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Nanoscale pattern formation produced by ion bombardment of a rotating
target: The decisive role of the ion energy
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We study the nanoscale patterns that form on the surface of a rotating sample of an elemental material that is
bombarded with a broad noble gas ion beam for angles of incidence θ just above the critical angle for pattern
formation θc. The pattern formation depends crucially on the ion energy E . In simulations carried out in the low-
energy regime in which sputtering is negligible, we find disordered arrays of nanoscale mounds (nanodots) that
coarsen in time. Disordered arrays of nanodots also form in the high-energy regime in which there is substantial
sputtering, but no coarsening occurs close to the threshold angle. Finally, for values of E just above the sputter
yield threshold, nanodot arrays with an extraordinary degree of hexagonal order emerge for a range of parameter
values, even though there is a broad band of linearly unstable wavelengths. This finding might prove to be useful
in applications in which highly ordered nanoscale patterns are needed.
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I. INTRODUCTION

Bombardment with a broad ion beam is a widely employed
means of producing nanoscale patterns on solid surfaces [1].
A variety of patterns, including surface ripples and arrays of
nanodots or nanoholes, can be fabricated in a single process
step without using a mask or photoresist [1–11]. Nanoscale
surface ripples, in particular, will form on virtually any solid
target material if the angle of ion incidence θ exceeds a
critical value. The formation of ripples, however, is undesir-
able in various applications in which solids are bombarded
with broad ion beams, e.g., secondary ion mass spectroscopy
(SIMS), Auger electron spectroscopy (AES), and ion milling.
In the simplest kind of SIMS or AES apparatus, the primary
ions are obliquely incident on the stationary surface of the
sample. As sputtering proceeds, ripples can form, and this
leads to rapid degradation of the depth resolution.

Zalar demonstrated that this problem can often be over-
come by rotating the sample with a constant angular velocity
about its surface normal as the depth profiling proceeds [12].
Zalar rotation has subsequently been used by numerous other
groups, who found that in many cases the surface actually
becomes flatter as the solid is eroded [13]. As a result, ion
sputtering with concurrent sample rotation has also been used
as a means of preparing ultrasmooth surfaces for optical ap-
plications [14].

If the angle of ion incidence θ exceeds a critical value
θc that depends on the target material and the choice of ion
species and energy, sample rotation does not prevent surface
roughening and nanoscale patterns form [13,15,16]. A theory
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that describes the time evolution of the surface of a rotating
sample that is sputtered by a broad ion beam was advanced by
Bradley and Cirlin [17]. This theory applies only in the early-
time, linear regime. Subsequently, Bradley [18] incorporated
nonlinear terms into the theory and found that the equation of
motion (EOM) is the isotropic Kuramoto-Sivashinsky (KS)
equation to a good approximation if θ exceeds θc and the
rotational angular velocity ω is sufficiently large [19]. The
surface roughness asymptotes to a finite steady-state value and
the topography is a disordered array of mounds in that event.
In the opposite limit of slow rotation, Bradley argued that if
the surface is unstable, ripples with their wave vector lying
parallel to the projected beam direction will be present in the
steady state. This has since been confirmed by experiments
and simulations [20].

Experimental studies of the nanoscale patterns produced
by ion bombardment of stationary and rotating targets have
typically been done with noble gas ions that have energies on
the order of 1 keV. In this regime, sputter yields are normally
of order unity. For a given target material, ion species, and
angle of incidence, the feature size of the nanostructures is
found to be an increasing function of the ion energy [1]. To
produce smaller feature sizes, therefore, ions of lower energy
should be employed.

When the energy of the incident ions is on the order of
a few tens of electron volts, sputtering is negligible. Exper-
iments in this low-energy regime are few and all have been
done with a stationary target. These experiments reveal that
nanoscale patterns do form: surface ripples as well as disor-
dered arrays of nanostructures elongated along the projected
beam direction have been observed [21–24]. In addition to
its intrinsic scientific interest, the low-energy regime may
become important in applications since the feature size of the
nanostructures can be below 50 nm.
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In the low-energy regime, mass redistribution (MR) takes
place: momentum transfer from the incident ions to atoms
near the solid surface leads to inelastic displacement of the
atoms [25–27]. Depending on the ion energy and target ma-
terial, dozens of atoms can be displaced even though there
is essentially no sputtering. MR is important at ion energies
on the order of 1 keV, a regime in which sputter yields
are relatively high [28]. It plays an even more crucial role
in the low-energy regime in which sputtering is negligible
[24].

Ions can be implanted in the low-energy regime. How-
ever, when an ion is incident on the solid surface, the result
can be at most one implanted ion whereas, as noted above,
dozens of atoms can be displaced. In addition, noble gas ions
penetrate only a few nanometers into the solid, are highly
mobile, and usually desorb when they reach the solid sur-
face [29]. Implantation of noble gas ions can therefore be
neglected [30]. This is confirmed by estimates of the curvature
coefficients in the linearized EOM obtained using molecu-
lar dynamics simulations and the crater function formalism
[24].

When sputtering and implantation are neglected, the
mass of the solid is conserved. This makes the low en-
ergy limit fundamentally different than the higher energy
regime in which sputtering is significant. The EOM that
is valid for a rotating target in the high energy regime,
the isotropic KS equation [18], cannot be valid in the low
energy regime because it does not conserve mass. In ad-
dition, while MR and curvature-dependent sputtering can
both contribute to the surface instability in the high energy
regime, the instability is entirely due to MR in the low-energy
regime.

In this paper, we will study the patterns formed on the
surface of a rotating sample of an elemental material that is
bombarded with a noble gas ion beam for angles of incidence
θ just above the critical angle for pattern formation θc. The
EOM can be rigorously derived in this limit if nonlocal effects
like redeposition of sputtered material are neglected. We find
the EOM not just in the high energy regime in which there
is substantial sputtering, but also in the low energy regime in
which the ion energy is below the sputtering threshold and
consequently no sputtering occurs. In addition, we derive the
EOM for ion energies just above the sputter yield threshold.
For brevity, we will call this the intermediate energy regime.

In simulations carried out in the low energy regime, we
find disordered arrays of nanoscale mounds (nanodots) that
coarsen in time. Disordered arrays of nanodots also form in
the high energy regime, but no coarsening occurs close to
the threshold angle. Typically, a pattern with a high degree
of order forms only if there is a narrow band of linearly
unstable wavelengths [31], and this is the case in the high and
low energy regimes. Surprisingly, however, our simulations
show that in the intermediate energy regime, highly ordered
hexagonal arrays of nanodots or nanoholes can emerge as the
sample is bombarded, even though there is a broad band of
unstable wavelengths. This finding might prove to be useful
in applications in which patterns with a high degree of order
are desirable or essential.

The behavior in the low and intermediate energy regimes is
strongly influenced by the presence of a term in the EOM that

is approximately proportional to the Gaussian curvature of
the surface. This term has important effects on the dynamics
but has invariably been neglected even though it is of the
same order as other terms that are typically included in the
EOM.

This paper is organized as follows. In Sec. II, we derive
the equations governing the surface dynamics in the three
regimes we have discussed and see that all three are special
cases of a more general EOM. Various special cases of this
general EOM are discussed in Sec. III, and it is recast in
dimensionless form.We also show that certain special cases of
this EOM are variational, i.e., the dynamics tends to minimize
an effective free energy. This yields important insights into
the dynamics. Simulations of the behavior in the low and
intermediate regimes are carried out in Sec. IV. (The EOM
that applies in the high-energy regime is already well under-
stood.) We close the paper with a discussion of our results in
Sec. V.

II. EQUATIONS OF MOTION

Consider a solid elemental material that is bombarded with
a broad beam of noble gas ions with angle of incidence θ .
The material may be amorphous or crystalline. However, if the
material is initially crystalline, we assume that a layer at the
surface of the solid is amorphized by the ion bombardment.
We will make the customary assumption that the effect of ion
implantation is negligible [30]. We will also take nonlocal ef-
fects to be negligible. Examples of effects of this kind include
redeposition of sputtered material and sputtering by reflected
ions. In past theoretical work, nonlocal effects have typically
been neglected without comment.

We take the sample surface to be nominally flat before
the irradiation begins. The unit vector ẑ will be chosen to be
normal to the macroscopic surface and to point away from the
solid. The sample is rotated about the z axis with constant
angular velocity ω. We will find it convenient to work in
a corotating frame of reference with coordinates x, y, and
z in which the sample is stationary. ω will be taken to be
large enough that the effect of the ion bombardment is to
an excellent approximation the same as if the sample were
bombarded from all azimuthal angles φ simultaneously.

For polar angles of incidence θ less than the critical value
θc, the solid surface is stable and it remains flat as the irradi-
ation proceeds. Conversely, for θ > θc, the surface is unstable
and a nanoscale pattern develops as time passes. Note that θc
will, in general, depend on the ion energy E .

The goal of this section is to find the EOM for the surface
for an angle of incidence θ just above the threshold value θc.
This will be accomplished by carrying out systematic expan-
sions in the small parameter ε ≡ (θ − θc)1/2. The three cases
of high, low, and intermediate energies E will be considered
in turn.

Let h(x, y, t ) be the height of the solid surface above the
point (x, y) in the x − y plane at time t . The partial derivative
of h with respect to x will be denoted by hx, and hy and ht are
defined analogously. We will evaluate ht (0, 0, t ), the time rate
of change of h at x = y = 0. Because the point x = y = 0 can
be placed at an arbitrary location, this will yield the EOM for
the surface.
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A. High-energy regime

Suppose that only ions with azimuthal angles of incidence
between −dφ/2 and dφ/2 were incident on the surface of the
solid. ht (0, 0, t ) depends on the polar angle of incidence θ . It
also depends in principle on the shape of the entire surface
or, equivalently, on all of the spatial derivatives of h(x, y, t )
evaluated at x = y = 0. We will write

ht = 1

2π
f (θ ; hx, hy, hxx, hxy, hyy, hxxx,

hxxy, hxyy, hyyy, hxxxx, . . .)dφ. (1)

The partial derivatives of h that appear in Eq. (1) are all to
be evaluated at x = y = 0 and time t . The factor of 1/2π was
inserted on the right-hand side of Eq. (1) merely because this
will make our final result neater.

The function f includes the effects of sputtering and MR.
It also includes either the effect of thermally activated surface
diffusion or ion-induced viscous flow near the surface of the
solid, depending on which of these two processes is active for
the given ion energy and sample temperature.

In writing Eq. (1), we have assumed that inertial effects
are negligible. This is completely reasonable, since even if
there is ion-induced viscous flow near the surface of the solid,
the viscosity is so high that the flow is in the Stokes regime.
In addition, because the EOM must be invariant under the
transformation h → h + const, the function f cannot depend
on h itself, although it certainly does depend on the spatial
derivatives of h.

Let the coordinate axes obtained by rotating the x, y, and
z axes through an angle φ about the z axis be denoted by x′,
y′, and z′. When ions with all azimuthal angles of incidence φ

impinge on the solid, Eq. (1) is replaced by

ht = 1

2π

∫ 2π

0
f (θ ; hx′ , hy′ , hx′x′ , hx′y′ , hy′y′ , hx′x′x′ , . . .)dφ.

(2)
Because

x′ = x cosφ + y sin φ, (3)

y′ = −x sin φ + y cosφ, (4)

and

z′ = z, (5)

the integrand on the right-hand side of Eq. (2) has an implicit
dependence on φ and cannot simply be factored out from
under the integral.

Although Eq. (2) gives ht and so completely specifies the
dynamics of the surface, it is an exceedingly complicated
integrodifferential equation. In addition, we only have lim-
ited knowledge of the nature of the function f . Fortunately,
Eq. (2) becomes much simpler when ε ≡ (θ − θc)1/2 is small
and positive. Let v0 = − f (θ ; 0, 0, . . .) be the rate the surface
recedes if it is perfectly planar, and set h(x, y, t ) = −v0t +
u(x, y, t ). We seek solutions to Eq. (2) of the form

u(x, y, t ) = ε2U (X,Y,T ), (6)

where

X ≡ εx, Y ≡ εy, and T ≡ ε4t . (7)

X , Y , and T are the so-called slow variables and x, y, and t
are the corresponding fast variables. Heuristically speaking,
Eq. (6) says that close to the critical angle θc, the amplitude
of the surface disturbance is small and it varies slowly in
space and time. An a posteriori justification for adopting the
scaling given by Eqs. (6) and (7) will be obtained once we
have arrived at an EOM that is well-behaved in the ε → 0
limit.

We now insert Eq. (6) into f (θ ; ux, uy, uxx, uxy, uyy, . . .),
expand in powers of ε, and retain terms up to order ε6. Such
an expansion is possible because we are neglecting nonlocal
effects [32]. Terms that are not invariant under the trans-
formation y → −y must have coefficients equal to zero and
are discarded. So we can write the result of this expansion
succinctly, we define

f0(θ ) ≡ f (θ ; 0, 0, . . .), (8)

f1(θ ) ≡ ∂

∂ux
f (θ ; ux, 0, 0, . . .)

∣∣∣
ux=0

, (9)

f2(θ ) ≡ ∂

∂uy
f (θ ; 0, uy, 0, 0, . . .)

∣∣∣
uy=0

, (10)

f3(θ ) ≡ ∂

∂uxx
f (x, y, θ ; 0, 0, uxx, 0, 0, . . .)

∣∣∣
uxx=0

, (11)

and so on. Similarly, for positive integers n and m, fn,m(θ )
will denote the partial derivative of f (θ ; ux, uy, uxx, uxy, . . .)
with respect to the nth andmth arguments that appear after the
semicolon, evaluated for all the arguments after the semicolon
set equal to zero. For example,

f1,3(θ ) ≡ ∂

∂ux

∂

∂uxx
f (θ ; ux, 0, uxx, 0, 0, . . .)

∣∣∣
ux=uxx=0

. (12)

We obtain

f (θ ; ux, uy, uxx, uxy, uyy, . . .)

= f0 + ε3 f1UX + ε4 f3UXX + ε4 f5UYY + ε5 f6UXXX

+ ε5 f8UXYY + ε6 f10UXXXX + ε6 f12UXXYY

+ ε6 f14UYYYY + 1
2ε

6 f1,1U
2
X + 1

2ε
6 f2,2U

2
Y . (13)

All of the spatial derivatives ofU that appear on the right-hand
side of Eq. (13) are evaluated at X = Y = 0. Using the fact
that v0 = − f0, we may rewrite Eq. (2) as

ε6UT = 1

2π

∫ 2π

0
dφ

(
ε3 f1UX ′ + ε4 f3UX ′X ′ + ε4 f5UY ′Y ′

+ ε5 f6UX ′X ′X ′ + ε5 f8UX ′Y ′Y ′ + ε6 f10UX ′X ′X ′X ′

+ ε6 f12UX ′X ′Y ′Y ′ + ε6 f14UY ′Y ′Y ′Y ′ + 1

2
ε6 f1,1U

2
X ′

+ 1

2
ε6 f2,2U

2
Y ′

)
, (14)

where X ′ ≡ εx′ and Y ′ ≡ εy′. Equation (14) is valid to sixth
order in ε.

We will next do some preparatory work that will allow us
to efficiently evaluate the integrals over azimuthal angles φ

that appear in Eq. (14). These methods will also be used in the
next subsection.
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From Eqs. (3) and (4), we have

∂X ′ = (cosφ)∂X + (sin φ)∂Y (15)

and

∂Y ′ = −(sin φ)∂X + (cosφ)∂Y . (16)

If we simply inserted these results into the right-hand side
of Eq. (14), we would be faced with computing integrals of
products of up to four sines and/or cosines. Instead, we let
Z ≡ X + iY so that Z∗ = X − iY . We immediately find that

∂Z = 1
2 (∂X − i∂Y ) (17)

and hence

∂Z∗ = 1
2 (∂X + i∂Y ). (18)

Writing cosφ and sin φ as linear combinations of eiφ and e−iφ

in Eqs. (15) and (16), we readily obtain

∂X ′ = eiφ∂Z + e−iφ∂Z∗ (19)

and

∂Y ′ = i(eiφ∂Z − e−iφ∂Z∗ ). (20)

When we insert these expressions for ∂X ′ and ∂Y ′ into the right-
hand side of Eq. (14), we only have to compute integrals of
complex exponentials. For example,

1

2π

∫ 2π

0
UX ′X ′dφ

= 1

2π

∫ 2π

0
(eiφ∂Z + e−iφ∂Z∗ )2Udφ

= 1

2π

∫ 2π

0
(e2iφUZZ + 2UZZ∗ + e−2iφUZ∗Z∗ )dφ

= 2UZZ∗ = 1

2
∇2

XU, (21)

where Eqs. (17) and (18) have been used in the final step and
∇2

X ≡ ∂2
X + ∂2

Y . Once all of the integrals on the right-hand side
of Eq. (14) have been evaluated, we are left with

ε6UT = −Aε4∇2
XU − Bε6∇2

X∇2
XU + λε6(∇XU )2, (22)

where ∇X ≡ ∂X x̂ + ∂Y ŷ,

A ≡ − 1
2 ( f3 + f5), (23)

B ≡ − 3
8 ( f10 − f12 + f14), (24)

and

λ ≡ 1
4 ( f1,1 + f2,2). (25)

As the angle of incidence θ passes through the critical
value θc, an instability sets in and the coefficient A must
change sign from negative to positive. Thus, close to the tran-
sition, A ∼= A1(θ − θc), where A1 is a positive constant that
does not depend on θ . Just above the transition, A ∼= A1ε

2.
The EOM (22) is therefore

UT = −A1∇2
XU − B∇2

X∇2
XU + λ(∇XU )2 (26)

for θ just above θc. Notice that ε does not appear in Eq. (26).
Thus, the scaling we posited in Eqs. (6) and (7) leads to a
well-behaved EOM in the small ε limit.

In terms of the original variables, Eq. (26) is

ut = −A∇2u − B∇2∇2u + λ(∇u)2. (27)

Equation (27) is the isotropic two-dimensional KS equation.
Note that we must have B > 0 for the solutions to Eq. (27)
to be well-defined. For θ > θc, the constant A is positive and
a flat initial surface is unstable. The surface width 〈w〉 grows
exponentially at early times. At longer times, 〈w〉 tends to a
constant and the surface exhibits spatiotemporal chaos.

The term proportional to ∇2u in Eq. (27) comes from
curvature-dependent sputtering andMR. The term−B∇2∇2u,
on the other hand, describes the effect of thermally activated
surface diffusion or ion-induced viscous flow near the surface
of the solid. The origin of the term λ(∇u)2 is the slope depen-
dence of the sputter yield.

B. Low-energy regime

We now turn our attention to the case in which the en-
ergy per incident ion E is below the sputtering threshold and
sputtering is therefore negligible. Because ion implantation
can be neglected, the mass of the solid is conserved and the
continuity equation applies. Let J be the total surface current
and set u = h. The continuity equation is then

ut = −	∇ · J, (28)

where 	 is the atomic volume.
Suppose that only ions with azimuthal angles of incidence

between −dφ/2 and dφ/2 were incident on the surface of
the solid. The resulting surface current, which we will denote
by 1

2π j(0)dφ, depends on the polar angle of incidence θ . It
also depends, in principle, on the shape of the entire surface
or, equivalently, on all of the spatial derivatives of u(x, y, t )
evaluated at x = y = 0. We will write

ji(0) = ji(θ ; ux, uy, uxx, uxy, uyy, uxxx, . . .) (29)

for i = x and y. Similarly, we let 1
2π j(φ)dφ denote the sur-

face current if only ions with azimuthal angles of incidence
between φ − dφ/2 and φ + dφ/2 are incident on the surface
of the solid. In analogy with Eq. (29), we have

ji(φ) = ji(θ ; ux′, uy′ , ux′x′ , ux′y′ , uy′y′ , ux′x′x′ , . . .) (30)

for i = x′ and y′.
When ions with all azimuthal angles of incidence impinge

on the solid surface, the surface current is

J = 1

2π

∫ 2π

0
j(φ)dφ. (31)

The continuity equation (28) becomes

ut = − 	

2π

∫ 2π

0
[∂x′ jx′ (φ) + ∂y′ jy′ (φ)]dφ

= − 	

2π

∫ 2π

0
[∂x′ jx′ (θ ; ux′ , uy′ , ux′x′ , . . .)

+ ∂y′ jy′ (θ ; ux′, uy′ , ux′x′ , . . .)]dφ. (32)

The partial derivatives of u that appear in Eq. (32) are all to be
evaluated at x = y = 0.

014801-4



NANOSCALE PATTERN FORMATION PRODUCED BY ION … PHYSICAL REVIEW E 107, 014801 (2023)

We seek solutions to Eq. (32) of the form

u(x, y, t ) = U (X,Y,T ), (33)

where

X ≡ εx, Y ≡ εy, and T ≡ ε4t . (34)

Once again, X , Y and T are the slow variables and x, y and
t are the corresponding fast variables. Heuristically speaking,
Eq. (33) says that close to the critical angle θc, the surface
disturbance varies slowly in space and time. An a posteriori
justification for adopting the scaling given by Eqs. (33) and
(34) will again be obtained when we have arrived at an EOM
that is well-behaved in the ε → 0 limit. Note that Eq. (33)
differs from Eq. (6): different scaling ansatzes are needed in
the high- and low-energy regimes, as in the case in which the
sample is not rotating [33,34].

We now insert Eq. (33) into Eq. (32) and expand in powers
of ε. We retain terms up to order ε4. Once that has been done,
the integrals over the azimuthal angle must be evaluated. The
calculation is lengthy and arduous, but it is simplified by using
Eqs. (19) and (20), as before. The partial derivatives jx,n(θ )
and jy,n(θ ) are defined in complete analogy with the definition
of fn(θ ). In addition, for positive integers n and m, jx,n,m(θ )
will denote the partial derivative of jx(θ ; ux, uy, uxx, uxy, . . .)
with respect to the nth andmth arguments that appear after the
semicolon, evaluated for all the arguments after the semicolon
set equal to zero. Naturally, jy,n,m(θ ) is defined in an exactly
parallel fashion. The end result is the EOM

ε4UT = −Aε2∇2
XU − Bε4∇2

X∇2
XU

+βε4
(
UXXUYY −U 2

XY

) + rε4∇2
X (∇XU )2

+ νε4∇X · [(∇XU )2∇XU ], (35)

where

A ≡ 1
2	( jx,1 + jy,2), (36)

B ≡ 3
8	( jx,6 − jx,8 + jy,9 − jy,7), (37)

β = − 1
4	( jx,1,3 + 3 jx,1,5 − jx,2,4 + jy,2,5 + 3 jy,2,3 − jy,1,4),

(38)

r = − 1
16	(3 jx,1,3 + jx,1,5 + jx,2,4 + 3 jy,2,5 + jy,2,3 + jy,1,4),

(39)

and

ν = − 1
16	( jx,1,1,1 + jx,1,2,2 + jy,2,2,2 + jy,1,1,2). (40)

Arguing just as we did in Sec. II A for the high-energy
regime, we find that A ∼= A1ε

2 for θ just above θc. Here A1 is
a positive constant that does not depend on θ . The EOM (35)
is therefore

UT = −A1∇2
XU − B∇2

X∇2
XU

+β
(
UXXUYY −U 2

XY

) + r∇2
X (∇XU )2

+ ν∇X · [(∇XU )2∇XU ], (41)

for θ just above θc. Notice that ε does not appear in Eq. (41).
Thus, the scaling we posited in Eqs. (33) and (34) leads to a
well-behaved EOM in the small ε limit.

In terms of the original variables, Eq. (41) is

ut = −A∇2u − B∇2∇2u + β
(
uxxuyy − u2xy

) + r∇2(∇u)2

+ ν∇ · [(∇u)2∇u]. (42)

Once again, we must have B > 0 for the solutions to Eq. (42)
to be well-defined. In addition, the constant ν must be pos-
itive; if it is negative or zero, the surface slope will grow
without bound.

It is not immediately apparent that Eq. (42) conserves
mass. However, using the identity

uxxuyy − u2xy = 1
2∇ · [(∇2u)∇u] − 1

4∇2(∇u)2, (43)

we see that Eq. (42) may be written in the form of a continuity
equation

ut = −	∇ · J̄, (44)

where the approximate surface current J̄ is given by

	J̄ = A∇u + B∇∇2u + (
1
4β − r

)∇(∇u)2

− 1
2β(∇2u)∇u − ν(∇u)2∇u. (45)

Mass is therefore conserved. Equation (43) also makes it clear
that Eq. (42) is invariant under rotations about the z axis, as it
must be.

In the low-energy regime, there is no sputtering, and so
only MR contributes to the term −A∇2u in Eq. (42). As in
the high-energy regime, the term −B∇2∇2u describes the
effect of thermally activated surface diffusion or ion-induced
viscous flow near the surface of the solid. The term r∇2(∇u)2,
on the other hand, is the conserved Kuramoto-Sivashinsky
(CKS) nonlinearity. Although this term was first encoun-
tered in molecular beam epitaxy [35,36], it plays a role in
ion-induced pattern formation even when a surface layer of
the target material is amorphized by the ion bombardment
[37–39]. The CKS nonlinearity tends to produce coarsening of
the surface patterns, i.e., the characteristic lateral and vertical
length scales increase with time [37–40]. Because coarsening
is commonly observed when solid surfaces are bombarded
with broad ion beams, it is believed that the CKS nonlinearity
must, in general, be included in the EOM.

A term similar to the term ν∇ · [(∇u)2∇u] in Eq. (42)
appears in the EOM that describes the mounding instability
that can occur during molecular beam epitaxy. In that context,
the term results from the Ehrlich-Schwoebel (ES) effect, is
anisotropic, and can lead to the formation of a faceted surface
[36]. In our problem, the term ν∇ · [(∇u)2∇u] is isotropic and
it appears in the EOM (42) as a result of the slope dependence
of the surface current produced by MR.

It remains to discuss the term β(uxxuyy − u2xy) that appears
in Eq. (42). The Gaussian curvature K is given by

K = uxxuyy − u2xy(
1 + u2x + u2y

)2 . (46)

To fourth order in ε, the factor of uxxuyy − u2xy in Eq. (42)
can be replaced by K . There is therefore a contribution to
the surface velocity ut that is approximately proportional
to the Gaussian curvature. The effects of a term proportional
to K have not previously been included in simulations of the
dynamics of a solid surface subjected to ion bombardment.
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However, it is of the same order in ε as the other terms in
the EOM (42) and so it must be retained for the sake of
consistency.

In their derivation of an EOM that models the deposition of
amorphous thin films, Raible et al. at first included a Gaussian
curvature term (GCT) [41]. At this stage of their derivation,
their EOM was Eq. (42) with ν set to zero. However, Raible
and coworkers then argued that the GCT is negligible in the
case of thin film deposition and discarded it.

The effects of the GCT on the surface dynamics will be
explored in detail in this paper. As we shall see, it can have an
important influence on the dynamics and cannot be omitted
from the EOM, at least in the case of ion bombardment of a
solid.

C. Intermediate-energy regime

We now turn to the intermediate energy regime, i.e., to ion
energies just above the sputtering threshold. In this regime,
we divide the contributions to the surface velocity ht into two
parts: one from surface currents and the other from sputtering.
We choose the ion energy to be above the sputtering threshold
but close enough to it that the contribution from sputtering
is of order ε2. Thus, in analogy with Eqs. (2) and (32), we
have

ht = − 	

2π

∫ 2π

0
[∂x′ jx′ (θ ; hx′ , hy′ , hx′x′ , . . .)

+ ∂y′ jy′ (θ ; hx′, hy′ , hx′x′ , . . .)]dφ

+ 1

2π
ε2

∫ 2π

0
f (θ ; hx′ , hy′ , hx′x′,

hx′y′ , hy′y′ , hx′x′x′, . . .)dφ, (47)

where the O(ε2) magnitude of the contribution to ht from
sputtering has been explicitly displayed.

We once again set h(x, y, t ) = −v0t + u(x, y, t ) and seek
solutions to Eq. (47) of the form given by Eqs. (33) and (34).
We retain terms up to order ε4. The required expansions for
the two terms on the right-hand side of Eq. (47) were carried
out in the preceding two subsections, although the expansion
for the second term on the right-hand side of Eq. (47) must be
modified because there is a prefactor of ε2 on the right-hand
side of Eq. (6) but not on the right-hand side of Eq. (33). We
obtain

UT = −A1∇2
XU − B∇2

X∇2
XU + λ(∇XU )2

+β
(
UXXUYY −U 2

XY

) + r∇2
X (∇XU )2

+ ν∇X · [(∇XU )2∇XU ]. (48)

Because ε does not appear in Eq. (48), this equation has a
well-defined ε → 0 limit. In terms of the original variables,
Eq. (48) is

ut = −A∇2u − B∇2∇2u + λ(∇u)2 + β
(
uxxuyy − u2xy

)
+ r∇2(∇u)2 + ν∇ · [(∇u)2∇u]. (49)

It is perhaps not surprising that all of the nonlinear terms on
the right-hand side of the high-energy EOM (27) and the low-
energy EOM (42) appear on the right-hand side of Eq. (49),
the EOM that applies in the intermediate-energy regime.

If β = r = λ = 0, Eq. (49) is invariant under the transfor-
mation u → −u. If, on the other hand, β, r, or λ is nonzero,
then the u → −u symmetry is broken. Since there is vacuum
above the surface and solid below, there is no reason that such
a symmetry should exist.

A term proportional to K appears in the EOM in the
intermediate-energy regime, just as in the low-energy regime.
In the intermediate-energy regime, however, the term pro-
portional to K could contain a contribution that comes from
sputtering. Monte Carlo simulations have shown that a term
proportional to K makes an non-negligible contribution to the
yield in nanoparticle sputtering, albeit for ion energies well
in excess of the sputtering threshold [42]. This again suggests
that the term proportional to K cannot simply be omitted when
studying the dynamics of a surface that is bombarded with a
broad ion beam.

III. PRELIMINARY DISCUSSION OF
THE SURFACE DYNAMICS

We have seen that the EOM is Eq. (49) in the high-,
low-, and intermediate-energy regimes. In the high-energy
regime, β = r = ν = 0 and the EOM is the isotropic KS
equation. This equation has been studied extensively, and so
this regime will not be discussed further. In the low-energy
regime, λ = 0 and the mass of the solid is conserved. Finally,
in the intermediate-energy regime, λ, β, r, and ν could all be
nonzero.

Various special cases of Eq. (49) with the coefficient of
the Gaussian curvature term β equal to zero have already
been studied. For β = ν = 0, Eq. (49) reduces to the so-called
extended KS equation. Solutions to this equation exhibit inter-
rupted coarsening: the characteristic lateral and vertical length
scales grow at first, but ultimately saturate [37,38,40,43]. For
β = r = 0, on the other hand, Eq. (49) is a special case of a
model that governs the faceting of growing, thermodynami-
cally unstable crystal surfaces [44,45]. Finally, for β = λ =
0, Eq. (49) is a special case of a model that describes the
epitaxial growth of a crystal [36]. In the second and third
special cases just mentioned, the ES term is isotropic. In
contrast, the ES term for the surface of a crystal is in general
anisotropic.

The novel feature of Eq. (49) is the presence of the GCT,
and so we will focus on the case in which β is nonzero in
this paper. Because the GCT vanishes in one dimension, we
will confine our discussion to the two-dimensional case in
which u depends on both x and y. We introduce the dimen-
sionless quantities x̃ ≡ (A/B)1/2x, ỹ ≡ (A/B)1/2y, t̃ ≡ A2t/B,
ũ ≡ βu/B, λ̃ = Bλ/(βA), r̃ ≡ r/β, and ν̃ = Bν/β2. After
dropping the tildes, Eq. (49) becomes

ut = −∇2u − ∇2∇2u + uxxuyy − u2xy + λ(∇u)2 + r∇2(∇u)2

+ ν∇ · [(∇u)2∇u]. (50)

For r = ν = 0, Eq. (50) is a special case of a partial differ-
ential equation that was employed as a model of combustion
fronts and the solidification of a hypercooled melt in Ref. [46].
That particular special case of the model, however, was not
studied in Ref. [46] or in subsequent work.
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We wish to highlight the effects of the GCT in Eq. (50).
Therefore, we will also consider the surface dynamics given
by the EOM

ut = −∇2u − ∇2∇2u + λ(∇u)2 + r∇2(∇u)2

+ ν∇ · [(∇u)2∇u], (51)

i.e., Eq. (50) with the GCT omitted. Comparisons will be
made between the behavior predicted by Eqs. (50) and (51)
with the same values of the parameters λ, r, and ν.

To understand the effects of the ES term ν∇ · [(∇u)2∇u]
that appears in both Eqs. (50) and (51), let us consider the
behavior of solutions to Eq. (51) with λ = r = 0 on the do-
main in which 0 � x � L and 0 � y � L and apply periodic
boundary conditions. We introduce the effective free energy

FES ≡
∫ L

0

∫ L

0

[
f (ux, uy) + 1

2
(∇2u)2

]
dxdy, (52)

where

f (ux, uy) ≡ − 1
2 (∇u)2 + 1

4ν(∇u)4 (53)

will be referred to as the effective potential. For λ = r = 0,
Eq. (51) can be written

ut = −δFES
δu

, (54)

where δFES/δu denotes the variational derivative of FES with
respect to the surface height u. Equation (54) implies that
dFES/dt � 0, i.e., the effective free energy can never increase.
The dynamics therefore tends to minimize the value of FES.
The effective potential f is minimized for |∇u| = ν−1/2 and,
as a result, the surface will tend toward a state in which most
of the surface has a gradient of magnitude close to ν−1/2. The
term ν∇ · [(∇u)2∇u] in Eqs. (50) and (51) therefore tends
to prevent the development of large surface slopes. Spatial
variations of the direction of ∇u have an energy cost because
of the second term in the integrand in Eq. (52).

To illustrate the conclusions of the previous paragraph,
we carried out a simulation of Eq. (51) with λ = r = 0 and
ν = 1 starting from a low-amplitude spatial white noise initial
condition. (Our simulation method is described in Sec. IV.)
The surface at time t = 1000 is shown in Fig. 1(a). The heat
map of |∇u| in Fig. 1(b) demonstrates that by time t = 1000,
|∇u| is close to the predicted value ν−1/2 = 1 over much of
the surface, but there are intervening, nearly straight regions
in which the surface slope is near zero. The distribution of
surface gradients given in Fig. 1(c) shows more clearly that,
by this time, |∇u| is close to one at most points on the surface.
Finally, Fig. 1(d) shows that the probability distribution of
|∇u| has a peak that moves toward the expected value of 1
as time passes.

To gain insight into the effect of the GCT, consider Eq. (50)
with all of the terms on the right-hand side omitted except the
GCT. Thus, we will study the partial differential equation

ut = uxxuyy − u2xy. (55)

To fourth order in ε, this may be replaced by

ut = uxxuyy − u2xy(
1 + u2x + u2y

)3/2 . (56)

FIG. 1. Results from a simulation of Eq. (51) with λ = r = 0
and ν = 1 starting with a low-amplitude spatial white noise initial
condition. The surface height at time t = 1000 is shown in (a), along
with its power spectral density in the inset. (b) shows the magnitude
of the gradient of the surface shown in (a). In (c), the 2D gradient
distribution is plotted for the surface shown in (a). (d) shows the
probability distribution of the gradient’s magnitude at three different
times: t = 100 in blue, t = 250 in green, t = 1000 in magenta, and
t = 1500 in black. The simulation parameters were N = 512 and
L = 30π .

The normal velocity of the surface is vn = (1 + u2x +
u2y )

−1/2ut . Making use of this formula and of Eq. (46), Eq. (56)
becomes

vn = K. (57)

The surface dynamics given by this equation is known as
motion by Gaussian curvature. Remarkably, Eq. (57) can be
written in variational form [47]. We introduce the effective
free energy for motion by Gaussian curvature,

FH =
∫
S
HdA, (58)

where S is the surface of the solid, dA is an element of surface
area, and H is the mean curvature of the surface. We adopt
the sign convention that H is positive where the surface is
concave, so that

H =
(
1 + u2y

)
uxx − 2uxuyuxy + (

1 + u2x
)
uyy

2
(
1 + u2x + u2y

)3/2 . (59)

As shown in Ref. [47], Eq. (57) may be recast as

ut = −δFH
δu

. (60)

This means that the value of the effective free energy FH
can never increase, i.e., motion by Gaussian curvature tends
to minimize the total mean curvature. By the Gauss-Bonnet
theorem, Eq. (57) conserves mass, and so this minimization
process occurs subject to the constraint that the total mass is
conserved.
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Although Eq. (57) has been studied in the past, the work
done to date appears to have been entirely analytical and to
have been restricted to the time evolution of smooth, convex
surfaces [47–50]. Numerical integrations of Eq. (57) rapidly
lead to pathological behavior and show that this work is
largely academic. To see why this is so, suppose that u is small
and work to second order in u. Equation (56) then reduces to
Eq. (55). The surface u(x, y, t ) = − 1

2Cx
2 ≡ u0(x) withC > 0

is a steady-state solution to Eq. (55). If we perturb this solu-
tion to give u(x, y, t ) = u0(x) + u1(x, y, t ) and linearize in the
perturbation u1, we obtain u1,t = −Cu1,yy. As a consequence,
the amplitude of a Fourier mode with wave vector k = kyŷ
grows exponentially in time with the growth rate Ck2y . This
growth rate diverges as the wavelength of the mode 2π/ky
tends to zero, which means that the continuum description of
the surface breaks down. To remedy this problem, instead of
continuing to study Eq. (55), we consider instead the partial
differential equation

ut = uxxuyy − u2xy − ∇2∇2u. (61)

This EOM does not break down at short wavelengths and
simply incorporates another term that appears in Eq. (50).

Equation (61) is variational, as we now show. Inserting

Eq. (59) into Eq. (58), using dA =
√
1 + u2x + u2ydxdy, and

retaining terms up to fourth order in ε, we obtain

FH ∼= −
∫

uxuyuxyd
2x ≡ F ′

H , (62)

where d2x ≡ dxdy. F ′
H is the free energy associated with

Eq. (55), as is readily verified by computing the variational
derivative δF ′

H/δu directly. The free energy for Eq. (61) is
F ≡ F ′

H + FD, where

FD ≡ 1

2

∫
(∇2u)2d2x. (63)

To explore the time evolution described by Eq. (61), we
compute the effective free energy F for the Gaussian surface
profile

u(x, y) = V

2πσ 2
e−(x2+y2 )/2σ 2

. (64)

Here σ > 0 is the width of the Gaussian and V is the volume
beneath it. A straightforward calculation shows that for this
variational trial function

F = V 2

4π

(
1

σ 6
− V

πσ 8

)
. (65)

F is an increasing function of σ for σ less than the critical
value σc ≡ (4V/3π )1/2 and is a decreasing function for σ >

σc. For σ > σc, therefore, σ will increase as time passes, i.e.,
the Gaussian will become broader and its height will decline
to reduce the effective free energy. Conversely, the Gaussian
will become narrower and higher as time passes for σ < σc.
In fact, we expect that σ will tend to zero in this case, i.e., the
surface protrusion will evolve into a singular spike.

The time evolution of a surface depression can be explored
by replacing V by −V in the trial function (64). The corre-
sponding effective free energy

F = V 2

4π2

(
1

σ 6
+ V

πσ 8

)
(66)

FIG. 2. u(x, 0, t ) versus x for two simulations of Eq. (61) at three
different times. In (a), the initial condition was an upright Gaussian
of height 10 and width σ = 1. Blue is time t = 0, orange is t = 0.17,
and green is t = 0.178. In (b), the initial condition was an inverted
Gaussian of depth 10 and width σ = 1. Blue is time t = 0, orange is
t = 0.5, and green is t = 10. The simulation parameters were L = 5,
N = 128, and �t = 0.0001.

is a decreasing function of σ . We conclude that a surface de-
pression will become shallower and broader with the passage
of time.

The results of a simulation of Eq. (61) with a Gaussian
initial condition of the form (64) with width σ = 1 and height
V/2π = 10 are shown in Fig. 2(a). The figure shows u(x, 0, t )
versus x for three different times. The chosen value of σ is
smaller than σc

∼= 5.16 and, as predicted, the surface protru-
sion becomes higher and narrower with time. A simulation for
an inverted Gaussian initial condition with σ = 1 andV/2π =
−10 yields a surface depression that becomes shallower and
broader as time passes; see Fig. 2(b). This is again in accord
with our prediction.

We next turn our attention to Eq. (50) when λ = r = 0
and ν is positive. This EOM is also variational, and it has
the effective free energy Ftot ≡ FES + F ′

H . If ν is sufficiently
large in magnitude, we expect that runaway growth of spikes
will be prevented by the presence of the term ν∇ · [(∇u)2∇u],
for, as we have seen, the latter term tends to suppress the
development of large surface slopes. This expectation is borne
out by the simulations discussed in Sec. IV A.

IV. SIMULATIONS

For the simulations, the surface was approximated by a
N × N grid of points evenly spaced on the spatial domain with
−L � x � L and −L � y � L. Periodic boundary conditions
were employed. All of the simulations in this section were
done with a low-amplitude spatial white noise initial condi-
tion. (The amplitude of the noise was chosen to be 10−3.)
The numerical integrations were carried out using fourth-
order Runge-Kutta exponential time differencing (ETDRK4)
[51,52]. In ETDRK4, the linear terms are evaluated exactly
in Fourier space, and the nonlinear terms are approximated
using finite differencing in real space. In particular, the KS and
GCT terms were both evaluated only using finite differenc-
ing. The CKS and ES terms were evaluated using both finite
differencing and a pseudospectral method. For example, the
CKS term r∇2(∇u)2 was approximated by calculating (∇u)2

in real space using finite differencing, but the the Laplacian
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FIG. 3. Images taken from simulations of Eq. (50) at time t = 2000 with a low-amplitude noise initial condition and parameters λ = r = 0
and (a) ν = 0.06, (b) ν = 0.05, and (c) ν = 0.04. High points are light and low points are dark. The blue horizontal lines indicate the directions
of line scans along which data is shown in (a′), (b′), and (c′). The graphs (a′)–(c′) show the surface height u in blue, the slope ux in green, the
curvature uxx in magenta, and the inverted Gaussian fits to the curvature in black. For these simulations, N = 256 and L = 5π .

of the result was then evaluated in Fourier space. Unless
otherwise noted, the simulation parameters in the following
results were L = 30π and N = 512, and the time step was
�t = 0.01. We checked numerical accuracy by verifying that
increasing N and decreasing �t did not affect the results
substantially.

In the simulation results, we often include plots of the
power spectral density (PSD) as insets in plots of the sur-
face height. The PSD was defined to be the square root of
the modulus of the Fourier transform of the surface height.
This definition yields more detail than if the PSD had been
defined in the conventional way as the modulus of the Fourier
transform squared. The region of k space shown in each PSD
is the one in which −2.5 � kx � 2.5 and −2.5 � ky � 2.5.

A. The low-energy regime

In the low-energy regime, the EOM is Eq. (50) with λ = 0.
The parameter r is an arbitrary real number. The value of ν,
on the other hand, must be positive to prevent the formation
of singularities, as we anticipated. To demonstrate this, we
simulated Eq. (50) with λ = r = 0 and small, positive values
of ν. Figure 3 shows surfaces obtained for (a) ν = 0.06, (b)
ν = 0.05, and (c) ν = 0.04 starting from a low-amplitude
spatial white noise initial condition. Corresponding 1D line
profiles of surface height u, slope ux, and curvature uxx of a
representative spike from each are shown in Figs. 3(a′)–3(c′).
These figures point to the development of progressively taller
spikes with sharper tips as the value of ν is reduced. The
curvature uxx near the tip of the spike has an approximately
Gaussian profile. Fitting (inverted) Gaussians to the data for
uxx shows that the depth of the Gaussian increases and its

width decreases as ν approaches zero, as can be seen in Fig. 4.
This provides additional numerical evidence that a singularity
in the curvature develops in the limit that ν → 0. For values
of ν smaller than 0.038, numerical blowup occurred for the
choice of simulation parameters N = 256 and L = 5π .

Simulations of the version of Eq. (50) that applies in the
low-energy regime all yield disordered arrays of nanodots
that coarsen with time; however, the coarsening speed and
mechanism depend on the value of the coefficient r of the
CKS term. In Fig. 5, simulations of Eq. (50) with λ = 0
and ν = 0.1 are shown with time progressing from left to
right: on the left, t = 50; in the middle, t = 150; and on the

FIG. 4. Values of the (a) depth and (b) width of the Gaussian fits
to the uxx profile along a line passing through a spike for small values
of ν. These results were obtained from simulations of Eq. (50) start-
ing with a low-amplitude noise initial condition for the parameter
values λ = r = 0, the same values used in Fig. 3. The data displayed
are for time t = 2000. For these simulations, N = 256 and L = 5π .
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FIG. 5. Simulations of Eq. (50) starting from a low-amplitude
spatial noise initial condition for the parameter values λ = 0 and ν =
0.1. The nonprimed, single prime, and double primes refer to times
t = 50, t = 150, and t = 1000, respectively. The values of r were
(row a) r = 0.1, (row b) r = 0, (row c) r = −0.1, and (row d) r =
−1. The insets show the PSD of the surface.

right, t = 1000. The rows show snapshots of the surface taken
from simulations with different values of the CKS coefficient:
r = 0.1 in row (a), r = 0 in row (b), r = −0.1 in row (c), and
r = −1 in row (d). Although at time t = 1000 the surfaces
with r = 0 and r = −0.1, shown in Figs. 5(b′′) and 5(c′′),
respectively, have undergone a similar amount of coarsening
and appear to be similar, the dynamics are quite different in
the two cases. In the r = −0.1 case, the coarsening occurs
as some nanodots shrink and then disappear, allowing neigh-
boring nanodots to grow and occupy the area left behind by
the now-absent nanodot. On the other hand, in the r = 0 case,
pairs of nanodots occasionally near one another, collide and
coalesce to form one larger nanodot. This coalescence behav-
ior is also observed for r = 0.1 [row (a)], but the rate at which
it occurs is faster than for r = 0. Likewise, the dynamics for
r = −1 [row (d)] is qualitatively similar to that observed for
r = −0.1, but more rapid.

The tendency for nanodots to near one another and to
coalesce is a consequence of the GCT. To see this, note that
the value of F ′

H for two widely separated Gaussian protru-
sions that have volumes V and widths σ is −2V 3/(4π2σ 8) =
−V 3/(2π2σ 8). If these two Gaussians are combined to form
a single Gaussian with volume 2V and width σ , then F ′

H
becomes −(2V )3/4π2σ 8 = −2V 3/π2σ 8. This is four times
more negative than the value of F ′

H for the two widely sepa-
rated Gaussians. As a result, we could have anticipated that
there would be a tendency for two spikes to near one another
and then fuse to form a single spike. The GCT will therefore
tend to produce coarsening of the surface morphology.

FIG. 6. 2D gradient distributions for panels (a′ ′) - (d′ ′) of Fig. 5.
The values of r were (a′ ′) r = 0.1, (b′ ′) r = 0, (c′ ′) r = −0.1 and (d′ ′)
r = −1.

The CKS nonlinearity r∇2(∇u)2 that appears in Eq. (50) is
not variational. It is known, however, that it tends to produce
coarsening of the surface morphology [37–40]. This term is
therefore expected to speed the coarsening that results from
the GCT. That is indeed what we see when we compare the
behavior for r = 0.1 and r = −1 with the behavior for r = 0
in Fig. 5.

The 2D gradient distributions for Figs. 5(a′′)–5(d′′) are
shown in Fig. 6. In each case, the ES term serves to pre-
vent the formation of high surface slopes, and essentially
no values of |∇u| are observed beyond a critical value that
depends on r. For r = 0, there is a pronounced peak centered
at ux = uy = 0. This zero-slope peak is produced by the GCT,
which, as we have seen, tends to produce surfaces with sharp
peaks separated by flat regions. The peak at ux = uy = 0 is
suppressed to an increasing extent if r is changed from zero,
and is entirely absent for r = −1, the r value of greatest mag-
nitude represented in Fig. 6. The zero-slope peak is also absent
in Fig. 1(c), the 2D gradient distribution for a simulation of
Eq. (51), the EOM with no GCT.

B. The intermediate-energy regime

Figure 7 shows the results of a simulation in the interme-
diate energy regime. The chosen parameter values in Eq. (50)
were λ = −0.2, r = 0, and ν = 0.05. As can be seen clearly
in the figure, a remarkable degree of hexagonal order develops
as time passes. This is evident from both the real-space images
of the surface and from the PSDs. The PSDs display both
sharp first-order peaks and an impressive number of higher
order peaks, both of which are indicative of a very high degree
of order. In fact, with these parameters, the surface eventually
evolves into a completely defect-free state. This state is shown
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FIG. 7. Results from a simulation of Eq. (50) with λ = −0.2, r =
0, and ν = 0.05 starting from a low-amplitude spatial white noise
initial condition. The surface height with the PSD in the insets is
shown at times (a) t = 150, (b) t = 500, (c) t = 1000, and (d) t =
2000.

in Fig. 8(a). The corresponding PSD, which displays a hexag-
onal arrangement of narrow peaks, appears in Fig. 8(b).

The development of the hexagonal order seen in Fig. 7
seems to stem in part from an effective repulsion of
neighboring nanodots which is caused by the KS nonlinearity
λ(∇u)2. This effective repulsion counterbalances the attrac-
tion between nearby nanodots that results from the GCT, and
this leads to an increase in the uniformity of the nanodot spac-
ing. In addition, as seen in Fig. 9, a nanodot with significantly
larger height than its neighbors will tend to split into two nan-
odots with reduced height. This tendency is the primary cause
for the decreasing surface width seen in Figs. 7(b)–7(d), and
it helps to make the nanodot sizes increasingly monodisperse
as time passes. Finally, if a pair of nanodots gets too close
together, then they may coalesce to form a larger nanodot.
Usually, however, this nanodot is short-lived and soon splits
into two smaller nanodots, as shown in Fig. 10. Over time,
the complex dynamics we have described leads to marked
improvements in the hexagonal order.

The presence of the GCT in Eq. (50) plays an essential
role in the development of the highly ordered hexagonal ar-
rays of nanodots observed in Fig. 7. To demonstrate this,

FIG. 8. Results at time t = 3000 from a simulation of Eq. (50)
with the same parameters as in Fig. 7. The surface height is shown in
(a) and the corresponding PSD in (b).

FIG. 9. A zoomed-in view of a simulation with the same parame-
ters used in Fig. 7. The plotted domain has a side length of 47.5. The
surface height is shown at times (a) t = 500, (b) t = 510, (c) t = 520,
and (d) t = 530. Blue circles are included to indicate the region that
shows the fission of a nanodot into two nanodots.

we simulated Eq. (51) with λ = −0.2, r = 0, and ν = 0.05.
This EOM is identical to the equation that yielded Fig. 7,
except the GCT is omitted. The result is shown in Fig. 11.
No hexagonal order is evident in the real-space images of the
surface and, correspondingly, there are no significant peaks in
the PSDs aside from the one at the origin. Additionally, the
surfaces obtained without the GCT are dominated by rather
broad nanoholes rather than localized nanodots.

FIG. 10. A zoomed-in view of a simulation with the same pa-
rameters used in Fig. 7. The plotted domain has a side length of
32.8. The surface height is shown at times (a) t = 500, (b) t = 510,
(c) t = 520, and (d) t = 530. Blue circles are included to indicate the
region of interest. Two nanodots merge into one between (a) and (b).
This nanodot then splits into two between (b) and (c).
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FIG. 11. Results from a simulation of Eq. (51) with λ = −0.2,
r = 0, and ν = 0.05 starting from a low-amplitude spatial white
noise initial condition. The surface height with the PSD in the in-
sets is shown at times (a) t = 150, (b) t = 500, (c) t = 1000, and
(d) t = 2000.

The influence of the GCT is also seen in the 2D gradient
distributions shown in Fig. 12. The 2D gradient distribution
for Fig. 7(d) is shown in Fig. 12(a). This is the result of in-
tegrating Eq. (50), which includes the GCT, to time t = 2000
with λ = −0.2, r = 0 and ν = 0.05. There is a sharp peak in
the 2D gradient distribution centered on the point ux = uy = 0
and the starlike pattern exhibits clear sixfold symmetry. On
the other hand, Fig. 12(b) shows the 2D gradient distribution
for Fig. 11(d). This result was obtained with the same values
of λ, r and ν as Fig. 12(a), but the simulation was of Eq. (51),
which has no GCT. In the absence of the GCT, the peak at zero
slope does not appear and there is no sixfold symmetry. This
comparison demonstrates the important role that the GCT
plays in producing flat regions and reaffirms its role in the
emergence of a high degree of hexagonal order.

Nanodot arrays with a high degree of hexagonal order
similar to those seen in Fig. 7 form in simulations of Eq. (50)
for a range of parameter values. In Fig. 13, the results of four

FIG. 12. A comparison of 2D gradient distributions for a simu-
lation with and without the GCT. In (a), the 2D gradient distribution
corresponding to Fig. 7(d) is shown. In (b), the 2D gradient distribu-
tion corresponding to Fig. 11(d) is shown.

FIG. 13. Results from four simulations of Eq. (50) with different
values of λ, r, and ν at time t = 2000. The parameter values used
were (a) λ = −0.1, r = 0, and ν = 0.05; (b) λ = −0.2, r = 0, and
ν = 0.04; (c) λ = −0.2, r = 0.3, and ν = 0.04; and (d) λ = −0.2,
r = −0.05, and ν = 0.04.

simulations of Eq. (50) with different choices of parameter
values are shown at time t = 2000.

In Fig. 13(a), the parameter values were λ = −0.1, r = 0,
and ν = 0.05. These values resulted in a surface with a high
degree of local hexagonal order, but the global hexagonal or-
der is not as strong as in Fig. 7(d), as can be seen from the lack
of distinct first-order peaks in the PSD. In this case, regions of
hexagonal order separated by grain boundaries are evident in
the real-space image of the surface. In simulations in which
r = 0 and ν = 0.05 and the value of λ was outside the range
between −0.3 and zero, the nanodots were disordered.

In Fig. 13(b), the parameter values were λ = −0.2, r = 0,
and ν = 0.04. The resulting surface has a high degree of
both local and global hexagonal order. The coefficient of the
isotropic ES term must be sufficiently small for strong hexag-
onal order to develop. If ν > 0.09, the resulting surfaces did
not exhibit strong hexagonal order. Conversely, as we have
seen, if ν is too small, singular spikes form.

In Figs. 13(c) and 13(d), the parameter values were λ =
−0.2, r = 0.3, ν = 0.04, and λ = −0.2, r = −0.05, ν =
0.04, respectively. In both cases, there was a nonzero CKS
term. If the CKS coefficient is positive, strong local and global
hexagonal order developed up to r = 0.3. For r > 0.3, en-
hanced local hexagonal order still results, but the size of the
nanodots becomes too large to characterize the global order.
This is because the larger the value of r, the more coarsening
occurs. On the other hand, if r is negative, its magnitude
must be quite small for good hexagonal order to develop. For
example, in Fig. 13(d), the value of r was −0.05. If r < −0.1,
then nanoholes form instead of nanodots, and they are not well
ordered.

To quantify how the degree of hexagonal order depends
on the parameters λ, r, and ν, we performed a persistent
homology analysis as described in detail in Refs. [53,54]. In
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FIG. 14. Normalized H1 values averaged over times t = 1900 to t = 2000 for simulations of Eq. (50) in which the three parameters were
varied separately. In (a), the values r = 0 and ν = 0.05 were fixed while λ ranged from −1 to 1. In (b), the values λ = −0.2 and ν = 0.05 were
fixed while r ranged from −0.5 to 0.5. In (c), the values λ = −0.2 and r = 0 were fixed while ν ranged from 0.04 to 0.3. The red horizontal
lines correspond to the normalized H1 sum for simulations with r = λ = 0 and ν = 0.05.

this analysis, we first found the xy coordinates of the local
maxima of the surface height. We then used these points to
calculate the H1 sum, which, roughly speaking, is a measure
of the size of the gaps or “holes” in the hexagonal structure.
We then divided the H1 sum by the number of points. Division
by the number of points was carried out to address the issue
that some surfaces underwent more coarsening than others,
which would cause two equally ordered surfaces to have dif-
ferent raw H1 scores simply due to the difference in length
scale. Finally, we averaged these normalizedH1 sums between
the times t = 1900 and t = 2000 to reduce noise. Lower H1

scores correspond to a higher degree of hexagonal order [54].
The persistent homology analysis was carried out for sim-

ulations in which the parameters λ, r, and ν were varied from
the values that led to the well-ordered arrays shown in Fig. 7,
i.e., λ = −0.2, r = 0, and ν = 0.05. In Fig. 14(a), the values
r = 0 and ν = 0.05 were held fixed while λ ranged from −1
to 1 in increments of 0.05. In Fig. 14(b), the values λ = −0.2
and ν = 0.05 were kept constant while r ranged from −0.5 to

FIG. 15. Results from a simulation of Eq. (50) with λ = −0.55,
r = 0, and ν = 0.05 starting from a low-amplitude spatial white
noise initial condition. The surface height with the PSD in the in-
sets is shown at times (a) t = 150, (b) t = 500, (c) t = 1000, and
(d) t = 2000.

0.5 in increments of 0.05. In Fig. 14(c), ν ranged from 0.04 to
0.3 in increments of 0.01 with the values λ = −0.2 and r = 0
held fixed. The red horizontal lines correspond to the H1 score
for simulations with r = λ = 0 and ν = 0.05, which we use
as a reference case in which a high degree of hexagonal order
is lacking.

The results in Fig. 14(a) show that substantially improved
hexagonal ordering is obtained if −0.2 � λ � −0.05 with
r = 0 and ν = 0.05. Slightly improved order was obtained for
λ = 0.45 and λ = 0.5, but otherwise positive values of λ led
to reduced hexagonal order. There are two interesting upward
spikes in the graph at λ = −0.55 and λ = 0.65. The large H1

sum at λ = −0.55 is due to the formation of well-ordered
ripples instead of a hexagonal array, as shown in Fig. 15.
The H1 sum was about 100 for λ = 0.65, but we cut it off
this peak in Fig. 14 for clarity. The surface obtained with
λ = 0.65 exhibited unusual dynamics that appear to involve
spatiotemporal chaos along with coarsening. The results in
Fig. 14(b) show that for λ = −0.2 and ν = 0.05, improved
hexagonal order was obtained for −0.05 � r � 0.5. Values of
r smaller than −0.1 led to reduced hexagonal order. There is
no improved hexagonal order in simulations with λ = −0.2
and r = 0 if ν � 0.1, as shown in Fig. 14(c). In fact, the
arrangement of nanodots becomes increasingly disordered as
ν is increased beyond 0.1.

V. DISCUSSION AND CONCLUSIONS

We have seen that a term proportional to the Gaussian
curvature K appears in the EOM that applies close to the
threshold angle for pattern formation θc in both the low-
and intermediate-energy regimes. The GCT conserves mass,
is rotationally invariant, and is variational. The associated
effective free energy F ′

H makes it energetically advantageous
for surface protrusions to grow increasingly high and narrow
as time passes and for surface depressions to grow broader
and shallower. The GCT also introduces a tendency for pro-
trusions to approach one another and then coalesce, resulting
in coarsening of the surface morphology. If its effect is not
moderated by an ES term with a sufficiently large coefficient,
the GCT leads to the formation of spikes that ultimately be-
come singular.

In the high-energy regime, a term proportional to K does
not appear in the EOM that applies for θ just above θc.
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However, this term could have a significant effect in the
high-energy regime if θ is well above θc. This possibility
was briefly considered in Ref. [42], but was not investigated
further.

In traditional, nonrigorous approaches to constructing the
EOM in the high-energy regime, one considers u and ∇ to be
small and then retains terms up to a selected order in these
quantities. The CKS nonlinearity r∇2(∇u)2 is frequently in-
cluded in the EOM, in part because it leads to coarsening, as
observed experimentally [1,37–40,43]. The GCT uxxuyy − u2xy
is of the same order in u and ∇ as the CKS nonlinearity.
Therefore, if the CKS term is included in the EOM, the GCT
must also be included for the sake of consistency. In spite of
this, the GCT has universally been omitted from the EOM in
studies in which the CKS term is incorporated into the EOM.

It is natural to ask what the origin of the GCT is. It
is well-known that the sputter yield of a surface depends
on its curvature [2,55]. For oblique incidence bombardment
of a rotating sample with ions that have an energy above
the sputtering threshold, the leading order correction to the
sputter yield that comes from the curvature dependence is
proportional to the mean curvature H ∼= 1

2∇2u. There is also
a higher order correction term proportional to K ∼= uxxuyy −
u2xy though, and this contributes to the coefficient β in the
EOM that applies in the intermediate energy regime, Eq. (49)
[42]. The surface mass current J̄ is given by Eq. (45). The
term A∇u is the lowest-order contribution that stems from
MR; it is an uphill current if A > 0 and downhill if A < 0.
The term − 1

2β(∇2u)∇u is a correction to this current, and
the prefactor − 1

2β(∇2u) plays the role of a mobility. Thus,
the mass current due to MR actually depends on the curvature
of the surface, and this dependence is encoded in the GCT.
The GCT also affects the strength of the CKS nonlinearity
because its coefficient β appears in the prefactor of the CKS
term (β/4 − r)∇(∇u)2 in J̄.

In the intermediate energy regime, the KS nonlinearity
λ(∇u)2 appears in the EOM. This term is not variational,
and so there is no effective free energy associated with it.
However, the KS nonlinearity acts as if it produces an effective
repulsion between nanodots and an approximate steady state
with a constant interdot spacing develops in which the GCT
and the KS term balance one another. For a range of parameter
values, hexagonal arrays of nanodots with an astonishing de-
gree of hexagonal order form. This occurs even though there
is a broad band of unstable wavelengths.

Our simulations show that if a rotating elemental material
is bombarded with a noble gas ion beam just above the sputter
yield threshold and critical angle, highly ordered hexagonal
arrays of nanodots may result. This suggests that ion bom-

bardment of an elemental material with concurrent sample
rotation could be developed into a viable nanofabrication
method. However, significant challenges would have to be
overcome. Both the threshold ion energy for sputtering Ec

and the threshold angle for pattern formation θc would have
to be found for the chosen combination of target material
and of ion species and energy. Ec could be determined either
experimentally or using atomistic simulations. The threshold
angle θc, on the other hand, would most likely have to be
determined experimentally. However, even if an experiment
were carried out with E just above Ec and θ just above θc,
there is no guarantee that the three dimensionless parameters
λ, r, and ν in the EOM (50) would turn out to have values
that lead to a high degree of hexagonal order. Varying E and θ

while still keeping them close to their critical values might be
sufficient to identify experimental conditions that would lead
to a high degree of order. Alternatively, the values of the pa-
rameters could be determined using atomistic simulations and
the crater function formalism [33,34,56], and then simulations
of Eq. (50) would show whether the chosen values of E and θ

lead to an ordered array of nanodots.
Ion bombardment can be used to produce highly ordered

arrays of nanodots in other ways besides the one proposed
here. Arrays of this kind can, for example, form if certain
binary materials are bombarded with a noble gas ion beam
[3,4]. In contrast, our method can be used, in principle, for
any elemental target material. Highly ordered hexagonal ar-
rays of nanodots have also been observed when an elemental
material was bombarded with a beam of nonvolatile ions [5–7]
and when impurities were deposited during irradiation of an
elemental material with a noble gas ion beam [57,58]. The
resulting presence of a second atomic species in a surface
layer is undesirable in many applications, however.

Although our proposed method of producing nanodot ar-
rays might prove challenging to implement, our work suggests
that it would be fruitful to study the effects of ion bombard-
ment with concurrent sample rotation at low to intermediate
ion energies. Experiments of this kind have not yet been
carried out and, as we have seen, they are expected to lead
to behavior that is not seen at the ion energies that are usually
employed.

The data that support the findings of this paper are available
from the corresponding author upon reasonable request.
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