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Abstract

Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been
proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abun-
dance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of
highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis
is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, AG). Thus
far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing
contradictory results. These analyses have been limited by 1) the scarcity of AG data, 2) the fact that these data have
been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using
proteins’ melting energy (7,,) as a proxy for AG, and 4) the difficulty of controlling for potentially confounding variables. Here,
we use computational methods to compare the free energy of folding of pairs of human—-mouse orthologous proteins with
different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a
more negative AG of folding, indicating that highly expressed proteins are often more thermostable.

Key words: protein thermostability, expression levels, misfolding avoidance hypothesis, translational robustness hypoth-
esis, rates of evolution.

Significance

Highly expressed proteins tend to evolve slowly. The misfolding avoidance hypothesis attributes this phenomenon to
proteins (particularly highly expressed ones) being under selection to maintain structures that avoid toxic misfolding.
One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should be highly thermostable.
Are highly abundant proteins indeed highly thermostable? Despite the far-reaching implications of this possibility, at-
tempts to test for the trend using empirical data have thus far provided contradictory and controversial results. By com-
paring pairs of human-mouse orthologs with different expression levels, we show that the most highly expressed
ortholog is often the most thermostable. Our results indicate that highly expressed proteins are indeed, on average,
highly thermostable.

Introduction (Pal et al. 2001). A number of hypotheses have been pro-
It is widely appreciated that highly expressed proteins tend posed to try to explain this phenomenon (for review, see
to evolve slowly, a trend known as the E-R anticorrelation Alvarez-Ponce 2014; Zhang and Yang 2015). The
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functional maintenance hypothesis suggests that function-
ally critical proteins are expressed at higher levels and that
their function drives their slower evolutionary rate (Cherry
2010a; Gout et al. 2010). The misinteraction avoidance hy-
pothesis suggests that when proteins are at higher concen-
tration in a cell, they will have higher fractional occupancy
with an increased number of nonspecific binding partners,
leading to selective pressure to avoid sequences on the
protein surface or binding interface that would increase
the affinity for nonspecific partners (Liberles et al. 2011;
Yang et al. 2012). The translational robustness hypothesis ar-
gues that translation errors occur at relatively high rates and
can result in protein misfolding (whose deleterious effects
are abundance dependent), leading to proteins (particularly
highly expressed ones) being under selective pressure to main-
tain structures that can fold despite translation errors
(Drummond et al. 2005). The misfolding avoidance hypoth-
esis was proposed as an extension of the translational robust-
ness hypothesis that recognizes that protein misfolding can
occur not only as a result of translation errors but also spon-
taneously in the absence of such errors and posits that pro-
teins (particularly highly expressed ones) are under selective
pressures to maintain misfolding-resistant structures through-
out evolution (Yang et al. 2010).

The misfolding avoidance hypothesis predicts that highly
expressed proteins should have evolved to be highly robust
to misfolding (including spontaneous misfolding and mis-
folding induced by translation errors). One way in which
natural selection may have shaped highly expressed pro-
teins to exhibit this robustness is by making them highly
thermostable (i.e., with a highly negative free energy of
folding, AGsoiding = Gfolded — Gunfolded, hereafter called
AG). This trend has received some indirect support from
analyses based on proxies of protein thermostability, such
as protein composition and interatomic contact density
(Cherry 2010b; Serohijos et al. 2013), and from simulation
studies (Wilke and Drummond 2006; Drummond and Wilke
2008; Yang et al. 2010; Serohijos et al. 2012). However,
despite the potentially far-reaching implications of such a
trend, attempts to test for it using empirical data have pro-
duced contradictory and controversial results. The main
reason is that proteins’ AG is hard to measure experimental-
ly or to estimate computationally, and thus data are scarce,
and that using indirect measures of AG such as melting
temperature (T,,) is potentially problematic (Razban 2019).

Yang et al. (2010) found no correlation between the
AG of five yeast proteins and their protein abundances.
Using data for a small set of Escherichia coli proteins
(n = 23-28), Plata et al. (2010) found no correlation be-
tween mRNA abundance and AG or T, (which they used
as a proxy of AG). Using T,,, values for hundreds of proteins
obtained from cell lysates, Leuenberger et al. (2017) found
that, in E. coli (but not in yeast or human), highly thermo-
stable proteins are more abundant than lowly thermostable

ones. Using Leuenberger et al.’s data set, Plata and Vitkup
(2018) found a weakly positive correlation between protein
abundance and T, in E. coli (largely driven by ribosomal
proteins) but, surprisingly, a negative correlation in yeast
and human. Razban (2019) noticed that Leuenberger
et al.'s proteome-scale measurements of T,, are subjected
to noise and that the relationship between T, and AG is
not simple and is confounded by protein length, making T,
inappropriate to test whether highly abundant proteins are
highly thermostable. After correcting for these effects, he
found a positive correlation between protein abundance
and thermostability in E. coli, yeast, and human. Most recent-
ly, using an expanded set of proteins, Usmanova, Plata and
Vitkup (2021) found no correlation between protein abun-
dance and AG in E. coli (n=28) or human (n = 42).

Another way in which natural selection may have made
highly expressed proteins robust to misfolding is by altering
their sequence in such a way that translation errors have a
small impact on protein structure (translation error robust-
ness). If that is the case, we would expect that, for highly
expressed proteins, the AAG of translation errors (AAG; =
AG of the incorrectly translated protein — AG of the correct-
ly translated protein) would be on average less positive than
for lowly expressed proteins. However, to our knowledge,
this trend has not been tested.

In this work, we computationally test whether highly ex-
pressed proteins are highly thermostable and/or highly ro-
bust to translation errors by examining a set of pairs of
orthologous proteins between human and mouse that
are expressed at different levels and have a solved structure
in the Protein Data Bank (PDB) (Berman et al. 2000). We
show that, in these pairs, the most highly expressed protein
is often the most thermostable (the one with a more nega-
tive AG of folding), indicating that highly expressed pro-
teins are often more thermostable. However, the average
AAG of translation errors does not correlate with protein
abundance, indicating that highly expressed proteins do
not exhibit structures that are more robust to translation
errors.

Results

Highly Abundant Proteins Are More Thermostable Than
Their Less Abundant Orthologs

We first considered whether highly abundant proteins ex-
hibit high thermostability, as measured from a highly nega-
tive free energy of folding (AG). Whereas a protein’s
absolute AG is generally unknown and very difficult to esti-
mate computationally (Chen et al. 2008; Bigman and Levy
2018), a number of algorithms allow reliably estimating the
difference between the AG of two homologous proteins
(AAG of mutation), taking as input the structure of one of
the proteins and the sequence of the other (Schymkowitz
et al. 2005; Delgado et al. 2019). We used this approach
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Fic. 1.—Changes in free energy of folding due to mutations (AAG of mutations) used in the study. For each term, the direction of the arrow indicates the
initial sequence and the final sequence. Positive AAG values indicate that the final sequence is less stable than the initial sequence. Negative AAG values in-

dicate that the final sequence is more stable than the initial sequence.

to compare the AG of pairs of human-mouse orthologous
proteins.

We obtained a list of 51 pairs of human-mouse ortholo-
gous genes with a protein structure available for at least
one of the two orthologs (the available protein structures cor-
responded to human in 41 cases and to mouse in the other
ten cases) and whose gene tree and protein structure met
the filtering criteria described in the Materials and Methods
section. For each pair of orthologs, we used FoldX 5.0
(Delgado et al. 2019) to estimate AAG,,.: the difference be-
tween the free energy of folding of the mouse protein (AGy)
and the free energy of folding of the human protein (AGy,; fig.
1A). These estimations were generated by combining the ef-
fects of all individual amino acid differences between human
and mouse. For 39 of the pairs, we obtained a positive
AAG, 1, indicating that the human protein is more stable
than the mouse protein. For the other ten pairs, AAGy.h
was negative, indicating that the mouse protein is more stable
than the human one (supplementary table S1, Supplementary
Material online). The other two proteins are identical between
human and mouse, and thus their AAG., is O.

For 49 of these proteins, protein abundance data were
available for both human and mouse. In 25 cases, abun-
dance was higher in human, whereas in 24 cases, it
was higher in mouse. We found a moderate but signifi-
cantly negative correlation between AAG., and the
ratio Rnyn =abundance in mouse/abundance in human
(Spearman'’s rank correlation coefficient, p=-0.31, n=49,
P=0.022), indicating that proteins that are more highly abun-
dant in mouse also tend to be more stable in mouse.
Removing the two proteins that are identical between human
and mouse (at the amino acid residues that are covered
by the available protein structures) produced equivalent
results (p =—0.36, n=47, P=0.013; fig. 2). Also equivalent
results were obtained when restricting the analyses to the
proteins for which a human PDB is available (p = —0.43,
n =38, P=0.007; supplementary fig. S1A, Supplementary

Material online). In addition, the AAG values of all individual
amino acid differences between the human and mouse proteins
significantly correlated with R, (0p=-0.01, n=1302, P=
0.005; supplementary fig. S2, Supplementary Material online).

Thermostability Changes in the Human versus Mouse
Lineages

For 47 of the 51 pairs of human-mouse orthologs, we were
able to identify orthologs in a number of outgroup species,
which we used to infer the protein sequences of the most
recent common ancestor (MRCA) of human and mouse
(node “a" in fig. 1). For each protein, ten possible ancestral
proteins were sampled from the posterior distribution. This
approach has been shown to correct for sampling biases
and to produce ancestral sequences with more realistic
amino acid compositions and biochemical properties
(Williams et al. 2006). We then used the inferred ancestral
sequences and FoldX 5.0 to estimate the difference in the
free energy of folding between the MRCA and either
the human or mouse sequences. We computed AAG;,_; as
the difference between the free energy of folding of the hu-
man protein (AGy) and the free energy of folding of the an-
cestral protein (AG,), taking the average across the ten
inferred ancestral sequences (fig. 14). Similarly, AAG 5
was computed as the difference between the free energy
of folding of the mouse protein (AG,,) and AG,, averaged
across the ten inferred ancestral sequences (fig. 1A). The
values of AAG,, tended to be higher than those of
AAGy,_; (median AAGy,.;: —0.935, median AAG,,.5: 2.494,
Mann-Whitney U test, P=0.0001; supplementary fig.
S3A, Supplementary Material online); however, the trend
was inverted when only proteins with an available mouse
structure were included in the analysis (median AAGy,_,:
—4.658, median AAG,,.5. —3.162, Mann-Whitney U test,
P=0.003; supplementary fig. S3C, Supplementary Material
online). Similar results were obtained when analyzing
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Fic. 2.—Correlation between the difference in the free energy of folding of human and mouse proteins and the difference in the abundance of human
and mouse. Each dot corresponds to a pair of human—mouse orthologs (n = 47). The shaded area represents the 95% confidence interval. Spearman’s rank

correlation test significance level: *, P<0.05.

the AAG values of individual amino acid changes that accumu-
lated along the human and mouse branches (supplementary
figs. S4 and S5, Supplementary Material online). This suggests
the possibility of a bias introduced by computational meth-
ods for structure determination, but as indicated, it has
been controlled for by separating the analysis by the organ-
ism that the solved structure came from.

By using protein abundances from a number of out-
group species, we were able to infer the protein abundance
in the MRCA of human and mouse for 38 of the 47 pairs of
human-mouse orthologs. For each protein, we used these
ancestral protein abundances to estimate the ratio of
abundance change within each branch as the ratios
Rp/a = abundance in human/abundance in the MRCA and
Rnyva = abundance in mouse/abundance in the MRCA. The
correlation between AAG_, and Ry, (p=-0.01 n=38,
P=0.995; fig. 3A) was not significant. However, the
correlation between AAG,., and Ry, (p=-0.33, n=38,
P=0.004; fig. 3C) was significant, indicating that increases
in protein abundance along the rodent branch resulted in
increases in protein thermostability. Within each branch,
no significant differences were observed between the
AAG values of individual amino acid changes that occurred
on proteins whose expression increased versus on proteins
whose expression decreased (Mann-Whitney U test,
human branch: P=0.328, mouse branch: P=0.06;
supplementary fig. S4, Supplementary Material online).

A fraction of the observed amino acid differences be-
tween the human and mouse proteins represents poly-
morphisms rather than fixed mutations. Polymorphic

nonsynonymous mutations are more likely than fixed non-
synonymous substitutions to be destabilizing (Saunders and
Baker 2002; Hunt et al. 2014; Baugh et al. 2016; Ancien
et al. 2018), which may be biasing our results. To discard
this possibility, we added chimpanzee and rat to our align-
ments and inferred the sequences of the MRCA of human
and chimpanzee (node “b" in fig. 1B) and the MRCA of
mouse and rat (node “c” in fig. 1B). For each node, ten an-
cestral sequences were sampled from the posterior distribu-
tion. Presumably, the inferred ancestral sequences are
virtually free from polymorphic mutations, since the
MRCA of human and chimpanzee existed 4-6 million years
ago (Chimpanzee Sequencing and Analysis Consortium
2005) and the MRCA of mouse and rat existed 12—-24 mil-
lion years ago (Gibbs et al. 2004). We then used FoldX 5.0
to estimate AAGy,_, (the change in the free energy of folding
from the MRCA of human and mouse to the MRCA of hu-
man and chimpanzee) and AAG,, (the change in the free en-
ergy of folding from the MRCA of human and mouse to the
MRCA of mouse and rat; fig. 1B). The average AAGy,., was
0.131 kcal/mol and the average AAG., was 4.019 kcal/mol. In
33 out of the 47 groups of orthologs, AAG.; was higher than
AAGy, 5 (binomial test, P=0.007; paired Wilcoxon signed-rank
test, n=47, P=0.002), suggesting again that proteins overall
accumulated more destabilizing changes along the rodent
branch than along the primate branch. Whereas AAGy,_, did
not significantly correlate with R, (p=-0.01, n=38, P=
0.696; fig. 3B), AAG., did negatively correlate with Rn5 (p
=-0.33,n=38,P=0.041; fig. 3D), confirming that increases
in protein abundance along the rodent branch resulted in
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increases in protein thermostability. Of note, more mutations
accumulated along the mouse branch than along the human
one (supplementary table S1, Supplementary Material on-
line), consistent with the faster substitution rates of rodents
(Wu and Li 1985), which probably results in a higher statistical
power to detect correlations in this lineage.

Highly Abundant Proteins Are Not Highly Robust to
Translation Errors

We then considered whether highly abundant proteins ex-
hibit structures that are highly robust to translation errors,
as measured from the average and median change in free
energy resulting from all possible translation errors (average
AAG of translation error or AAGy). For each of the 51 pro-
tein structures in our data set, we used FoldX 5.0 to esti-
mate the AAG; resulting from each possible translation
error (n =length of the protein x 19 for each protein) and
obtained the average, the median, and the fraction of de-
stabilizing translation errors (those with AAG>1).
Neither of the three metrics correlated with protein abun-
dances (average AAGy p=-0.14, n=51, P=0.323, fig.
4A; median AAGy p=-0.15, n=51, P=0.286, fig. 4B,

fraction of destabilizing translation errors: p=-0.03,
n=>51,P=0.821, fig. 4C), indicating that highly abundant
proteins are not more robust to translation errors than
lowly abundant ones.

Because not all translation errors are equally likely, we re-
peated our analyses giving more weight to more frequent
translation errors. For each protein, we randomly sampled
100,000 translation errors. The likelihood of sampling each
translation error was proportional to the probability of occur-
rence of the error (see Materials and Methods section). Again,
neither of the three metrics correlated with protein abun-
dances (average AAGy p=-0.19, n=51, P=0.171,
supplementary fig. S6A, Supplementary Material online; me-
dian AAGy: p=-0.06, n=51, P = .681, supplementary fig.
S6B, Supplementary Material online; fraction of destabilizing
translation  errors: p=-0.05, n=51, P=0.741;
supplementary fig. S6C, Supplementary Material online).

Discussion

There exist at least two nonmutually exclusive evolutionary
paths by which proteins may have become highly robust to
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misfolding. First, they may have evolved to have a highly
negative free energy of folding (AG); second, they may
have evolved to have structures that can properly fold des-
pite some translation errors (leading to a low average AAG
of translation error). By comparing pairs of human-mouse
orthologous proteins, we show a negative correlation be-
tween the mouse/human abundance ratio and the differ-
ence between the thermostabilities of the mouse and
human proteins (fig. 2 and supplementary fig. S2,
Supplementary Material online). These results indicate
that the most highly expressed ortholog tends to be the
most stable. Consistent results were obtained when analyz-
ing mutations that accumulated along the branch separat-
ing the MRCA of human and mouse (node “a” infig. 1) and
mouse (fig. 3C), and when analyzing mutations that accu-
mulated along the branch separating the MRCA of human
and mouse and the MRCA of mouse and rat (node “c” in
fig. 1) (fig. 3D). One would expect that the strength of se-
lection for an expression effect would be amplified by or-
ganismal effective population size. The continuous nature
of the relationship in figure 2 does not show a strong ef-
fect for this, in that there is no significant difference for ex-
pression ratios above and below 1. Because this slope is
the same, this suggests that the strength of the effect is

not significantly different between higher effective popu-
lation size mice and lower effective population size hu-
mans. Furthermore, highly abundant proteins do not
exhibit a lower average or median AAG of translation error
(fig. 4 and supplementary fig. S6, Supplementary Material
online). Thus, our results lend support to the first, but not
the second evolutionary path. It is possible, however, that
future analyses using larger data sets lend support to the
second evolutionary path too. The second effect is ex-
pected to be a weaker effect, as it is a specific secondary
effect. Selection depends upon enough specific transla-
tional errors to occur at individual sites rather than acting
on the AGyoging fOr the whole protein. This has a similarity
to other secondary quality control mechanisms in evolu-
tion, where local secondary selection has been observed
to act only in larger effective population size species
(Xiong et al. 2017).

Previous analyses of the relationship between protein
abundances and AG have relied on AG values generated
in different laboratories and under different experimental
conditions, deposited in the ProTherm database (Nikam
et al. 2021). In contrast, our analyses rely on AAG values
that have been inferred using the same method across all
orthologous pairs.
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Protein thermostabilities are affected by a number of fac-
tors. Thus, a proper test of the relationship between protein
abundance and thermostability should include appropriate
controls for these factors. One factor affecting protein ther-
mostabilities is protein length, given that long proteins are
on average more capable of establishing stabilizing intra-
molecular interactions and have larger hydrophobic cores
(Chan and Dill 1991; Kumar et al. 2000; Ghosh and Dill
2009). Other factors are the number of protein—protein in-
teractions, whether proteins are part of protein complexes,
and whether they are folded by chaperones, because inter-
molecular interactions can contribute to stabilizing proteins
(Gershenson and Gierasch 2011; Chi and Liberles 2016;
Leuenberger et al. 2017). Nonetheless, our analysis is based
on comparison of pairs of human-mouse orthologous pro-
teins, most likely with identical or very similar length and
interaction patterns, which is expected to remove any po-
tential effect of these factors. In addition, we discarded
from our analyses those proteins whose structures had
been solved in complex with other proteins and/or cofac-
tors (other than metal ions).

Unexpectedly, we found that, on average, amino acid
substitutions that accumulated along the mouse branch
were more destabilizing than those that accumulated along
the human branch (supplementary fig. S3, Supplementary
Material online). Primates exhibit a lower effective popula-
tion size (Ne) than rodents (Ohta 1993; Chimpanzee
Sequencing and Analysis Consortium 2005), and theory
predicts that more destabilizing changes will accumulate
in populations with low N, (Goldstein 2013). Our observa-
tions may be partially biased by the fact that, for most of the
pairs of human—-mouse orthologs used in our study, the hu-
man protein structure (n =41) rather than the mouse one
(n=10) is available. This may have resulted in inferred an-
cestral protein structures often resembling more the human
structure than the mouse one. In support of this possibility,
when we restricted our analyses to the orthologous pairs
for which the mouse protein structure is available, the trend
inverted: Mutations that accumulated along the human
branch were more destabilizing than those that accumu-
lated along the mouse branch (supplementary figs. S3C,
S4, and S5, Supplementary Material online). On the other
hand, the tendency for mouse proteins to be less thermo-
stable can be observed in figure 2, which is based on ana-
lyses that do not rely on ancestral protein sequence or
structure reconstruction. The figure shows that AAG,, is
positive in 37 and negative in ten cases and that the regres-
sion line exhibits a positive y-intercept—that is, the linear
model predicts proteins with equal abundance in human
and mouse to be less stable in mouse than in human.
These results suggest that mouse proteins may indeed be
less thermostable than human ones. In any case, we do
not expect this potential bias to affect the main conclusions
of our work, because 1) our key results (the negative

correlation between AAG,.;, and Rpyn Shown in fig. 2) do
not rely on ancestral protein structure reconstruction and
2) they remain significant after removing the pairs of ortho-
logs for which the mouse protein structure is available (cor-
relation between AAG,,., and Ryyn: p=—-0.43,n=38, P=
0.007, supplementary fig. S1A, Supplementary Material
online; correlation between AAG., and Ryy,: p=-0.46,
n=38, P=0.008).

Our observation that highly expressed proteins are highly
thermostable (figs. 2 and 3 and supplementary fig. S2,
Supplementary Material online) is one of the predictions
of the translational robustness hypothesis (Drummond
et al. 2005) and its extension, the misfolding avoidance hy-
pothesis (Yang et al. 2010). However, we would like to clar-
ify that our results, on their own, are insufficient to fully
demonstrate that these hypotheses are correct. It is possible
that higher thermostability results from reducing surface
hydrophobic content, a prediction of the misinteraction
avoidance hypothesis. Demonstrating whether these hy-
potheses are correct, or favoring them over alternative hy-
potheses, is beyond the scope of the current work. Along
these lines, we note that the strength of the correlations
that we observe is rather weak. Nonetheless, they have po-
tentially far-reaching implications for our understanding
protein structure and evolution.

Materials and Methods

Human—Mouse Pairs of Orthologs Selection

Curated reconciled gene family trees including human
or mouse members were obtained from The
Adaptive Evolution Database (TAED; Liberles et al. 20071;
Hermansen et al. 2017). Gene trees containing exactly
one member each in human and mouse (ignoring subspe-
cies) were identified and collected into a list. Integrated
whole-organism protein abundance data for each identi-
fied gene were collected from the human (9,606) and
mouse (10,090) data sets in the protein abundance data-
base PaxDB v4.0 (Wang et al. 2015). Protein structures
for each gene family were identified using the information
in TAED and retrieved from the PDB (Berman et al. 2000).
All ortholog pairs with an available PDB structure with a hu-
man or mouse source were collected and subjected to qual-
ity control. Gene or protein family names containing the
terms “LOW QUALITY,” “partial,” or “fragment,” were re-
moved, as were pairs from gene families with fewer than
five known members. PDB structures were individually scru-
tinized and rejected if they contained bound substrates or
inhibitors, or cofactors other than metal ions, or were crys-
tallized in complex with other proteins. Structures with
stability-affecting mutations, membrane proteins, and
structures of individual domains or motifs were also ex-
cluded. This procedure afforded 51 mouse—human ortho-
log pairs as the final data set.
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Multiple Sequence Alignment and Ancestral Sequence
Inference

For each protein, we obtained the amino acid sequences of
human, mouse, chimpanzee, rat, and four outgroups (dog,
cat, cow, and African elephant, where available) from the
UniProt database (Apweiler et al. 2004). We then aligned
the sequences using the MEGA X software (Kumar et al.
2018) and used the maximum likelihood algorithm imple-
mented in the FastML v3.11 program (Ashkenazy et al.
2012) to infer the sequences of the MRCA of human and
mouse (node “a” in fig. 1), the MRCA of human and chim-
panzee (node “b"), and the MRCA of mouse and rat (node
“c"). Using the marginal reconstruction estimates, ten se-
guences were sampled from the posterior distribution for
each ancestral node. These sampled sequences were used
in further AAG calculations (averaging AAG values across
the ten sequences). For ancestral sequence reconstruction,
we employed the JTT + G substitution model and a phylo-
genetic tree retrieved from the TimeTree platform v5.0
(Kumar et al. 2022).

Ancestral Protein Abundance Inference

For each protein, we retrieved whole-organism protein
abundances for human, mouse, and four outgroups (horse,
dog, cow, and pig, where available) from the PaxDB data-
base v4 (Wang et al. 2015). We then used the anc.ML func-
tion from the phytools R package v1.2 (Revell 2012) to
estimate the abundance for the MRCA of human and
mouse. The anc.ML method uses a maximum likelihood
framework to infer ancestral continuous traits. For each
protein, we estimated the ancestral protein abundance un-
der the Brownian motion (Felsenstein 1973; Schluter et al.
1997) and Ornstein—-Uhlenbeck (Felsenstein 1988) models,
and we used the Akaike information criterion (AIC) to select
the best model for our estimations. In all cases, the
Brownian motion model was the one exhibiting the best
fit. The phylogenetic tree used in this analysis was retrieved
from the TimeTree platform v5.0 (Kumar et al. 2022).
Inferences were only carried out when protein abundance
data were available for at least two of the outgroup species.

Estimation of AAG of Amino Acid Substitutions

We used the FoldX 5.0 program (Delgado et al. 2019) to in-
fer differences in AG between pairs of human and mouse
orthologous proteins (AAG,,.,). The program takes as input
a protein’s three-dimensional structure (which we obtained
from the PDB; Berman et al. 2000) and a set of amino acid
changes (which we inferred from human-mouse protein se-
guence alignments). The software then uses an algorithm
based on an empirical force field to infer the effect of
each amino acid change on protein stability, as well as
the combined effect of all changes. Throughout this

manuscript, we use combined AAG values for each protein,
unless noted otherwise (supplementary figs. S2, S4, and S5,
Supplementary Material online). Our analyses involved two
steps: We first optimized the PDB files using the RepairPDB
command, and we then ran the BuildModel function, com-
pleting five cycles for each amino acid change.

In 41 cases, we used the human protein structure as in-
put to infer AAG,,y, directly. In ten cases, we used the
mouse structure as input, and then we inverted the sign
of the resulting AAG estimates to obtain AAG,.,. Amino
acid changes (or combinations of amino acid changes)
with negative AAG values are expected to be stabilizing,
whereas those with positive AAG values are expected to
be destabilizing. Thus, positive (negative) AAG,_, values in-
dicate that the mouse protein is less (more) stable than the
human protein.

For each group of orthologs, we inferred the structure of
the protein of the MRCA of human and mouse (node “a” in
fig. 1) from the available PDB structure and the ten sampled
ancestral sequences using the BuildModel function. For
each sampled ancestral sequence, a separate structural
model was built. We then used the BuildModel function
again to infer ten AAGy.,, ten AAGp,.,, ten AAGy,, and
ten AAG,, values for each group of orthologs, completing
three cycles for each amino acid change. Each of the ten
AAGy_; and AAG, ., values was inferred by picking one of
the ten structural models for node “a” and the sequence
of the relevant species (human or mouse, respectively);
the ten values were then averaged, and the resulting aver-
age was used in all our analyses (fig. 3 and supplementary
fig. S3 and table S1, Supplementary Material online). Each
of the ten AAGy,_, and AAG_, values was inferred by picking
one of the ten structural models for node “a” and one of
the ten ancestral sequences sampled for the relevant in-
ternal node (nodes “b” or “c,” respectively); the ten values
were then averaged, and the resulting average was used in
all our analyses (fig. 3 and supplementary fig. S3 and table
S1, Supplementary Material online).

Estimation of AAG of Translation Errors

We used FoldX 5.0 (Delgado et al. 2019) to infer the effect of
each possible translation error on protein stability (AAG of
translation error or AAGy). Using repaired PDB files, each ami-
no acid was “mutated” to all other 19 standard amino acids
by conducting a single run of the PositionScan function.
Then, for each protein, we randomly sampled 100,000
translation errors. In each drawing, the probability of pick-
ing a given translation error was proportional to the likeli-
hood of the translation error occurring, taking into
account that 1) unpreferred codons are approximately
five times more likely to undergo translation errors
(Drummond and Wilke 2008) and 2) the translation error
table inferred by Yang et al. (2010). Coding sequences
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(CDSs) were obtained from the Ensembl genome database
(Hubbard et al. 2002), and a list of human preferred codons
was obtained from the Codon Statistics Database
(Subramanian et al. 2022).

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online (http:/www.gbe.oxfordjournals.org/).
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