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ARTICLE INFO ABSTRACT
Keywords: High-fidelity computer simulations of childbirth remain prohibitively expensive and time consuming, making
Galerkin reduced order modeling them impractical for guiding decision-making during obstetric emergencies. Cheap computer simulations that
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preserve the accuracy of high-fidelity models can be developed using surrogate modeling. Two common
approaches to surrogate modeling are physics-based reduced order modeling (ROM) and machine learning
(ML), with the latter gaining popularity as the scientific computing community seeks to leverage advances
from other, mostly non-physics-based, computational strategies. Although ROM and ML have been compared
for various problems, to our knowledge, such a comparison for simulations of vaginal deformations is currently
missing. This study provides a baseline numerical comparison between methods from these two fundamentally
different approaches. Since there are many methods falling into each modeling approach, to provide a fair
and natural comparison, we select a basic model from each category, with each allowing (i) a straightforward
implementation in commercial software packages, and (ii) use by practitioners with limited experience in the
field. As a benchmark for the numerical comparison of the ROM and ML approaches, we use the finite element
(FE) modeling of the ex vivo deformations of rat vaginal tissue subjected to inflation testing to study the effect of
a pre-imposed tear. From the ROM strategies, we consider a simplified Galerkin ROM (G-ROM) that is based on
the linearization of the underlying nonlinear equations. From the ML strategies, we select a feed-forward neural
network to create mappings from constitutive model parameters and luminal pressure values to either the FE
displacement history (in which case we denote the resulting model ML) or the proper orthogonal decomposition
(POD) coefficients of the displacement history (in which case we denote the resulting model POD-ML). The
numerical investigation of G-ROM, ML, and POD-ML takes place in the reconstructive regime. The numerical
results show that the G-ROM outperforms the ML model in terms of offline central processing unit (CPU) time
for model training, online CPU time required to generate approximations, and relative error with respect to the
FE models. The G-ROM achieves superior error performance to the best ML model with 11 POD basis functions.
With higher-dimensional POD bases, the G-ROM achieves a relative error 3 orders of magnitude lower than that
of the best ML model with an online CPU time still on the same order of magnitude as the best ML model. The
POD-ML model improves on the speed performance of the ML, having online CPU times comparable to those
of the G-ROM given the same size of POD bases. However, the POD-ML model does not improve on the error
performance of the ML and is still outperformed by the G-ROM for POD bases of size greater than 11. This
baseline numerical investigation serves as a starting point for future computer simulations that consider state-of-
the-art G-ROM and ML strategies, and the in vivo geometry, boundary conditions, and material properties of the
human vagina, as well as their changes during labor.

1. Introduction eration [1]. The severity of these injuries varies from small tears that
cause little or no harm to large tears that propagate to the muscles of

During childbirth, vaginal tearing is a common occurrence with the pelvic floor resulting in long-term complications such as fecal in-
about 80% of vaginal deliveries resulting in some degree of tissue lac- continence, urinary incontinence, sexual dysfunction, and prolapse [2].
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Known risk factors for vaginal tears include birth weight, forceps de-
livery, and prolonged second stage of labor [3]. However, no clinical
technique in obstetrics exists to accurately anticipate the occurrence
and severity of vaginal tears as well as their propagation to other pelvic
tissues. Real-time non-invasive prenatal methods are needed to predict
vaginal tearing during childbirth and establish preventative measures
and reduce maternal trauma and morbidity. In silico methods that pre-
dict deformations and tears experienced by the vagina during childbirth
in real time have the potential to become viable non-invasive prognos-
tic models in obstetrics.

The finite element (FE) method is one of the most popular ap-
proaches used to simulate childbirth. The main characteristics and find-
ings of current FE models that investigate the process of childbirth,
maternal injuries, fetal injuries, and protective clinical measures have
been recently reviewed [4]. In particular, the tears in the pelvic floor
muscles have been analyzed using FE methods by Oliviera et al. [5-7]
with the goal of modeling episiotomy during childbirth. However, de-
formations of the vagina (and surrounding tissues) with tears have
never been described by FE models. Unfortunately, FE models of the
childbirth are computationally expensive due to the complex geome-
tries and boundary conditions and the nonlinear constitutive models
that are required to characterize the mechanical behavior of the tis-
sues of the pelvic floor. Thus, the FE method remains impractical for
real-time predictions of the clinical outcomes of vaginal delivery.

The computational cost of full order models (FOMs) such as FE
models can be reduced by adopting reduced order modeling (ROM)
strategies [8-11]. ROM techniques have been applied to simulate the
deformations of a variety of soft tissue during surgical procedures [12].
Proper orthogonal decomposition (POD) and proper generalized decom-
position methods have been implemented for real-time simulations of
the liver and cornea [13-16]. Sophisticated simulations of cardiac tis-
sues have been approximated via reduced basis approaches [17-19].
Deformations of the inferior turbinate have been modeled with vari-
ous ROM techniques as well [20,21]. Recently, we adopted Galerkin
ROM (G-ROM) methods to simulate the experimentally-observed defor-
mations of vaginal tissue [22]. However, ROMs have not been used to
simulate how the presence of vaginal tears affects the deformations of
the vagina.

Alternative methods used to speed up FE models are machine learn-
ing (ML) techniques. These techniques have been applied, in conjunc-
tion with data generated by FE simulations, to model the mechanical
behavior of soft tissues in real time. Simple regression and decision tree-
based ML techniques have been used to predict deformations of breast
tissue under compression [23] and the liver during breathing [24]. Sup-
port vector regression and artificial neural networks (NNs) have been
employed to simulate deformations of the brain afflicted by a tumor
[25]. Additionally, the stresses of atherosclerotic arterial walls have
been described by deep neural networks [26]. To reduce output dimen-
sionality and the computational cost of modeling complex systems, ML
models can incorporate POD used in G-ROM. This POD-ML approach
has been applied to a variety of problem cases, such as modeling car-
diac electrophysiology [27] or electrostatics and fluid dynamics [28].
To the authors’ knowledge, neither ML nor POD-ML techniques have
been implemented to simulate the deformations of reproductive tissues
or the mechanics of childbirth.

This study presents the first comparison of two fundamentally dif-
ferent techniques for reduced order modeling, the Galerkin projection-
based ROM and the data-driven NN, to approximate FE-based simula-
tions of torn vaginal tissue. Building on a FOM framework [22] that
captures the ex vivo micro-structural and mechanical behavior of the
rat vagina under inflation, we produce new FE simulations of the organ
having a pre-imposed tear along the axial direction by changing the mi-
crostructure of the organ (i.e., mean preferred fiber orientations) and
applied luminal pressure (Section 2.1). Both ROM and ML techniques
are used to approximately reconstruct the linearized FOM solutions
produced by the final Newton-Raphson iterations of our FE solver (Sec-
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tions 2.2, 2.3, 2.4), and each technique’s performance is measured in a
Pareto space composed of relative error with respect to the FOM and
central processing unit (CPU) time required to produce approximations
(Section 3). We then compare the two techniques, assessing the advan-
tages and limitations of each (Section 4), and, finally, summarize our
preliminary investigation (Section 5) evaluating the potential of G-ROM
and ML strategies for the development of real-time computational tools
to predict vaginal tissue tearing during childbirth.

We emphasize that G-ROM and ML methods used in our numeri-
cal investigation are not state-of-the-art in their respective classes. In-
stead, we utilize simple G-ROM and ML strategies that allow an easy
implementation in available software packages such as Abaqus and
TensorFlow, which facilitates their use by practitioners with limited
experience in ROM and ML. We also stress that the conclusions of our
numerical investigation are valid only for the two simple G-ROM and
ML methods used, and cannot be extrapolated to the entire class of
G-ROM and ML strategies. We believe, however, that this preliminary
numerical investigation can serve as a stepping stone toward more re-
alistic settings (e.g., complex geometry, boundary conditions, loading
conditions, and constitutive descriptions) which could provide insight
into the use of ROMs in computer simulations of childbirth.

2. Methods
2.1. Full order model

In this section, we present the FE models that are used to capture
the deformations of rat vaginal canals with tears subjected to increasing
luminal pressure. We first describe the selection of geometry, boundary
conditions, and constitutive parameters of these models and then the
solution methods used to obtain training data to create G-ROM, ML,
and POD-ML models.

2.1.1. Geometry, boundary conditions, and constitutive parameters

In this study, we construct an FE model that describes deforma-
tions of rat vaginas that are induced by increasing luminal pressure.
All FE simulations were carried out using Abaqus/Standard (Abaqus
2020, Dassault Systemes Americas Corp., Waltham, MA) on a 24-core
Intel® Xeon® Gold6248R CPU @ 3.00 GHz with 191 GB of usable
RAM. Each simulation used a linear ramp function to increase lumi-
nal pressure from O kPa to a given target pressure. Abaqus outputs for
displacement vectors were recorded at the final step of each ramp func-
tion to create a quasi-static snapshot corresponding to the given target
pressure on the lumen.

The geometry, boundary conditions, constitutive model, and associ-
ated material parameters of our model were presented in detail in our
previous study [22]. However, in the current FE model, we considered
the effect of a pre-imposed tear in the form of an elliptical hole that had
a length of 5 mm and a width at mid-span of 1.08 mm. The major axis
of the tear was aligned along the axial direction of the vagina and the
minor axis was aligned along the hoop direction and centered at mid-
height. Fig. 1 displays the tear in the vagina, the other dimensions of the
hollow prolate spheroid which approximates the vaginal geometry, the
boundary conditions, and the coordinate system of the FE model. The
compressible Holzapfel-Gasser-Ogden (HGO) model for anisotropic hy-
perelastic materials with two families of fibers was selected to describe
the mechanical response of the vagina [29]. The material parameters of
this constitutive model were constant (¢ = 6 kPa, k; = 15 MPa, k, = 15,
D =0.05, k =0.25, N = 2) with the exception of the mean preferred fiber
orientations.

The vagina was divided in three anatomical regions (distal, mid,
and proximal) as shown in Fig. 1(a), each with two different mean pre-
ferred fiber directions. The mean preferred fiber directions of the two
families of fibers, a; = (0,cos #,sin #) and a, = (0,cos §, —sin ), and the
fiber dispersion parameter, x, were chosen to approximately represent
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Fig. 1. (a) Isometric, top, and bottom views of the rat vaginal specimen with dimensions and anatomical (proximal, mid, and distal) regions. (b) Boundary conditions
for the rat vaginal specimen used to simulate inflation testing. The annotations u,, u,, and u, denote the translational displacements of nodes at the boundaries.
The uppermost distal surface was fixed in the hoop and radial directions and subjected to a constant pressure in the axial direction, while the lowermost proximal

surface was fixed.

Table 1

Mean preferred fiber orientations, g,
B, and B, for the distal, mid, and
proximal regions of the vagina, respec-
tively, used in the FE simulations. The
orientations were defined relative to
the hoop direction of the vagina.

Parameter Set By B b,

I 35° 35° 55°
ey 30 35 65°
Uy 25° 25° 65°
s 350 25 55
Us 25° 35 55¢
He 35° 25° 65°
4 250 35 65°
U 25° 25° 55°

the experimentally measured collagen fiber organization in the tangen-
tial (hoop-axial) plane of the vagina (refer to Figure 10 in [30]). The
vectors a; and a, are defined using a pseudo-cylindrical local Cartesian
coordinate system described in detail in our previous study [22]. The
angle p was defined relative to the hoop direction of the vagina, i.e.,
the hoop direction was at a # =0° angle. In each of the three anatomi-
cal regions of the vagina, the two families of fibers had mean preferred
fiber orientations defined by +p. The mean preferred fiber orientations
in the distal, mid, and proximal regions were assumed to differ based
on experimental data [30] and be defined by the angles +4,, +4,,, and
+B,, respectively.

+

2.1.2. Finite element method

In this section, we present the FE method that was used to generate
the FOM data. In our numerical investigation, the FOM results served
as training data for the ROM (Section 2.2), the ML (Section 2.3), and
the POD-ML (Section 2.4) strategies. They were also used as benchmark
in the evaluation of the ROM, ML, and POD-ML results.

For each of the eight mean preferred fiber orientation combinations
Ui, ..., ug reported in Table 1, FE solutions at thirty luminal pressures,
p =2.5 kPa, p, =5 kPa, p; =7.5 kPa, ..., p3, =75 kPa, were obtained.
The pressure was incremented from 2.5 kPa to 75 kPa in equal steps of
2.5 kPa. In total, n = 8 X 30 nonlinear systems of equations were solved
in Abaqus using the Newton-Raphson method. The linearized FE system
of equations resulting from the final Newton-Raphson iterations of the
weak form of the equilibrium equations for each set of mean preferred
fiber orientations and luminal pressures is the following [31]:
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KOud = 0 for

I,... (@]

where K is the m x m tangent stiffness matrix, f is the m x 1 column
vector of loads corresponding to a given set of fiber orientations and
the discrete luminal pressure, and u(®) is the m x 1 column vector of dis-
placements. The integer m refers to the number of degrees of freedom
of each linearized system. We stored the solutions provided by the final
Newton-Raphson iterations for each set of fiber orientations and lumi-
nal pressures into n vectors, {u(Fl)OM,u(FZE)M, ,u(;'g) b each belonging
to R™. These vectors were then used to build and train the G-ROM and
ML as described in Sections 2.2, 2.3, and 2.4

The vaginal tissue was meshed in Abaqus using the structured
scheme of second-order quadratic hexahedral elements (C3D20) [32].
A mesh convergence study was performed via h-refinement with the
maximum element size decreasing from 2 mm to 1 mm in steps of 0.2
mm. The convergence study considered only a single fiber orientation
set, denoted by y, in Table 1, for which the mean preferred fiber orien-
tations by region were f, = §,, =35° and f, = 55°. The luminal pressure
was set to 75 kPa. Meshes of different maximum element size, h, were
compared using the mesh energy, E,, given by

n,

Eh = % (uhTKhuh) N

(2)
where u, is the m x 1 displacement column vector, and K, is the mxm
tangent stiffness matrix of the linearized FE system for the chosen fiber
orientation set and luminal pressure. The matrices K, and vectors u,,
are recorded from the solution provided by the last Newton iteration. To
assess convergence, we calculate the mesh energy relative error defined
as:

)Eh ~Ep,
E(h) = , 3

‘Ehmin
where E,  is the mesh energy associated with the smallest maximum
element size considered in the convergence study (in this case, h =1
mm). The mesh energy of the most refined mesh is used as the bench-
mark against which the other mesh energies, E,;,, are compared.

The relative mesh energy error values are plotted against the num-
ber of degrees of freedom in the reduced linearized FE systems corre-
sponding to each mesh size in Fig. 2. The “reduced system” excludes
degrees of freedom at fixed nodes because they have displacement val-
ues of 0 and so do not contribute to the mesh energy. Mesh convergence
was considered acceptable at 2~ = 1 mm as there was indication of dimin-
ishing returns with increasing mesh refinement. The relative difference
in mesh energy between 42 =1.2 mm and 4 = 1 mm was only 3.28% com-
pared to a 17.56% difference between 2 =1.4 mm and 4 =1 mm, and a
52.68% difference between 4= 1.6 mm and 2 =1 mm.
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Fig. 2. Mesh convergence study via h-refinement using mean preferred fiber
orientations given by §, = f,, = 35° and f, = 55° and luminal pressure p;, =75
kPa. The mesh energy relative error is plotted against the number of degrees of
freedom (DOFs) in the reduced linearized FE system.

The finest mesh contained 576 elements and 3419 nodes. With this
mesh, given that there were 3 degrees of freedom for each node, the
linear system described in Egs. (1) had a total of 10257 linear equations.

2.2. Linearized Galerkin-ROM (G-ROM)

In this section, we outline the construction of the G-ROM for the
linear systems in Egs. (1). Moreover, we describe the criteria used to
assess the G-ROM performance. Here, we use the POD method [9,11]
to determine an orthonormal basis, the POD basis {y/,-}£=1 of size I,

. (1 2) (n)
I <min{m, n}, for the set spanned by n vectors, {Wron Yrom F"OM},

belonging to IR™. These vectors represent the so-called ”snapshots.”
Thus, in our numerical investigation, the snapshots are solutions of the
FE systems in Egs. (1).

Let U be the m x n matrix whose columns are the snapshots: U =
[ug)OM, ,u(F"Z)M]. Let d <min{m,n} be the rank of U. To compute the
POD basis {y; }§= . of size /, we employ the method of snapshots [33,11],

so we solve the symmetric n X n eigenvalue problem for ¢;:

U'U¢, =1¢; for i=1,...d, “)

and then compute the POD basis as follows:

1
—U¢;
Vi

Let W be the m x [ matrix whose columns are the POD basis vectors:
¥ = [y,,...,y;]. The mx 1 column vector u"” is approximated by the
m X 1 column vector

v, = for i=1,...,d. )

(@)

— (i)
UG_rom = ¥E"s

6

where ¢® is an unknown / x 1 column vector that must be determined.
Substituting "?;)— ron into the linearized system of Eqs. (1) given by the
final Newton-Raphson iteration of our FE solver yields the following
linear system:
KOWeD = fO  for j=1,...

n. 7)
Remark 2.1. We note that a classical G-ROM for our setting would be
built by inserting the expansion (6) into the nonlinear equations, and
then projecting the resulting system onto the ROM space spanned by
{w,,....y;}. This would yield a nonlinear system of equations for the
unknown column vector (also known as POD coefficients), ¢, In (7),
however, we used a different approach. Specifically, instead of using
the full nonlinear equations, we used the linearized FE system of equa-
tions in (1), which is the final iteration in the Newton-Raphson method
used by Abaqus to solve the underlying nonlinear equations. We chose
this linearized G-ROM since its implementation in commercial software
packages such as Abaqus is extremely simple. Thus, practitioners with
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limited experience in the field can use the linearized G-ROM with min-
imal effort.

We also note that this a posteriori application of POD-based ROM
to the linearized equations resulting from FE discretization was
demonstrated for modeling palpation of the human cornea with both
anisotropic [14] and isotropic [15] hyperelasticity, as well as a model
reduction of an extended FEM approach for limbal relaxing incisions
on the cornea [34]. In addition, several techniques of model reduction
have been applied to linearized FE equations for nonlinear material
models of both academic test problems, such as cube compression and
thick-walled cylinder compression, and practical biomechanical test
problems, such as the inferior turbinate [20,21,35].

We then perform the Galerkin projection of Egs. (7) onto the space
spanned by the POD basis, {1[/,.}£=l (i.e., we multiply both terms of

Egs. (7) to the left by ¥T) to obtain the linearized G-ROM:

WTKOWD =W fO for i=1,..,n. ®)
The left side of Egs. (8), ¥T KW, is an I x | matrix, and the right side,
WT O isan [ x 1 column vector. The linear system in Egs. (8) can be
solved to find the /x 1 column vector, ¢, Thus, the m-dimensional FOM
system of equations (1) is reduced to the much lower /-dimensional G-
ROM system of equations (8) (/ < m), which is computationally cheaper
to solve.

We evaluate the G-ROM performance by evaluating the following
error, £g_roum defined as

n
(i)
EG-rom = Z‘EG’—ROM’ (€)
i=1
with
0) o |7
u —Uu
(i) _ ) G—-ROM FOMH]Rm
E6_rom = P (10)
’uFOM”Rm

where ||-||gm = mRm denotes the canonical norm in R™ associated
with the inner product (-, -)pm, and u(G’)_ rony 1S the G-ROM approxi-
mation of the FOM displacement snapshot corresponding to the i-th
parameter set and determined from Eqs. (6) using ¢ obtained by solv-
ing Egs. (8).

To evaluate the computational cost of the G-ROM, we record the
time necessary to run computations on a CPU for both training the G-
ROM and approximating the snapshots with the trained G-ROM. For
consistency, all the computations are carried out on the same machine
used to produce the FE simulations: a 24-core Intel® Xeon® Gold6248R
CPU @ 3.00 GHz with 191 GB of usable RAM.

Remark 2.2. In our numerical investigation, we considered only the re-
constructive regime for the G-ROM. We note, however, that one could
employ our linearized G-ROM approach in the predictive regime via
POD interpolation [14,15,36]. This operates under the assumption that
the unknown column vectors, ¢, are smooth functions of the load
vectors f) within a given set of fiber orientations and given luminal
pressure. Thus, for a given set of fiber orientations and luminal pres-
sure, one can fit the known POD coefficients and projections of the load
vectors onto the POD basis, ¥ f), using, for example, cubic spline in-
terpolation. The cubic spline polynomial can then be evaluated to solve
for coefficients, £, corresponding to unseen load vectors f which are
determined, for example, via linear interpolation to unseen values of
the associated set of fiber orientation and luminal pressure.

2.3. Simplified machine learning (ML) model

This section outlines our implementation of ML models for approx-
imation of the snapshots U. For this, let x) be the vector of variable
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Fig. 3. (a) A flowchart depicting the structure of a typical artificial neural network (NN) with an input layer corresponding to constitutive model parameters and
luminal pressure, two hidden layers, and an output layer corresponding to an approximation of a FOM snapshot. (b) A diagram of Eq. (12) which describes how

inputs in each layer are used to compute an output.

inputs that contains the values of the mean preferred fiber directions in
the three anatomical regions of the vagina (y, s, ..., or ug) and the
value of the luminal pressure (i.e., p; =2.5 kPa, ..., or p3, =75 kPa)
corresponding to the snapshot u® where i = 1,...,n. These vectors

FOoM’
are defined as follows:
x = (uy.pp)
x? = (11, p2)
1n
x40 = (ug,P30) -

Since each set y,, ..., ug contains three mean preferred fiber orientation
parameters (8, f,,, and ,), x¥) is a 4 x 1 column vector.

The artificial neural network (NN) that was used is schematically
represented with two hidden layers in Fig. 3(a). Since the goal of this
work is to compare the performance of simple G-ROM models with
simple ML models, for simplicity we choose a dense (fully-connected)
network, wherein the values from each node in a given layer affect each
node in the next layer. To be more precise, at each node of the current
layer of the network, the m components g; of the vector g of node values
from the previous layer (e.g., the 4 components of the vector x for the
first hidden layer) are combined with a set of coefficients, or weights
w;, that serve to either amplify or dampen the input components. These
input-weight products are then summed and that sum, with some bias
b, is passed through the (typically nonlinear) activation function, o, as
shown in Fig. 3(b). The output of each node is given by

m
a(ij qj+b>.
j=1

The outputs of each layer are then passed through the next layer of
nodes until the output (last) layer is reached. The final layer of the
NN yields the vector of model outputs, y) ~ "(120 - For our case, the
output is an m X 1 column vector that represents the ML approximation
of a snapshot, u;il) 1.» corresponding to the set of input parameters x®,

To compare our ML model to the G-ROM, the performance of nu-
merous sizes of NN architectures were assessed in terms of relative
error between ML approximations and the FOM solution as well as on-
line CPU time taken to generate ML approximations. Two architecture
parameters, often called “hyperparameters” to differentiate from the
weight and bias parameters that make up the NN, were varied. The
first NN architecture parameter was the so-called hidden layer size,
LS, which represents the number of nodes per hidden layer. A set of
LS values starting from 8 and increasing by multiples of 4 up to 2048
was used, yielding a total of five values: LS =8,32,128,512,2048. The
second hyperparameter, the “depth” of the NN, N D, which represents
the total number of hidden layers was fixed at ND =2 during the LS
sweep. The results of the LS sweep indicated diminishing returns in
relative error performance for architectures with LS > 128. Thus, a sec-
ond sweep was performed for a set of alternative depths of ND =3,4,5,
with LS fixed at 128.
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The epochs represent the number of times that the model inputs are
fed forward through the NN model and back propagated, adjusting the
weights and biases via the adaptive moment estimation optimizer [37]
to minimize a loss function. For all of the models, the loss function, J,
was selected to be the mean squared error, that is

Mtral

in o o 2
; .
Z ”uFOM -y (w’b)”Rm

Mtrain =

J(w,b) = (13)
where w and b are vectors of the weights and biases, respectively, for all
nodes at each layer of the network, and n,;, is the number of snapshots
used for training. Since the data size was relatively small, we used the
full training dataset at each iteration, so that the number of epochs was
equal to the number of optimization steps.

To determine the appropriate number of epochs for training, tests
were performed using callbacks to stop training when convergence was
observed in the loss of each ML model. Convergence was considered
achieved when the minimum recorded loss value had not decreased
for more than 25 epochs. We found that when this criterion was met,
diminishing returns on loss improvement with additional epochs were
consistently observable in fewer than 1024 epochs even for our largest
NN with the most trainable parameters (LS = 2048, N D =2). Thus,
all models across both hyperparameter sweeps were trained for 1024
epochs.

All models were implemented in TensorFlow [38] with 10-fold cross
validation; wherein the data are sliced into 10 different “folds” and
10 separate models are trained, each with a different fold extracted
from the training data to serve as a validation dataset (so here n,;, =
0.9 x 240 = 216). Cross-validation is a common technique for ensuring
that ML models are not overfit.

As with the G-ROM, we evaluate ML performance for each trained
fold model by defining the following error, &,,;:

n

Evr=1| 2 L 14)
i=1

with

‘ CHSOIE
i ML FOM m
XI)L_ 0 2 = 15)
1

| Fone

2.4. Simplified proper orthogonal decomposition machine learning
(POD-ML) model

Our ML model maps a very low-dimensional input parameter space
to a very high-dimensional output space, presenting a challenging struc-
ture for surrogate modeling, especially given our small training dataset.
This difficulty can potentially be mitigated by choosing an alternative
mapping that reduces the size of the output space of our ML models.
To that end, we combined aspects of our two techniques to create a
mapping from our parameter set (i.e., the set of mean preferred fiber
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directions and luminal pressure) to the POD coefficients ¢® of corre-
sponding snapshots via methods similar to those used by Hesthaven et
al. [28]. Our existing NN architecture was altered such that the final
layer yields an /-dimensional vector of POD coefficients, y ~ ¢ (Fl)o I
where ¢ (Fl)o  represents the ideal POD coefficients (i.e., the FOM data
projected onto the POD basis) rather than the POD coefficients obtained
by running the G-ROM. Consequently, the loss function which was min-
imized to train our POD-ML models took the form:

1 Mtrain . .
2 [[¢Fou =y w.b)
1

Mtrain j=

J(w,b) =

2
o (16)

To determine our training data, ¢ 5‘,)0 I for POD-ML, we performed
a singular value decomposition (SVD) on the FOM displacement field
data (i.e., the m x n matrix U with m > n) yielding

U=vzv', a7

where X is the n x n diagonal matrix containing the singular values of
U and V7 is the n x n matrix containing the right singular vectors of
U. We note that a simple matrix calculation [11] shows that the m x n
matrix of left singular vectors of U in (17) contains the matrix of POD
basis functions of U found in (5). Thus, for consistency, we denote the
matrix of left singular vectors of U with V.

Next, we note that, for any POD basis of size / with / < n, the training

data (i.e., the ideal POD coefficients), c(;)o o are defined as the projec-

tion of the FOM data, u(;)o > onto the POD basis:

—_wpT,,0
_‘I’lu

FoMm® 18)

[ i=1,...n,
where ¥, is the / x m matrix containing the first / columns of W¥. Fi-
nally, since the columns of ¥ are orthonormal, the SVD (17) yields the
following formula for the training data:

=z i=1,.. (19)

CE:“)OM n
where X, is the / x I matrix of X containing the first / singular values of
U, and v®7 are the I x 1 right singular vectors of U contained in V.

The NN architecture for POD-ML had a network depth of ND =2
with LS = 128 nodes per hidden layer. The dimension of the output
layer varied across trials from / =1, ..., 100 corresponding to the size of
the POD basis and associated POD coefficients for which the NN was
trained. Thus, an aptly modified version of Fig. 3(a) would show nodes
for y(1i>, s ygi). All other aspects of the NN training process remained the
same for the POD-ML as for the ML, such as use of a sigmoid activation
function, 1024 training epochs, use of the adaptive moment estimation
optimizer, and 10-fold cross-validation.

The relative error of our prediction with respect to the FOM was
determined by using values of the POD coefficients predicted by our
NN, y? =¢ 5(; 1.» in conjunction with the known POD basis, W, to produce
approximations of the FOM displacement field. Thus, the performance
for each trained cross-validation fold model, £ppp_prr, was defined as
follows:

n
(i)
Epop-mL = ZSIiOD—ML (20)
i=1
with
. . 2
o _ 0
(i) _ ”\I‘CML “rom || gm 21)
POD-ML — @ 2 :
| FOM ||jm

To ensure fairness of comparison between methods, all computa-
tions for training and approximation with the various ML models are
carried out on the same machine used for both the FE simulations and
the G-ROM: a 24-core Intel® Xeon® Gold6248R CPU @ 3.00 GHz with
191 GB of usable RAM. As with the G-ROM, we evaluate the compu-
tational cost of the ML models by recording both the time required to
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run computations for training and the time required to approximate the
FOM snapshots with a trained model.

3. Results

In this section, we present the results for our numerical investiga-
tion. Specifically, we present the FOM results (Section 3.1), which are
then used as snapshot data in the G-ROM and ML numerical comparison
(Section 3.2).

3.1. FOM

Increase in luminal pressure. The FE simulations of the torn vagina
capture a variety of deformations in response to the applied luminal
pressure. These deformations changed with increasing luminal pressure,
from p; =2.5 kPa to p3, =75 kPa, and differences in mean preferred
fiber directions, as defined by Bps Bous and g, in the proximal, mid, and
distal vagina, respectively. The magnitude of the displacement field
increased with increasing luminal pressure for every combination of
fiber orientations considered, away from the fixed end of the vagina
(Fig. 4). The mid region deformed significantly more since most of the
tear spanned this region. As pressure increased, the tear predominantly
widened in the hoop direction taking a more circular and less elliptical
shape.

Variations in fiber organization. Localized variations in the magnitude
of the displacement field of FOM solutions obtained with different com-
binations of fiber orientations at the same luminal pressure were also
observed (Fig. 5). Changes in mean preferred fiber orientation from
pq =25° to p,; =35° in the distal region, from f,, =25° to §,, =35° in the
mid region, and from f, =55° to f§, = 65° effectively made the mechan-
ical response of these regions more compliant in the hoop direction,
resulting in a deformed vagina with a more prolate-like shape.

The model depicted in Fig. 5(b) differed from the model of Fig. 5(a)
only due to the mean preferred fiber direction of ,, = 25°. This decrease
in g, resulted in a narrower shape of the deformed organ through the
mid region. The magnitude of the displacement field in the mid region
did not change but it was greater in the distal region owing to increased
axial displacement as one can appreciate when comparing Fig. 5(a) and
Fig. 5(b). Interestingly, when the mean preferred fiber direction was
closer to the hoop direction in the mid region of the model, effectively
making the vaginal tissue stiffer in the hoop direction through that re-
gion, a wider opening of the tear was observed (Fig. 5(a)-(b)).

Both the distal and proximal mean preferred fiber orientations of
the model in Fig. 5(c) differed from those of Fig. 5(a) with g, =25° and
B, = 65°. These differences resulted in a relative decrease in the magni-
tude of the displacement field in the distal region and a relative increase
in the magnitude of the displacement field in the proximal region for
the model of Fig. 5(c) compared to the model in Fig. 5(a) at the same
luminal pressure. Consequently, the model in Fig. 5(c) is more prolate-
like on the distal end and comparatively spherical on the proximal end.
The tear behaved similarly between the models depicted in 5(c) and
5(a). Lastly, Fig. 5(d) depicts a FOM solution with mean preferred fiber
directions that are entirely different from the solution in Fig. 5(a), with
B4 = B, = 25° and B, = 65°. The model in Fig. 5(d) had relatively less
deformation in the hoop direction in the mid and distal regions com-
pared to the model in Fig. 5(a). However, the displacement field of the
distal region for the model in Fig. 5(d) had a greater magnitude com-
pared to the model in Fig. 5(a), owing to greater axial displacement.
The proximal region of the model in Fig. 5(d) showed greater deforma-
tion in the hoop direction resulting in a more spherical shape than the
proximal region of the model in Fig. 5(a). The increased stiffness in the
hoop direction due to a decrease in f,, in the mid region of the model
in Fig. 5(d) appeared to create a wider opening of the tear compared to
the model in Fig. 5(a).
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Fig. 4. Nodal displacement magnitude of the FE model of torn vagina for (a) undeformed mesh and (b)-(f) deformed meshes for various values of the applied luminal
pressure p;, with f; = §,, =35° and f, = 55°. The upper, middle, and lower thirds of each FE model correspond to the distal, mid, and proximal regions of the vagina,
respectively. Note that ||-|| denotes the Euclidean norm in R?.

B,=B,=35°, B,= 55°
149, ]| (i)
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Fig. 5. (a)-(b)-(c)-(d) Nodal displacement magnitude of the FE model of torn vagina for various values of the mean preferred fiber directions, g, 8,,, and B,, at an
applied luminal pressure p,, =55 kPa. The upper, middle, and lower thirds of each FE model correspond to the distal, mid, and proximal anatomical regions of the
vagina, respectively. Note that ||-|| denotes the Euclidean norm in R3.
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Fig. 6. (a) Cumulative energy of the eigenvalues A, ..., 4,y corresponding to

the POD basis functions y,, ...,y , respectively. The gray shading marks the
basis functions that lead to an RIC index of 0.9999. (b) Decay of the eigenvalues
Ats ... Ao corresponding to the POD basis functions yy, ...,y o, respectively.

3.2. Simplified G-ROM and ML

G-ROM basis construction. There is no universally accepted method to
select the number / of POD basis functions for the G-ROM, but the cumu-
lative energy of the eigenvalues, € = (YI_, 4,)/(X", 4;), which is also
known as the relative information content (RIC) index [39], is often
used. The cumulative energy of the eigenvalues exceeded a tolerance of
0.9999 at | =42, as shown in Fig. 6(a). The decay of the eigenvalues
Ay ...y Ao corresponding to the POD basis functions y, ...,y g from
Egs. (5) did not show the clear plateau that is typically associated with
exhaustion of all viable basis functions (Fig. 6(b)). Thus, we concluded
that the quality of the G-ROM was dependent on lower energy POD
basis functions. This can be seen in Fig. 6(b), where the eigenvalues
consistently decayed from values of O(10%) to O(1073) for I =1, ..., 100.

Accuracy. The relative error £;_gop Of the G-ROM approximations
with respect to the FOM solutions averaged over all degrees of free-
dom and all snapshots, shown in Fig. 7, ranged from O(10°) to O(107°).
The error exhibited a typical pattern for G-ROMs, improving rapidly
at first and then showing diminishing returns with increasing com-
putational cost as the size of the POD basis increased from /=1 to
I =100. Shown for comparison, are the relative errors &,,; of the ML ap-
proximations generated using various NN architectures with increasing
computational cost, averaged across the 10-fold cross validation models
(Fig. 7(a)). For model architectures where N D =2, the error decreased
by an order of magnitude from O(1) to O(10~!) when increasing from
LS =8 to LS =128. However, further increases in LS up to LS =2048
yielded no further error improvements, and even slightly degraded the
error performance compared to LS = 128. These diminishing returns on
error for LS > 128 with dramatic increases in online computational cost
led us to use LS = 128 for our investigation of varying N D. Increasing
to ND=3, ND=4,and N D =5 did not yield substantial improvements
in error performance over LS = 128 and N D =2, with small increases in
online computational cost. Also shown are the relative errors, Epgp_ps1.»
of the POD-ML models approximating POD coefficients for POD bases
of size I =1,...,100. The relative error of the POD-ML approximations
decreased with increasing /, but the errors still remained in the same
range of magnitudes as did the errors of the ML, O(1) to O(10~"). Error
improvements for the POD-ML diminished around / = 12. The primary
advantage of the POD-ML was its generally lower computational cost.
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Fig. 7. (a) Pareto plot: Relative errors (Egs. (9), (14), and (20)) versus the online
(CPU) time for G-ROM with POD bases of size / ranging from /=1 to / = 100,
ML models with various combinations of hyperparameters LS and N D, and the
POD-ML models for POD coefficients with / ranging from /=1 to / = 100. The
gray shading marks the lower bound of the relative error for the ML models. (b)
Relative error of the G-ROM versus the number / of the POD basis functions.
The gray shading marks the number (/ = 11) of the POD basis functions with a
relative error that is comparable to the ML model with LS =128 and ND =2.

Comparison between G-ROM and ML. The average error of the ML fold
models with hyperparameters LS =128 and N D =2 was found to be
numerically comparable to the error of the G-ROM with a POD basis
of size I =11 (Fig. 7). For this reason, these two models, as well as the
POD-ML model corresponding to / = 11, were chosen for a more gran-
ular comparison of G-ROM and ML error performance at the levels of
individual snapshots and mesh nodes. Fig. 8 shows the analysis of the
accuracy with which the G-ROM with / = 11, the ML with LS =128 and
ND =2, and the POD-ML with / = 11 approximated individual snap-
shots at each luminal pressure and for each parameter set describing
the fiber organization. The results indicated that all three methods had
fairly consistent performance across both pressure values and mean
preferred fiber orientations, for snapshots corresponding to pressures
ranging from 10 kPa to 75 kPa. However, pressures of 7.5 kPa and be-
low had worse error performance and greater error variation between
fiber orientation combinations at the same pressure for all methods,
with the POD-ML with / = 11 basis functions showing the worst per-
formance. Errors were highest for the snapshots at the lowest pressure
value of 2.5 kPa with G-ROM relative error reaching 0.049 for u,, ML
error reaching 0.031 for yg, and POD-ML error reaching 0.129 for ug.
We note that the G-ROM error performance was generally worse than
the ML error performance for pressures lower or equal to 7.5 kPa, but
the POD-ML performed worse than either. We also note that, for pres-
sures greater or equal to 10 kPa, the G-ROM generally performs better
in terms of error than the ML or POD-ML, with the lowest values of
error at 0.001 for the G-ROM, 0.004 for ML, and 0.003 for POD-ML.
Lastly, we calculated nodal errors of the G-ROM and ML approx-
imations relative to the FOM solutions at one low pressure snapshot
(p; =2.5 kPa) and one high pressure snapshot (p,, =55 kPa) for y,, and
mapped them over the surface of the deformed mesh to compare local-
ized error performance between our techniques (Fig. 9). At the lower
pressure, the G-ROM showed largest errors on the sides of the tear and
in the distal region, especially close to the opening (Fig. 9(a)). Smaller
errors for the same case were displayed in the proximal region close to
the opening and in a band around the mid region, away from the tear.
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Fig. 8. Relative errors (Egs. (10), (15), and (21)) of approximations produced
for each fiber orientation parameter set (differentiated by color) at each luminal
pressure p,,...,ps by (a) the G-ROM using a POD basis of size / = 11, (b) the
ML model with hyperparameters LS =128 and ND=2, and (c) the POD-ML
model with / =11, LS=128 and ND=2. The gray shading marks snapshots
with lowest relative errors.

The ML approximation at lower pressure also had larger errors in the
immediate region of the tear, but the error over most of the rest of the
geometry was fairly uniform with patches of slightly larger and slightly
smaller errors distributed randomly throughout (Fig. 9(b)). The excep-
tion was a thin band of smaller errors around the proximal opening
which can be seen clearly on the interior of the geometry when viewing
through the tear. While the POD-ML approximation had greater over-
all magnitudes of error, the patterns of error on the mesh reflected that
of the G-ROM with the notable exception of the boundary region at the
distal opening (Fig. 9(c)). Whereas the G-ROM had greater error on this
boundary than elsewhere in the distal region, the POD-ML had smaller
errors at the boundary than elsewhere. In the higher pressure case, the
G-ROM once again exhibited slightly larger errors around the edges
of the tear, though less pronounced than in the lower pressure case
(Fig. 9(d)). The proximal region again had smaller errors than other re-
gions, but the band around the mid region had slightly larger errors in
this case. Overall, the magnitude of the error in the higher pressure G-
ROM case was much smaller than in the lower pressure case. The higher
pressure ML approximation also had a less pronounced increase in error
around the edges of the tear when compared to its low pressure coun-
terpart (Fig. 9(e)). Its other characteristics were very similar though,
with randomly distributed patches of larger and smaller errors and a
band of smaller errors around the proximal opening. As with the lower
pressure case, the POD-ML approximation of the higher pressure snap-
shot had greater error magnitudes but similar patterning of error to the
G-ROM in the mid region and the distal region away from the boundary
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(Fig. 9(f)). Different from the G-ROM, the POD-ML again had smaller
errors at the distal opening than elsewhere in the proximal region. In ad-
dition, the POD-ML exhibited errors in the proximal region away from
the boundary which were similar to the errors of the mid region rather
than smaller, as was the case for the G-ROM. The overall magnitude of
errors for the G-ROM and POD-ML approximations changed quite sub-
stantially between lower and higher pressure cases, while the ML had
similar overall error magnitudes in each of the pressure cases.

Computational cost. All values for computational cost assessment were
produced by running the offline and online portions of the G-ROM and
NN on the same 24-core Intel® Xeon® Gold 6248R CPU @ 3.00 GHz
with 191 GB of usable RAM that was used to produce FOM results.
No GPU hardware acceleration was implemented when generating our
results (see discussion in Section 4).

The offline (training) and online (approximation) times are listed
in Table 2 alongside corresponding relative errors (Egs. (9), (14), (20))
for the least expensive G-ROM (/ = 1), the G-ROM used for snapshot
and local error comparisons with the ML model (/ = 11), the most ex-
pensive G-ROM (I = 100), the least expensive ML architecture (LS =8,
N D =2), the ML architecture used for snapshot and nodal error com-
parisons with the G-ROM (LS = 128, N D =2), the most expensive ML
architecture (LS =2048, ND =2), and the POD-ML (/ =11, LS = 128,
ND =2). The least expensive G-ROM had an offline time of 0(107!)
s, and the G-ROM at comparable error performance to the ML, with
hyperparameters LS = 128 and ND=2, had an offline time of O(1)
s. Training the most expensive G-ROM, with / = 100 basis functions,
only took O(10') s. The mean offline times for all the ML models from
least to most expensive were of O(10%) s, an order of magnitude larger
than the offline time of the most expensive G-ROM. As for online times,
the G-ROM with one basis function was, predictably, the least expen-
sive to evaluate, taking O(10~3) s to complete. The G-ROM with a POD
basis of size 11 was not much more expensive, with an online time
also of O(1073) s. By contrast, the G-ROM with a 100-dimensional POD
basis had an online time of O(10~!) s. The online times of the ML mod-
els with LS =8 and LS = 128 were quite similar, both taking O(1072)
s to produce approximations. The online time of the ML model with
LS = 2048 was more similar to the G-ROM for / = 100, with an online
time of O(107!) s. Lastly, the POD-ML model with / =1,...,100 gener-
ally outperformed the ML model in all cases, with the most expensive
approximations (! = 100) having online times of O(10~2) s and complet-
ing faster than the smallest ML model (LS =8, N D =2). Many of the
POD-ML approximations (I = 2, ...,65) had online times of O(10~3) s and
performed either comparably or superior to their G-ROM counterparts.

We note that substantially more floating point operations (FLOPS)
were required for an evaluation of the ML model mapping from param-
eter sets to full displacement fields than were required for the G-ROM.
We speculate that the similarity in evaluation times was due to paral-
lelization and optimization built into the established ML libraries we
used in our study.

4. Discussion

In this study, we constructed an FE model of the rat vagina with
geometry and boundary conditions meant to recreate the ex vivo ex-
periments conducted in our lab [40]. The model accounts for observed
differences in the microstructure of the proximal, mid, and distal vagina
[30]. A pre-imposed elliptical tear with the major axis aligned with the
axial direction of the organ was included in the geometry so the model
could give us insight into the impact that a large tear had on the defor-
mation of vaginal tissue. The results of our simulations showed that the
initially elliptical tear became more circular as the pressure increased
(Fig. 4) and that the opening of the tear was favored when the mean pre-
ferred fiber directions were more aligned in the hoop direction (Fig. 1).
Both these findings are consistent with our experimental investigation
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Fig. 9. Nodal relative error plotted on the surface of deformed mesh for approximations of snapshots via G-ROM with a POD basis with / = 11 at p, =2.5 kPa (a) and
P =55 kPa (d), via ML with hyperparameters LS =128 and N D =2 for snapshots at p, =2.5 kPa (b) and p,, =55 kPa (e), and via POD-ML for snapshots at p, =2.5
kPa (c) and p,, = 55 kPa (f), all with mean preferred fiber orientations, x; (f, = f,, =35° and §, = 55°).

Table 2

Offline times, online times, and relative errors for the FOM, the G-
ROM with a POD basis with /=1, / =11, and / = 100, ML models
with architectures defined by hyperparameters LS =8, 128, and
2048 with N D =2, and the POD-ML model with / = 11 POD basis
functions. The FOM offline time is the full cost of simulation and
the FOM online time is the order of the cost of the final Newton-
Raphson iterations for the 240 parameter combinations.

Model Reduction Offline Online Relative
Technique Time (s) Time (s) Error

FEM 3.827 x 10* 0(10) N/A
G-ROM: /=1 0.479 0.005 5.095
G-ROM: /=11 1.641 0.009 1.189 x 10!
G-ROM: / =100 13.650 0.112 9.364 x 1073
ML: LS =8, ND=2 104.947 0.015 1.069

ML: LS =128, ND=2 108.181 0.017 1.461x 107!
ML: LS =2048, ND=2 476.234 0.127 2.785x 10!
POD-ML: / =11 14.919 0.009 3.193x 107!

exploring the toughening mechanisms of the vagina in the rat model
[301.

Although both the selected geometry (i.e., the hollow prolate
spheroid) and boundary conditions (e.g., uniform luminal pressure)
of the FE model well replicate the experimental conditions of the ex
vivo vagina, they are not a realistic representation of the shape and
boundary conditions of the in vivo vagina. To create an FE model that
accurately represents in vivo conditions, we are currently using mag-
netic resonance imaging (MRI) to obtain detailed images of the vagina
within the entire reproductive system in rodents. These new data will
be incorporated into FE models to reconstruct the geometry and repro-
duce both boundary and loading conditions of the reproductive system.
Vaginal tears were assumed to be static elliptical holes in the geometry
of our FE simulations, as done by others to study the mechanical impact
of episiotomy [7]. This assumption was supported by our experimental
work showing that the vagina is a very tough organ with a microstruc-
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ture that prevents tear propagation. Experimentally, pre-imposed tears
along the axial direction of the rat vagina were observed to propagate
under inflation at a mean (+std. dev.) pressure of 40 + 10 kPa [30]. To
improve the realism of the FE simulations, we plan to create FE models
that can not only simulate the deformations of the torn vagina but also
the progressive propagation of tears. One method which could allow us
to simulate tear propagation in the vagina is the cohesive zone model
for fracture mechanics [41]. The implementation of such model would
still require that we pre-imposed the site of the tear and the direc-
tion of tear propagation. To simulate tearing behavior which is entirely
controlled by the mechanics of our model, we instead would need to
implement damage modeling into our material constitutive equations
and delete elements from the mesh when they meet some set failure
criteria [42,43].

With regard to our simplified model reduction techniques, our re-
sults appear to indicate that the G-ROM outperformed the ML in all our
metrics of comparison, with the exception of the POD-ML having com-
parable speed to smaller-dimensional G-ROMs. The Pareto plots shown
in Fig. 7(a) and both the offline and online times for the G-ROM and ML
methods listed in Table 2 seem to favor the G-ROM as having superior
performance. The most expensive G-ROM considered, with / = 100 POD
basis functions, had an offline time which was an order of magnitude
smaller than the least expensive ML model and an error that was 4 or-
ders of magnitude smaller than any of the ML models. While online time
for this G-ROM was one order of magnitude slower than most of the ML
models and two orders of magnitude slower than most of the POD-ML
models, it was comparable to the online time of the most expensive ML
model. The lowest error approximation from the ML models (L.S =128,
N D =5) was outperformed by the G-ROM with / =11 POD basis func-
tions. We do, however, note that the ML approximations had slightly
more competitive error performance for the lower pressure snapshots
from 2.5-7.5 kPa as the G-ROM only achieved superior performance in
this range with / > 14 POD basis functions.

We speculate that the superior performance of the G-ROM in this
case may be due to it being inherently physics-informed as it is con-
structed from the linearized equations of the nonlinear elasticity prob-
lem, whereas the ML must relate model inputs and outputs without
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knowledge of the physics. However, this does not mean that the G-
ROM is the preferred method of order reduction for all use-cases. The
linearized G-ROM presented in this study could perform better than
ML only in the context where the governing equations of the prob-
lem are known and the goal is to reconstruct the existing snapshots
on which the models are trained. Having an ML technique which is not
dependent on known governing equations can be an advantage as it is
more easily adaptable to performing approximations with, for example,
experimental data sets. The ML model could perform these approxi-
mations without the need to first replicate the experimental results in
FE models as would be necessary for G-ROM. In addition, the G-ROM
used in this study is constructed from the linear systems produced by
the final iterations of the Newton-Raphson method applied to the non-
linear system of equations of our nonlinear elasticity problem. Thus,
the G-ROM we used here has difficulties being extended to the predic-
tive regime as components of the linearized system at new parameters
can only be obtained via running additional FE simulations, decreas-
ing the improved efficiency of G-ROM. Therefore, prediction of new
snapshots with our G-ROM for parameters not included in the training
data would require methods such as the subspace interpolation used
by Niroomandi et al. [15] and Pfaller et al. [19] or precomputation
of G-ROM bases for a set of “most probable” load states, also used by
Niroomandi et al. [15]. Alternatively, the difficulties in the predictive
regime could be addressed by constructing a fully nonlinear G-ROM.
However, that would certainly increase the overall computational cost
of the G-ROM. By contrast, the ML model does not require additional
steps to perform such extrapolative predictions. However, an ML model
which is not physics-informed may have worse performance when mak-
ing predictions outside of the training regime than would a comparable
physics-informed approach. Therefore, the type of ML model used in
this study may not be as reliable as a nonlinear G-ROM for making
predictions, but it does have an advantage in comparative ease of im-
plementation. We also note that the ML has a general advantage in
terms of usability due to open source tool-kits like scikit-learn and Ten-
sorFlow.

The superior speed performance of the G-ROM compared to the ML
could be due to the implementation of both techniques on a CPU rather
than a graphics processing unit (GPU). Typically, ML models are imple-
mented using hardware acceleration to leverage the GPU and reduce
computational cost. From cursory testing with hardware acceleration
we found that our ML models with LS up to 1000 had online times
of O(1073) s. Our choice not to conduct all of TensorFlow’s calculations
on the CPU instead of GPU had two motivations. First, we do not yet
have a TensorFlow implementation of our G-ROM methods which can
benefit from hardware acceleration, so our ML results needed to be run
on a CPU for the sake of a fair comparison. Second, we found that
our GPU (NVIDIA® Quadro RTX™ 5000) would exhaust its available
memory when computing NN models with LS =2048. Our results in-
dicated that LS > 128 yielded diminished returns in performance, so
we acknowledge that such large hidden layers may not be necessary for
problems of our type. As this project advances, we will narrow our fo-
cus to optimize NNs with smaller LS for which hardware acceleration
is viable.

Both model order reduction techniques, the G-ROM and ML meth-
ods, struggled to approximate FE simulations at lower luminal pres-
sure. In Fig. 8, we compared approximations of individual snapshots
at pressure values py,...,ps, using the G-ROM with / =11 POD basis
functions, POD-ML of the same dimension, and the ML model with
LS=128 and ND=2. All approximations exhibited worse error per-
formance for snapshots at pressures from 2.5-7.5 kPa, but the G-ROM
and POD-ML at / = 11 had worse error performance than the ML and
more variation in error between fiber orientation combinations. This
difficulty in approximating the FOM at lower pressures may be the
result of the highly nonlinear anisotropic elastic behavior of vaginal
tissue. According to the HGO constitutive model implemented in this
study, the deformations of the vaginal tissue are determined by both
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the arrangement of the fibers comprising the tissue and the surrounding
isotropic ground substance. Such deformations increase exponentially
with the applied pressure, changing significantly from low pressures to
high pressures based on the contributions of the fibers and ground sub-
stance.

When comparing G-ROM and ML approximations at comparable lev-
els of overall relative error, we also found that the profiles of localized
errors for the two methods were quite different (Fig. 9). Figs. 9(a), 9(b),
and 9(c) all showed larger values of error around the edges of the tear
as expected given that the tear region experiences larger deformations
and greater stress concentrations than other parts of the model. How-
ever, Figs. 9(a) and 9(c) had generally larger magnitudes of error over
most of the geometry compared to Fig. 9(b). This agrees with the results
for errors at different values of pressure shown in Fig. 8, wherein the
G-ROM and POD-ML approximations tended to perform worse at lower
pressures than the ML approximations. Notably, the G-ROM and POD-
ML approximations in Fig. 9(a) and 9(c) also had clear patterns of local
error in regions away from the tear. One could observe smaller errors
at the proximal opening, slightly larger errors in the region of transi-
tion from the proximal to mid region, a band of smaller errors again in
the mid region, and then larger errors throughout the distal region up
to the distal opening. For the POD-ML, the error dropped again at the
boundary on the distal opening. Comparatively, the ML approximation
errors in Fig. 9(b) did not have the same sort of regional distinctions
away from the tear. There were small patches of larger or smaller local
error dispersed over the geometry and only a thin band of smaller errors
around the proximal opening. A similar disparity was observed between
Fig. 9(e) and Figs. 9(d) and 9(f). The G-ROM approximation in Fig. 9(d)
had alternating bands of smaller errors in the proximal region, larger er-
rors in the mid region, and smaller errors again in the distal region. The
POD-ML approximation in Fig. 9(f) had its smallest errors at the prox-
imal and distal openings and the error appeared to increase gradually
when approaching the middle of the geometry from either end. In con-
trast, the ML approximation in Fig. 9(e) had patches of larger or smaller
local error and a band of smaller errors around the proximal opening in
similar fashion to Fig. 9(b). It seems likely that these differences in local
error between models are due to the fact that the G-ROM and POD-ML
relied on the POD basis, whereas the ML did not. For the POD-ML in
particular, the multiplication of the approximated POD coefficients by
the known POD basis may have imparted characteristics of the bound-
ary conditions stored in the POD basis onto the resulting displacement
field prediction which were not captured by the direct parameter-to-
displacement mapping. This may account for the local errors of the ML
approximations having a comparatively random distribution that was
much less affected by regional proximity to boundaries. However, it is
still not clear why the error at the distal boundary appeared to decrease
for the POD-ML and increase for the G-ROM.

The “patchy” nature of the ML model error in Fig. 9 also high-
lights a potential path for improving the ML models by building spatial
structure into the approximation. This can be done by penalizing large
deviations between values at nearby nodes — rewarding smoothness —
as part of the loss function. A natural first step toward encoding this lo-
cality is to consider the mass matrix from the FE construction, which
characterizes connections in the mesh. Of course, once we have added
the mass matrix into the ML loss function, it would be natural to try
to incorporate other operators from the FE in a similar way to penalize
model outputs that violate the underlying partial differential equations.
This is the approach of “physics-informed” machine learning; see, e.g.,
[44] for background and [45] for one implementation using TensorFlow.
The low-dimensional inputs and high-dimensional outputs also point to
the potential for using data reduction techniques such as what we have
implemented with POD-ML or auto-encoders [46] (see also, e.g., [47,
Section 6]) to reduce the dimension of the target data before fitting
with ML. Our trials with a POD-ML models yielded improvements in
computational cost compared to our ML models which mapped to the
full displacement field. However, POD-ML did not provide any benefits
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in terms of model accuracy. We did attempt some preliminary inves-
tigation of auto-encoder methods for ML, but they did not seem to
materially improve the accuracy or, due to the cost of decoding, the
online time for this problem case. We plan to further develop our im-
plementation of POD-ML and perform a more extensive exploration of
auto-encoder methods to build more effective ML models going for-
ward.

5. Conclusions

This work presented FE simulations that illustrated the deformations
of the rat vagina during ex vivo inflation testing. Differently from our
previous study [22], the FE simulations described the effect of a pre-
imposed tear on the mechanical response of the vaginal tissue. These
simulations, for eight different sets of material parameters and thirty
values of luminal pressure, were used as snapshots to implement and
compare two fundamentally different strategies: a simplified, linearized
G-ROM and a straightforward ML approach with various NN architec-
tures. In addition, we combined elements of both strategies to imple-
ment a POD-ML approach which was compared to both the G-ROM and
the ML approaches.

Each technique was used to produce approximations of the snap-
shots, and these approximations were compared in terms of accu-
racy and both offline and online computational costs. It was found
that, when approximating the FE-based snapshots in the reconstruc-
tive regime, G-ROM was both more accurate and less computationally
expensive than the ML models. The ML model for which approxima-
tions had the lowest error was outperformed in terms of error by the
G-ROM with a POD basis of size / = 11, and the G-ROM approximations
at comparable levels of error had lower online times than those from
ML models. When using a POD-ML approach, the online computational
cost of the ML strategy was comparable to the G-ROM, but the POD-ML
did not improve on the error performance of the ML models. The offline
times for training ML models were an order of magnitude larger than
the offline time needed to train even the most expensive G-ROM with
a POD basis with / = 100, and the offline training time of the POD-ML
was one order of magnitude greater than the offline time of the G-ROM
for the same size of POD basis.

To the authors’ knowledge, this comparison of basic numerical and
data-driven model reduction techniques for approximating the defor-
mations of anisotropic hyperelastic soft biological tissues is the first of
its kind. While these findings suggest that the G-ROM is a superior or-
der reduction method for this specific reconstructive task, there may be
more complex forms of NN or other ML methods which would be more
competitive than those employed here, and ML techniques could still
be preferred for certain model reduction use-cases due to their ease of
implementation and adaptability to the predictive regime. Just as the
ML methods chosen for the G-ROM versus ML comparison were fairly
simple, more advanced G-ROM methods (e.g., using a classic ROM dis-
cretization of the fully nonlinear equations and equipping the resulting
ROM with hyperreduction [35,48,49]) could also be evaluated in future
comparisons of computational cost and accuracy. Additionally, future
inquiries could compare the predictive capabilities of ML models to
a predictive regime technique for G-ROM such as the POD interpola-
tion described in Remark 2.2. In general, the successful implementation
of both techniques for our simplified model of ex vivo vaginal tissue
deformations indicated potential for their application to more realistic
simulations. Thus, future studies will need to investigate model reduc-
tion techniques for the approximation of FE models of the vagina with
more realistic geometries and boundary conditions, as well as tear ini-
tiation and propagation, to better reproduce the in vivo characteristics
of this important reproductive organ and accurately simulate vaginal
tearing during childbirth. The results herein laid a solid foundation for
further investigations of G-ROM and ML as competing options for real-
time simulation of maternal birth trauma.
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