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Significance

Human–wildlife coexistence is 
emerging as a central goal for 
both conservation and human 
well-being. Animals require 
movement between habitats for 
persistence. However, animals 
can come into conflict with 
people while dispersing. Conflict 
leads to loss in human lives and 
livelihoods, disrupts animal 
dispersal, impedes connectivity, 
and causes wildlife mortality. 
Thus, conflict mitigation and 
connectivity are seemingly at 
odds with one another, 
presenting a dilemma for 
conservation. We provide a 
framework that addresses this 
dilemma, which enables tailoring 
of conservation interventions to 
minimize conflict-induced losses 
while allowing wildlife 
connectivity. We illustrate this 
framework with the endangered 
Asian elephant and conflict that 
arises as elephants disperse out 
of protected areas. Our 
framework works toward 
simultaneously achieving wildlife 
and human well-being goals.
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Balancing the competing, and often conflicting, needs of people and wildlife in 
shared landscapes is a major challenge for conservation science and policy worldwide. 
Connectivity is critical for wildlife persistence, but dispersing animals may come into 
conflict with people, leading to severe costs for humans and animals and impeding 
connectivity. Thus, conflict mitigation and connectivity present an apparent dilemma 
for conservation. We present a framework to address this dilemma and disentangle the 
effects of barriers to animal movement and conflict-induced mortality of dispersers on 
connectivity. We extend random-walk theory to map the connectivity–conflict interface, 
or areas where frequent animal movement may lead to conflict and conflict in turn 
impedes connectivity. We illustrate this framework with the endangered Asian elephant 
Elephas maximus, a species that frequently disperses out of protected areas and comes 
into conflict with humans. We mapped expected movement across a human-dominated 
landscape over the short- and long-term, accounting for conflict mortality. Natural 
and conflict-induced mortality together reduced expected movement and connectivity 
among populations. Based on model validation, our conflict predictions that explicitly 
captured animal movement better explained observed conflict than a model that con-
sidered distribution alone. Our work highlights the interaction between connectivity 
and conflict and enables identification of location-specific conflict mitigation strategies 
that minimize losses to people, while ensuring critical wildlife movement between hab-
itats. By predicting where animal movement and humans collide, we provide a basis to 
plan for broad-scale conservation and the mutual well-being of wildlife and people in 
shared landscapes.

human-wildlife coexistence | landscape planning | dispersal | coadaptation | Markov chains

Coupled human–natural systems are integral to effective conservation across much of the 
planet (1). Protected areas—focused on decoupling nature and negative human influ-
ences—have undoubtedly benefited species worldwide (2), but faced with size limitations 
and increasing isolation, they may be an insufficient conservation solution (3). Shared 
human–wildlife spaces outside protected areas, therefore, have a vital complementary role 
to play in maintaining connectivity, or functional linkages between populations and hab-
itats, so as to augment species persistence, strengthen ecosystem health and resilience, and 
mitigate negative impacts of climate change (4, 5). However, dispersing animals can come 
into direct contact with people or utilize human resources in shared spaces, leading to 
negative interactions or conflict to the detriment of both people and wildlife (6, 7). 
Facilitating human–wildlife coexistence in shared spaces is thus a concomitant conserva-
tion goal (8, 9). Reconciling these two critical requirements (i.e., managing conflict and 
facilitating connectivity; Fig. 1), which are seemingly at odds with each other, is one of 
the greatest current challenges to conservation in shared landscapes (10, 11).

Connectivity is determined by interactions between dispersing organisms and the land-
scape (12, 13). However, humans can transform these interactions (14). Conflict, due to 
its influence on animal use of shared spaces, has received recent attention as an important 
anthropogenic factor that can shape connectivity (11, 15). This may manifest due to risks 
that wildlife perceive from human presence and activities (16–18), antagonistic behavioral 
responses of people (e.g., chasing animals), or infrastructure (e.g., fences) for conflict 
mitigation (10, 19). An extreme response to conflict is the removal of “problem” animals 
through conflict-induced retaliatory killing, capture, or culling (6, 20). Removal imposes 
a demographic cost on species, as it can cause an increase in population mortality rates 
or change the demographic composition of a population (21), which is distinct from 
conflict-induced nonlethal responses that alter dispersal paths (15). This distinction 
between lethal and nonlethal effects of human activities has been previously considered 
in studying species space use (22), but has only recently been integrated into connectivity 
models (23). Animal movement can also exacerbate conflict (9) and determine its spatial 
patterns (24), such that incorporating movement ecology could vastly improve conflict D
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predictions, and thereby its effective mitigation. Despite this 
potential, the problem that conflict and removal of dispersing 
animals presents has not been reconciled in conservation.

Here, we extend a framework for connectivity that is derived 
from random-walk theory to address the problem of connectivity 
and human–wildlife conflict. Our framework a) includes ecolog-
ical underpinnings of animal movement into conflict predictions 
and b) assesses connectivity while considering the spatial patterns 
of conflict in situations when conflict imposes lethal effects on 
dispersing animals. Our framework maps the connectivity–con-
flict interface, or areas where frequent animal movement can lead 
to conflict, and conflict, in turn, can impede connectivity. We 
illustrate our framework with the example of the endangered and 
wide-ranging Asian elephant Elephas maximus, an animal for 
which both connectivity and conflict mitigation are urgent 
conservation priorities (10). By mapping the connectivity–conflict 
interface across a shared landscape that is home to the most abun-
dant wild elephant population in Asia (25), we predict conflict 
hotspots, validate these predictions against independent reports 
of conflict, and identify where connectivity is lost from conflict 
in the region.

Results

Calibrating a Connectivity–Human Conflict Model. We extend 
recent developments in connectivity modeling to identify likely 
locations where elephants dispersing from protected areas may 
encounter humans, potentially leading to negative interactions 
and conflict. Our framework extends random-walk theory with 

Markov chains that explicitly acknowledge the potential for 
“absorption” (26), such as mortality or removal from human–
wildlife conflict. We extend the spatial absorbing Markov chain 
(SAMC) framework to simultaneously allow probabilistic 
accounting of movement behavior, mortality risk, and potential 
conflict for dispersers across landscapes (23).

We applied our SAMC framework to the Mysore Elephant 
Reserve (ER), an important conservation landscape in southwest-
ern India that encompasses multiple protected areas and reserve 
forests, surrounded by a nonhabitat agricultural matrix 
(SI Appendix, Fig. S1). Connectivity among the protected areas 
in the ER is a recognized conservation need (25), and the region 
faces high levels of conflict (27, 28). We calibrated the SAMC 
using empirical data collected around three key elephant popula-
tions in the ER (See Methods); these key populations serve as 
points of origin of dispersal, or populations from which dispersing 
elephants can emigrate. In our landscape, key populations were 
within five protected areas (SI Appendix, Fig. S1). These also served 
as populations where elephant immigration could occur. Based 
on 9,100 interviews of residents of this area, we recorded 2,662 
(29% of total interviews) reports of elephant use of the matrix. 
Of the people who reported elephant presence in their vicinity, 
1,804 (68%) reported human–elephant conflict. We used this 
information to create maps of “landscape resistance” that reflect 
expectations on elephant movement (SI Appendix, Fig. S2A) and 
maps of “conditional conflict,” or conflict given that elephants use 
that location (SI Appendix, Fig. S2B). Landscape resistance is com-
monly used in connectivity mapping to capture the extent to 
which locations are impermeable to animal movement (29); here, 
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Fig. 1. (A) Human–wildlife overlap outside protected areas and the connectivity–conflict interface. The landscape includes dispersal paths between protected 
areas (brown nodes, with the larger node as the location from where individuals disperse) that vary in the rate of movement by animals (Left paths illustrate 
lower rates of movement than Right paths). Areas where movement rates along paths are high and conflict is low can be considered “secure corridors” that 
function as key areas for maintaining connectivity. Yet in some locations, conflict (shown as a dashed line) can arise as animals disperse across landscapes, which 
may block successful movement between protected areas, what we term the “connectivity–conflict interface.” Conservation strategies at the interface need to 
reduce conflict while maintaining connectivity. (B) Asian elephants move through human land uses and often face risks of mortality due to conflict (here, from 
an electrified fence). Photo credits: Bhavendu Joshi/Conservation Initiatives (Top); Kalyan Varma, CC BY-SA 4.0 via Wikimedia Commons (Bottom).D
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the inverse of the probability of elephant use of the landscape is 
used to parameterize resistance (29–31). The SAMC couples 
expectations from these maps to provide an integrated perspective 
on predicting movement and conflict across landscapes.

Based on interviews, we found that landscape resistance was 
determined by land use and human population density 
(SI Appendix, Table S1): elephants avoided areas with high human 
population density, and used croplands (finger millet, horse gram 
etc.), followed by agroforest plantations (such as coffee and rubber) 
and open plantations (coconut and areca nut; SI Appendix, 
Table S2). We found that land use and human population density 
also explained conditional conflict (SI Appendix, Table S3). 
Locations with coconut and areca nut plantations had higher con-
ditional conflict compared with croplands and agroforest planta-
tions such as coffee. Conditional conflict probability was positively 
associated with human population density, albeit weakly 
(SI Appendix, Table S4). Based on these findings, we mapped pre-
dicted landscape resistance and conditional conflict probability 
across the Mysore ER, which were positively correlated (r = 0.73; 
SI Appendix, Fig. S2). This relationship indicated that landscape 
resistance was high in areas where potential conflict was high, or, 
in other words, our expectation based on this model is that ele-
phants tended to avoid moving through areas of high potential 
conflict. Finally, we incorporated these predictions and estimates 
of annual mortality rates taken from the literature (32) into the 
SAMC (23) to capture resistance, conflict, and natural mortality 
risks that may emerge while dispersing (See Methods).

The Connectivity–Conflict Interface. The SAMC framework can 
quantify a variety of metrics related to movement, demography, 
and connectivity across landscapes. Here we extend the SAMC 
to predict net visitation rates [or movement paths, analogous to 
“current density” in circuit theory (33)] in the Mysore ER (Fig. 2A 
and SI  Appendix, Fig.  S3). In this situation, net visitation rates 
quantify the expected net movement rates of dispersing individuals 
through a given pixel in a landscape based on specific starting and 
ending locations (34). Both mortality and conflict together reduced 
expected movement and connectivity between key populations, 
decreasing predicted net visitation rates (SI  Appendix, Fig.  S3). 
Models that did not account for mortality and conflict predicted that 
there would be movement across all populations in the landscape 
(SI Appendix, Fig. S3A); but connections between populations were 
lost when these dispersal costs were accounted for (SI Appendix, 
Fig. S3 B–D). Highest visitation rates occurred with low resistance 
and low conditional conflict (SI Appendix, Fig. S4A). The loss in 
visitation rates due to conflict occurred even in locations where 
predicted conflict was relatively low (SI Appendix, Fig. S4B).

We map the connectivity–conflict interface in Fig. 2B, distin-
guishing hotspots of conflict that experience high visitation rates 
from those with low visitation (Fig. 1). Hotspots of the connec-
tivity–conflict interface occurred around protected areas harboring 
relatively large populations of elephants that were surrounded by 
agricultural lands (SI Appendix, Fig. S1).

We also predict conflict probabilities across the region over the 
short (1-y) and longterm using the SAMC framework which explic-
itly accounts for elephant movement (Fig. 3). Spatial patterns of 
conflict predicted by the SAMC model differed substantially from 
maps of conditional conflict (SI Appendix, Fig. S2B) and were 
largely concentrated around populations (Fig. 3).

Validating Conflict Predictions. Connectivity models can suffer 
from poor predictive capacity and a large amount of uncertainty 
(35). Consequently, predictions of connectivity models should 
be validated with relevant independent information (36). We 

validated both long-term predictions for expected conflict (B) and 
time-specific predictions (Bt) from the SAMC model with two 
sources of information: 1) a separate survey on human–elephant 
conflict of 1,102 respondents in the region (n = 329 records of 
conflict within 1 y, n = 571 over a 10-y period) and 2) 1,095 
media reports of conflict from February 2013 to January 2016.

SAMC-derived predictions of conflict were two to three times 
greater in locations where conflict occurred than in locations 
where conflict did not occur, based on validation data from the 
questionnaire survey; conflict predictions were 14 times greater 
in the locations of elephant mortality reported in the media com-
pared with background points (Table 1). We also compared the 
performance of conflict predictions from the SAMC model 
(Fig. 2) and that of a species distribution model (SDM) that pre-
dicts the distribution of conflict based on the joint probability of 
elephant use of the matrix (information used to generate resist-
ance) and conditional conflict, in explaining variation in reported 
conflict. The primary difference in the SAMC and SDM models 
is that the SAMC incorporates the explicit movement process into 
conflict predictions whereas the SDM does not. Models that incor-
porated SAMC-predicted probability of conflict as a covariate fit 
the data better than the SDM based on model selection criteria 
(1 y: ΔAICc > 25.5; 10 y: ΔAICc > 60.5; SI Appendix, Table S5), 
provided more precise predictions of conflict over 1 y and 10 y, 
and explained 2.5 to 5 times the variation as the SDM (Fig. 4 and 
SI Appendix, Table S5).

Based on 951 records of conflict from media reports, including 
crop loss, property damage, human-induced elephant mortality, 
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Fig. 2. (A) Predicted net visitation (movement) rate from the SAMC model 
incorporating both natural and conflict-induced mortality, and (B) the 
connectivity–conflict interface. For (B), we discretized predictions using the 
three quantiles for both conflict predicted from the SAMC model (measured 
as a probability; Fig.  3) and net visitation (measured as the expected net 
movement rates through pixels) to identify areas of relatively high expected 
conflict and movement rates.
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elephant-induced human mortality, and elephant captures, we 
compared SAMC model predictions for conflict at these points, 
considering them as “presence-only” data (37), and compared 
them with 10,000 randomly selected background points. Overall, 
we found moderate discrimination performance of our model 
based on the AUC statistic and the True-Skill Statistic (Table 1). 
When we segregated validation points as per the type of conflict, 
the model provided more accurate predictions for mortality-based 

conflict than conflict when only crop damage occurred (Table 1). 
In general, the model was more accurate for short-term predictions 
than long-term predictions (Table 1).

Discussion

The Connectivity–Conflict Interface. Conflict and connectivity 
are clearly emerging as interconnected challenges for wildlife 
conservation across multiple-use landscapes. While connectivity 
and coexistence with people are crucial for species persistence in 
heterogeneous landscapes, they present a conservation paradox: 
connectivity enhances wildlife viability, but dispersal through 
human spaces can elevate conflict and mortality risk (9). Our 
work confronts this paradox (Fig. 1) and provides an approach 
to identify locations where connectivity conservation and conflict 
mitigation strategies need to coalesce (Fig. 3B). Our approach of 
formalizing and combining these ideas into a single framework 
demonstrates the feasibility and benefits of jointly considering 
conflict and connectivity, in terms of greater insights and predictive 
accuracy, with broad implications for science and conservation in 
coupled human–natural systems.

Decomposing Causes of Dispersal Failure. We extend the SAMC 
framework to accommodate multiple risks to wildlife—from 
natural mortality and conflict—when modeling species movement 
across landscapes. This can be relevant for multiple reasons.

First, mortality from different causes may have different inten-
sities and ignoring these can lead to inaccurate predictions of 
connectivity (23, Fig. 3). For the levels of conflict-induced mor-
tality we modeled, natural mortality had a greater impact overall 
in reducing connectivity across the landscape (SI Appendix, 
Fig. S3), simply because, in our case, the per-pixel probability of 
natural mortality was higher than that for conflict mortality. 

Predicted conflict
over one year

A

0.000
0.003
0.006

Predicted conflict
over long term

B

100 km

N

0.0000
0.0003
0.0006

Fig. 3. Predicted conflict probability from dispersing elephants from key populations (gray polygons) over (A) 1 y and (B) the long term.

Table 1. Validating predictions of conflict from the 
connectivity model, including both time-specific (1-y) 
and long-term predictions

Validation data

Time-specific 
predictions

Long-term 
predictions

AUC TSS Ratio AUC TSS Ratio
Questionnaire around protected areas

Observed conflict 
over the past year

0.68 0.25 2.41 0.64 0.20 1.91

Observed conflict 
over the past 10 y

0.74 0.29 3.08 0.70 0.22 2.30

Media reports

All 0.67 0.19 5.01 0.61 0.06 1.92

Crop damage 0.65 0.15 4.45 0.61 0.07 1.82

Human and 
elephant injury or 
mortality

0.71 0.35 6.34 0.65 0.10 2.23

Elephant mortality 0.91 0.69 13.99 0.77 0.36 4.25
Shown are results assuming an annual survival rate of 0.97 (32) and a range of conflict 
intensities (27). We show Area under the ROC Curve (AUC), True Skill Statistic (TSS), and 
the ratio of average model predictions at conflict locations to average predictions at back-
ground (for media reports) or non-conflict (for questionnaire records) locations.D
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We note that the same may not hold if conflict mortality increases. 
Nonetheless, even for the rates of conflict we used, conflict-in-
duced mortality impacted movement, and we found that even 
lesser intensities of predicted or manifested conflict could result 
in blocking connectivity in some locations (SI Appendix, Fig. S4). 
Small increments in conflict-induced mortality can also necessitate 
large amounts of conflict-free habitat for long-term population 
viability of species (32), a luxury that conservation landscapes in 
the densely populated tropics seldom possess.

Second, conservation strategies directed at each source of mor-
tality may be different. Hence, decomposing the different sources 
of mortality can help prioritize conservation strategies and address 
trade-offs among them (38, 39). For instance, addressing conflict 
mortality may entail: a) stringently restricting removal of elephants 
by managers; b) enhanced stakeholder engagement to minimize 
retaliatory killings; and c) transparent compensation to mitigate 
financial and other losses to farmers due to elephants.

Third, predicted mortality arising from conflict shows distinct 
spatial patterns in comparison with natural mortality, allowing us 
to distinguish secure corridors from the connectivity–conflict 
interface (Fig. 1). This is best highlighted in Fig. 2B, where we 
map spatial patterns of conflict, predicted by the SAMC model, 
with net visitation rates (movement paths), highlighting where 
these collide. This can also be visualized in SI Appendix, Fig. S4B, 
where we depict the loss of movement paths between protected 
areas (loss in net visitation rates) from conflict. The impact of 
conflict on connectivity depends on the location, such that, even 
low intensities of conflict along movement paths can severely lower 
connectivity, as compared with elsewhere. Contextualizing these 
spatial patterns requires modeling conflict and connectivity simul-
taneously. Similar issues occur for mortality risks arising from 
causes such as roads (40), human disturbance (17), or vegetation 
characteristics across the landscape (23). These too may require 
different conservation strategies such as overpasses and other 

mitigation for linear infrastructure or restoration to modify veg-
etation structure to reduce mortality risk.

Importantly, spatial conflict patterns have social-ecological 
underpinnings. In our region, for example, croplands had high 
levels of conditional conflict (given elephant use of the matrix) 
compared with agroforests and human settlements. Crop depre-
dation is a primary driver of human–elephant conflict (7), and it 
is likely that elephant use of croplands spurred a strong response 
from people to protect against crop loss. In contrast, with a rela-
tively low risk of financial loss in settlements and agroforests, 
people likely safely avoided elephants. Human responses and 
underlying attitudes toward wildlife can therefore show variation 
across space and can strongly shape movement patterns and con-
nectivity across conservation landscapes (11, 18). Conservation 
strategies can follow this pattern, focusing on reducing crop dep-
redation through different means (reviewed in ref. 10) while work-
ing closely with stakeholders to ensure continual safe passage of 
elephants in agroforests and human settlements. Explicitly track-
ing multiple causes of dispersal failure while accounting for land-
scape resistance to animal movement addresses a critical need to 
link landscape conservation prioritization to animal behavior and 
movement theory (13, 41). Since human–wildlife conflict varies 
in space and time (7), there is need for landscape-scale conserva-
tion and planning for connectivity to be adaptive and dynamic 
(42). There have been models that look more deeply into source-
sink dynamics to assess spatial impacts of human disturbance (21). 
Our model would benefit from information on population 
demography, including accurate estimates of emigration from each 
population; nonetheless, it provides fine-scale spatial information 
on predicted conflict mortality across the landscape, juxtaposed 
with spatial information on animal corridors.

The implications of conflict for animal mortality, both due to 
retaliatory killing, as well as lethal control and removal (8), are 
substantial. In the specific context of Asian elephants in India, 
conflict-induced mortality can arise from electrocution, poisoning, 
traps and bombs, or direct retaliatory killing (27). An estimated 
100 elephants die annually from conflict in India (response in 
parliament by the Minister of Environment, Forest and Climate 
Change, Govt. of India; August 2, 2021), though this number is 
likely an underestimate. Conflict is intense in the state of Karnataka 
where we map the connectivity–conflict interface: it has among 
the highest number of reported wildlife conflicts across India and 
the government spends around USD 1.5 million annually in com-
pensatory payments for conflict, primarily with elephants (28, 
43). Capture of “problem animals,” a method that was widely used 
historically but strictly regulated in more recent decades due to 
its ethical underpinnings (20), is now receiving attention as a 
potential conflict mitigation measure. Indeed, “dangerous” ani-
mals moving through human spaces are captured or killed across 
taxa and geographies (6, 44). Our results provide insight in light 
of these lethal responses to conflict.

Conservation Applications. Our framework can provide guidance 
in identifying context-specific conservation actions, even in 
situations where conflict may not lead to mortality. We argue that 
spatial locations in conservation landscapes generally fall into one 
of four categories based on connectivity and conflict (Fig. 2B). Of 
these categories, locations of least conservation concern are those 
that play little or no role in connectivity and face minimal conflict; 
conservation strategies in these locations can be focused on increasing 
animal movement through habitat restoration, increasing woody 
vegetation or encouraging land uses that facilitate connectivity (16, 
45). Lands that allow connectivity and face minimal conflict have 
the highest potential for long-term conservation and human–wildlife 
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Fig. 4. The predicted probability of conflict over 1 y (shaded yellow), and 
over 10 y (shaded blue), based on (A) a distribution-based model (used for 
creating resistance and conflict maps; SI Appendix, Fig S2) and (B) time-specific 
predictions from the connectivity model. Overall, the connectivity model fit the 
data better than the distribution-based model as per model-selection criteria, 
had greater effect sizes (based on beta estimates from scaled metrics), and 
explained 2.5 to 5 times the variation based on pseudo-R2 values.
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coexistence; conservation efforts here need to be tuned toward 
maintaining status quo.

Our approach enables identification of hotspots of conflict that 
are frequented by wildlife (high visitation rates) to be distinguished 
from those locations that are visited with low frequency (low vis-
itation rates) (Fig. 2B). Conflict mitigation in these two contexts 
needs to be different. In conflict hotspots with low visitation rates, 
conflict is likely to be sporadic and may thus be suitable for insur-
ance schemes (46), or strategies aimed at restricting animal entry 
through barriers (e.g., fences). Conflict hotspots with high visita-
tion rates, or the connectivity–conflict interface, require strategies 
that can address conflict while simultaneously allowing continued 
animal movement; where conflict cannot be mitigated, redirecting 
movement to alternative corridors to reduce negative human–
wildlife interactions could be a viable strategy.

In the context of the Mysore ER, our findings suggest careful 
evaluation and potential realignment of current management 
strategies to better balance this dual conservation need in the 
connectivity–conflict interface. We illustrate our argument for a 
shift in on-ground conservation practice with the help of two 
examples. First, the government is investing between USD 6,000 
to 200,000/km on fences as a conflict mitigation strategy in this 
landscape (47). Among other areas, these fences have been installed 
along the northern boundaries of Nagarahole and Bandipur, two 
contiguous protected areas that support key populations of ele-
phants (SI Appendix, Fig. S1). By separating the two protected 
areas from the connectivity–conflict interface, the fences can 
potentially mitigate conflict, but at the cost of elephant dispersal 
through the landscape (Fig. 2B and SI Appendix, Fig. S5); anec-
dotal media reports also indicate mortality risk to individual ele-
phants trying to circumvent these fences. Thus, our analysis 
suggests that the fences are an unbalanced conservation solution, 
and it offers insights into where these conservation costs are better 
invested. Second, to mitigate conflict, the government captured 
and removed 22 elephants from the Alur-Sakleshpur area of the 
landscape (SI Appendix, Fig. S5) in 2014 because the area was 
considered to house an isolated elephant population of c. 30 ani-
mals in a nonhabitat matrix dominated by agroforests (48). In 

contrast, our results predict agroforests in the landscape, including 
the Alur-Sakleshpur area, to have moderate–high net visitation 
rates and low–moderate conflict levels (SI Appendix, Fig. S5), 
thereby highlighting their potential to serve as secure corridors 
(Fig. 5). The fact that the Alur-Sakleshpur area was recolonized 
by elephants within a year of the removal operation (48), suggests 
that it was never an isolated population, corroborating our current 
findings. Our results provide scientific support for the expected 
and observed recolonization, and results indicate that reactive 
removal of elephants from Alur-Sakleshpur (or potentially other 
fragmented habitats) may not be effective.

More broadly, our results suggest that assessment and implemen-
tation of conflict mitigation strategies should be tailored to the 
connectivity–conflict interface (Fig. 5). At the interface, mitigation 
strategies need to be long-term, involving stakeholder engagement, 
land-use planning, and community-based interventions that are 
free of barriers or rely on them only for localized crop protection 
without impeding movement through the landscape (Fig. 5). 
We found that high-conflict locations also overlapped with locations 
that were resistant to movement, compounding barrier effects on 
connectivity, which may decrease the extent of the connectivity–
conflict interface. In other landscape contexts, however, conflict and 
movement permeability may be uncorrelated (23, 44), expanding 
the scope of the connectivity–conflict interface. Mapping the con-
nectivity–conflict interface can sharpen conservation strategies and 
enable them to be locally designed toward mitigating conflict with-
out leading to a loss of connectivity.

Materials and Methods

The SAMC Framework. The SAMC framework captures processes of movement 
and absorption (i.e., the termination of movement from mortality, settlement, or 
related processes) through the construction of a probability matrix, P, that contains 
both transition probabilities between transient states (e.g., patches or landscape 
cells) and one or more absorbing states. For a landscape divided into C cells or 
patches, matrix P can be written as:

	 [1]
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Fig. 5. Locations across conservation landscapes can be categorized into one of four scenarios of conservation value and focus, based on their contribution to 
connectivity—arising from their movement permeability and location (SI Appendix, Fig. S2A)—and conflict intensity given elephant use, measured as visitation 
rates and absorption, respectively, in the SAMC model. Each quadrant relates to different SAMC parameters and output and call for a different set of conservation 
strategies. We provide example land uses from our study context for each quadrant. Predicted conflict (Fig. 2) will be high at the connectivity–conflict interface; 
it is likely to be sporadic in conflict zones that have low visitation rates but high absorption rates.
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where Q is a C × C transition matrix reflecting transitions between transient 
states, R is a C × 1 vector containing transition probabilities from the transient 
states to the absorbing state, and 0 is a 1 × C vector of zeros. The elements pij
describe the probability of transitioning from state i  to j  in one time step.

We extend this model to include multiple absorbing states. Here, we show how 
two different absorbing states can be considered: one reflecting natural causes of 
mortality and a second reflecting absorption due to removal from human–wildlife 
conflict. Our new P matrix can be described as:

	 [2]

⎛
⎜⎜⎜⎝

Q Rm Rc

0 1 0

0 0 1

⎞
⎟⎟⎟⎠
,

which is a (C + 2) × (C + 2) transition matrix, where Rm contains the 
absorption probabilities reflecting natural causes of mortality, and Rc contains 
the absorption probabilities reflecting removal due to human–wildlife conflict. For 
each row, 

∑C+2

j=1
pij = 1. Consequently, this extension allows the decomposition 

of different types of absorption on movement and connectivity across landscapes.
With this matrix, we can map the long-term (asymptotic) probability of conflict 

at location j  if starting in location i  as the (i, j) th element of B,

	 [3]B = FR̃c ,

where F = (I−Q)−1 (aka the “fundamental matrix”), I is an identity matrix, 
and R̃c is a C × C matrix with diagonal elements equal to Rc and off-diagonal 
elements equal to 0(23).

We also calculated time-specific conflict predictions. The probability of expe-
riencing conflict at location j  within t  or fewer steps if starting in location i  is the 
(i, j) th element of the matrix,

	 [4]
B
t =

(∑t−1

n=0
Q
n

)
R̃
c
=(I−Q)

−1
(
I−Q

t
)
R̃
c
.

We incorporate variation in population size of elephants in protected areas as:
	 [5]�

T
B,

where Ψ is a vector of relative abundances of length C for relative abundance 
across the landscape and T  is the transpose of this vector.

Finally, we mapped the predicted movement and flow of elephants based 
under assumptions of no constraints regarding absorption from natural mortality 
or conflict relative to expectations of flow under human–elephant conflict. To do 
so, we calculated net visitation rates over space (34). Visitation rates are the (i, j) 
th element of F, which describe the total time a disperser spends at location j  if 
starting in location i . The net visitation rates describe the net movement prob-
abilities between k and l  if starting in location i , which are proportional to the 
difference in time spent at a location times the transient transition probabilities:

	 [6]Ikl ∝ abs
(
fikqkl − filqlk

)
,

where fij and qij are elements of the matrices F and Q (34). This metric is iden-
tical to the mapping of “current density” as accomplished with circuit theory (30) 
when no absorption occurs. We scaled this metric to elephant population size in 
each of the five protected areas, our key populations, as:
	 [7]Ikl ∝ abs

(
� i fikqkl − � i filqlk

)
,

where � i is the population size of elephants for key population i . Consequently, 
net visitation rates in this context describe the expected net movement rates 
of individuals. We compared this idealized situation with the expectation for 
human–elephant conflict to impede movement across the landscape.

Parameterizing the SAMC Model. We parameterized the SAMC model in the 
following way. First, we resampled 30 × 30-m land cover to a 500 × 500-m res-
olution for mapping. We used this resolution to reflect average hourly movement 
of elephants, based on GPS-telemetry that shows average elephant movement 
of 0.35 to 0.52 km per h across different land uses (49–51); thus, we assume a 
time step in the Markov chain reflects approximately 1 h.

We then created a resistance layer based on the inverse of estimates of occu-
pancy (derived from survey data as described in the section below) by the propor-
tion of each land-cover type within each 500 × 500-m cell (habitation, plantation, 

open crop, water, other plantation, forest) and human population density to 
parameterize Q. We excluded habitation because it was redundant with human 
population density. Exploratory analyses showed no effect of the proportion of 
water on occupancy or conflict, so we removed that land-cover covariate from 
models. For our estimates, we clamped estimated effects across the landscape 
based on the observed data used in the occupancy model, as described below.

Empirical Data for Modeling Connectivity and Conflict. To guide our 
field survey and ensure spatial coverage, we mapped a 6-km buffer around 
Nagarahole, Bandipur and Bhadra, and overlaid a network of 3.6-km grid cells 
over this buffer. This provided us with a combined network of 182 grid cells 
around Nagarahole and Bandipur (Nagarahole: 84, Bandipur: 98), spanning an 
area of 2,366 km2; and 113 grid cells around Bhadra, spanning an area of 1,469 
km2. We used Quantum Geographic Information System (QGIS) v. 2.18.26 for 
GIS-related analyses.

We interviewed respondents, mainly farmers, in our grid network to record 
information on elephant use of the area and the incidence of conflict. Interviews 
were conducted by trained teams in the local language, Kannada. Our interview 
and survey methodology were reviewed and approved by the institutional ethics 
committee for research on human subjects of the Centre for Wildlife Studies. All 
surveys were carried out by trained teams and were preceded by a plain lan-
guage statement in the local language Kannada, describing the survey objectives, 
and policy of anonymity. Consent was obtained orally from respondents before 
initiating the survey. Respondents within each grid cell were chosen opportun-
istically and separated spatially by distance intervals of at least 700 m to ensure 
independence of responses and adequate spatial coverage of each grid cell. We 
interviewed four to six respondents within each grid cell. We focused on grid 
cells with agriculture, plantations, and habitation; grid cells with complete forest 
cover, mountainous terrain, and those without any habitation or agriculture were 
excluded from our survey, as these cells lacked respondents to report elephant 
use, nor were they prone to conflict.

We used structured questionnaires, recording in each survey whether respond-
ents had noted elephant presence in their neighborhood in the previous month. 
Wherever possible, we validated the presence of elephants by documenting signs 
such as footprints or dung. We also recorded if the respondents had faced con-
flict, in the form of crop loss, property damage, or human injury and loss of life. 
We surveyed the landscape for six time periods to capture seasonal conflict or 
elephant use of the landscape, on a bimonthly basis, covering in total a period of 
a year between January and December 2017. Respondents across surveys were 
independent of each other.

Parameterizing Resistance and Conflict Intensity. We used logistic regression 
to test the effect of land use and human density on a) elephant use of the multi-use 
landscape, and b) probability of conflict, conditional on elephant use (“conditional 
conflict”). We recorded land use information from our field surveys and categorized 
the following land cover types: i) human habitation, ii) agroforest (primarily coffee, 
rubber, and mixed plantations), iii) cropland (including all open food crops and 
some cash crops like tobacco), iv) water body, v) open plantation (coconut and areca 
nut) and vi) forest, with a resolution of 250 m and an overall classification accuracy 
of 0.89 and a κ statistic of 0.81. We collated information on pixel-level human pop-
ulation density, adjusted to match UN-population estimates, from the Worldpop 
database v. 2.0 (from www.worldpop.org) for the year 2015. We considered both 
untransformed values and a log-transformed measure of human population size. 
We tested additive and interactive effects of land cover and population density, 
and selected the best-supported model using the Akaike’s Information Criterion.

To assign pixel-wise land use classes to the Mysore ER, we obtained Landsat 8 
OLI/TIRS Level-2 multispectral satellite images with 30-m resolution, for the period 
of March to April 2017, for cloud-free images. We used 27 polygons of each of the 
classes as training data, obtained from photo interpretation of satellite imagery 
and the 11,762 ground-truth points recoded during field surveys. We used a 
supervised classification approach using a spectral angle mapping algorithm 
within the semi-automatic classification plugin on QGIS. We then extracted the 
modal, or most represented, land use in a 250-m pixel. We used this information, 
in combination with human population density, as obtained from the WorldPop 
database, to predict resistance (from the inverse of probability of elephant use 
of the landscape), and probability of conflict, conditional on elephant use, from 
the models described above. We scaled the resistance values to appropriately D
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represent heterogeneity in the landscape and set a ceiling value of 500 to ensure 
model convergence. In our landscape, there were estimates of human density 
(urban environments) in the region that were greater than what we observed in 
the data used for model building. Clamping, or setting a ceiling value of predicted 
resistance, resulted in predictions that assumed that these more urban settings 
would have similar effects on movement/connectivity as the most urban areas 
we used in model building. This approach has frequently been used to bound 
predictions in distribution modeling (e.g., ref. 52). We treated the probability of 
conditional conflict as a proxy for conflict-induced mortality and assigned spatially 
informed pixel-specific indices of conflict probability across the Mysore ER. We 
scaled probabilities such that baseline mortality, and conflict-induced mortality 
of elephants matched realistic values (32).

To parameterize Rm, or absorption arising from natural (nonconflict) mortality, 
we assumed a constant probability of mortality per time step derived from annual 
estimates of survival of Asian elephants of 0.97 (32). To parameterize Rc, or absorp-
tion arising from conflict-driven mortality, we estimated expected conflict, given 
elephant use in the following manner. We first fit a logistic regression model based 
on locations where conflict was observed during field surveys using the proportion 
of land cover and human population density, conditional on elephant presence 
being reported from surveys. As land cover effects on conflict may be contingent on 
human population density, we considered pairwise interactive effects in this model 
in addition to additive effects. Based on the most supported model, we then scaled 
the odds from this model to observed variation in conflict reported previously from 
the ER as the number of incidences of conflict per 100 km2 per year (27). We con-
verted the minimum (1) and maximum (893) number of incidences to probabilities 
per pixel per time step using the relationship of the Poisson distribution with the 
complementary log-log link function. Given an area A and a location i, we assume 
the number of reported incidences Ni follows a Poisson distribution as:

	 [8]Ni ≈ Pois
(
Aiexp (�)

)
,

where α is the estimated number per unit area on the log link scale. The 
probability of a conflict incidence given elephant use can be derived using the 
complementary log–log link function:

	 [9]Pr
(
Ni >0

)
=1−exp

(
−exp

(
𝛼+ logAi

))
.

As such reported incidences implicitly reflect an unknown density of elephants 
moving through the region, we also conducted a sensitivity analysis on model 
predictions based on varying both assumed annual mortality (0 to 0.06; 32) and 
conflict rates. Overall, spatial patterns were similar to predictions shown here.

Finally, for abundances, we used empirical density estimates from the region 
(53, 54). We scaled densities to the perimeter of each protected area, such that 
dispersers started at the boundary of protected areas and the relative numbers 
of dispersers were proportional to the density of elephants in the protected area. 
This model was implemented with the samc package in R (55), which we extended 
to allow for multiple absorption states.

Model Validation. We used two sources of data for model validation. First, we 
collated reports of human–elephant conflict from a semi-structured question-
naire survey in the study region that occurred between April and December 
2017, as part of a larger effort to assess the use and perceived efficacy of conflict 
mitigation measures for different crop types. We also included a 6-km buffer 
around an additional protected area, the Biligiri Ranganatha Swamy Temple 

Tiger Reserve (henceforth, Biligiri). The field team recorded information from 
respondents on agricultural practices, specifically, on crops grown, and conflict 
incidents faced. We thus obtained data on spatial locations where conflict did 
and did not occur.

Second, we collected reports on human–elephant conflict reported in the 
media (e.g., newspapers) in the state of Karnataka for a 36-mo period between 
2013 and 2015. We included newspapers in both English and Kannada (the 
regional language in our study area) and used systematic online searches to 
record any instances of conflict. Multiple reports of a single incident of conflict 
across different papers were collapsed into a single datapoint. Each reported inci-
dent was spatially referenced to the involved village or location. We considered 
these data as “presence-only” data and contrasted model predictions at observed 
locations to 10,000 available locations across the landscape.

We used two evaluation metrics: the area under the ROC Curve (AUC), and 
the True Skill Statistic (TSS). We also report the ratio of the average predictions at 
observed conflict sites to the average predictions for nonconflict (for questionnaire 
data) or background sites (for media reports). The use of TSS requires setting a 
threshold for model predictions. As predicted values of conflict were small for any 
pixel on the landscape, we used the mean predicted value as a threshold. It is 
generally recommended to consider multiple metrics for comprehensive model 
evaluations to reflect different kinds of summaries of model discrimination. The 
AUC (range: 0 to 1) and TSS (range: –1 to +1) statistics that we use are two of 
the more common metrics (56). All evaluation metrics were calculated with the 
PresenceAbsence package (57).

Finally, we also contrasted model fit and predictions from the connectivity 
models with those from distribution-based models for resistance and conflict 
(SI Appendix, Fig. S2 and Tables S3 and S4) to understand whether an explicit con-
nectivity model was necessary for conflict predictions. For the distribution-based 
model, we calculated the joint probability of conflict as the product of elephant 
occupancy and conditional conflict (models shown in SI Appendix, Tables S2–S4). 
The difference in the connectivity-based and distribution-based models lies in the 
capturing of the explicit movement process into conflict predictions in the SAMC.

Data, Materials, and Software Availability. Data on elephant and conflict loca-
tions, validation points, and code used in analysis data are deposited at Figshare 
(https://doi.org/10.6084/m9.figshare.20227503) (58).
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