching to the 2-competitive deterministic (or
e/(e—1)-competitive randomized) algorithm when 7, is found
to be large. If we know the optimal value OPT(I), we can
then make the switch at the first time ¢ we observe the error is
large, i.e., 7y > eOPT(I). Due to the monotonicity discussed
above, the actual error i will only be large. Thus, we can
achieve (14¢)-consistency bound along with (2+¢)-robustness
bound (or e/(e — 1) + € if randomization is allowed).

However, we can only see I; at each time ¢ and thus,
OPT(I) is unknown. The current error 7; could look large
compared to OPT(I}), but turn out to be very small compared
to OPT(I). We address this issue based on the observation that
an instance can be partitioned into several subinstances such
that the optimal cost of each subinstance is at most 1/¢ while
increasing the aggregate optimal cost by at most (1+¢) factor.
Further, this partition can be done online by checking the
optimal solution to the current subinstance at every time point.
Then, for each subinstance, we can argue that if the current
error is large enough to shift to the traditional algorithm, it is
also large against the optimum for the subinstance. In this
process, to obtain a robustness guarantee, we increase the
coefficient of 7 from O(1) to O(%) in the consistency bound
for a technical reason. Combing Theorem 3 and the robustness
scheme, Theorem 1 can be proved.

V. LEARNABILITY

This section shows that we can learn a prediction with
approximately minimum expected error given only a poly-
nomial number of samples. We make standard assumptions
that the number of time steps is at most 7', the number
of packages per time step is at most K, and each DAP
instance is sampled from an unknown distribution D. Use
T to denote the set of all potential predictions I, ie.,
Z:={(p1,p2,.-.,p07) |Vt € [T],p+ € [0, K] }. We claim the
following theorem and defer the proof to the full version.

Theorem 5. For any €,6 € (0,1) and any distribution
D, after observing O((L)*(T'log(£X) + In(3)) samples,
there exists a learning algorithm that returns a predicted
instance I € T such that with probability at least 1 — 0,
Erepn(I,I)] < Erupn(I*,1)] + €, where for any two
instances 11, I, n(I1, 1) represents the error when I is the
prediction of I, and I* = argminy <7z Erop[n(I’, I)).

VI. EXPERIMENTS

This section empirically validates our adaptive learning-
augmented algorithm (ALA) ’s efficiency. We investigate
various types of the input distribution and show superior
performance compared to previous algorithms.

A. Setup

a) Input distributions and Noisy Predictions: The experi-
ments follow the setting in [9]. We set the delay factor d = 100
and the maximum number of time steps 7' = 1000. For each
time point, the number of demands is i.i.d. sampled from a
given distribution D. We investigate the same distributions
as in [9]: the Poisson distribution of mean 1, the Pareto
distribution of shape 2 and the iterated Poisson distribution
of mean 1. The iterated Poisson distribution is a custom
distribution introduced in [9], which is iterating on sampling
a value from the Poisson distribution whose mean is the
sampled value in the last iteration (initially, the mean is 1). The
prediction of an instance is constructed by perturbing it with
some noise. For each time ¢, there are two operations: setting
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Fig. 1: The performance of the algorithms under the Pareto distribution. A large perturbing probability implies a large prediction

error. Recollect that PDLA [9] parameterized by  has a consistency ratio of %

7, and our algorithm parameterized by A

a consistency ratio of (1 + \). For fair comparison, we consider different pairs of (3, \) that give the same consistency ratio

for PDLA and our algorithm.

p¢ = 0 and adding to p; a random noise sampled from D. We
perform each operation sequentially and independently with
probability » € [0,1] at each time point. Then, the perturbed
instance is served as the prediction. The perturbing probability
can be viewed as a simplified measure of the prediction
error. The experiments test the performance of algorithms over
different perturbing probabilities under each input distribution.

b) Baseline Algorithms: In addition to our algorithm,
which is parameterized by A, we implemented the following
algorithms for comparison:

o GREEDY [17]. This algorithm acks when the cumulative
delay cost equals 1 (the ack cost). It is the best determin-
istic algorithm without predictions.

o PDLA [9]. This algorithm is the first algorithm incorpo-
rating predictions. The algorithm has a control parameter
B € (0,1], and has a better consistency guarantee with
a smaller value of 3 at the cost of a worse robustness
guarantee. This was termed as the primal dual learning-
augmented algorithm by the authors.

o BLINDFOLLOWING. This algorithm follows the predic-
tion blindly. It applies the optimal solution on the pre-
dicted instance to the actual instance with no adaptation.

Note that we did not include the _“5-competitive ran-

domized algorithm as it rarely outperforms the 2-competitive
deterministic algorithm in practice.

c) Computational Settings.: We conduct experiments on
a machine running Ubuntu 18.04 with an i7-7800X CPU and
48 GB memory. The algorithms are implemented in Python
3.8, and the results are averaged over five runs.

B. Empirical Discussion

All the results for the three distributions considered exhibit-
ing similar patterns. Thus, we show the results only for the
Pareto distribution in Fig. 1, deferring the other results to the
full version of this paper. We observe the following.

e Our algorithm is robust to the error. Further, with a

small A, our algorithm has a better empirical competitive
ratio than algorithm GREEDY when the prediction error

(perturbing probability) is small and remains on par with
it, regardless of the error.

o For the choice of 5 and A values that lead to the same
consistency guarantee, our algorithm shows a better per-
formance than PDLA in most cases. This demonstrates
that our algorithm obtains a better trade-off between
consistency and robustness, confirming the importance
of simultaneous optimum consistency and robustness
achieved by our algorithm.

VII. CONCLUSION

This paper revisited the dynamic acknowledgment problem.
For this problem, previously, it was unclear what a good
error measure should be in the learning augmented algorithm
analysis model. One of this paper’s main contributions lies in
formulating a novel error measure and designing algorithms
based on the error. The algorithm developed in this paper
achieves simultaneous optimum consistency and robustness,
the most desirable result. The theory is verified empirically.
We believe our new error and algorithm could inspire new
ML-augmented solutions for other problems with a temporal
nature to their input’.

5The authors have provided public access to their code at https://github.
com/Chenyang-1995/TCP
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