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Spatially extended dislocations produced by the dispersive Swift-Hohenberg equation
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Motivated by previous results showing that the addition of a linear dispersive term to the two-dimensional
Kuramoto-Sivashinsky equation has a dramatic effect on the pattern formation, we study the Swift-Hohenberg
equation with an added linear dispersive term, the dispersive Swift-Hohenberg equation (DSHE). The DSHE
produces stripe patterns with spatially extended defects that we call seams. A seam is defined to be a dislocation
that is smeared out along a line segment that is obliquely oriented relative to an axis of reflectional symmetry. In
contrast to the dispersive Kuramoto-Sivashinsky equation, the DSHE has a narrow band of unstable wavelengths
close to an instability threshold. This allows for analytical progress to be made. We show that the amplitude
equation for the DSHE close to threshold is a special case of the anisotropic complex Ginzburg-Landau
equation (ACGLE) and that seams in the DSHE correspond to spiral waves in the ACGLE. Seam defects and the
corresponding spiral waves tend to organize themselves into chains, and we obtain formulas for the velocity of
the spiral wave cores and for the spacing between them. In the limit of strong dispersion, a perturbative analysis
yields a relationship between the amplitude and wavelength of a stripe pattern and its propagation velocity.
Numerical integrations of the ACGLE and the DSHE confirm these analytical results.
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I. INTRODUCTION

The Kuramoto-Sivashinsky (KS) equation occurs in many
contexts, including the nonlinear evolution of flame fronts
[1], concentration waves in reaction-diffusion systems [2],
and nanoscale pattern formation produced by bombardment
of a solid surface with a broad ion beam [3–5]. It is among
the simplest partial differential equations that exhibit spa-
tiotemporal chaos. Adding a linearly dispersive term to the
one-dimensional (1D) KS equation yields the dispersive KS
equation in 1D,

ut = −uxx − uxxxx + u2x + γ uxxx, (1)

where u = u(x, t ) and γ is real. (The 1D KS equation is recov-
ered for γ = 0). Surprisingly, when γ is large and the initial
condition is low amplitude spatial white noise, highly ordered
patterns emerge at sufficiently long times and the spatiotem-
poral chaos that would otherwise prevail is suppressed [6].
This remains true if a strong linearly dispersive term is added
to the anisotropic KS equation in two dimensions (2D) [5,7].

In the limit that γ tends to infinity, the 1D dispersive KS
equation (1) becomes the Korteweg–de Vries (KdV) equation.
The KdV equation has solutions in which multiple solitons are
present. For large but finite γ , there is a repulsive interaction
between neighboring solitons, and the solitons eventually ar-
range themselves in an ordered chain as a consequence [8].
Thus, there is some understanding of how order emerges in
solutions of Eq. (1) for γ � 1. This picture does not carry

over to the anisotropic 2D KS equation with added dispersion,
however.

When a solid surface is bombarded with a broad ion beam
and the angle of ion incidence θ exceeds a threshold value
θc, self-assembled ripples with wavelengths as short as 10 nm
form [9]. If the patterns formed were not almost always dis-
ordered, ion bombardment could become a widely employed
method of fabricating large-area nanostructures with feature
sizes too small to be attained by conventional optical lithog-
raphy. After rescaling, the equation that describes the time
evolution of an ion-bombarded solid surface for θ just above
θc is

ut = −uxx − uxxxx + u2x + uyy + γ uxxx, (2)

where u = u(x, y, t ) is the height of the solid surface about
the point (x, y) in the x-y plane at time t and γ ∝ (θ − θc)−1/2

diverges as θ → θ+
c [5]. Equation (2) reduces to Eq. (1) if u is

independent of y. It is a simplified version of the anisotropic
2D KS equation with linear dispersion, and simulations show
that it produces highly ordered ripples if γ is large, i.e., if θ is
just above θc [5,7]. This finding has the potential to revolution-
ize the field of nanoscale patterning by ion bombardment, and,
accordingly, it is of considerable importance to understand
how strong linear dispersion modifies the dynamics.

A second intriguing observation emerges from simulations
of Eq. (2): Dispersion can lead to the formation of transient
raised and depressed triangular regions that are traversed by
ripples for moderate values of γ . Triangular nanostructures of
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this kind have been observed in many experiments in which
a solid surface is bombarded with an obliquely incident ion
beam [9–19], but their formation is currently poorly under-
stood. In simulations, once the triangular nanostructures have
disappeared, the surface has a disordered appearance with
streaks parallel to the x axis.

The Swift-Hohenberg equation (SHE) is an important
model equation in the study of pattern formation in spatially
extended nonlinear systems [20]. Close to the threshold for
pattern formation, analytical results can be obtained because
there is a narrow band of unstable wavelengths. In particular,
the amplitude equation, which describes the slow variation of
the pattern in space and time, can be derived.

In this paper, we study the SHE with added linear disper-
sion in both one and two dimensions. Our motivation for doing
so is this: The effect of strong linear dispersion can be better
understood in the context of the SHE than for the KS equa-
tion because there is a narrow band of unstable wavelengths
close to threshold in the case of the SHE. We find that the
2D dispersive Swift-Hohenberg equation (DSHE) produces a
unique type of spatially extended defect if the linear disper-
sion is sufficiently strong. These defects—which we refer to
as “seams”—are essentially dislocations that are smeared out
along line segments oriented obliquely to the x axis. As we
discuss, these are related to the triangular nanostructures that
are observed when a solid surface is bombarded with a broad
ion beam.

Simplicity emerges in the DSHE in two limits: Close to
threshold and in the limit of strong dispersion. Close to thresh-
old, we show that the amplitude equation for the DSHE is
a special case of the anisotropic complex Ginzburg-Landau
equation (ACGLE). The seams in the original equation of
motion are spiral waves in the ACGLE. These spiral waves
and the corresponding seam defects tend to arrange them-
selves into chains. We predict the velocity of the spiral wave
cores and the spacing between them for a particular type of
controlled initial condition. In the limit of strong dispersion,
on the other hand, we carry out a perturbative analysis that
shows that the stripes have a nearly sinusoidal dependence
on position. The analysis also yields the stripe’s propaga-
tion velocity and a relationship between their amplitude and
wavelength. These predictions are in excellent accord with
the results of our numerical integrations of the equation of
motion.

This paper is organized as follows: In Sec. II, we recast the
DSHE in dimensionless form and perform a linear stability
analysis. We find an approximate solution to the 1D DSHE in
the limit of strong linear dispersion in Sec. III. In Sec. IV, we
derive the amplitude equation that applies close to the thresh-
old for pattern formation. Simulations of the DSHE and the
corresponding amplitude equation are carried out in Sec. V.
We also study the dynamics of chains of spiral waves both
analytically and numerically. Our work is placed in context in
Sec. VI, and we conclude in Sec. VII.

II. THE DISPERSIVE SWIFT-HOHENBERG EQUATION

In this paper, we study the DSHE

ut = −a�2u − buxx + cuyy + duxxx + eu − f u3 (3)

in one and two dimensions. Here u = u(x, y, t ) and a, b, . . .,
and f are real parameters. We confine our attention to the case
in which a, b, and f are positive. We introduce the dimension-
less parameters ũ = 2(a f /b2)1/2u, x̃ = sgn(d )[b/(2a)]1/2x,
ỹ = sgn(d )[b/(2a)]1/2y, and t̃ = [b2/(4a)]t . Dropping the
tildes, we find the rescaled equation of motion to be

ut = −�2u − 2(uxx − βuyy) + γ uxxx + (μ − 1)u − u3, (4)

where μ = 1 + 4ae/b2, β = c/b, and γ = [2d2/(ab)]1/2.
Note that γ is non-negative. For the case γ = 0, there is no
dispersion and Eq. (4) reduces to the usual SHE.

The equation of motion (4) has the equilibrium solution
u = 0. Linearizing about this solution, we obtain

ut = −�2u − 2(uxx − βuyy ) + γ uxxx + (μ − 1)u. (5)

Setting u = exp(i�k · �x + σ t ), we find the dispersion relation

σ = −k4 + 2
(
k2x − βk2y

) + μ − 1 − iγ k3x , (6)

where �k = (kx, ky) is the wave vector. An easy calculation
shows that Re σ is maximized for �k = (±1, 0) and has the
maximum value μ provided that β > −1, which we assume
to be the case. This tells us that the solution u = 0 is linearly
stable when μ < 0 and linearly unstable whenever μ > 0. By
the continuity of Re σ = Re σ (�k), it follows that there are
neighborhoods about the points �k = (±1, 0) in which Re σ

is positive if μ > 0. For small, positive μ, neither neighbor-
hood contains the zero vector, indicating a type-I instability.
Moreover, the phase velocity is

v = − Im σ

k
= γ

k3x
k

. (7)

For the 1D case in which uy = 0, the phase velocity (7) re-
duces to v = γ k2x .

III. THE STRONGLY DISPERSIVE LIMIT

We begin by studying the equation of motion (4) when
dispersion is strong, i.e., the case in which γ � 1. We set
u = u(x, t ) in Eq. (4) and so obtain

ut = −(
1 + ∂2

x

)2
u + γ uxxx + μu − u3. (8)

We seek solutions to Eq. (8) of the form u = u(x − vt ). More-
over, we set ε = γ −1 and take γ to be large. Equation (8) now
yields

uxxx + ωux + ε
[
μu − (

1 + ∂2
x

)2
u − u3

] = 0, (9)

where ω ≡ v/γ = εv. Next, we assume that

u = u0 + εu1 + ε2u2 + h.o.t. and (10)

ω = ω0 + εω1 + ε2ω2 + h.o.t., (11)

where h.o.t. stands for higher-order terms. Then, to zeroth
order in ε, Eq. (9) reads

u0xxx + ω0u0x = 0. (12)

The general solution to Eq. (12) is given by

u0 = C + A cos(
√

ω0x + φ), (13)
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where C, A, and φ are arbitrary constants. By choosing the
origin appropriately, we may arrange for φ to be zero. Thus,
we have

u0 = C + A cos (kx), (14)

where k ≡ √
ω0 is the wave number.

To first order, Eq. (9) may be written as

u1xxx + ω0u1x = −ω1u0x − μu0 + (
1 + ∂2

x

)2
u0 + u30

≡ q. (15)

Let L0 = ∂3
x + k2∂x, so that Eq. (15) can be written compactly

as

L0u1 = q. (16)

It is a straightforward exercise to show that L0 : C3[−L,L] →
C[−L,L] is a Fredholm operator. The Fredholm alternative
then implies that q is orthogonal to ker L†

0, where L
†
0 denotes

the adjoint with respect to the L2 inner product. Because

ker L†
0 = span{1, eikx, e−ikx}, (17)

the constant term in q must be zero, i.e.,

−μC +C +C3 = 0. (18)

Equivalently, C = 0 or C2 = μ − 1. Since C is real, the latter
possibility is ruled out whenever μ < 1, and we take this to be
the case. This means that

u0 = A cos (kx). (19)

Further still, we have

q = ω1kA sin(kx) − μA cos(kx)

+ A(1 − k2)2 cos(kx) + A3 cos3(kx) (20)

=ω1kA sin(kx) − μA cos(kx) + A(1 − k2)2 cos(kx)

+ 1
4A

3[cos(3kx) + 3 cos(kx)]. (21)

q ∈ (ker L†
0 )

⊥ therefore implies that ω1 = 0 and

A2 = 4
3 [μ − (1 − k2)2]. (22)

Because A2 � 0, we must have∣∣1 − k2
∣∣ � √

μ. (23)

This establishes that a steady-state, propagating solution is
obtained only for wave numbers in the linearly unstable band.
We also see that A2 = 4Re σ (�k)/3, and so we come to the
natural conclusion that the higher the linear growth rate, the
higher the amplitude of the corresponding steady-state solu-
tion. Now note that Eq. (15) reduces to

u1xxx + k2u1x = 1
4A

3 cos (3kx). (24)

We will seek a solution to Eq. (24) of the form

u1 = B sin (3kx). (25)

In doing so, we obtain

B = 1
96k

−3A3, (26)

and hence

u(x, t ) =A cos(k(x − vt ))

+ 1
96k

−3A3ε sin(3k(x − vt )) + O(ε2), (27)

where A and k satisfy Eqs. (22) and (23), respectively. Equa-
tion (27) gives the approximate form of the propagating,
periodic solution to Eq. (8). The presence of the correction
with wave number 3k in Eq. (27) is to be expected because a
cubic nonlinearity is present in the equation of motion (8).

Since ω0 = k2 and ω1 = 0,

ω = ω0 + εω1 + O(ε2) = k2 + O(ε2). (28)

This in turn gives us the phase velocity,

v = γ k2 + O(ε). (29)

This shows that in the strongly dispersive (γ → ∞) limit, the
phase velocity (29) obtained by a perturbative analysis of the
full nonlinear equation of motion reduces to the phase velocity
(7) for the linearized problem.

If we begin a simulation of the equation of motion (8) with
a low-amplitude spatial white-noise initial condition, it is not
evident whether the solution will evolve toward a solution of
the form (27) with the phase velocity given by Eq. (29) and
with A and k related by Eq. (22). Even if that turns out to be
the case, it is not clear a priori what the chosen value of k will
be, although the inequality (23) would have to be satisfied.
Numerical integrations of Eq. (8) will be carried out in Sec. V
to address these issues.

IV. NEAR-THRESHOLD BEHAVIOR

In this section, we analyze the equation of motion (4) close
to threshold, i.e., for small, positive μ. Because we have as-
sumed that β > −1, there are small neighborhoods about the
critical wave vectors �k = (±1, 0) in which Re σ (�k) is positive.
This implies the existence of an amplitude equation. To find
this amplitude equation, we begin by writing Eq. (4) as

ut = Lu − u3, (30)

where

L ≡ −�2 − 2
(
∂2
x − β∂2

y

) + γ ∂3
x + μ − 1 (31)

is the linear part of the differential operator on the right-hand
side of Eq. (4). The linear dispersion relation tells us that, to
leading order, the solution to Eq. (4) is a traveling plane wave
with wave number k = 1 that propagates in the x direction.
Note that the phase velocity of the mode with wave vector
�k = (1, 0) is γ , and the corresponding group velocity is 3γ .
Accordingly, we begin with the ansatz

u = μ1/2u0 + μu1 + h.o.t.

= μ1/2A(ξ,Y,T )ei(x−γ t ) + c.c. + μu1 + h.o.t., (32)

where ξ ≡ μ1/2(x − 3γ t ), Y ≡ μ1/2y and T ≡ μt are slow
variables and c.c. denotes the complex conjugate. As a re-
sult, we must make the replacements ∂x �→ ∂x + μ1/2∂ξ , ∂y �→
μ1/2∂Y and ∂t �→ ∂t − 3μ1/2γ ∂ξ + μ∂T in Eq. (30). This leads
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to

L �→ L0 + μ1/2L1 + μL2 + h.o.t., (33)

where

L0 = γ ∂3
x − (

∂2
x + 1

)2
, (34)

L1 = ( − 4∂3
x + 3γ ∂2

x − 4∂x
)
∂ξ , (35)

L2 = −6∂2
ξ ∂2

x − 2∂2
x ∂

2
Y + 3γ ∂2

ξ ∂x − 2∂2
ξ + 2β∂2

Y + 1. (36)

To order μ1/2, Eq. (30) is

∂t u0 = L0u0. (37)

This automatically holds since we set

u0 = A(ξ,Y,T )ei(x−γ t ) + c.c. (38)

To order μ, Eq. (30) yields

∂t u1 − 3γ ∂ξu0 = L1u0 + L0u1. (39)

Since L1u0 = −3γ ∂ξu0, Eq. (39) reduces to

∂t u1 = L0u1. (40)

This merely tells us that

u1 = A1(ξ,Y,T )ei(x−γ t ) + c.c. (41)

To order μ3/2, Eq. (30) gives

∂T u0 − 3γ ∂ξu1 + ∂t u2 = L2u0 + L1u1 + L0u2 − u30. (42)

Next, using Eq. (38), Eq. (42) can be rearranged to obtain

�u2 = [ − AT + A + 4
(
1 + i 34γ

)
Aξξ

+ 2(1 + β )AYY − 3|A|2A]
ei(x−γ t )

− A3e3i(x−γ t ) + c.c.,

≡ Q, (43)

where � ≡ ∂t − γ ∂3
x + (∂2

x + 1)2. A quick check shows that
ei(x−γ t ) ∈ ker�, which implies that

AT = A + 4
(
1 + i 34γ

)
Aξξ + 2(1 + β )AYY − 3|A|2A. (44)

Equation (44) is the amplitude equation for the two-
dimensional (2D) DSHE, Eq. (4). If we put A = Ã/

√
μ in

Eq. (44), drop the tilde, and write the result in terms of the
original coordinates, we obtain

At + 3γAx=μA + 4
(
1 + i 34γ

)
Axx + 2(1 + β )Ayy − 3|A|2A.

(45)

We prefer, however, to put the amplitude equation (44) in the
standard form used in Refs. [21,22] by setting Â = √

3A, x̂ =
ξ/2, ŷ = Y/

√
2(1 + β ), and t̂ = T and then dropping the hats.

This gives

At = A + (1 + iη)Axx + Ayy − |A|2A, (46)

where η ≡ 3γ /4. Equation (46) is a special case of the AC-
GLE [21,22]. If there is no dispersion, then γ = 0 and Eq. (46)
reduces to the isotropic (real) Ginzburg-Landau equation.

V. NUMERICAL SIMULATIONS

We carry out numerical simulations of Eq. (8) on x ∈
[−L,L], and of Eqs. (4) and (46) on the square domain
(x, y) ∈ [−L,L]2. To do so, we employ Fourier spectral
methods with periodic boundary conditions, coupled with
the fourth order exponential time differencing Runge-Kutta
method (ETDRK4). Implementations of this method can be
found in Refs. [23,24], while full derivations of the method
can be found in Refs. [25,26]. In all simulations in this paper,
we employ a spatial grid with N = 2048 grid points in 1D
and an N × N spatial grid with N = 128 in the 2D simu-
lations unless otherwise noted. The time step in all cases is
�t = 0.01.

A. Simulations of the dispersive Swift-Hohenberg equation

Figure 1 shows results of simulations of the 1D equation of
motion Eq. (8) and the corresponding power spectral densities
(PSDs) at time t = 100 for μ = 0.1 and selected values of γ .
The initial conditions were low amplitude spatial white noise.
The simulations suggest that as γ gets large, the solution tends
to a sinusoidal form, in accord with the perturbation theory
prediction.

The perturbation theory prediction (22) gives the amplitude
as a function of the wave number k to order γ −1. Figure 2
shows the relative error in Eq. (22), where the relative error
is defined to be the absolute value of the difference between
the measured and predicted values divided by their sum.
Note that, as γ increases, the relative error decreases and is
less than 1% when γ > 50. Thus, Eq. (22) appears to hold in
the limit γ → ∞, as expected. The perturbation theory also
predicts the phase velocity of the solution. In the simulations,
the observed velocity was taken to be �φ/(k�t ), where �φ

is the phase difference in u at two times separated by time
�t and k is the dominant wave number. Figure 3 compares
the prediction given by Eq. (29) to the observed velocities
determined from 100 simulations—one for each integer value
of γ between zero and 99. The simulations were run until time
t = 100 and the velocities were determined from the last two
time steps. Figure 3 is another indication that the simulated
results agree very well with perturbation theory.

Turning our attention to the 2D case, Fig. 4 shows the time
evolution of solutions to Eq. (4) and their corresponding PSDs
for three values of γ , namely γ = 0, 10, and 100. In all three
cases, μ = 1. For the nonzero values of γ , the defects are
stretched dislocations or seams which are obliquely oriented
with respect to the x axis. The phase changes through ±2π
on a contour that circles a seam. Of particular note is the
appearance of several seams at nearly the same y value but
differing values of x. We call these defect chains. Figure 5(a)
shows a solution to Eq. (4) for a spatial white-noise initial
condition with a chain of three defects. These chains of seam
defects are present at early times. At later times, defects of
opposite sign meet and mutually annihilate, which ultimately
results in a defect-free pattern. The two yellow horizontal
reference lines in Fig. 5(a) make it easy to see that the seams
make a nonzero angle with the x axis.

Equation (4) is the Swift-Hohenberg equation for γ = 0.
As the first two rows of Fig. 4 show, spatially extended defects
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FIG. 1. The first row depicts solutions to Eq. (8) on the spatial domain x ∈ [−100, 100], and the second row shows the corresponding
PSDs. In all cases, μ = 0.1, which is near the threshold for pattern formation. From left to right, γ = 0, 25, 50, 75, and 100. All images are
for time t = 100.

are also present in the stripe pattern when γ is zero. However,
in this case, the defects are not straight and are not obliquely
oriented relative to the x axis; instead, they wind sinuously
through the domain. Accordingly, the defects present for γ =
0 will not be referred to as seams.

FIG. 2. Comparison of Eq. (22) to simulation results for values
of γ between 1 and 100. Each data point gives the relative error of
the amplitude for the corresponding value of γ . In each simulation,
μ = 1, the domain was x ∈ [−100, 100], and the measurements were
taken at t = 100. We note that the relative error is less than 1% for
values of γ larger than 50 and decreases as γ increases.

The time evolution that occurs with relatively large γ in
one and two dimensions is similar in several ways. In 2D, after
some time, multiple roughly horizontal bands have formed
in which u is almost independent of y, as seen in Fig. 5(a).
These bands are separated by chains of seam defects. Within

FIG. 3. The phase velocity of the steady-state propagating so-
lution versus γ k2, as computed from numerical simulations (+
symbols). Each point is the result of a single simulation with μ = 1
and a value of γ between 1 and 100. The solid line shows the theoreti-
cal prediction. The domain for each simulation was x ∈ [−100, 100],
and the velocities were calculated at time t = 100.
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FIG. 4. Solutions to Eq. (4) with parameters μ = β = 1 on the domain (x, y) ∈ [−100, 100]2. The values of γ are the 0, 10 and 100 for
the first, second, and third pairs of rows, respectively. In each pair of rows, the first row shows the solution at the times listed and the second
row shows the corresponding PSDs. The columns from left to right depict the solutions at times t = 30, 60, 100, 500, and 1500.

a band, the form of the solution is close to a solution to the 1D
DSHE, and so the phase velocity is approximately equal to
γ k2. Figure 6 shows the time evolution of a solution. Defects
are present except at the latest time, t = 1500. For each of the
cuts parallel to the x axis that are shown in Figs. 6(a)–6(d),
the velocity in the x direction was computed and compared
with Eq. (29). The results of this comparison are shown in
Figs. 6(a′) and 6(d′). The agreement is very good at each of
the four times shown in the figure, except where a cut passes
directly through a seam.

With a spatial white-noise initial condition, chains of seams
appear in an unpredictable fashion and the disordered arrange-
ment of defects makes it challenging to discern the underlying

order in the dynamics. By choosing a different type of initial
condition, we can produce defect chains in a controlled fash-
ion that makes it easier to study them. In particular, we adopt
an initial condition in which sinusoidal ripples of two different
wave numbers k1 and k2 occupy horizontal bands and are in
contact with one another: We set

u(x, y, 0) =
{
cos (k1x) for |y| < L/2 and − L < x < L
cos (k2x) for |y| > L/2 and − L < x < L.

(47)

The initial condition given by Eq. (47) must satisfy the peri-
odic boundary conditions, and so we must have ki = πni/L,
where ni is an integer and i = 1 and 2. We also choose k1
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FIG. 5. (a) A solution to Eq. (4) at time t = 40 that was started with a low-amplitude spatial white-noise initial condition. Note the chain
of three defects between the horizontal lines. (b) A solution to Eq. (4) with a banded initial condition of the form (47) at time t = 100. The
initial condition had n1 = 28 and n2 = 31. The parameter values were μ = β = 1 and γ = 100 in both panels (a) and (b).

and k2 to be within the range of linearly unstable wave num-
bers, i.e., (1 − k2i )

2 < μ for i = 1 and 2. This requirement
ensures that neither of the initial sinusoids has an amplitude
that rapidly tends to zero as time passes. Figure 5(b) shows
the result of a simulation with this type of banded initial
condition. Two defect chains have developed. Notice that the

dislocations within a defect chain all have the same sign and
are evenly spaced. In addition, the dislocations in the two
chains have opposite signs, and will annihilate after some
time; see Fig. 7. Furthermore, as γ increases, the length of the
defects increases, but is restricted by the number of defects in
the chain (see Figs. 8 and 9). Figure 9(a) makes it particularly

FIG. 6. The time evolution of a solution to Eq. (4) with μ = β = 1 and γ = 100 is shown in the first row. The domain is (x, y) ∈
[−100, 100]2. The phase velocity in the x direction was computed for each of the cuts parallel to the x axis that are shown. The second
row shows the observed velocities along each cut (+ symbols) versus the velocities predicted by Eq. (29) (solid lines).
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FIG. 7. A solution to Eq. (4) with the parameter values μ = β = 1 and γ = 100 on the domain (x, y) ∈ [−100, 100]2 at times (a) t = 25,
(b) t = 50 and (c) t = 500. The initial condition was given by Eq. (47) with k1 and k2 chosen so that n1 = 25 and n2 = 31.

evident that that the seams are oriented obliquely to the x
axis.

B. Simulations of the amplitude equation

Solutions of the 1D amplitude equation

At = A + (1 + iη)Axx − |A|2A (48)

behave in a fashion analogous to the solutions of the 1DDSHE
(8). This is illustrated by the simulations of Eq. (48) shown in
Fig. 10. The amplitude |A| and phase φ are plotted as functions
of x at time t = 60 for two simulations with η = 10 and 100.
For the larger value of η, the solution is close to a plane wave:
As seen in Figs. 10(b) and 10(b′), the amplitude |A| is almost
a constant and the phase φ is close to being a linear function
of x. The plane-wave solution is the analog of the highly
ordered ripples seen in Fig. 1 for the larger values of γ . The
solution shown for η = 10 still deviates significantly from a
plane wave at time t = 60 but approaches such a solution at
longer times.

The analogy between the amplitude equation and the
DSHE extends to 2D. Figure 11 shows simulations of Eq. (46)
at different times for selected values of η. The initial condition

in each case was low amplitude spatial white noise. For η = 0,
Eq. (46) reduces to the much studied real Ginzburg-Landau
equation.

For η > 0, the amplitude |A| is depressed in elongated
regions that are obliquely oriented relative to the x direction,
as is seen most clearly by looking at the defects close to the
upper and lower domain boundaries in Figs. 11(f)–11(j). The
phase φ ≡ Im (lnA) winds through ±2π about each of these
regions. These defects are the analogs of the seams in the
DSHE and are spiral waves, as can be seen in Figs. 11(i′)
and 11(j′), for example. The spiral waves are anisotropic,
in contrast with the isotropic spiral waves produced by the
(isotropic) complex Ginzburg-Landau equation. As we would
expect based on our simulations of the DSHE, chains of spiral
waves appear in the simulations of the ACGLE (46). These
are most evident in Figs. 11(k)–11(o). For η = 0, the spiral
waves reduce to vortices.

We can once again cause chains of defects to form in a
controlled fashion using banded initial conditions. We begin
by noting that there is a plane-wave solution to Eq. (46) of the
form A(x, y, t ) = R0ei(qx−ωt+ψ ), where R2

0 = 1 − q2, ω = ηq2,
and ψ is an arbitrary phase. We will study an initial condition
that has two adjacent horizontal bands with different wave

FIG. 8. Solutions to Eq. (4) on the domain (x, y) ∈ [−100, 100]2 are shown at time t = 100. The parameter values are μ = β = 1 for each
panel, and γ = 0, 2, and 50, as labeled. The initial conditions were given by Eq. (47) with k1 and k2 chosen so that n1 = 28 and n2 = 31. There
are therefore n2 − n1 = 3 defects in each chain.
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FIG. 9. Solutions to Eq. (4) on the domain (x, y) ∈ [−100, 100]2.
The parameter values are μ = β = 1 and γ = 50. The initial con-
ditions were given by Eq. (47). Panel (a) shows a solution at time
t = 100 with n1 = 31 and n2 = 30, and panel (b) shows a solution at
time t = 50 with n1 = 31 and n2 = 25.

numbers q1 and q2 and phases ψ1 = ψ2 = 0:

A(x, y, 0)

=
⎧⎨
⎩

√
1 − q21e

iq1x for |y| < L/2 and − L < x < L√
1 − q22e

iq2x for |y| > L/2 and − L < x < L.

(49)

The initial condition must satisfy the periodic boundary condi-
tions, and so we must have qi = πni/L, where ni is an integer
and i = 1 and 2. Without loss of generality, we may assume
that n2 > n1. Simulations with banded initial conditions show

FIG. 10. Two simulations of Eq. (48) starting from low-
amplitude spatial white-noise initial conditions are shown at time
t = 60. In panels (a) and (b), the amplitude |A| is plotted as a function
of x for η = 10 and 100, respectively. The corresponding phase φ is
depicted in panels (a′) and (b′).

that two parallel chains of spiral waves form after a short time,
as seen in Figs. 12(a) and 12(b), for example.

If the plane waves simply propagated without changing
their form, the solution to the ACGLE with the initial con-
dition (49) would be

A(x, y, t ) =
⎧⎨
⎩

√
1 − q21e

i(q1x−ω1t ) for |y| < L/2 and − L < x < L√
1 − q22e

i(q2x−ω2t ) for |y| > L/2 and − L < x < L,

(50)

where ωi ≡ ηqi for i = 1 and 2. This of course is not the
solution to the initial value problem since the A(x, y, t ) given
by Eq. (50) does not satisfy the ACGLE along the lines
y = ±L/2. Nevertheless, let us suppose for the moment that
Eq. (50) were the solution. The defect cores would then appear
at the locations x = xn where the phase difference between the
two bands is 180◦, i.e.,

q1xn − ω1t = q2xn − ω2t − (2n + 1)π (51)

for n ∈ Z. This would mean that

xn = ω2 − ω1

q2 − q1
t + (2n + 1)π

q2 − q1
. (52)

Equation (52) immediately gives us two results: The spiral
wave velocity

ẋn = ω2 − ω1

q2 − q1
= η(q1 + q2) (53)

and the spacing between the cores of two adjacent spiral
waves

�x = xn+1 − xn = 2π

q2 − q1
. (54)

It is interesting to note that Eq. (53) implies that ẋn is the sum
of the phase velocities of the two plane waves.

As we have noted, Eq. (50) does not really give the solution
to the ACGLE with the banded initial condition. Instead, as
time passes, the amplitude of the solution becomes depressed
in the vicinity of the spiral wave cores and the lines of constant
phase become curved, as Fig. 12 illustrates. However, the
initial condition (49) is periodic in x with period �x. As the
solution to the ACGLE evolves in time, the solution remains
periodic with this period. Equation (54) therefore gives the
correct separation between the spiral wave cores. In addition,
our simulations demonstrate that Eq. (53) gives a very good
estimate of the spiral wave velocity, as we will now show.

We compared the velocity and spacing predictions given by
Eqs. (53) and (54) with the results of numerical simulations
with banded initial conditions. Simulations were carried out
for q1 = 0 and q2 = πn2/L, where n2 = 2, 3, 4, 5, 6, and
7. (We omitted the n2 = 1 case because the spacing between
defects is undefined if there is only one defect in a chain.) The
simulations were performed for the parameter value η = 100
on the spatial domain (x, y) ∈ [−100, 100]2 and were run up
to time t = 200. The resulting defect velocities and spacings
are compared with the predictions given by Eqs. (53) and
(54) in Figs. 13(a) and 13(b), respectively. The agreement is
excellent, provided that η and �n ≡ n2 − n1 are sufficiently
large. If either η or�n is too small, then the defects’ velocities
oscillate in time. This is the reason for the discrepancy seen in
the right panel of Fig. 13 for the case n2 = 2.
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FIG. 11. The time evolution of three simulations of Eq. (46) on the spatial domain (x, y) ∈ [−100, 100]2. Rows (a)–(e), (f)–(j), and
(k)–(o) show the magnitude of the solution |A(x, y, t )| for η = 0, 10 and 100, respectively. Rows (a′)–(e′), (f′)–( j ′), and (k′)–(o′) show the
corresponding phases φ(x, y, t ). The solution at times t = 50, 250, 500, 1000, and 2500 is shown in columns 1 through 5, respectively.

A comparison of the regions of depressed amplitude |A|
obtained for η = 10 and 100 in Fig. 11 suggests that the angle
ψ that the spiral wave cores make with the x axis decreases
with η. To investigate this further, we defined a new func-
tion ρ ≡ 1 − |A|2 within a neighborhood around a defect. We
interpreted ρ as a “density,” and then found the moment of
inertia tensor for this density distribution. The angle that the

principal axis with the smallest principal moment makes with
the x axis is the angle ψ . Figure 14 shows the value of ψ for a
range of values of η. The results are for banded initial condi-
tions with q1 = 0 and q2 = n2π/L, where n2 = 2, 3, and 4. In
addition, the values of ψ were averaged over all of the defects
in a given simulation. Our results support the proposition that
ψ is a decreasing function of η for given values of n1 and n2.
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FIG. 12. Chains of spiral waves created by simulating Eq. (46)
with a banded initial condition of the form given by Eq. (49). The
spatial domain was (x, y) ∈ [−100, 100]2 and the snapshot was taken
at t = 100. We set η = 1 and the wave numbers q1 and q2 were
chosen so that n1 = 2 and n2 = 5.

They also suggest that ψ is inversely proportional to η, and
hence that ψ vanishes in the limit η → ∞.

Figure 13 shows that the defect spacing depends on q2, and
of course it depends on q1 as well. If we take the limit in which
both q1 and q2 tend to a common nonzero value q, then �x
tends to infinity according to Eq. (54). In this limit, the seams
are in effect infinitely wide and they become parallel to the x
axis. We found an exact solution of the ACGLE (46) that gives
the form of the seams in this limit:

A(x, y, t ) = ±
√
1 − q2ei(qx−ηq2t ) tanh

(√
1 − q2

2
y

)
. (55)

Equation (55) is a valid solution for any real q with magnitude
smaller than 1. If we cross the seam described by Eq. (55)
anywhere along its length, the phase φ changes by π . The
amplitude is depressed around the x axis in a region with
width proportional to (1 − q2)−1/2; this is the core of the
seam.

VI. DISCUSSION

This study was motivated in part by a need to better under-
stand the nanoscale patterns produced by ion bombardment of
solid surfaces. Raised and depressed triangular regions that
are traversed by ripples are commonly observed in experi-
ments, but the formation of these patterns is not currently
understood. Simulations of the dispersive KS equation in 2D
produce triangular nanostructures that strongly resemble those
seen in experiments and show that dispersion plays an impor-
tant role in their genesis [7]. This finding led us to study the
DSHE in 2D.

Our work on the 2D DSHE suggests that the oblique sides
of the triangular nanostructures might, in fact, be seams. We
therefore examined the results of a numerical integration of
the simplified anisotropic KS equation with linear dispersion,
Eq. (2), and found that this is indeed the case. This is il-
lustrated by Fig. 15. Our work therefore indicates that the
notion that there are triangular nanostructures is misleading:
Instead, the experimentally observed topographies are more
properly thought of as ripples with a high density of seams.

The triangular structures found in simulations of the 2D
dispersive KS equation are transient [7]. Because the surfaces
display a high degree of disorder and the seams are abundant,
it is challenging to discern how the so-called triangles disap-
pear. Our simulations of the dispersive KS equation and the
associated amplitude equation suggest that seams of opposite
signs move toward one another and then annihilate, ultimately
leaving a surface without triangular nanostructures.

There are admittedly important differences between the
dispersive KS equation and the DSHE in 2D. The ripples are
more orderly and the seams are more widely separated from
one another in the case of the DSHE, for example. In addi-
tion, the anisotropic SHE we studied produces ripples with a
high degree of order even in the absence of linear dispersion;
in contrast, solutions of the anisotropic KS equation ex-
hibit spatiotemporal chaos, and strong linear dispersion is
needed to suppress this and to produce highly ordered ripples.

FIG. 13. Simulations of Eq. (46) with banded initial conditions of the form given by Eq. (49) were carried out with q1 fixed at zero and with
q2 = πn2/L, where n2 = 2, 3, 4, 5, and 7. The spatial domain was (x, y) ∈ [−100, 100]2 and η was 100. The defect velocities and spacings
were computed at t = 200. The observed values (dots) are compared with the values predicted by Eqs. (53) and (54) (solid curves).
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FIG. 14. Simulations were run of Eq. (46) with initial conditions given by Eq. (49) on the spatial domain (x, y) ∈ [−100, 100]2, and the
average angle ψ that the defects made with the x axis was computed. This was repeated for η = 5, 10, . . . , 145 and for q2 = n2π/100 with
n2 = 2, 3, and 4. In each case, q1 = 0. Each data point represents the average angle obtained from a simulation, while the curve is a fit that is
proportional to 1/η. The constant of proportionality depends on �n.

However, we exploited another key difference to our advan-
tage. The DSHE has small regions of unstable wave vectors
near threshold which allowed us to derive the associated
amplitude equation. This is not possible in the case of the
dispersive KS equation because there are unstable modes with
arbitrarily long wavelengths. Stated more succinctly, the insta-
bility is of Type I in the case of the DSHE but is of Type II in
the case of the DKSE [20].

It should be mentioned that the 1D DSHE (8) with the
quadratic nonlinearity 2u2 appended to the right-hand side
has previously been studied [27]. The emphasis was on the
propagation of fronts and on finding localized states for small
γ , however. In our work, we did not touch on those topics and
considered only the case in which no quadratic nonlinearity
appears in the equation of motion (8). We also placed special
emphasis on the limit in which the dispersive coefficient γ is
large [28].

Chains of spiral waves that appear in simulations of the
ACGLE have been studied by Faller and Kramer [22]. Those
authors had to carefully adjust the parameters in the ACGLE

FIG. 15. (a) A simulation of Eq. (2) for γ = 5 at time t = 65
that shows the raised and depressed triangular regions traversed by
ripples. The initial condition was low amplitude spatial white noise.
We employed an 512 × 512 spatial grid and a time step of �t =
0.01. (b) An enlargement of the portion of panel (a) that is outlined
in black. The dislocation cores within two seams are circled.

in order to get chains to form. They also had difficulty getting
chains of defects to form starting with spatial white-noise
initial conditions. In this paper, we studied the special case of
the ACGLE in which the coefficients of the terms proportional
to Ayy and |A|2A are real. In this case, chains of spiral waves
form readily with a spatial white-noise initial condition if
linear dispersion is sufficiently strong. We also established
that chains of spiral waves can easily be produced in a con-
trolled fashion using banded initial conditions. This led us to
a prediction of the spacing and velocity of the defects in a
chain, and this prediction agrees well with our simulations.

VII. CONCLUSIONS

Spatially extended dislocations were shown in this paper
to appear in simulations of the 2D dispersive Swift-Hohenberg
equation. These defects, which we call seams, tend to organize
themselves into ordered chains. The presence of a narrow
band of unstable wavelengths in the DSHE allowed us to make
analytical progress towards understanding seam defects. We
studied the DSHE in two limits. First, close to threshold, we
derived an amplitude equation for the DSHE, which turns out
to be a special case of the ACGLE. In this limit, seam defects
correspond to spiral waves in the ACGLE. Numerical simu-
lations confirm analytical formulas for the distance between
spiral wave cores and their velocities. The second limit was
that of large dispersion. A perturbative analysis in this case
yielded the propagation velocities of ripple patterns and a
relationship between their amplitudes and wavelengths. Our
results shed light on the effect dispersion has on the nanoscale
patterns produced by ion bombardment of solid surfaces. In a
more general context, our work can be viewed as a first step
towards developing a comprehensive understanding of the
effects of dispersion on pattern formation in two dimensions.
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