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Abstract

Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been 
proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abun
dance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of 
highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis 
is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus 
far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing 
contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have 
been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using 
proteins’ melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, 
we use computational methods to compare the free energy of folding of pairs of human–mouse orthologous proteins with 
different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a 
more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.

Key words: protein thermostability, expression levels, misfolding avoidance hypothesis, translational robustness hypoth
esis, rates of evolution.

Significance
Highly expressed proteins tend to evolve slowly. The misfolding avoidance hypothesis attributes this phenomenon to 
proteins (particularly highly expressed ones) being under selection to maintain structures that avoid toxic misfolding. 
One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should be highly thermostable. 
Are highly abundant proteins indeed highly thermostable? Despite the far-reaching implications of this possibility, at
tempts to test for the trend using empirical data have thus far provided contradictory and controversial results. By com
paring pairs of human–mouse orthologs with different expression levels, we show that the most highly expressed 
ortholog is often the most thermostable. Our results indicate that highly expressed proteins are indeed, on average, 
highly thermostable.
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Introduction
It is widely appreciated that highly expressed proteins tend 
to evolve slowly, a trend known as the E-R anticorrelation 

(Pál et al. 2001). A number of hypotheses have been pro
posed to try to explain this phenomenon (for review, see 
Alvarez-Ponce 2014; Zhang and Yang 2015). The 
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functional maintenance hypothesis suggests that function
ally critical proteins are expressed at higher levels and that 
their function drives their slower evolutionary rate (Cherry 
2010a; Gout et al. 2010). The misinteraction avoidance hy
pothesis suggests that when proteins are at higher concen
tration in a cell, they will have higher fractional occupancy 
with an increased number of nonspecific binding partners, 
leading to selective pressure to avoid sequences on the 
protein surface or binding interface that would increase 
the affinity for nonspecific partners (Liberles et al. 2011; 
Yang et al. 2012). The translational robustness hypothesis ar
gues that translation errors occur at relatively high rates and 
can result in protein misfolding (whose deleterious effects 
are abundance dependent), leading to proteins (particularly 
highly expressed ones) being under selective pressure to main
tain structures that can fold despite translation errors 
(Drummond et al. 2005). The misfolding avoidance hypoth
esis was proposed as an extension of the translational robust
ness hypothesis that recognizes that protein misfolding can 
occur not only as a result of translation errors but also spon
taneously in the absence of such errors and posits that pro
teins (particularly highly expressed ones) are under selective 
pressures to maintain misfolding-resistant structures through
out evolution (Yang et al. 2010).

The misfolding avoidance hypothesis predicts that highly 
expressed proteins should have evolved to be highly robust 
to misfolding (including spontaneous misfolding and mis
folding induced by translation errors). One way in which 
natural selection may have shaped highly expressed pro
teins to exhibit this robustness is by making them highly 
thermostable (i.e., with a highly negative free energy of 
folding, ΔGfolding = Gfolded − Gunfolded, hereafter called 
ΔG). This trend has received some indirect support from 
analyses based on proxies of protein thermostability, such 
as protein composition and interatomic contact density 
(Cherry 2010b; Serohijos et al. 2013), and from simulation 
studies (Wilke and Drummond 2006; Drummond and Wilke 
2008; Yang et al. 2010; Serohijos et al. 2012). However, 
despite the potentially far-reaching implications of such a 
trend, attempts to test for it using empirical data have pro
duced contradictory and controversial results. The main 
reason is that proteins’ ΔG is hard to measure experimental
ly or to estimate computationally, and thus data are scarce, 
and that using indirect measures of ΔG such as melting 
temperature (Tm) is potentially problematic (Razban 2019).

Yang et al. (2010) found no correlation between the 
ΔG of five yeast proteins and their protein abundances. 
Using data for a small set of Escherichia coli proteins 
(n = 23–28), Plata et al. (2010) found no correlation be
tween mRNA abundance and ΔG or Tm (which they used 
as a proxy of ΔG). Using Tm values for hundreds of proteins 
obtained from cell lysates, Leuenberger et al. (2017) found 
that, in E. coli (but not in yeast or human), highly thermo
stable proteins are more abundant than lowly thermostable 

ones. Using Leuenberger et al.’s data set, Plata and Vitkup 
(2018) found a weakly positive correlation between protein 
abundance and Tm in E. coli (largely driven by ribosomal 
proteins) but, surprisingly, a negative correlation in yeast 
and human. Razban (2019) noticed that Leuenberger 
et al.’s proteome-scale measurements of Tm are subjected 
to noise and that the relationship between Tm and ΔG is 
not simple and is confounded by protein length, making Tm 

inappropriate to test whether highly abundant proteins are 
highly thermostable. After correcting for these effects, he 
found a positive correlation between protein abundance 
and thermostability in E. coli, yeast, and human. Most recent
ly, using an expanded set of proteins, Usmanova, Plata and 
Vitkup (2021) found no correlation between protein abun
dance and ΔG in E. coli (n = 28) or human (n = 42).

Another way in which natural selection may have made 
highly expressed proteins robust to misfolding is by altering 
their sequence in such a way that translation errors have a 
small impact on protein structure (translation error robust
ness). If that is the case, we would expect that, for highly 
expressed proteins, the ΔΔG of translation errors (ΔΔGt =  
ΔG of the incorrectly translated protein − ΔG of the correct
ly translated protein) would be on average less positive than 
for lowly expressed proteins. However, to our knowledge, 
this trend has not been tested.

In this work, we computationally test whether highly ex
pressed proteins are highly thermostable and/or highly ro
bust to translation errors by examining a set of pairs of 
orthologous proteins between human and mouse that 
are expressed at different levels and have a solved structure 
in the Protein Data Bank (PDB) (Berman et al. 2000). We 
show that, in these pairs, the most highly expressed protein 
is often the most thermostable (the one with a more nega
tive ΔG of folding), indicating that highly expressed pro
teins are often more thermostable. However, the average 
ΔΔG of translation errors does not correlate with protein 
abundance, indicating that highly expressed proteins do 
not exhibit structures that are more robust to translation 
errors.

Results

Highly Abundant Proteins Are More Thermostable Than 
Their Less Abundant Orthologs

We first considered whether highly abundant proteins ex
hibit high thermostability, as measured from a highly nega
tive free energy of folding (ΔG). Whereas a protein’s 
absolute ΔG is generally unknown and very difficult to esti
mate computationally (Chen et al. 2008; Bigman and Levy 
2018), a number of algorithms allow reliably estimating the 
difference between the ΔG of two homologous proteins 
(ΔΔG of mutation), taking as input the structure of one of 
the proteins and the sequence of the other (Schymkowitz 
et al. 2005; Delgado et al. 2019). We used this approach 
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to compare the ΔG of pairs of human–mouse orthologous 
proteins.

We obtained a list of 51 pairs of human–mouse ortholo
gous genes with a protein structure available for at least 
one of the two orthologs (the available protein structures cor
responded to human in 41 cases and to mouse in the other 
ten cases) and whose gene tree and protein structure met 
the filtering criteria described in the Materials and Methods 
section. For each pair of orthologs, we used FoldX 5.0 
(Delgado et al. 2019) to estimate ΔΔGm-h: the difference be
tween the free energy of folding of the mouse protein (ΔGm) 
and the free energy of folding of the human protein (ΔGh; fig. 
1A). These estimations were generated by combining the ef
fects of all individual amino acid differences between human 
and mouse. For 39 of the pairs, we obtained a positive 
ΔΔGm-h, indicating that the human protein is more stable 
than the mouse protein. For the other ten pairs, ΔΔGm-h 

was negative, indicating that the mouse protein is more stable 
than the human one (supplementary table S1, Supplementary 
Material online). The other two proteins are identical between 
human and mouse, and thus their ΔΔGm-h is 0.

For 49 of these proteins, protein abundance data were 
available for both human and mouse. In 25 cases, abun
dance was higher in human, whereas in 24 cases, it 
was higher in mouse. We found a moderate but signifi
cantly negative correlation between ΔΔGm-h and the 
ratio Rm/h = abundance in mouse/abundance in human 
(Spearman’s rank correlation coefficient, ρ = −0.31, n = 49, 
P = 0.022), indicating that proteins that are more highly abun
dant in mouse also tend to be more stable in mouse. 
Removing the two proteins that are identical between human 
and mouse (at the amino acid residues that are covered 
by the available protein structures) produced equivalent 
results (ρ = −0.36, n = 47, P = 0.013; fig. 2). Also equivalent 
results were obtained when restricting the analyses to the 
proteins for which a human PDB is available (ρ = −0.43, 
n = 38, P = 0.007; supplementary fig. S1A, Supplementary 

Material online). In addition, the ΔΔG values of all individual 
amino acid differences between the human and mouse proteins 
significantly correlated with Rm/h (ρ = −0.01, n = 1302, P =  
0.005; supplementary fig. S2, Supplementary Material online).

Thermostability Changes in the Human versus Mouse 
Lineages

For 47 of the 51 pairs of human–mouse orthologs, we were 
able to identify orthologs in a number of outgroup species, 
which we used to infer the protein sequences of the most 
recent common ancestor (MRCA) of human and mouse 
(node “a” in fig. 1). For each protein, ten possible ancestral 
proteins were sampled from the posterior distribution. This 
approach has been shown to correct for sampling biases 
and to produce ancestral sequences with more realistic 
amino acid compositions and biochemical properties 
(Williams et al. 2006). We then used the inferred ancestral 
sequences and FoldX 5.0 to estimate the difference in the 
free energy of folding between the MRCA and either 
the human or mouse sequences. We computed ΔΔGh-a as 
the difference between the free energy of folding of the hu
man protein (ΔGh) and the free energy of folding of the an
cestral protein (ΔGa), taking the average across the ten 
inferred ancestral sequences (fig. 1A). Similarly, ΔΔGm-a 

was computed as the difference between the free energy 
of folding of the mouse protein (ΔGm) and ΔGa, averaged 
across the ten inferred ancestral sequences (fig. 1A). The 
values of ΔΔGm-a tended to be higher than those of 
ΔΔGh-a (median ΔΔGh-a: −0.935, median ΔΔGm-a: 2.494, 
Mann–Whitney U test, P = 0.0001; supplementary fig. 
S3A, Supplementary Material online); however, the trend 
was inverted when only proteins with an available mouse 
structure were included in the analysis (median ΔΔGh-a: 
−4.658, median ΔΔGm-a: −3.162, Mann–Whitney U test, 
P = 0.003; supplementary fig. S3C, Supplementary Material
online). Similar results were obtained when analyzing 

A B

FIG. 1.—Changes in free energy of folding due to mutations (ΔΔG of mutations) used in the study. For each term, the direction of the arrow indicates the 
initial sequence and the final sequence. Positive ΔΔG values indicate that the final sequence is less stable than the initial sequence. Negative ΔΔG values in
dicate that the final sequence is more stable than the initial sequence.
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the ΔΔG values of individual amino acid changes that accumu
lated along the human and mouse branches (supplementary 
figs. S4 and S5, Supplementary Material online). This suggests 
the possibility of a bias introduced by computational meth
ods for structure determination, but as indicated, it has 
been controlled for by separating the analysis by the organ
ism that the solved structure came from.

By using protein abundances from a number of out
group species, we were able to infer the protein abundance 
in the MRCA of human and mouse for 38 of the 47 pairs of 
human–mouse orthologs. For each protein, we used these 
ancestral protein abundances to estimate the ratio of 
abundance change within each branch as the ratios 
Rh/a = abundance in human/abundance in the MRCA and 
Rm/a = abundance in mouse/abundance in the MRCA. The 
correlation between ΔΔGh-a and Rh/a (ρ = −0.01 n = 38, 
P = 0.995; fig. 3A) was not significant. However, the 
correlation between ΔΔGm-a and Rm/a (ρ = −0.33, n = 38, 
P = 0.004; fig. 3C) was significant, indicating that increases 
in protein abundance along the rodent branch resulted in 
increases in protein thermostability. Within each branch, 
no significant differences were observed between the 
ΔΔG values of individual amino acid changes that occurred 
on proteins whose expression increased versus on proteins 
whose expression decreased (Mann–Whitney U test, 
human branch: P = 0.328, mouse branch: P = 0.06; 
supplementary fig. S4, Supplementary Material online).

A fraction of the observed amino acid differences be
tween the human and mouse proteins represents poly
morphisms rather than fixed mutations. Polymorphic 

nonsynonymous mutations are more likely than fixed non
synonymous substitutions to be destabilizing (Saunders and 
Baker 2002; Hunt et al. 2014; Baugh et al. 2016; Ancien 
et al. 2018), which may be biasing our results. To discard 
this possibility, we added chimpanzee and rat to our align
ments and inferred the sequences of the MRCA of human 
and chimpanzee (node “b” in fig. 1B) and the MRCA of 
mouse and rat (node “c” in fig. 1B). For each node, ten an
cestral sequences were sampled from the posterior distribu
tion. Presumably, the inferred ancestral sequences are 
virtually free from polymorphic mutations, since the 
MRCA of human and chimpanzee existed 4–6 million years 
ago (Chimpanzee Sequencing and Analysis Consortium 
2005) and the MRCA of mouse and rat existed 12–24 mil
lion years ago (Gibbs et al. 2004). We then used FoldX 5.0 
to estimate ΔΔGb-a (the change in the free energy of folding 
from the MRCA of human and mouse to the MRCA of hu
man and chimpanzee) and ΔΔGc-a (the change in the free en
ergy of folding from the MRCA of human and mouse to the 
MRCA of mouse and rat; fig. 1B). The average ΔΔGb-a was 
0.131 kcal/mol and the average ΔΔGc-a was 4.019 kcal/mol. In 
33 out of the 47 groups of orthologs, ΔΔGc-a was higher than 
ΔΔGb-a (binomial test, P = 0.007; paired Wilcoxon signed-rank 
test, n = 47, P = 0.002), suggesting again that proteins overall 
accumulated more destabilizing changes along the rodent 
branch than along the primate branch. Whereas ΔΔGb-a did 
not significantly correlate with Rh/a (ρ = −0.01, n = 38, P =  
0.696; fig. 3B), ΔΔGc-a did negatively correlate with Rm/a (ρ  
= −0.33, n = 38, P = 0.041; fig. 3D), confirming that increases 
in protein abundance along the rodent branch resulted in 

FIG. 2.—Correlation between the difference in the free energy of folding of human and mouse proteins and the difference in the abundance of human 
and mouse. Each dot corresponds to a pair of human–mouse orthologs (n = 47). The shaded area represents the 95% confidence interval. Spearman’s rank 
correlation test significance level: *, P < 0.05.
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increases in protein thermostability. Of note, more mutations 
accumulated along the mouse branch than along the human 
one (supplementary table S1, Supplementary Material on
line), consistent with the faster substitution rates of rodents 
(Wu and Li 1985), which probably results in a higher statistical 
power to detect correlations in this lineage.

Highly Abundant Proteins Are Not Highly Robust to 
Translation Errors

We then considered whether highly abundant proteins ex
hibit structures that are highly robust to translation errors, 
as measured from the average and median change in free 
energy resulting from all possible translation errors (average 
ΔΔG of translation error or ΔΔGt). For each of the 51 pro
tein structures in our data set, we used FoldX 5.0 to esti
mate the ΔΔGt resulting from each possible translation 
error (n = length of the protein × 19 for each protein) and 
obtained the average, the median, and the fraction of de
stabilizing translation errors (those with ΔΔGt > 1). 
Neither of the three metrics correlated with protein abun
dances (average ΔΔGt: ρ = −0.14, n = 51, P = 0.323, fig. 
4A; median ΔΔGt: ρ = −0.15, n = 51, P = 0.286, fig. 4B; 

fraction of destabilizing translation errors: ρ = −0.03, 
n = 51, P = 0.821, fig. 4C), indicating that highly abundant 
proteins are not more robust to translation errors than 
lowly abundant ones.

Because not all translation errors are equally likely, we re
peated our analyses giving more weight to more frequent 
translation errors. For each protein, we randomly sampled 
100,000 translation errors. The likelihood of sampling each 
translation error was proportional to the probability of occur
rence of the error (see Materials and Methods section). Again, 
neither of the three metrics correlated with protein abun
dances (average ΔΔGt: ρ = −0.19, n = 51, P = 0.171, 
supplementary fig. S6A, Supplementary Material online; me
dian ΔΔGt: ρ = −0.06, n = 51, P = .681, supplementary fig. 
S6B, Supplementary Material online; fraction of destabilizing 
translation errors: ρ = −0.05, n = 51, P = 0.741; 
supplementary fig. S6C, Supplementary Material online).

Discussion
There exist at least two nonmutually exclusive evolutionary 
paths by which proteins may have become highly robust to 

FIG. 3.—Correlation between changes in free energy of folding (ΔΔG) and changes in protein abundance at different branches of the primate and rodent 
phylogeny. Each dot corresponds to a human or mouse protein. The shaded areas represent the 95% confidence intervals. Spearman’s rank correlation test 
significance level: *, P < 0.05.
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misfolding. First, they may have evolved to have a highly 
negative free energy of folding (ΔG); second, they may 
have evolved to have structures that can properly fold des
pite some translation errors (leading to a low average ΔΔG 
of translation error). By comparing pairs of human–mouse 
orthologous proteins, we show a negative correlation be
tween the mouse/human abundance ratio and the differ
ence between the thermostabilities of the mouse and 
human proteins (fig. 2 and supplementary fig. S2, 
Supplementary Material online). These results indicate 
that the most highly expressed ortholog tends to be the 
most stable. Consistent results were obtained when analyz
ing mutations that accumulated along the branch separat
ing the MRCA of human and mouse (node “a” in fig. 1) and 
mouse (fig. 3C), and when analyzing mutations that accu
mulated along the branch separating the MRCA of human 
and mouse and the MRCA of mouse and rat (node “c” in 
fig. 1) (fig. 3D). One would expect that the strength of se
lection for an expression effect would be amplified by or
ganismal effective population size. The continuous nature 
of the relationship in figure 2 does not show a strong ef
fect for this, in that there is no significant difference for ex
pression ratios above and below 1. Because this slope is 
the same, this suggests that the strength of the effect is 

not significantly different between higher effective popu
lation size mice and lower effective population size hu
mans. Furthermore, highly abundant proteins do not 
exhibit a lower average or median ΔΔG of translation error 
(fig. 4 and supplementary fig. S6, Supplementary Material
online). Thus, our results lend support to the first, but not 
the second evolutionary path. It is possible, however, that 
future analyses using larger data sets lend support to the 
second evolutionary path too. The second effect is ex
pected to be a weaker effect, as it is a specific secondary 
effect. Selection depends upon enough specific transla
tional errors to occur at individual sites rather than acting 
on the ΔGfolding for the whole protein. This has a similarity 
to other secondary quality control mechanisms in evolu
tion, where local secondary selection has been observed 
to act only in larger effective population size species 
(Xiong et al. 2017).

Previous analyses of the relationship between protein 
abundances and ΔG have relied on ΔG values generated 
in different laboratories and under different experimental 
conditions, deposited in the ProTherm database (Nikam 
et al. 2021). In contrast, our analyses rely on ΔΔG values 
that have been inferred using the same method across all 
orthologous pairs.

FIG. 4.—Correlation between the differences in the free energy of folding due to all possible translation errors (ΔΔGt) and protein abundance. Each dot 
corresponds to one human or mouse protein structure (n = 51). Average and median ΔΔGt values were estimated by substituting every amino acid position 
with the other 19 standard amino acids. The percent of destabilizing translation errors was computed as the fraction of translation errors with ΔΔGt > 1. The 
shaded areas represent the 95% confidence intervals.
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Protein thermostabilities are affected by a number of fac
tors. Thus, a proper test of the relationship between protein 
abundance and thermostability should include appropriate 
controls for these factors. One factor affecting protein ther
mostabilities is protein length, given that long proteins are 
on average more capable of establishing stabilizing intra
molecular interactions and have larger hydrophobic cores 
(Chan and Dill 1991; Kumar et al. 2000; Ghosh and Dill 
2009). Other factors are the number of protein–protein in
teractions, whether proteins are part of protein complexes, 
and whether they are folded by chaperones, because inter
molecular interactions can contribute to stabilizing proteins 
(Gershenson and Gierasch 2011; Chi and Liberles 2016; 
Leuenberger et al. 2017). Nonetheless, our analysis is based 
on comparison of pairs of human–mouse orthologous pro
teins, most likely with identical or very similar length and 
interaction patterns, which is expected to remove any po
tential effect of these factors. In addition, we discarded 
from our analyses those proteins whose structures had 
been solved in complex with other proteins and/or cofac
tors (other than metal ions).

Unexpectedly, we found that, on average, amino acid 
substitutions that accumulated along the mouse branch 
were more destabilizing than those that accumulated along 
the human branch (supplementary fig. S3, Supplementary 
Material online). Primates exhibit a lower effective popula
tion size (Ne) than rodents (Ohta 1993; Chimpanzee 
Sequencing and Analysis Consortium 2005), and theory 
predicts that more destabilizing changes will accumulate 
in populations with low Ne (Goldstein 2013). Our observa
tions may be partially biased by the fact that, for most of the 
pairs of human–mouse orthologs used in our study, the hu
man protein structure (n = 41) rather than the mouse one 
(n = 10) is available. This may have resulted in inferred an
cestral protein structures often resembling more the human 
structure than the mouse one. In support of this possibility, 
when we restricted our analyses to the orthologous pairs 
for which the mouse protein structure is available, the trend 
inverted: Mutations that accumulated along the human 
branch were more destabilizing than those that accumu
lated along the mouse branch (supplementary figs. S3C, 
S4, and S5, Supplementary Material online). On the other 
hand, the tendency for mouse proteins to be less thermo
stable can be observed in figure 2, which is based on ana
lyses that do not rely on ancestral protein sequence or 
structure reconstruction. The figure shows that ΔΔGm-h is 
positive in 37 and negative in ten cases and that the regres
sion line exhibits a positive y-intercept—that is, the linear 
model predicts proteins with equal abundance in human 
and mouse to be less stable in mouse than in human. 
These results suggest that mouse proteins may indeed be 
less thermostable than human ones. In any case, we do 
not expect this potential bias to affect the main conclusions 
of our work, because 1) our key results (the negative 

correlation between ΔΔGm-h and Rm/h shown in fig. 2) do 
not rely on ancestral protein structure reconstruction and 
2) they remain significant after removing the pairs of ortho
logs for which the mouse protein structure is available (cor
relation between ΔΔGm-h and Rm/h: ρ = −0.43, n = 38, P =  
0.007, supplementary fig. S1A, Supplementary Material
online; correlation between ΔΔGc-a and Rm/a: ρ = −0.46, 
n = 38, P = 0.008).

Our observation that highly expressed proteins are highly 
thermostable (figs. 2 and 3 and supplementary fig. S2, 
Supplementary Material online) is one of the predictions 
of the translational robustness hypothesis (Drummond 
et al. 2005) and its extension, the misfolding avoidance hy
pothesis (Yang et al. 2010). However, we would like to clar
ify that our results, on their own, are insufficient to fully 
demonstrate that these hypotheses are correct. It is possible 
that higher thermostability results from reducing surface 
hydrophobic content, a prediction of the misinteraction 
avoidance hypothesis. Demonstrating whether these hy
potheses are correct, or favoring them over alternative hy
potheses, is beyond the scope of the current work. Along 
these lines, we note that the strength of the correlations 
that we observe is rather weak. Nonetheless, they have po
tentially far-reaching implications for our understanding 
protein structure and evolution.

Materials and Methods

Human–Mouse Pairs of Orthologs Selection

Curated reconciled gene family trees including human 
or mouse members were obtained from The 
Adaptive Evolution Database (TAED; Liberles et al. 2001; 
Hermansen et al. 2017). Gene trees containing exactly 
one member each in human and mouse (ignoring subspe
cies) were identified and collected into a list. Integrated 
whole-organism protein abundance data for each identi
fied gene were collected from the human (9,606) and 
mouse (10,090) data sets in the protein abundance data
base PaxDB v4.0 (Wang et al. 2015). Protein structures 
for each gene family were identified using the information 
in TAED and retrieved from the PDB (Berman et al. 2000). 
All ortholog pairs with an available PDB structure with a hu
man or mouse source were collected and subjected to qual
ity control. Gene or protein family names containing the 
terms “LOW QUALITY,” “partial,” or “fragment,” were re
moved, as were pairs from gene families with fewer than 
five known members. PDB structures were individually scru
tinized and rejected if they contained bound substrates or 
inhibitors, or cofactors other than metal ions, or were crys
tallized in complex with other proteins. Structures with 
stability-affecting mutations, membrane proteins, and 
structures of individual domains or motifs were also ex
cluded. This procedure afforded 51 mouse–human ortho
log pairs as the final data set.
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Multiple Sequence Alignment and Ancestral Sequence 
Inference

For each protein, we obtained the amino acid sequences of 
human, mouse, chimpanzee, rat, and four outgroups (dog, 
cat, cow, and African elephant, where available) from the 
UniProt database (Apweiler et al. 2004). We then aligned 
the sequences using the MEGA X software (Kumar et al. 
2018) and used the maximum likelihood algorithm imple
mented in the FastML v3.11 program (Ashkenazy et al. 
2012) to infer the sequences of the MRCA of human and 
mouse (node “a” in fig. 1), the MRCA of human and chim
panzee (node “b”), and the MRCA of mouse and rat (node 
“c”). Using the marginal reconstruction estimates, ten se
quences were sampled from the posterior distribution for 
each ancestral node. These sampled sequences were used 
in further ΔΔG calculations (averaging ΔΔG values across 
the ten sequences). For ancestral sequence reconstruction, 
we employed the JTT + G substitution model and a phylo
genetic tree retrieved from the TimeTree platform v5.0 
(Kumar et al. 2022).

Ancestral Protein Abundance Inference

For each protein, we retrieved whole-organism protein 
abundances for human, mouse, and four outgroups (horse, 
dog, cow, and pig, where available) from the PaxDB data
base v4 (Wang et al. 2015). We then used the anc.ML func
tion from the phytools R package v1.2 (Revell 2012) to 
estimate the abundance for the MRCA of human and 
mouse. The anc.ML method uses a maximum likelihood 
framework to infer ancestral continuous traits. For each 
protein, we estimated the ancestral protein abundance un
der the Brownian motion (Felsenstein 1973; Schluter et al. 
1997) and Ornstein–Uhlenbeck (Felsenstein 1988) models, 
and we used the Akaike information criterion (AIC) to select 
the best model for our estimations. In all cases, the 
Brownian motion model was the one exhibiting the best 
fit. The phylogenetic tree used in this analysis was retrieved 
from the TimeTree platform v5.0 (Kumar et al. 2022). 
Inferences were only carried out when protein abundance 
data were available for at least two of the outgroup species.

Estimation of ΔΔG of Amino Acid Substitutions

We used the FoldX 5.0 program (Delgado et al. 2019) to in
fer differences in ΔG between pairs of human and mouse 
orthologous proteins (ΔΔGm-h). The program takes as input 
a protein’s three-dimensional structure (which we obtained 
from the PDB; Berman et al. 2000) and a set of amino acid 
changes (which we inferred from human–mouse protein se
quence alignments). The software then uses an algorithm 
based on an empirical force field to infer the effect of 
each amino acid change on protein stability, as well as 
the combined effect of all changes. Throughout this 

manuscript, we use combined ΔΔG values for each protein, 
unless noted otherwise (supplementary figs. S2, S4, and S5, 
Supplementary Material online). Our analyses involved two 
steps: We first optimized the PDB files using the RepairPDB 
command, and we then ran the BuildModel function, com
pleting five cycles for each amino acid change.

In 41 cases, we used the human protein structure as in
put to infer ΔΔGm-h directly. In ten cases, we used the 
mouse structure as input, and then we inverted the sign 
of the resulting ΔΔG estimates to obtain ΔΔGm-h. Amino 
acid changes (or combinations of amino acid changes) 
with negative ΔΔG values are expected to be stabilizing, 
whereas those with positive ΔΔG values are expected to 
be destabilizing. Thus, positive (negative) ΔΔGm-h values in
dicate that the mouse protein is less (more) stable than the 
human protein.

For each group of orthologs, we inferred the structure of 
the protein of the MRCA of human and mouse (node “a” in 
fig. 1) from the available PDB structure and the ten sampled 
ancestral sequences using the BuildModel function. For 
each sampled ancestral sequence, a separate structural 
model was built. We then used the BuildModel function 
again to infer ten ΔΔGh-a, ten ΔΔGm-a, ten ΔΔGb-a, and 
ten ΔΔGc-a values for each group of orthologs, completing 
three cycles for each amino acid change. Each of the ten 
ΔΔGh-a and ΔΔGm-a values was inferred by picking one of 
the ten structural models for node “a” and the sequence 
of the relevant species (human or mouse, respectively); 
the ten values were then averaged, and the resulting aver
age was used in all our analyses (fig. 3 and supplementary 
fig. S3 and table S1, Supplementary Material online). Each 
of the ten ΔΔGb-a and ΔΔGc-a values was inferred by picking 
one of the ten structural models for node “a” and one of 
the ten ancestral sequences sampled for the relevant in
ternal node (nodes “b” or “c,” respectively); the ten values 
were then averaged, and the resulting average was used in 
all our analyses (fig. 3 and supplementary fig. S3 and table 
S1, Supplementary Material online).

Estimation of ΔΔG of Translation Errors

We used FoldX 5.0 (Delgado et al. 2019) to infer the effect of 
each possible translation error on protein stability (ΔΔG of 
translation error or ΔΔGt). Using repaired PDB files, each ami
no acid was “mutated” to all other 19 standard amino acids 
by conducting a single run of the PositionScan function.

Then, for each protein, we randomly sampled 100,000 
translation errors. In each drawing, the probability of pick
ing a given translation error was proportional to the likeli
hood of the translation error occurring, taking into 
account that 1) unpreferred codons are approximately 
five times more likely to undergo translation errors 
(Drummond and Wilke 2008) and 2) the translation error 
table inferred by Yang et al. (2010). Coding sequences 
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(CDSs) were obtained from the Ensembl genome database 
(Hubbard et al. 2002), and a list of human preferred codons 
was obtained from the Codon Statistics Database 
(Subramanian et al. 2022).

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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