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A B S T R A C T   

The ability to predict individual differences in motor learning has significant implications from both theoretical 
and applied perspectives. However, there is high variability in the methodological and analytical strategies 
employed as evidence for such predictions. Here, we critically examine the evidence for predictions of individual 
differences in motor learning by reviewing the literature from a 20-year period (2000–2020). Specifically, we 
examined four factors: (i) the predictor and predicted variables used, (ii) the strength of the prediction and 
associated sample size, (iii) the timescale over which the prediction was made, and (iv) the type of motor task 
used. Overall, the results highlight several issues that raise concerns about the quality of the evidence for such 
predictions. First, there was a large variation in both predictor and predicted variables, suggesting the presence 
of a large number of researcher degrees of freedom. Second, sample sizes tended to be small, and the strength of 
the correlation showed an inverse relation with sample size. Third, the timescale of most predictions was very 
short, mostly constrained to a single day. Last, most studies were largely restricted to two experimental para
digms – adaptation and sequence learning. Based on these issues, we highlight recommendations for future 
studies to improve the quality of evidence for predicting individual differences in motor learning.   

1. Introduction 

It has been long recognized that individuals who undergo the same 
training show differences in how much they learn during practice. These 
individual differences in motor learning have been the centerpiece of 
several long-standing theoretical issues ranging from general motor 
abilities (Seashore, 1930), aptitude-treatment interactions (Cronbach, 
1957) and cognitive-intellectual determinants (Ackerman, 1988). 
Several reviews have focused on this issue (Marteniuk, 1974; Ackerman, 
1987; Adams, 1987; Seidler and Carson, 2017), including a recent his
torical perspective (Anderson et al., 2021). 

An important issue in this regard is whether these individual dif
ferences can be predicted – i.e., whether it is possible to identify how 
much an individual will learn based on measurements either early on or 
even prior to the practice period. Here, we use the term ‘prediction’ to 
refer to contexts where the independent variable is measured earlier in 
time relative to the measurement of the dependent variable. Making 
these predictions is not only important for testing theoretical ideas of 
individual differences but is also critical for applied domains like 
coaching and rehabilitation, where the ability to predict learning could 
have significant implications for the design and implementation of 

practice strategies. 
However, a challenge in synthesizing the evidence for predicting 

individual differences is the variability in the methodological and 
analytical strategies employed. These variations include differences in 
the types of variables measured, the time point in learning when these 
variables are measured, and the types of motor tasks chosen. These 
variations are not only important from a methodological viewpoint but 
also have theoretical implications as they relate to different issues in 
motor learning. For example, predictions made using variables 
measured during practice (i.e. performance ‘inside’ the same task) are 
relevant to the theoretical construct of ‘task specificity’ (Henry, 1968) 
since future performance in a task is being predicted from prior per
formance on the same task. On the other hand, predictions made using 
variables measured before practice (i.e., performance ‘outside’ the task) 
provide insight into whether there are general motor learning abilities 
that underlie learning (Seashore, 1930; Hands et al., 2018). Therefore, it 
is important to assess the variability in these choices when examining 
the strength of the evidence for prediction of individual differences. 

The purpose of this review was to critically examine the evidence for 
predictions of individual differences in motor learning over a 20-year 
period (from 2000 to 2020). We focused on four primary factors – (i) 
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the type of predictor and predicted variables, (ii) the strength of the 
prediction, (iii) the timescale of the prediction, and (iv) the type of task 
used. By analyzing these factors, we identify challenges in the current 
state of evidence and suggest directions for future work. 

2. Methods 

We examined studies published between 2000 and 2020 for the 
purpose of this review. We screened studies based on the following 
criteria: (i) the study focused on motor learning in unimpaired in
dividuals, (ii) the study had a ‘prediction’ (i.e., the independent variable 
was measured ahead of time relative to the dependent variable), (iii) the 
prediction was based on a single independent variable, and (iv) the 
prediction was quantified in terms in terms of a Pearson correlation 
coefficient. The justification for excluding studies using a ‘group dif
ferences’ approach (e.g., using an ANOVA to compare ‘good’ vs. ‘poor’ 
learners) was based on the observation that these studies typically 
examined groups posthoc by dichotomizing a continuous variable, 
which can be misleading (MacCallum et al., 2002; Altman and Royston, 
2006). To capture a wide range of articles, our search strategy involved 
the use of Web of science and Pubmed (with the keywords “motor 
learning”, “individual differences” and “prediction”). We also identified 
papers from references cited from selected articles. If a paper reported 
multiple experiments, each experiment was considered as an indepen
dent study. Overall, we selected 29 papers with a total of 37 studies for 
the purpose of this review. 

3. Data analysis 

3.1. Variables involved in prediction 

Based on the correlation that was reported, we coded the predictor 
variable (i.e., the variable that was used to predict learning) and the 
predicted variable (i.e., the measure of learning) in each study. The 
predictor variable was coded based on two factors: (i) its relation to the 
task being learned – i.e., whether it was “inside” or “outside” the task 
being learned, and (ii) the type of variable – i.e., whether it was based 
directly on a neural measure (e.g., EEG, fMRI) or a behavioral measure. 

The predicted variable was coded based on the learning measure, 
which we categorized into three types (i) a ‘learning level’ (e.g., the 
movement time at the end of practice), (ii) a ‘change score’ (e.g., the 
difference between movement times in the first and last block of prac
tice) or (iii) a ‘learning rate’ (e.g., the exponent of an exponential fit of 
the movement time data across practice). Furthermore, we also exam
ined how these learning measures were computed – e.g., if a change 
score was reported, we also noted if this was reported as an absolute 
change or a percentage change. Similarly, if learning rates were 
computed, we noted if this was done using a single exponential, a double 
exponential, a power law, or another method (Newell et al., 2006). 

3.2. Strength of prediction 

The strength of prediction in each study was quantified using the 
Pearson correlation coefficient where the dependent variable was 
learning-related. Because some papers had multiple correlations re
ported, we used the following criteria to select the specific correlation- 
(i) because the focus of the study was on the distinction between 
behavioral and neural variables, we excluded correlations with de
mographic variables (such as age), (ii) we focused on the primary var
iables related to the learning or retention of the task (as opposed to 
transfer, relearning etc.), and (iii) of the remaining correlations, we 
focused on the one with the strongest correlation (i.e., highest absolute 
value of the correlation coefficient) that was determined to be a primary 
analysis (i.e., excluding secondary analyses with subgroups etc.). Any 
discrepancies were resolved through discussion between the authors. 

Because the focus of the study was only on the strength of the 

correlation (and not the sign), we used the absolute value of the corre
lation (Vul and Pashler, 2017) to compare different studies. If an R2 

value was directly reported using a linear regression, we transformed it 
to the absolute value of the Pearson correlation by taking the square 
root. In addition to the absolute value of the correlation, the sample size 
that was used in the correlation analysis was also noted. We also noted 
the number and ranges of other reported correlations that were related 
to predicting learning, including if there was mention of non-significant 
correlations. 

3.3. Time scale of prediction 

We examined the time scale of prediction – i.e., the time gap in ‘real- 
world’ units (measured in terms of days) between when the predictor 
variable was measured and when the predicted variable was measured. 
For example, if both predictor and predicted variable were measured on 
the same day, the time scale of prediction was reported as 1 day. 

3.4. Type of motor task 

We categorized the type of motor task used in each study. The 
classification of tasks was done based on six categories- adaptation, 
applied, coordination, sequence, tracking and variability (Ranganathan 
et al., 2021). 

4. Results 

4.1. Variables involved in prediction 

4.1.1. Predicted variables 
There was a wide variation in types of predicted variables (Fig. 1A). 

Learning levels (n = 16, 43.2 %) and learning rates (n = 15, 40.5 %) 
were more common compared to change scores (n = 6, 16%). In addi
tion, even within each category there were differences in how they were 
operationalized. For example, for the 15 studies that measured ‘rate of 
learning’, this was operationalized using single exponential fits (n = 4), 
power laws (n = 3), average of a specified number of trials (n = 3), state 
space models (n = 2), linear slopes (n = 2) and a time to criterion 
measure (n = 1). Similarly for the 6 studies using a change score, this 
was operationalized both as an absolute change score (n = 3) and a 
relative change score (n = 3). 

4.1.2. Predictor variables 
There was a wide variation in types of predictor variables (Fig. 1B). 

The use of ‘outside’ task predictors (n = 33, 89.2 %) was more common 
relative to those ‘inside’ tasks (n = 4, 10.8 %). There was a roughly even 
split between studies using neural (n = 18, 48.6 %) and behavioral 
predictor variables (n = 19, 51.4 %) . Analysis of the predictors (Fig. 1C) 
indicated that the most common neural predictors were related to 
measures of functional connectivity either measured through fMRI 
(n = 5) or EEG (n = 4), and structural connectivity as indexed through 
fractional anisotropy (n = 4). The most common behavioral predictors 
were motor variability (n = 9) and working memory (n = 5). 

4.2. Strength of prediction 

We found that the sample size was typically small (median sample 
size = 20, interquartile range 21). Moreover, when the absolute corre
lation values were plotted against the sample size, we found that smaller 
sample sizes tended to show higher correlations (Fig. 2A). To estimate 
the average effect size, we ran a meta-analysis of the correlation co
efficients using the MAJOR package in Jamovi. The estimated average 
Fisher r-to-z transformed correlation was 0.66 (corresponding to an r of 
0.58) (Fig. 2B). 
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4.3. Time scale of prediction 

The timescale of prediction used in studies was typically very short 
(Fig. 3A). Results showed that studies used a time span of 1 day (n = 29, 
78.3 %) - i.e., both the predictor and predicted variable were measured 
on the same day. In fact, the number of studies that had a time span of 3 
or more days was only (n = 3, 8.1 %). 

4.4. Type of motor task 

Finally, we found that an overwhelming majority of tasks (n = 30, 
81 %) were from just two categories (Fig. 3B) – adaptation (n = 19, 
51 %) and sequence learning (n = 11, 30 %). Certain categories of tasks 
(e.g., tasks requiring the reduction of variability or the acquisition of 
coordination patterns) were not used. 

5. Discussion 

The purpose of this review was to critically examine the evidence for 

predictions of individual differences in motor learning. Overall, our 
results highlight four critical challenges in the evidence for predicting 
individual differences in motor learning. First, there was a wide varia
tion in both predicted and predictor variables across studies even when 
tasks were similar, indicating there is potentially a large number of 
‘researcher degrees of freedom’ available in these studies. Second, the 
strength of these correlations was inversely dependent on the sample 
size, indicating that there is a risk of these correlations being inflated. 
Third, the timescale of predictions was extremely short, mostly 
restricted to the same day. Finally, an overwhelming majority of the 
studies tended to focus on two types of motor tasks – sequence learning 
and adaptation, indicating a gap in the field for learning other types of 
tasks. 

In view of these challenges, we suggest the following four recom
mendations for future research: 

5.1. Adopting pre-registration and transparent reporting 

Given the variation observed in both predictor and predicted 

Fig. 1. Distribution of predicted and predictor variables showing large variation across studies. (A) Types of predicted variables (B) Types of predictor variables 
based on whether they were measured ‘inside’ or ‘outside’ the task and if they were behavioral or neural variables, (C) histogram of categories of predictor variables 
used across studies. 
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variables, the results highlight the need for transparent reporting in 
studies of individual differences. It is worth noting that even though our 
selection criteria did not screen for significant results, all studies except 
one had at least one significant correlation in support of the prediction of 
individual differences in motor learning. Although we do not make any 
claims about the analyses in the reviewed studies, we simply highlight 
that there is a risk of flexible analyses when there is such a large number 
of potentially justifiable predictor and predicted variables to examine 
the hypothesis of individual differences in motor learning. Pre- 
registrations and registered reports can help minimize these 
researcher degrees of freedom and reduce the chances of using undis
closed flexible analyses to find relationships (or at least clearly label 

such findings as exploratory) (Simmons et al., 2011; Chambers, 2013; 
Wicherts et al., 2016). 

In terms of the predictor variables in motor learning experiments, 
given the potential for a large number of measures at different levels of 
analysis (e.g., movement outcome, kinematics, coordination, neural), 
pre-registration can help reduce selection bias in the independent vari
ables used for prediction. Pre-registration can also reduce arbitrariness 
in the dependent variables related to motor learning. We found a large 
variation in not only the learning measure (e.g., learning level or 
learning rate), but even within the same type, there were differences in 
how they were operationalized. For example, we found especially that 
“rates of learning” or “change scores” were operationalized differently 

Fig. 2. (A) Absolute value of Pearson’s corre
lation coefficient (r) versus sample size. Higher 
sample sizes were associated with smaller cor
relations. Histograms of the sample size (top) 
and the correlation value (right) are also 
shown. (B) Forest plot showing Fisher r-to-z 
transformed correlation coefficients of individ
ual studies plotted in increasing order and the 
overall estimated effect size. (Anguera et al., 
2010; Anwar et al., 2015; Bo and Seidler, 2009; 
Chen et al., 2017; Christou et al., 2016; 
Della-Maggiore et al., 2009; van der Helden 
et al., 2010; Engel et al., 2014; Hübner et al., 
2019; Kennedy and Raz, 2005; Kim et al., 2019, 
2014; Kodama et al., 2018; Labruna et al., 
2019; Malhotra et al., 2014; Mary et al., 2017; 
Mawase et al., 2017; McGregor and Gribble, 
2017; Miraglia et al., 2018; Singh et al., 2016; 
Song et al., 2012; Stagg et al., 2011; Stillman 
et al., 2013; Sugata et al., 2020; Vien et al., 
2016; Wu et al., 2014a, 2014b, 2018).   
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across studies. It is critical to note that some measures of learning like 
change scores may be misleading in certain contexts and can create 
correlations because of statistical artifacts (Schmidt, 1972; Hawe et al., 
2018; Anderson et al., 2021). While it is important to acknowledge that 
learning measures are not ‘one-size-fits-all’ and that the exact learning 
measure or function for the learning curve will depend on the task and 
context (Newell et al., 2006; Liu and Newell, 2015), pre-registration can 
also provide greater transparency surrounding the justification for spe
cific measures. 

The need for transparent reporting is also evident in the reporting of 
correlations, especially when they did not reach statistical significance. 
While our analysis used the strongest correlations to compare across 
studies (since they are typically the primary focus of the paper), most of 
the papers typically reported several other learning-related correlations 
(median reported correlations = 3; range 1–25) including non- 
significant correlations. However, reporting of these non-significant 
correlations was generally not adequate. First, several papers simply 
reported non-significant correlations based only on the p-value (e.g., 
"this correlation was not significant, p > .05′′) with no information 
about the magnitude of the correlation or the exact p-value. Second, 
when non-significant correlations were used as evidence to advance an 
argument (e.g., to make the case that a correlation was significant in 
group A but not in group B), these arguments were generally not 
accompanied by statistical procedures to test if these non-significant 
correlations were indeed statistically different from other significant 
correlations (Gelman and Stern, 2006; Nieuwenhuis et al., 2011; 

Rousselet and Pernet, 2012). Therefore, in addition to specifying 
dependent and independent variables, pre-registration of the analysis 
pipeline could help in more transparent reporting of the primary anal
ysis of interest. 

5.2. Increasing sample size 

Perhaps not surprisingly and consistent with other reviews on motor 
learning (Lohse et al., 2016; Ranganathan et al., 2021), sample sizes 
used for these correlations tended to be small, although to some degree, 
these studies tended to be somewhat larger than typical group-based 
studies on motor learning (median of 20 compared to 13 in group 
studies). More critically though, there was an inverse relation between 
the absolute value of the correlation and the sample size, with the 
highest correlations being observed in studies with the smallest sample 
sizes. This peculiar pattern of results indicates that small studies tend to 
‘inflate’ effect sizes and mirrors similar findings in a review on social 
neuroscience studies (Vul and Pashler, 2017). Although there may be 
several causes underlying this result that depend on the specifics of the 
study (e.g., using non-independent analyses in fMRI studies, Vul et al., 
2009), one dominant factor that can cause inflation of significant cor
relations across all studies is the lack of power (Yarkoni, 2009). In other 
words, in studies with small sample sizes, correlations will have to be 
large to be detected as significant (even if the underlying population 
correlation is low). Moreover, this inflation of significant correlations is 
higher for stricter levels of significance (such as those adjusted for 
multiple corrections typically used in neuroimaging studies). For 
example, using simulations, Yarkoni (2009) reported that a population 
level of correlation of 0.3 will become inflated to 0.73 at an α = 0.001 
when tested with 20 participants, but the degree of inflation drops with 
higher sample sizes (around 0.4 when tested with 100 participants). This 
indicates that low sample size not only decreases power (i.e., the ability 
to detect an effect when it is present), but that it can also generate 
spuriously high correlations (Ioannidis, 2008; Yarkoni, 2009; Yarkoni 
and Braver, 2010). 

In addition, small sample sizes also influence the interpretation of 
the magnitude of the effect sizes because of the width of the confidence 
interval. Schönbrodt and Perugini (2013) provide the example that a 
correlation of 0.4 in 25 participants (which is below the threshold of 
0.05) has a 90 % CI from 0.07 to 0.65. This wide range highlights the 
challenge in interpreting such correlations in support of any hypothesis. 
Moreover, while we selected for studies that reported a Pearson’s cor
relation coefficient, a challenge with relying only on the Pearson’s co
efficient (especially with small sample sizes) is that it is extremely 
sensitive to outliers (Rousselet and Pernet, 2012; Pernet et al., 2013). 
Therefore, in addition to pre-registration, larger sample sizes with 
associated power analyses (Schönbrodt and Perugini, 2013), and robust 
measures for estimating correlations (Pernet et al., 2013) are needed for 
establishing individual differences. 

5.3. Increasing time scale of prediction 

The timescale of predictions here were all mostly within the same 
day. While we acknowledge that the timescale of prediction is not an 
‘absolute measure’ and should be considered in context of the timescale 
of the learning process (e.g., the timescale of prediction for a task takes a 
few minutes to learn is not directly comparable to a task that takes days 
or weeks to learn), increasing the time scale of predictions is still critical 
from both methodological and theoretical reasons. From a methodo
logical standpoint, increasing the time scale of predictions beyond a 
single day minimizes the effect of temporary confounding factors (e.g., 
fatigue or motivation) that can create issues in distinguishing between 
‘learning’ and ‘performance’ (Salmoni et al., 1984; Kantak and Winstein, 
2012). From a theoretical standpoint, expanding the timescale of 
learning over longer time scales may also allow the test of other hy
potheses such as whether: (i) initial skill and final skill have differing 

Fig. 3. (A) Prediction time span and (B) Motor task type. Prediction time spans 
were very short, mostly confined to a single day (i.e., both predicted and pre
dictor variables measured on the same day). A majority of studies relied on two 
types of tasks – adaptation and sequence learning. 
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contributions of abilities (Fleishman and Rich, 1963), (ii) individual 
differences can be separated into component processes that are related 
to the rate of learning and final levels of performance (Jones, 1970) and 
(iii) individual differences tend to diverge or converge with learning 
(Ackerman, 1987). 

5.4. Broaden range of tasks 

Finally, the fact that the majority of tasks used were adaptation and 
sequence learning may be a consequence of their popularity in the motor 
learning literature, especially in terms of their convenience for neuro
imaging paradigms. However, using convenience as the sole metric for 
the choice of tasks can lead to a distorted picture of how these results 
have relevance to real-world learning. Several commentaries have 
emphasized that motor tasks are not interchangeable and that there may 
be fundamental differences in how certain types of tasks are learned 
(Newell, 1991; Bastian, 2008; Krakauer and Mazzoni, 2011). Therefore, 
the use of tasks that capture other core aspects of motor learning (e.g., 
acquiring novel coordination patterns or reducing motor variability) 
may be important to test the generalizability of these ideas (Anderson 
et al., 2021). 

However, it is important to note that the goal of broadening the types 
of tasks has to be balanced with the concern for ‘task fragmentation’ 
(Ranganathan et al., 2021), where too many different tasks are used 
making it difficult for comparing results across studies. In our view, tasks 
have to be chosen carefully so that they can be representative of several 
different types of learning, and where the properties of learning can be 
assessed carefully. For example, in our review, we found only a single 
study that quantified the reliability of the learning measures used in the 
task (Stark-Inbar et al., 2017) which is critical for establishing individual 
differences. These competing demands highlight the need for developing 
‘model tasks’ for different domains of learning where the diversity in 
experimental paradigms can also be coupled with experimental rigor 
(Ranganathan et al., 2021). 

6. Conclusion 

In summary, the issue of predicting individual differences remains a 
core issue for motor learning. The search for general predictors of motor 
learning spans a wide range of variables from behavioral measures such 
as working memory and motor variability to neural measures such as 
those identified by fractional anisotropy and functional connectivity. 
However, we believe that this search is currently hampered by several 
challenges that affect the quality of the evidence for predicting indi
vidual differences. Although many of the issues raised have been high
lighted in other reviews (Seidler and Carson, 2017; Vul and Pashler, 
2017; Anderson et al., 2021), it is clear that the recommendations 
needed to address these challenges (e.g., increasing sample size, devel
oping model tasks etc.) require the need for large scale collaborative 
efforts like those that have started in other domains – e.g., Psych Science 
Accelerator (Moshontz et al., 2018) and ManyLabs projects (Klein et al., 
2014). We anticipate that addressing these steps as a field can help 
provide a more robust evidence base for the study of individual differ
ences in motor learning. 

Supplementary Data 

The table of individual studies used for this review and the associated 
references can befound at https://osf.io/3j2zu/. 
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Schönbrodt, F.D., Perugini, M., 2013. At what sample size do correlations stabilize? 
J. Res. Pers. 47, 609–612. 

Seashore, R.H., 1930. Individual differences in motor skills. J. Gen. Psychol. 3, 38–66. 
Seidler, R.D., Carson, R.G., 2017. Sensorimotor learning: neurocognitive mechanisms 

and individual differences. J. Neuroeng. Rehabil. 14, 74. 
Simmons, J.P., Nelson, L.D., Simonsohn, U., 2011. False-positive psychology: undisclosed 

flexibility in data collection and analysis allows presenting anything as significant. 
Psychol. Sci. 22, 1359–1366. 

Singh, P., Jana, S., Ghosal, A., Murthy, A., 2016. Exploration of joint redundancy but not 
task space variability facilitates supervised motor learning. Proc. Natl. Acad. Sci. 
USA 113, 14414–14419. 

Song, S., Sharma, N., Buch, E.R., Cohen, L.G., 2012. White matter microstructural 
correlates of superior long-term skill gained implicitly under randomized practice. 
Cereb. Cortex 22, 1671–1677. 

Stagg, C.J., Bachtiar, V., Johansen-Berg, H., 2011. The role of GABA in human motor 
learning. Curr. Biol. CB 21, 480–484. 

Stark-Inbar, A., Raza, M., Taylor, J.A., Ivry, R.B., 2017. Individual differences in implicit 
motor learning: task specificity in sensorimotor adaptation and sequence learning. 
J. Neurophysiol. 117, 412–428. 

Stillman, C.M., Gordon, E.M., Simon, J.R., Vaidya, C.J., Howard, D.V., Howard, J.H., 
2013. Caudate resting connectivity predicts implicit probabilistic sequence learning. 
Brain Connect 3, 601–610. 

Sugata, H., Yagi, K., Yazawa, S., Nagase, Y., Tsuruta, K., Ikeda, T., Nojima, I., Hara, M., 
Matsushita, K., Kawakami, K., Kawakami, K., 2020. Role of beta-band resting-state 
functional connectivity as a predictor of motor learning ability. NeuroImage 210, 
116562. 

Vien, C., Boré, A., Lungu, O., Benali, H., Carrier, J., Fogel, S., Doyon, J., 2016. Age- 
related white-matter correlates of motor sequence learning and consolidation. 
Neurobiol. Aging 48, 13–22. 

Vul, E., Pashler, H., 2017. Suspiciously high correlations in brain imaging research. In: 
Psychological Science under Scrutiny: Recent Challenges and Proposed Solutions. 
Wiley, Hoboken, NJ, US, pp. 196–220. 

Vul, E., Harris, C., Winkielman, P., Pashler, H., 2009. Puzzlingly high correlations in 
fMRI Studies of emotion, personality, and social cognition. Perspect. Psychol. Sci. 4, 
274–290. 

Wicherts, J.M., Veldkamp, C.L.S., Augusteijn, H.E.M., Bakker, M., van Aert, R.C.M., van 
Assen, M.A.L.M., 2016. Degrees of freedom in planning, running, analyzing, and 
reporting psychological studies: a checklist to avoid p-hacking. Front. Psychol. 7, 
1832. 
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