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Abstract

This study investigates the evolution of suffusion and mechanical behaviors of gap-
graded soils under anisotropic stress conditions. The interactions between granular
assembly and seepage flow are modeled using the coupled computational fluid dynamic
and discrete element method (CFD-DEM). A series of suffusion tests followed by
drained triaxial compression and extension tests are performed to explore the influence
of stress anisotropy on the initiation and development of suffusion and the shear
responses of eroded specimens. The results reveal that the specimens with the major
principal effective stress aligned with the primary flow direction are more erodible
evidenced by more severe fines loss, volumetric contraction, and void ratio changes.
Suffusion tends to reduce the peak strength, peak friction angles, and secant stiffness of
specimens under both triaxial compression and extension conditions, while its impact
on the critical-state shear strength is negligible. The change of contact network
efficiency is tracked by various coordination number measures during the suffusion and
shear stages. The evolution of stress anisotropy during suffusion and shearing is

evaluated by the directional distributions of the strong and weak normal contact forces.

Keywords: suffusion; fabric anisotropy; CFD-DEM; microstructure; shear behaviors
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1. Introduction

Internal erosion is one of the culprits for the instability and even dysfunction of
earthworks, such as foundations, dams and levees [1-3]. Since the last century,
approximately half of all dam failures have been caused by internal erosion in different
forms, including concentrated leak erosion, backward erosion, soil contact erosion and
suffusion [4]. This study focuses on suffusion, which refers to the process of fine
particles being detached and transported through the soil matrix by seepage flow. It has
been well recognized that the onset and evolution of suffusion are closely related to
many factors, e.g., geometric conditions [5—8], stress states and history [9—-11], and
hydraulic conditions [12, 13]. Among the extensive suffusion investigations in recent
years [14—-16], the influences of stress conditions on suffusion have attracted much
attention due to its complexity and ubiquity in earthen structures. Specifically, in
embankment dams, both stress and hydraulic conditions vary with locations. The soils
inside dams are usually in anisotropic stress states with the maximum principal
effective stress being oblique and having an angle varying from 0 ~ 90° with respect to

the primary flow direction [17].

Although the full suffusion process and its effect on mechanical behaviors of soils can
be conveniently studied through laboratory tests [4, 18—20] and modeled through
continuum-based numerical simulations, e.g., finite element method [21, 22], the
underlying mechanism of suffusion is still unclear due to the lack of microscopic
observations and quantifications. To examine the microscopic processes during
suffusion, the discrete element method (DEM) is commonly adopted for its advantages
in detecting the structural characteristics of soils under various stress conditions at any
time step [23]. Muir Wood et al. [24] is possibly the first to investigate mechanical
behaviors of erodible soils by removing fine particles randomly in two-dimensional
(2D) DEM simulations, and found that the gradation has a first-order influence on
critical states of soils. Luc Scholtés et al. [25] and Zhang et al. [26] investigated the
triaxial shear behaviors of eroded soils by deleting a designated percent of inactive fine

particles which carry relatively low contact forces, and found that the shear behaviors
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and flow field of soils are greatly modified by particle removal. On the other hand, the
migrations of fine particles during suffusion are normally accompanied by the repetitive
clogging-unclogging phenomenon, i.e., some fine particles could be restrained inside
the voids among soil skeleton and regain freedom by seepage forces. This could result
in a transient evolution of microstructure and thus the mechanical behavior of soils,
which cannot be captured by the DEM simulations using conventional particle removal
schemes [27, 28]. More recently, the combination of computational fluid dynamics and
discrete element method (CFD-DEM) has also been developed and demonstrated to be
of high efficiency and accuracy in simulating the intricate solid—fluid interactions using
multiple CFD solvers [29-32]. In the most commonly adopted unsolved CFD-DEM
scheme, the fluid cells are coarsely discretized to be several times greater than the
particle sizes, and the flow field is volume-averaged within a local space by solving the
locally averaged Navier-Stokes equation. On this basis, it has several fundamental
limitations. First, only single-phase flow through spherical particles can be considered
[11, 33]. Second, the particle-fluid interactions are normally estimated using empirical
methods and require extensive validations [34, 35]. Additionally, the fluid mesh is fixed
and cannot be applied to moving boundary problems [36, 37]. However, in the very
recent years, these limitations have been partially eliminated by incorporating irregular
particle shapes, moving flow filed, and multi-phase flow [38—41]. In the authors’
previous works, an open-source CFD-DEM package was used to simulate the full
suffusion process under the designated confining pressure, tracking the rearrangement
of particles and the variations in contact networks of gap-graded soils with different
fines content [42]. Further investigations on the mechanical responses of eroded soils
under drained and undrained triaxial compression conditions revealed that suffusion
causes distinct reduction of peak shear strength of soils, which is comparable to the
experimental results on eroded soils [43—46]. However, in these studies, soil specimens
were mainly deposited under gravity or consolidated under isotropic confining pressure.
This oversimplifies the in-situ stress conditions often encountered in earthworks where

stress anisotropy and non-coaxiality between flow and principal stress direction prevail.
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It is well known that the stress anisotropy has a significant effect on the structure of soil
matrix, and thus the mechanical behaviors of soils [47-49]. Oda et al. [50] investigated
the impact of the initial anisotropic stress states on the microstructure of soils, and found
that new contacts were generated along the major principal effective stress direction.
Yang et al. [51] investigated the anisotropy effect on undrained behaviors of soils using
DEM, and found that the mechanical behaviors and dilatancy vary dramatically for
specimens with different fabric anisotropy intensity, while the critical-state shear
strength is rather independent of the initial fabric. Gu et al. [52] simulated the drained
triaxial shear and simple shear tests on specimens with different stress states, and found
that the initial fabric and contact force anisotropy results in significant anisotropy in
stiffness. Since stress anisotropy alters the force chain network which also critically
impacts the stress states of fine particles, it is intuitive to assume a strong interplay
between stress anisotropy and the erodibility of fines as well. On this basis, Chang et
al. [17] modified a triaxial apparatus for suffusion modeling, and found the larger initial
stress ratio contributes to the greater erosion rate of specimens for a given hydraulic
gradient. Through similar experiments, Luo et al. [53] investigated the influence of
deviatoric stress on critical hydraulic gradients of suffusion, and proposed an empirical
method for estimating the critical hydraulic gradient under complex stress conditions.
From the simulation aspects, Ma et al. [16] studied the effect of flow direction on the
microscopic mechanism of particle detachment and migration during suffusion, and
found that the anisotropic stress state is responsible for directional variations of
microstructure of soils during suffusion. Qian et al. [54] and Xiong et al. [55] presented
the evolution of stress anisotropy caused by suffusion considering the effect of irregular
particle shapes, and concluded that the angularity intensifies suffusion resistance and

shear strength of soils.

In this study, the influence of stress anisotropy is investigated on suffusion and shear
behaviors of gap-graded soils using CFD-DEM. This study differs from our previous
works [13, 28, 42] by focusing on anisotropically stressed specimens, aiming to

quantify the effect of stress anisotropy on their suffusion and shearing responses. The
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methodology and simulation procedure of suffusion and triaxial shearing are presented
in Section 2. The evolution of the fines loss and volumetric deformation are reproduced
for the full suffusion process. The shear responses of both non-eroded and eroded
specimens under different stress paths are discussed in Section 3. The microstructural
changes, including the coordination numbers, the contact force chain networks, and the
stress anisotropy quantified by the fabric tensor are elaborated and used to interpret the

observed suffusion and shear responses in Section 4.

2. Simulation procedure

The adopted CFD-DEM approach is an amalgam of the DEM package LIGGGHTS
and the CFD package OpenFOAM [56]. Details of this methodology and its
validation/benchmarking can be found in Tsuji et al. [33] and our previous works [13,

28, 42], so will be not repeated here for brevity.

The simulation process consists of four consecutive steps: particle insertion,
consolidation, suffusion and triaxial shearing, as illustrated in Fig. 1. First, in the
particle insertion stage, a cubic specimen with 40,000 particles is first generated and
enclosed by six rigid frictionless walls with a dimension of 25 mm % 25 mmx 25 mm.
The sizes of fine and coarse particles range between 0.42 ~ 0.5 mm and 2.08 ~ 2.4 mm,
respectively. The fines content (FC) of the non-eroded specimen is F'C = 35% by mass,
which is internally unstable according to the criteria of Kenney and Lau [57]. The grain
size distributions (GSDs) of all non-eroded and eroded specimens subjected to different
stress conditions are shown in Fig.2. Since the adopted CFD-DEM method is a locally
averaged coarse-grid method, the recommended size of the fluid cell is taken 2 ~ 4
times that of the average particle size, which has been demonstrated to yield the
appropriate and sensible results [S8—60]. The input parameters used in the simulations
are listed in Table 1, which are the same as our previous work [13, 28]. Similar
parameters were also used in many other CFD-DEM studies, e.g., Shan and Zhao [61],
Li and Zhao [62], Mu et al. [37]. The simulations were performed using a workstation

with 168G RAM and 2 x 20-core 2.5 GHz CPU. The solid and fluid regions were



155  equally decomposed into 8 subdomains using 8 cores (2 X 2 x 2 in x, y and z directions).

156 The simulation of suffusion process for # = 15s takes about 72 hours computation time.
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Table 1 Input parameters used in the simulations

Computation modules Parameter types values

Solid phase (DEM) Particle number 40,000
Fine particle diameter (mm)  0.42 ~0.5

Coarse particle diameter (mm) 2.08 ~2.4

Particle density (kg/m?) 2,650

Young’s modulus (GPa) 70

Poisson’s ratio 0.3

Coefficient of friction 0.5

Coefficient of restitution 0.2

Coefficient of rolling friction 0.1

Acceleration of gravity (m/s?) 9.8
Fluid phase (CFD) Fluid density (kg/m?) 1,000
Dynamic viscosity (Pa-s) 1x1073

Size of fluid cells (mm) 32
Solid—fluid interaction (CFD-DEM) Timestep of DEM (s) 2x107
Timestep of CFD (s) 2x107
Coupling interval (s) 2x107

Simulation duration (s) 15

In the consolidation stage, all specimens are first isotropically confined to the same
effective stress, i.e., p’ = 100 kPa. The interparticle coefficient of friction is set to yp =
0.1 to generate a relatively dense specimen. After reaching equilibrium, the interparticle
coefficient of friction is restored to us= 0.5, as commonly adopted in other DEM studies
[63]. The rolling resistance is also employed with the coefficient of restitution p- = 0.1
to approximately account for the effect of irregular particle shapes [42]. For the
preparations of the initially stress anisotropic specimen, the axial stress is progressively
increased or decreased to the designated stress ratios #7 = ¢ / p’, depending on triaxial
compression or extension shearing, where p'= (¢'z + 20") / 3 is the mean effective stress,
q = o'« — o' is the deviatoric stress, and ¢'. and ¢’ are the axial and radial effective
stresses, respectively. Five specimens with different initial stress ratios # are generated
as illustrated in Fig. 3, and their stress conditions and initial void ratios are summarized

in Table 2. It is seen from Table 2 that, all specimens have almost the same initial void
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ratio around eo = 0.40 even under different stress states. After completing the above
steps, gravity is activated and maintained until the end of the erosion process. The
reason for not activating gravity in consolidation is to prevent the potential segregation

and accumulation of fine particles at the bottom of specimens during sample

preparation.
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Fig. 3 Initial stress states of the non-eroded specimens
Table 2 Stress conditions of the simulation cases
Radial effective  Axial effective ~ Mean effective Deviatoric Initial
Specimen Initial void
stress, o' stress, o' stress, p’ stress, g stress
IDs ratio, eo
(kPa) (kPa) (kPa) (kPa) ratio, 7o
Tl 100 62.5 87.5 -37.5 -0.43 0.400
T2 100 78.6 92.9 214 -0.23 0.399
T3 100 100 100 0 0 0.398
T4 100 125 108.3 25 0.23 0.399
TS5 100 150 116.7 50 0.43 0.397

In the suffusion stage, the top boundary wall is changed to a permeable wall that allows
for the free penetration of fine particles while restraining coarse particles inside the
specimen. This could result in a slight relaxation of confining pressure, and thus a
reconsolidation procedure is followed to regain the target stress state of the specimen

[34, 42]. Thereafter, an upward seepage flow is introduced by imposing the pore
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pressure difference between top and bottom boundaries of the fluid domain. The four
horizontal boundaries are set as undrained boundaries to maintain one-dimensional flow.
The detailed boundary conditions for the CFD and DEM domains during suffusion are
listed in Table 3. The stress state is maintained constant during the full suffusion process.
To mitigate the excessive skeleton disturbance caused by the sudden change of
hydraulic conditions, the hydraulic gradient starts at zero and is gradually increased via
several stages as illustrated in Fig. 4. Note that the suffusion in real earthworks is a
long-term process and could hardly be reproduced by the adopted simulation scheme.
Therefore, the maximum hydraulic gradient is set large (i.e., imax = 10) so that the

majority of fines loss can be reproduced in a short seepage period [28] (i.e., ¢ = 155s).

Table 3 Boundary conditions during suffusion

CFD boundaries DEM boundaries

Pore pressure: uin = uo Effective stress: ¢'.- = p’
Bottom (Inlet)

Velocity gradient: 0Ur /0z =0 Impermeable to fines

Pore pressure: oy = 0 Fixed: 0..=0
Top (Outlet)

Velocity gradient: 0Ur /0z =0 Permeable to fines

Pore pressure gradient: Effective stress: o'« =0, =p’

Ou /0x =0, or Ou /0y =0 Impermeable to fines

Sidewalls
Velocity: Ur -n = 0 where n is the unit

normal vector of the sidewalls

10
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Fig. 4 Variation of the hydraulic gradient with elapsed time
Once suffusion is completed, the permeable top boundary wall is changed to an
impermeable wall, and a series of drained triaxial shear tests are performed on all
specimens at a small strain rate (i.e., & =0.025 s™') at which the quasi-static condition
is satisfied [28, 64]. The triaxial compression tests are performed on specimens with
the positive stress ratio 7, i.e., the major principal effective stress on the longitudinal
direction, and the others are subjected to triaxial extension tests. The radial effective
stress is maintained constant during the entire shearing process, i.e., o' = 100 kPa. For
comparison, both the triaxial compression and extension tests are conducted on the non-
eroded specimen. Note that gravity is not considered during shearing to be consistent

with the conventional DEM simulations [28, 65].

3 Simulation results

3.1 Visualization of stress anisotropy of specimens

The particle assemblies and force chain networks of three typical specimens with
multiple stress anisotropy, i.e., T1, T3, and T5 specimens, are presented in Fig. 5. It is
found that all specimens lose some fine particles at the permeable top boundary,
resulting in the local concentration of distinct (thick) primary force chains before
suffusion [28]. Comparison of the force chain networks between different specimens

clearly shows the effect of stress anisotropy: several distinct (thick) primary force
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chains are formed towards the horizontal direction for the T1 specimen with the
horizontal major principal effective stress. Conversely, the primary contact force chains
of the T5 specimen are mainly distributed in the longitudinal direction, coincident with
the vertical major principal stress direction. The contact force chains of the isotropic T3
specimen are distributed evenly inside the specimen except for those near the top

boundary.
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Fig. 5 (a) Particle assemblies and (b) force chain networks of T1, T3 and T5 specimens before
suffusion

The initial stress anisotropy of specimens T1 and T5 can be vividly seen from the
distributions of contact normals and normal contact forces, as presented in rose
diagrams in Fig. 6. For the T1 specimen, both the distributions of contact normals and
normal contact forces prevail in the horizontal direction, in accordance with the
direction of the major principal effective stress. The anisotropy intensity manifested by
normal contact force distribution appears to be more distinct than that by contact normal
distribution, as also observed in Yang et al. [63] and Hu et al. [28]. On the other hand,
the TS specimen exhibits the prevailing longitudinal distributions of contact normals
and normal contact forces owing to its preferential vertical major effective stress. The
drastic difference between specimens indicates that the anisotropic loading conditions

result in significant variations of soil fabric even though both specimens have the same

12



244  void ratio. Correspondingly, the onset and development of suffusion is inevitably

245  different, which will be elaborated in the following sections.
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247 Fig. 6 Distributions of contact normals and normal contact forces of the initially anisotropic
248 non-eroded T1 and TS5 specimens in a longitudinal plane

249 3.2 Results from suffusion stage

250  The evolutions of fines loss AFC by mass during suffusion for all specimens are
251  illustrated in Fig. 7. It is seen that few fine particles are lost at low hydraulic gradient
252 because the seepage force is insufficient to overcome the gravity and restrictions by
253  neighboring particles on fine particles. With the increasing hydraulic gradient, fine
254  particles start to get detached, migrate through the voids among coarse particles, and
255  exit the permeable wall once the critical hydraulic gradient ic- is reached. The grain size
256  distributions (GSDs) of specimens after the # = 15s suffusion duration are plotted in Fig.
257 2. 1It1is observed that the specimens with the major principal effective stress parallel to
258  the primary seepage direction are the most erodible with the smallest critical hydraulic

259  gradient and the greatest erosion rate. For example, suffusion triggers earliest at # =2.5s
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and develops the maximum fines loss AFC = 10% at the end of suffusion for the T5
specimen (7o = 0.43), while the T3 specimen (70 = 0) exhibits the strongest suffusion
resistance among others and its terminal fines loss is much smaller than that of T5
specimen (Fig. 7). The T1 specimen with the horizontal major principal effective stress
exhibits the medium suffusion resistance. Comparison of the fines loss history between
the T4 and T5 specimens as well as between the T1 and T2 specimens indicates that
stress anisotropy promotes the onset and development of suffusion, regardless of the
principal stress direction. This is consistent with the results of laboratory tests in Chang

[66].

Loss of fine particles, AFC (%)

Fig. 7 Evolution of fines loss AFC by mass with elapsed time for specimens under different initial

stress anisotropy

To further investigate the detachment, migration and clogging of fine particles under
suffusion, the soil specimen is vertically divided into six sections. The distributions of
fine particles for specimens with different initial stress ratios, i.e., T1, T3 and T5
specimens, are illustrated in Fig. 8. Clearly, fine particles of non-eroded specimens are
relatively uniformly distributed along all sections except the top section owing to the
inevitable fines loss near the permeable top boundary during the reconsolidation

process, as evidenced by Fig. 5. In addition, the fines loss AFC gradually increases from

14



279

280

281

282

283

284

285

286
287

288

289

290

291

292

293

294

295

the bottom to the top boundaries, and the top section exhibits the most severe fines loss
AFC. This could be attributed to the formation of the repetitive clogging-unclogging
effect for the longer erosion path of fine particles in lower sections. Among all
specimens, the anisotropic TS specimen exhibits the maximum fines loss at all sections,
while the isotropic T3 specimen exhibits the minimum fines loss compared with the
others (consistent with Fig. 7). Similar heterogeneous distributions of fine particles

were also reported in laboratory tests [17, 43] and other numerical studies [38, 67].

Before suffusion T1-N T3-N T5-N

After suffusion [__] T1-Y T3y 15y

Sections
6 ID-6

Section ID
w

0 2000 4000 6000 8000
Number of particles

Fig. 8 Distributions of fine particles along the longitudinal direction for the T1, T3, and T5

specimens. N - before suffusion; Y - after suffusion.

The evolutions of the volumetric deformation during suffusion are illustrated in Fig. 9
in terms of void ratio e, volumetric strain &y, axial strain &, and horizontal strain &x.
Contraction is treated as positive following the sign convention in soil mechanics.
Under low hydraulic gradient, the combined effect of seepage flow disturbance and
confinement of boundary walls results in a slight volumetric contraction and decrease
of void ratio of all specimens (Fig. 9a and b). Once reaching the critical hydraulic

gradient i, fine particles start to be detached and eroded out of the specimen, leading

15
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to significant microstructural change and volumetric contraction. Because of the even
more rapid loss of fines and thus solid fraction in this period, the void ratio turns out to
be increasing during the apparent volumetric contraction. The turning point of void ratio
evolution from decrease to increase shows good agreement with the onset of suffusion
in Fig. 7. At the end of suffusion, all eroded specimens exhibit increased void ratio and
reduced volume compared to the non-eroded specimens, especially for the specimens
with larger initial stress anisotropy, i.e., T1 and T5 (Fig. 9a and b). The specimen with
the major principal effective stress aligned with the primary seepage direction (i.e., TS)
exhibits the most severe void ratio and volumetric changes which can be reasonably

attributed to the large fines loss (Fig. 7).

To further inspect the deformation patterns of different specimens during suffusion, the
evolutions of axial and horizontal strains are presented (Fig. 9c and d). It is seen that,
for the T4 and T5 specimens with initial triaxial compression, the volumetric
contraction in Fig. 9b is mainly caused by the positive axial strain of the soil matrix.
Conversely, for the T1 and T2 specimens with initial triaxial extension, the positive
horizontal strain is responsible for the volumetric contraction. The T3 isotropic
specimen exhibits the smallest axial, horizontal and volumetric strains compared with
the other scenarios. It is noted that the magnitudes of axial strain for all specimens are
approximately 2 ~ 3 times of those of horizontal strain, implying that suffusion results
in greater deformation along the direction of seepage flow, which is in agreement with
the previous laboratory suffusion tests [17, 43] and simulation results [42, 67]. The
different deformation features of specimens also indicated that the volumetric
deformation and microstructural changes under suffusion could be closely related to the
initial stress states of specimens, and thus results in different mechanical responses

under triaxial shearing, which will be discussed in the following section.
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Fig. 9 Evolutions of (a) void ratio e, (b) volumetric strain ¢,, (c) axial strain ¢, and (d) horizontal

strain g;, with the elapsed time of all specimens

3.3 Results from triaxial shear stage

Fig. 10 shows stress-strain curves of eroded and non-eroded specimens under drained
triaxial conditions. Triaxial compression tests are performed on T4 and T5 specimens,
and extension tests are performed on the T1 and T2 specimens. The isotropic T3
specimen is sheared under both triaxial compression and extension conditions. All
simulation cases for triaxial shearing marked with designated specimen IDs are listed
in Table 4. The results of the triaxial extension tests in Fig. 10a indicate that, the peak
deviatoric stress g of the eroded specimens is smaller than that of the non-eroded
specimens, while the variations of the deviatoric stress sheared to large strain levels
(approaching critical state) are negligible. The eroded soil specimens exhibit less

volumetric dilatancy compared to the non-eroded specimens (Fig. 10b). Similar trend
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is also observed for the specimens under triaxial compression conditions in Fig. 10c
and d. Our observations agree well with the results of previous experimental studies
[17, 43, 68, 69]. Noticing that suffusion is still developing at the end of the simulation
at t = 15s (Fig. 9) and there still exists a large portion of fine particles inside the
specimens (Fig. 8), we expect that the reduction of peak shear strength and dilatancy

will be more prominent given extended suffusion duration [13].

Table 4 Simulation cases for triaxial compression and extension tests

Peak Peak Residual
Secant
Specimen  Suffusion Shear Initial stress deviatoric friction friction
modulus,
ID condition  condition ratio, 7o stress, gmax angle, ¢p angle, ¢r
Eso (kPa)
(kPa) ©) )
T1-E-N No TE -0.43 74.7 88.8 36.4 16.4
T1-E-Y Yes TE -0.43 71.8 59.0 34.1 15.5
T2-E-N No TE -0.23 72.8 120.7 34.8 15.8
T2-E-Y Yes TE -0.23 69.4 79.2 322 15.5
T3-E-N No TE 0 73.1 147.5 35.0 16.6
T3-E-Y Yes TE 0 69.5 106.6 322 16.5
T3-C-N No TC 0 239.3 284.6 32.9 13.1
T3-C-Y Yes TC 0 211.1 256.8 30.8 14.3
T4-C-N No TC 0.23 239.9 278.9 329 13.2
T4-C-Y Yes TC 0.23 215.4 237.6 31.1 16.5
T5-C-N No TC 0.43 245.1 274.2 333 14.1
T5-C-Y Yes TC 0.43 222.0 211.9 31.5 16.8

Yes = eroded; No = non-eroded; TE = triaxial extension shear; TC = triaxial compression shear.
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Fig. 10 Evolutions of deviatoric stress g and volumetric strain ¢, versus axial strain &, before and
after suffusion under (a-b) triaxial extension tests (T1 ~ T3 specimens) and (c-d) triaxial
compression tests (T1 ~ T3 specimens)

The shear stiffness of soils at small strain is also an important feature and is extensively
concerned in engineering practice. Herein, a secant modulus corresponding to half of
the peak shear stress, i.e., Eso, is introduced in Fig. 11 to evaluate the evolution of shear
stiffness of soils under suffusion [70]. It is observed that the secant modulus £5o under
triaxial compression conditions is much greater than that under triaxial extension; for
example, the Eso in the T3-C is approximately twofold of that in the T3-E for both non-
eroded and eroded specimens. Specimens with stronger initial stress anisotropy exhibit
lower Eso for triaxial extension specimens, but the trend is not obvious for triaxial
compression specimens. Finally, erosion consistently reduces the Eso of all specimens
regardless of their initial stress state. This weakening effect can have important
implications on the performance of water dams, e.g., promoting settlement and creep

of the structure under sustained seepage.
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360 Fig. 11 The secant modulus E5g for all non-eroded and eroded specimens under triaxial shear

361 4. Microscopic inspections

362 4.1. Microscopic features during suffusion

363 The interparticle connectivity is one of the key features representing the microstructures
364  of granular soils. Fig. 12 illustrates the evolutions of the coordination numbers of all
365  specimens during suffusion, where the coordination number Z denotes the average
366  number of contacts per particle, and the mechanical coordination number Z, refers to
367  the average number of contacts per active particle with two or more contacts [71, 72],

368  calculated by:

2C
369 Z=— 1
N (1)
2C-N,
370 Z, = )
N-N,—-N,

371 where C is the total contact number; N is the total particle number; No and N1 are the
372 numbers of particles with null and only one contact (also called “rattlers”), respectively.

373 When a granular system does not contain rattlers, one can see Eq. (2) becomes identical
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to Eq. (1). Thus the difference between the values of Z and Z» indirectly indicates the
number of inactive fine particles floating inside the soil matrix. Since the large number
of fine particles and their relatively inactive roles in force transmission inside the tested
gap-graded soils, both the values of Z and Zy, are relatively low. This is consistent with
the other DEM studies on gap-graded soils, e.g., Langroudi et al. [73] and Ahmadi et
al. [74]. The isotropic T3 specimen has the maximum Z and Z» during the full suffusion
process, while the specimens with stronger initial stress anisotropy exhibit the lower Zn
values. This indicates that the initial stress anisotropy weakens the connectivity among
particles. In addition, it is seen from Fig. 12a that the variations of coordination number
Z are insignificant but exhibit severe fluctuation during suffusion, which could be
attributed to intermittent clogging and unclogging during the migration of fine particles.
On the contrary, Fig. 12b shows that the mechanical coordination number of all
specimens Z» first increases smoothly due to the increased seepage force before the
onset of suffusion (Fig. 9b), and then turns to decrease with the progressive detachment
and migration of fine particles. The decreasing trend of Z» indicates that some active
particles formerly participating in sustaining external forces are eroded under suffusion.
It is also interesting to note that, although all specimens have distinct initial stress states,
the mechanical coordination number Z» tends to reach the same value for the specimens
with the same absolute values of stress ratio at the end of suffusion regardless of the
incipient major principal stress direction (Fig. 12b). The decreasing Zn values of all
specimens explain why the secant modulus Eso and the peak shear strength are

weakened at the end of suffusion (Figs. 10 and 11).
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398 Fig. 12 Evolutions of (a) coordination numbers Z and (b) mechanical coordination numbers Z,,
399 with the elapsed time of all specimens

400 It is well understood that the roles of coarse and fine particles in force transmission are
401  different for gap-graded specimens. Herein, the coordination numbers of different
402  contact types are further examined, including the contacts between two coarse particles
403  (C-C contact), those between a coarse and fine particle (C-F contact), and those
404  between two fine particles (F-F contact). Correspondingly, three coordination numbers
405  are defined as the average numbers of C-C contacts per coarse particle Zc.c, C-F

406  contacts per coarse particle Zc.r and F-F contacts per fine particle Zr.r, respectively.
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The evolutions of the three coordination numbers during suffusion are presented in Fig.
13. Tt is observed that, Zc.c gradually increases yet Zc.r decreases with elapsed time for
all specimens. This indicates that the detachments of fine particles mainly cause the
breakup of C-F contacts, and in turn enhance the connectivity of C-C contacts. The
distribution of fine particles inside the voids among coarse particles maintains stable,
as evidenced by the overall constant Zr.r values for all cases throughout suffusion.
Given that the loss of fine particles during suffusion would inevitably reduce the
coordination number between fine particles, the overall constant Zr.r implies that the
decrease of contacts is somehow compensated by the local concentration of fine
particles and F-F contacts under the restrictions of the soil skeleton, which could be
seen as evidence of the clogging phenomenon during suffusion. Comparison of
different specimens indicates that the changes of Zc.c and Zc.r are more severe for the
specimens with higher initial stress anisotropy, especially for the specimens under
initial triaxial compression (T4 and T5). Conversely, the isotropic T3 specimen has
much smaller variations of Zc-c and Zc-r and is less disturbed by suffusion, which is in
accordance with the least fines loss and the smallest volumetric deformation during

suffusion (Figs. 7 and 9).
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Fig. 13 Evolutions of coordination numbers of all specimens during suffusion in terms of: (a) Zc.c;

(b) Zc.rand (C) ZFr.F

To further analyze the evolution of contact force chains of specimens during suffusion,
the interparticle contacts are divided into strong and weak contacts, where the contact
forces greater than the average contact force f, form the strong contact force chain,
and the others form the weak contact force chain [72, 75]. Fig. 14 exhibits the evolution

of the proportion of weak contact forces during suffusion for all specimens, calculated
by the sum of the absolute value of the weak contact forces f,” divided by that of the

normal contact forces fx. It is observed that all cases exhibit the similar evolution trend

with a temporary increase followed by a rapid decrease period. The first increase period
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indicates that, particles gain more contacts with each other and sustain weak contact
forces at the initial stage. However, these weak contacts are relatively fragile and are
easily disrupted under seepage effect, resulting in the following rapid decrease of the

proportion of weak contact forces. Note that the TS5 specimen exhibits the greatest
£ / f, at the initial state, while it evolves to the lowest value at the end of suffusion.

This indicates that a large number of particles of the TS5 specimen are initially inactive
or in weak contacts with the neighbors, and thus suffusion can be more easily triggered,

as evidenced by the severe decrease of weak contact forces with suffusion (Fig. 14).
The greater initial stress anisotropy exhibits the more severe falls of f" / /, at the end
of suffusion, especially for the specimens under initial triaxial compression (T5). The

isotropic T3 specimen is found to be the most stable with the smallest fall of f" / f -

0.28 ———1——— 11—

0.26 |-

< 0.24

&=

0.22

020 M M 1 M M 1 M M 1 M M 1

Fig. 14 Evolutions of the proportion of weak contacts during suffusion for all specimens

4.2. Microscopic characteristics during shearing

The evolutions of coordination numbers during triaxial compression and extension tests
are presented in Fig. 15. It is seen that the particles inside the original non-eroded
specimens are in good contact with each other, as evidenced by approximately the same

Z and Zn values at the initial state (¢ = 0). With the development of shearing, both Z
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and Zn continuously decrease, and the difference between Z and Z» becomes larger for
both triaxial extension (Fig. 15a-b) and compression (Fig. 15¢-d) conditions. This
indicates that some particles formerly actively participating in force transmission
gradually evolve to inactive particles with null or one contact during shearing.
Furthermore, comparison between the coordination numbers of non-eroded and eroded
specimens under triaxial extension conditions indicates that, the coordination numbers
Z of eroded specimens are generally smaller than those of non-eroded specimens (Fig.
15a), while their difference in the mechanical coordination numbers Zx is negligible
(Fig. 15b). This implies that there exists a greater and increasing portion of inactive fine
particles in eroded specimens during shearing. The detached yet remaining fine
particles under suffusion are mostly inactive in force transmission. The same
observation is also found in triaxial compression conditions (Fig. 15c-d). This helps
explain the insignificant variation of shear strength of soil specimens at large strain
levels. It is also interesting to note that at the end of shearing, both Z and Z, tend to
approach their corresponding steady-state values, depending only on the GSDs of
specimens and the shear conditions, which is in agreement with Jiang et al. [71] and Hu

et al. [28].
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Fig. 15 Evolutions of (mechanical) coordination numbers: (a) Z and (b) Z,, during triaxial

extension tests, and (c¢) Z and (d) Z, during triaxial compression tests

The evolutions of coordination numbers of different contact types, i.e., Zc-c, Zc-r, and
Zr-r, during shearing are illustrated in Fig. 16. It is seen that, although the Z and Z» of
eroded specimens converge to the same values under the same shear conditions (Fig.
15), their coordination numbers with respect to different contact types are diverse. For
the triaxial extension conditions, it is found that the Zc-c values of the eroded specimens
are relatively higher, yet their Zc.r and Zr.r values are much lower than those of the
non-eroded specimens (Fig. 16a-c). This indicates that suffusion results in the more
active participation of coarse particles in force transmission during shearing, while the
connectivity of fine particles with the neighbors is weakened, as manifested by the
reduced Zcr and Zr.r values. The same observation is also found in the triaxial
compression conditions (Fig. 16d-e). The coordination number evolutions for triaxial

compression specimens are more distinct from each other. For example, the T5
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specimen with the greatest initial stress anisotropy exhibits the highest Zc.c value but
the lowest Zcr and Zr-r values throughout the shearing process. The lower Z value of
eroded T5 specimen during shearing in Fig. 15c¢ is mainly caused by the poor
connectivity of fine particles with the neighbors, i.e., the lower Zc.r and Zr.r values
(Fig. 16e-f), which is likely responsible for the reduced secant modulus and shear

strength of the eroded TS specimen.
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Fig. 16 Evolutions of coordination numbers: (a) Zc.c, (b) Zc.r, and (¢) Zr.r under triaxial

extension, and (d) Zc.c, (e) Zc.r , and (f) Zr.r under triaxial compression conditions

4.3. Evolutions of fabric anisotropy during suffusion and shearing

It is widely recognized that fabric anisotropy could significantly affect the mechanical
responses of granular soils [76, 77]. Two sources of fabric anisotropy are normally
adopted, i.e., the geometrical and the mechanical anisotropy. The geometrical
anisotropy stems from the distribution of contact normals and particle orientations, and
the mechanical anisotropy is mainly caused by the distribution of normal contact forces
[13, 78]. Given the significant stress anisotropy of the specimens in this study, the
mechanical anisotropy [48, 79] is adopted for evaluating the fabric structure of the

specimens:
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where f” is the absolute value of normal contact force; #;is the unit vector along the
contact normal direction; a; is deviatoric and symmetric and characterizes the fabric
anisotropy, calculated as:

4= % Z mn; “4)

ceN
e 15
azf:?¢zf ®)

where ¢; is the contact normal fabric tensor and ¢'; is the deviatoric part of ¢;;. Herein,
the normal-contact-force anisotropy tensor a” is defined as:

1575

=5 ©

where '/ is the deviatoric part of }/l]' fO = % is the average normal force. The

deviatoric invariant of a” is adopted to quantify the degree of mechanical anisotropy

caused by normal contact forces:
a,=.,—a; (7)

Fig. 17 presents the evolution of normal-contact-force anisotropy a» of specimens
during suffusion and shearing. It is observed that suffusion has almost no contribution
to the fabric anisotropy of specimens, except for the T5 specimen with the strongest
initial stress anisotropy and the most severe fines loss, which exhibits a slight increase
of an with elapsed time (Fig. 17a). The difference of initial a» values between different
specimens is mainly caused by the initial stress anisotropy before suffusion. Comparing
the suffusion-induced fabric anisotropy, the triaxial shearing results in the more distinct
fabric anisotropy in terms of normal contact forces (Fig. 18b and c¢). The fabric
anisotropy a» peaks and reaches the corresponding stable states at the same strain level
as the deviatoric stress ¢ (Fig. 10), which is coincident with the other DEM researches,

e.g., Guo and Zhao [48] and Zhao and Kruyt [80]. Note that the difference of a» between
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529  the eroded and noneroded specimens is relatively small, which also implies the
530  suffusion-induced fines loss in gap-graded soils may not result in significant variation

531 of force chain networks.
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534 Fig. 17 Evolutions of normal-contact-force anisotropy a, during (a) suffusion, (b) triaxial

535 compression, and (c) triaxial extension tests

536 To further investigate the contribution of different contact types to stress anisotropy,
537  Fig. 18 presents the distributions of strong normal contact forces f,; and weak normal
538  contact forces f;” in alongitudinal plane before suffusion by means of rose diagrams.
539 It shows that the preferential direction of the strong normal contact force distribution is
540  generally consistent with the major principal stress direction, and the stress anisotropy
541  enlarges with the initial stress ratio. However, the stress anisotropy with respect to weak
542 contact forces is rather insignificant. This indicates that external forces are mainly
543  sustained by the strong contact force chain, and thus the variation of stress ratio merely
544  results in the anisotropic distribution of strong normal contact forces. Conversely, the

545  weak contact force chain is insensitive to stress variation, and thus exhibits only a small
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degree of anisotropy compared with the strong contact force chain. Note that in severely
gap-graded soils, the majority of strong normal contact forces are commonly sustained
by coarse particles in C-C contacts [28], while these contacts only occupy a small
portion of interparticle contacts of the soil matrix, as evidenced by the much greater Zc-
F values than Zc.c values (Fig. 13b). The small degree of anisotropy of weak contact

forces is responsible for the insignificant global fabric anisotropy a» in Fig. 17a.

To be more specific, Fig. 19 presents the normal contact force distributions in a
longitudinal plane at different shear stages for the eroded TS5 specimen with the
strongest initial stress anisotropy. Again, the distribution of strong contacts shows
distinct anisotropy manifested by the elliptical or peanut-shaped rose diagrams, while
the distribution of weak contacts maintains overall isotropic and evolves only slight
anisotropy at the peak shear state ¢« = 2%. Furthermore, by dividing the interparticle
contacts into three types, i.e., C-C, C-F and F-F contacts, the distributions of normal
contact forces of different contact types are also presented. It is found that all these
contact types have a certain degree of initial normal-contact-force anisotropy which is
consistent with the initial stress state, and evolve more distinctly with the triaxial
shearing, especially at the peak shear state ¢, = 2%. Among all contact types, the
normal-contact-force anisotropy of C-C and C-F contacts is significantly greater than
that of F-F contacts. This indicates that, coarse particles play the dominant role in strong
force transmission by C-C and C-F contacts, and only very few fine particles are

involved in forming strong force chain by F-F' contact with the smaller ax.
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Fig. 19 Distributions of normal contact forces of the eroded T5 specimen with the strongest initial

stress anisotropy (ID: T5-C-Y) during triaxial compression test

5. Conclusions

This study presents a systematic CFD-DEM investigation on the influence of initial
stress anisotropy on suffusion and shear behaviors of gap-graded soils. Several gap-

graded specimens with different initial stress ratios are generated and then subjected to
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suffusion and triaxial shearing. The contact statistics of both non-eroded and eroded

specimens are monitored and analyzed to understand the micro-mechanisms of initial

stress anisotropy on the suffusion and shear behaviors of soils. The main conclusions

are summarized below:

1.

Gap-graded specimens with the higher initial stress anisotropy and with the major
principal stress aligned with the primary seepage direction are more prone to
suffusion. Fines loss is positively correlated with the increase of volumetric

contraction and void ratio.

The eroded specimens exhibit reduced peak deviatoric stress and volumetric
dilation but have similar strain-softening behaviors compared to noneroded
specimens under triaxial shearing. All specimens tend to evolve towards the same
deviatoric stress when sheared to large strain levels regardless of experienced
suffusion history. Suffusion also reduces the secant stiffness and peak friction angle

of soils.

The initial stress anisotropy weakens the connectivity among particles, resulting in
less force-transmitting contacts (reflected through the mechanical coordination
number Z») during suffusion. Inactive fines loss under suffusion can cause reduced
coarse-to-fine contacts and increased coarse-to-coarse contacts. The clogging-
unclogging of fine particles is likely to cause severe fluctuation of the coordination

number for fine-to-fine contacts Zr.r during suffusion.

The average and mechanical coordination numbers at the end of triaxial shearing
appear to only depend on the soil GSD and the stress path and are independent of
the initial stress anisotropy. During shearing, eroded specimens exhibit more active
participation of coarse particles in force transmission through coarse-to-coarse

contacts and less connectivity of fine particles with the neighbors.

The normal-contact-force anisotropy ax is found to enlarge with the initial stress
ratio. The applied anisotropic stress is mainly carried by strong contacts governed
by coarse-to-coarse contacts during suffusion and shearing. The abundant weak
contacts in soil matrix are uniformly distributed with insignificant anisotropy. This

is responsible for the overall constant a, during suffusion.
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This study highlights that the initial stress anisotropy of the soil matrix has a profound
effect on the onset and development of suffusion, and thus can subsequently alter the
mechanical behaviors of eroded specimens. Future extensions of the present work
include examining the inherent fabric anisotropy caused by different particle shapes
and arrangements in natural soils and the effect of dynamic hydraulic conditions on
suffusion. The latter is highly relevant for the engineering of marine foundations and is

not well understood at the current moment.
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