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Balancing the competing, and often conflicting, needs of people and wildlife in
shared landscapes is a major challenge for conservation science and policy worldwide.
Connectivity is critical for wildlife persistence, but dispersing animals may come into
conflict with people, leading to severe costs for humans and animals and impeding
connectivity. Thus, conflict mitigation and connectivity present an apparent dilemma
for conservation. We present a framework to address this dilemma and disentangle the
effects of barriers to animal movement and conflict-induced mortality of dispersers on
connectivity. We extend random-walk theory to map the connectivity—conflict interface,
or areas where frequent animal movement may lead to conflict and conflict in turn
impedes connectivity. We illustrate this framework with the endangered Asian elephant
Elephas maximus, a species that frequently disperses out of protected areas and comes
into conflict with humans. We mapped expected movement across a human-dominated
landscape over the short- and long-term, accounting for conflict mortality. Natural
and conflict-induced mortality together reduced expected movement and connectivity
among populations. Based on model validation, our conflict predictions that explicitly
captured animal movement better explained observed conflict than a model that con-
sidered distribution alone. Our work highlights the interaction between connectivity
and conflict and enables identification of location-specific conflict mitigation strategies
that minimize losses to people, while ensuring critical wildlife movement between hab-
itats. By predicting where animal movement and humans collide, we provide a basis to
plan for broad-scale conservation and the mutual well-being of wildlife and people in
shared landscapes.

human-wildlife coexistence | landscape planning | dispersal | coadaptation | Markov chains

Coupled human—natural systems are integral to effective conservation across much of the
planet (1). Protected areas—focused on decoupling nature and negative human influ-
ences—have undoubtedly benefited species worldwide (2), but faced with size limitations
and increasing isolation, they may be an insufficient conservation solution (3). Shared
human-wildlife spaces outside protected areas, therefore, have a vital complementary role
to play in maintaining connectivity, or functional linkages between populations and hab-
itats, so as to augment species persistence, strengthen ecosystem health and resilience, and
mitigate negative impacts of climate change (4, 5). However, dispersing animals can come
into direct contact with people or utilize human resources in shared spaces, leading to
negative interactions or conflict to the detriment of both people and wildlife (6, 7).
Facilitating human—wildlife coexistence in shared spaces is thus a concomitant conserva-
tion goal (8, 9). Reconciling these two critical requirements (i.e., managing conflict and
facilitating connectivity; Fig. 1), which are seemingly at odds with each other, is one of
the greatest current challenges to conservation in shared landscapes (10, 11).
Connectivity is determined by interactions between dispersing organisms and the land-
scape (12, 13). However, humans can transform these interactions (14). Conflict, due to
its influence on animal use of shared spaces, has received recent attention as an important
anthropogenic factor that can shape connectivity (11, 15). This may manifest due to risks
that wildlife perceive from human presence and activities (16-18), antagonistic behavioral
responses of people (e.g., chasing animals), or infrastructure (e.g., fences) for conflict
mitigation (10, 19). An extreme response to conflict is the removal of “problem” animals
through conflict-induced retaliatory killing, capture, or culling (6, 20). Removal imposes
a demographic cost on species, as it can cause an increase in population mortality rates
or change the demographic composition of a population (21), which is distinct from
conflict-induced nonlethal responses that alter dispersal paths (15). This distinction
between lethal and nonlethal effects of human activities has been previously considered
in studying species space use (22), but has only recently been integrated into connectivity
models (23). Animal movement can also exacerbate conflict (9) and determine its spatial
patterns (24), such that incorporating movement ecology could vastly improve conflict
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predictions, and thereby its effective mitigation. Despite this
potential, the problem that conflict and removal of dispersing
animals presents has not been reconciled in conservation.

Here, we extend a framework for connectivity that is derived
from random-walk theory to address the problem of connectivity
and human—wildlife conflict. Our framework a) includes ecolog-
ical underpinnings of animal movement into conflict predictions
and b) assesses connectivity while considering the spatial patterns
of conflict in situations when conflict imposes lethal effects on
dispersing animals. Our framework maps the connectivity—con-
flict interface, or areas where frequent animal movement can lead
to conflict, and conflict, in turn, can impede connectivity. We
illustrate our framework with the example of the endangered and
wide-ranging Asian elephant Elephas maximus, an animal for
which both connectivity and conflict mitigation are urgent
conservation priorities (10). By mapping the connectivity—conflict
interface across a shared landscape that is home to the most abun-
dant wild elephant population in Asia (25), we predict conflict
hotspots, validate these predictions against independent reports
of conflict, and identify where connectivity is lost from conflict
in the region.

Results

Calibrating a Connectivity-Human Conflict Model. We extend
recent developments in connectivity modeling to identify likely
locations where elephants dispersing from protected areas may
encounter humans, potentially leading to negative interactions
and conflict. Our framework extends random-walk theory with

Markov chains that explicitly acknowledge the potential for
“absorption” (26), such as mortality or removal from human—
wildlife conflict. We extend the spatial absorbing Markov chain
(SAMC) framework to simultaneously allow probabilistic
accounting of movement behavior, mortality risk, and potential
conflict for dispersers across landscapes (23).

We applied our SAMC framework to the Mysore Elephant
Reserve (ER), an important conservation landscape in southwest-
ern India that encompasses multiple protected areas and reserve
forests, surrounded by a nonhabitat agricultural matrix
(SI Appendix, Fig. S1). Connectivity among the protected areas
in the ER is a recognized conservation need (25), and the region
faces high levels of conflict (27, 28). We calibrated the SAMC
using empirical data collected around three key elephant popula-
tions in the ER (See Methods); these key populations serve as
points of origin of dispersal, or populations from which dispersing
elephants can emigrate. In our landscape, key populations were
within five protected areas (S/ Appendix, Fig. S1). These also served
as populations where elephant immigration could occur. Based
on 9,100 interviews of residents of this area, we recorded 2,662
(29% of total interviews) reports of elephant use of the matrix.
Of the people who reported elephant presence in their vicinity,
1,804 (68%) reported human—elephant conflict. We used this
information to create maps of “landscape resistance” that reflect
expectations on elephant movement (87 Appendix, Fig. S2A) and
maps of “conditional conflict,” or conflict given that elephants use
that location (S7 Appendix, Fig. S2B). Landscape resistance is com-
monly used in connectivity mapping to capture the extent to
which locations are impermeable to animal movement (29); here,
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Fig. 1. (A) Human-wildlife overlap outside protected areas and the connectivity-conflict interface. The landscape includes dispersal paths between protected
areas (brown nodes, with the larger node as the location from where individuals disperse) that vary in the rate of movement by animals (Left paths illustrate
lower rates of movement than Right paths). Areas where movement rates along paths are high and conflict is low can be considered “secure corridors” that
function as key areas for maintaining connectivity. Yet in some locations, conflict (shown as a dashed line) can arise as animals disperse across landscapes, which
may block successful movement between protected areas, what we term the “connectivity-conflict interface.” Conservation strategies at the interface need to
reduce conflict while maintaining connectivity. (B) Asian elephants move through human land uses and often face risks of mortality due to conflict (here, from
an electrified fence). Photo credits: Bhavendu Joshi/Conservation Initiatives (Top); Kalyan Varma, CC BY-SA 4.0 via Wikimedia Commons (Bottom).
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the inverse of the probability of elephant use of the landscape is
used to parameterize resistance (29-31). The SAMC couples
expectations from these maps to provide an integrated perspective
on predicting movement and conflict across landscapes.

Based on interviews, we found that landscape resistance was
determined by land use and human population density
(81 Appendix, Table S1): elephants avoided areas with high human
population density, and used croplands (finger millet, horse gram
etc.), followed by agroforest plantations (such as coffee and rubber)
and open plantations (coconut and areca nut; SI Appendix,
Table S2). We found that land use and human population density
also explained conditional conflict (S7 Appendix, Table S3).
Locations with coconut and areca nut plantations had higher con-
ditional conflict compared with croplands and agroforest planta-
tions such as coffee. Conditional conflict probability was positively
associated with human population density, albeit weakly
(SI Appendix, Table S4). Based on these findings, we mapped pre-
dicted landscape resistance and conditional conflict probability
across the Mysore ER, which were positively correlated (= 0.73;
SI Appendix, Fig. S2). This relationship indicated that landscape
resistance was high in areas where potential conflict was high, or,
in other words, our expectation based on this model is that ele-
phants tended to avoid moving through areas of high potential
conflict. Finally, we incorporated these predictions and estimates
of annual mortality rates taken from the literature (32) into the
SAMC (23) to capture resistance, conflict, and natural mortality
risks that may emerge while dispersing (See Methods).

The Connectivity-Conflict Interface. The SAMC framework can
quantify a variety of metrics related to movement, demography,
and connectivity across landscapes. Here we extend the SAMC
to predict net visitation rates [or movement paths, analogous to
“current density” in circuit theory (33)] in the Mysore ER (Fig. 24
and S Appendix, Fig. S3). In this situation, net visitation rates
quantify the expected net movement rates of dispersing individuals
through a given pixel in a landscape based on specific starting and
ending locations (34). Both mortality and conflict together reduced
expected movement and connectivity between key populations,
decreasing predicted net visitation rates (SI Appendix, Fig. S3).
Models that did not account for mortality and conflict predicted that
there would be movement across all populations in the landscape
(SI Appendix, Fig. S3A); but connections between populations were
lost when these dispersal costs were accounted for (SI Appendix,
Fig. S3 B—D). Highest visitation rates occurred with low resistance
and low conditional conflict (S7 Appendix, Fig. S4A4). The loss in
visitation rates due to conflict occurred even in locations where
predicted conflict was relatively low (S Appendix, Fig. S4B).

We map the connectivity—conflict interface in Fig. 2B, distin-
guishing hotspots of conflict that experience high visitation rates
from those with low visitation (Fig. 1). Hotspots of the connec-
tivity—conflict interface occurred around protected areas harboring
relatively large populations of elephants that were surrounded by
agricultural lands (S Appendix, Fig. S1).

We also predict conflict probabilities across the region over the
short (1-y) and longterm using the SAMC framework which explic-
itly accounts for elephant movement (Fig. 3). Spatial patterns of
conflict predicted by the SAMC model differed substantially from
maps of conditional conflict (87 Appendix, Fig. S2B) and were
largely concentrated around populations (Fig. 3).

Validating Conflict Predictions. Connectivity models can suffer
from poor predictive capacity and a large amount of uncertainty
(35). Consequently, predictions of connectivity models should
be validated with relevant independent information (36). We
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Fig. 2. (A) Predicted net visitation (movement) rate from the SAMC model
incorporating both natural and conflict-induced mortality, and (B) the
connectivity-conflict interface. For (B), we discretized predictions using the
three quantiles for both conflict predicted from the SAMC model (measured
as a probability; Fig. 3) and net visitation (measured as the expected net
movement rates through pixels) to identify areas of relatively high expected
conflict and movement rates.

validated both long-term predictions for expected conflict (B) and
time-specific predictions (B,) from the SAMC model with two
sources of information: 1) a separate survey on human—elephant
conflict of 1,102 respondents in the region (n = 329 records of
conflict within 1y, n = 571 over a 10-y period) and 2) 1,095
media reports of conflict from February 2013 to January 2016.

SAMC-derived predictions of conflict were two to three times
greater in locations where conflict occurred than in locations
where conflict did not occur, based on validation data from the
questionnaire survey; conflict predictions were 14 times greater
in the locations of elephant mortality reported in the media com-
pared with background points (Table 1). We also compared the
performance of conflict predictions from the SAMC model
(Fig. 2) and that of a species distribution model (SDM) that pre-
dicts the distribution of conflict based on the joint probability of
elephant use of the matrix (information used to generate resist-
ance) and conditional conflict, in explaining variation in reported
conflict. The primary difference in the SAMC and SDM models
is that the SAMC incorporates the explicit movement process into
conflict predictions whereas the SDM does not. Models that incor-
porated SAMC-predicted probability of conflict as a covariate fit
the data better than the SDM based on model selection criteria
(1y: AAICc > 25.5; 10 y: AAICc > 60.5; SI Appendix, Table S5),
provided more precise predictions of conflict over 1 y and 10y,
and explained 2.5 to 5 times the variation as the SDM (Fig. 4 and
SI Appendix, Table S5).

Based on 951 records of conflict from media reports, including
crop loss, property damage, human-induced elephant mortality,
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Fig. 3. Predicted conflict probability from dispersing elephants from key populations (gray polygons) over (A) 1y and (B) the long term.

elephant-induced human mortality, and elephant captures, we
compared SAMC model predictions for conflict at these points,
considering them as “presence-only” data (37), and compared
them with 10,000 randomly selected background points. Overall,
we found moderate discrimination performance of our model
based on the AUC statistic and the True-Skill Statistic (Table 1).
When we segregated validation points as per the type of conflict,
the model provided more accurate predictions for mortality-based

Table 1. Validating predictions of conflict from the
connectivity model, including both time-specific (1-y)
and long-term predictions
Time-specific
predictions
Validation data AUC TSS Ratio
Questionnaire around protected areas
Observed conflict  0.68 0.25 2.41 0.64 0.20 1.91
over the past year
Observed conflict 0.74 0.29 3.08 0.70 0.22 2.30
over the past 10y
Media reports

Long-term
predictions

AUC TSS Ratio

All 0.67 0.19 5.01 0.61 0.06 1.92
Crop damage 0.65 0.15 445 0.61 0.07 1.82
Human and 0.71 035 634 065 0.10 223
elephant injury or

mortality

Elephant mortality 0.91 0.69 13.99 077 036 4.25

Shown are results assuming an annual survival rate of 0.97 (32) and a range of conflict
intensities (27). We show Area under the ROC Curve (AUC), True Skill Statistic (TSS), and
the ratio of average model predictions at conflict locations to average predictions at back-
ground (for media reports) or non-conflict (for questionnaire records) locations.

https://doi.org/10.1073/pnas.2211482119

conflict than conflict when only crop damage occurred (Table 1).
In general, the model was more accurate for short-term predictions
than long-term predictions (Table 1).

Discussion

The Connectivity-Conflict Interface. Conflict and connectivity
are clearly emerging as interconnected challenges for wildlife
conservation across multiple-use landscapes. While connectivity
and coexistence with people are crucial for species persistence in
heterogeneous landscapes, they present a conservation paradox:
connectivity enhances wildlife viability, but dispersal through
human spaces can elevate conflict and mortality risk (9). Our
work confronts this paradox (Fig. 1) and provides an approach
to identify locations where connectivity conservation and conflict
mitigation strategies need to coalesce (Fig. 3B). Our approach of
formalizing and combining these ideas into a single framework
demonstrates the feasibility and benefits of jointly considering
conflict and connectivity, in terms of greater insights and predictive
accuracy, with broad implications for science and conservation in
coupled human—natural systems.

Decomposing Causes of Dispersal Failure. We extend the SAMC
framework to accommodate multiple risks to wildlife—from
natural mortality and conflic—when modeling species movement
across landscapes. This can be relevant for multiple reasons.
First, mortality from different causes may have different inten-
sities and ignoring these can lead to inaccurate predictions of
connectivity (23, Fig. 3). For the levels of conflict-induced mor-
tality we modeled, natural mortality had a greater impact overall
in reducing connectivity across the landscape (S/Appendix,
Fig. $3), simply because, in our case, the per-pixel probability of
natural mortality was higher than that for conflict mortality.

pnas.org
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Fig. 4. The predicted probability of conflict over 1y (shaded yellow), and
over 10 y (shaded blue), based on (A) a distribution-based model (used for
creating resistance and conflict maps; S/ Appendix, Fig S2) and (B) time-specific
predictions from the connectivity model. Overall, the connectivity model fit the
data better than the distribution-based model as per model-selection criteria,
had greater effect sizes (based on beta estimates from scaled metrics), and
explained 2.5 to 5 times the variation based on pseudo-R? values.

We note that the same may not hold if conflict mortality increases.
Nonetheless, even for the rates of conflict we used, conflict-in-
duced mortality impacted movement, and we found that even
lesser intensities of predicted or manifested conflict could result
in blocking connectivity in some locations (SI Appendix, Fig. S4).
Small increments in conflict-induced mortality can also necessitate
large amounts of conflict-free habitat for long-term population
viability of species (32), a luxury that conservation landscapes in
the densely populated tropics seldom possess.

Second, conservation strategies directed at each source of mor-
tality may be different. Hence, decomposing the different sources
of mortality can help prioritize conservation strategies and address
trade-offs among them (38, 39). For instance, addressing conflict
mortality may entail: a) stringently restricting removal of elephants
by managers; b) enhanced stakeholder engagement to minimize
retaliatory killings; and ¢) transparent compensation to mitigate
financial and other losses to farmers due to elephants.

Third, predicted mortality arising from conflict shows distinct
spatial patterns in comparison with natural mortality, allowing us
to distinguish secure corridors from the connectivity—conflict
interface (Fig. 1). This is best highlighted in Fig. 2B, where we
map spatial patterns of conflict, predicted by the SAMC model,
with net visitation rates (movement paths), highlighting where
these collide. This can also be visualized in S7 Appendix, Fig. S4B,
where we depict the loss of movement paths between protected
areas (loss in net visitation rates) from conflict. The impact of
conflict on connectivity depends on the location, such that, even
low intensities of conflict along movement paths can severely lower
connectivity, as compared with elsewhere. Contextualizing these
spatial patterns requires modeling conflict and connectivity simul-
taneously. Similar issues occur for mortality risks arising from
causes such as roads (40), human disturbance (17), or vegetation
characteristics across the landscape (23). These too may require
different conservation strategies such as overpasses and other
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mitigation for linear infrastructure or restoration to modify veg-
etation structure to reduce mortality risk.

Importantly, spatial conflict patterns have social-ecological
underpinnings. In our region, for example, croplands had high
levels of conditional conflict (given elephant use of the matrix)
compared with agroforests and human settlements. Crop depre-
dation is a primary driver of human—elephant conflict (7), and it
is likely that elephant use of croplands spurred a strong response
from people to protect against crop loss. In contrast, with a rela-
tively low risk of financial loss in settlements and agroforests,
people likely safely avoided elephants. Human responses and
underlying attitudes toward wildlife can therefore show variation
across space and can strongly shape movement patterns and con-
nectivity across conservation landscapes (11, 18). Conservation
strategies can follow this pattern, focusing on reducing crop dep-
redation through different means (reviewed in ref. 10) while work-
ing closely with stakeholders to ensure continual safe passage of
elephants in agroforests and human settlements. Explicitly track-
ing multiple causes of dispersal failure while accounting for land-
scape resistance to animal movement addresses a critical need to
link landscape conservation prioritization to animal behavior and
movement theory (13, 41). Since human-wildlife conflict varies
in space and time (7), there is need for landscape-scale conserva-
tion and planning for connectivity to be adaptive and dynamic
(42). There have been models that look more deeply into source-
sink dynamics to assess spatial impacts of human disturbance (21).
Our model would benefit from information on population
demography, including accurate estimates of emigration from each
population; nonetheless, it provides fine-scale spatial information
on predicted conflict mortality across the landscape, juxtaposed
with spatial information on animal corridors.

The implications of conflict for animal mortality, both due to
retaliatory killing, as well as lethal control and removal (8), are
substantial. In the specific context of Asian elephants in India,
conflict-induced mortality can arise from electrocution, poisoning,
traps and bombs, or direct retaliatory killing (27). An estimated
100 elephants die annually from conflict in India (response in
parliament by the Minister of Environment, Forest and Climate
Change, Govt. of India; August 2, 2021), though this number is
likely an underestimate. Conflict is intense in the state of Karnataka
where we map the connectivity—conflict interface: it has among
the highest number of reported wildlife conflicts across India and
the government spends around USD 1.5 million annually in com-
pensatory payments for conflict, primarily with elephants (28,
43). Capture of “problem animals,” a method that was widely used
historically but strictly regulated in more recent decades due to
its ethical underpinnings (20), is now receiving attention as a
potential conflict mitigation measure. Indeed, “dangerous” ani-
mals moving through human spaces are captured or killed across
taxa and geographies (6, 44). Our results provide insight in light
of these lethal responses to conflict.

Conservation Applications. Our framework can provide guidance
in identifying context-specific conservation actions, even in
situations where conflict may not lead to mortality. We argue that
spatial locations in conservation landscapes generally fall into one
of four categories based on connectivity and conflict (Fig. 2B). Of
these categories, locations of least conservation concern are those
that play little or no role in connectivity and face minimal conflict;
conservation strategies in these locations can be focused on increasing
animal movement through habitat restoration, increasing woody
vegetation or encouraging land uses that facilitate connectivity (16,
45). Lands that allow connectivity and face minimal conflict have
the highest potential for long-term conservation and human—wildlife
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Locations across conservation landscapes can be categorized into one of four scenarios of conservation value and focus, based on their contribution to

connectivity—arising from their movement permeability and location (S/ Appendix, Fig. S2A)—and conflict intensity given elephant use, measured as visitation
rates and absorption, respectively, in the SAMC model. Each quadrant relates to different SAMC parameters and output and call for a different set of conservation
strategies. We provide example land uses from our study context for each quadrant. Predicted conflict (Fig. 2) will be high at the connectivity-conflict interface;
it is likely to be sporadic in conflict zones that have low visitation rates but high absorption rates.

coexistence; conservation efforts here need to be tuned toward
maintaining status quo.

Our approach enables identification of hotspots of conflict that
are frequented by wildlife (high visitation rates) to be distinguished
from those locations that are visited with low frequency (low vis-
itation rates) (Fig. 2B). Conflict mitigation in these two contexts
needs to be different. In conflict hotspots with low visitation rates,
conflict is likely to be sporadic and may thus be suitable for insur-
ance schemes (46), or strategies aimed at restricting animal entry
through barriers (e.g., fences). Conflict hotspots with high visita-
tion rates, or the connectivity—conflict interface, require strategies
that can address conflict while simultaneously allowing continued
animal movement; where conflict cannot be mitigated, redirecting
movement to alternative corridors to reduce negative human—
wildlife interactions could be a viable strategy.

In the context of the Mysore ER, our findings suggest careful
evaluation and potential realignment of current management
strategies to better balance this dual conservation need in the
connectivity—conflict interface. We illustrate our argument for a
shift in on-ground conservation practice with the help of two
examples. First, the government is investing between USD 6,000
to 200,000/km on fences as a conflict mitigation strategy in this
landscape (47). Among other areas, these fences have been installed
along the northern boundaries of Nagarahole and Bandipur, two
contiguous protected areas that support key populations of ele-
phants (SI Appendix, Fig. S1). By separating the two protected
areas from the connectivity—conflict interface, the fences can
potentially mitigate conflict, but at the cost of elephant dispersal
through the landscape (Fig. 2B and SI Appendix, Fig. S5); anec-
dotal media reports also indicate mortality risk to individual ele-
phants trying to circumvent these fences. Thus, our analysis
suggests that the fences are an unbalanced conservation solution,
and it offers insights into where these conservation costs are better
invested. Second, to mitigate conflict, the government captured
and removed 22 elephants from the Alur-Sakleshpur area of the
landscape (SI Appendix, Fig. S5) in 2014 because the area was
considered to house an isolated elephant population of c. 30 ani-
mals in a nonhabitat matrix dominated by agroforests (48). In
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contrast, our results predict agroforests in the landscape, including
the Alur-Sakleshpur area, to have moderate—high net visitation
rates and low—moderate conflict levels (S/ Appendix, Fig. S5),
thereby highlighting their potential to serve as secure corridors
(Fig. 5). The fact that the Alur-Sakleshpur area was recolonized
by elephants within a year of the removal operation (48), suggests
that it was never an isolated population, corroborating our current
findings. Our results provide scientific support for the expected
and observed recolonization, and results indicate that reactive
removal of elephants from Alur-Sakleshpur (or potentially other
fragmented habitats) may not be effective.

More broadly, our results suggest that assessment and implemen-
tation of conflict mitigation strategies should be tailored to the
connectivity—conflict interface (Fig. 5). At the interface, mitigation
strategies need to be long-term, involving stakeholder engagement,
land-use planning, and community-based interventions that are
free of barriers or rely on them only for localized crop protection
without impeding movement through the landscape (Fig. 5).
We found that high-conflict locations also overlapped with locations
that were resistant to movement, compounding barrier effects on
connectivity, which may decrease the extent of the connectivity—
conflict interface. In other landscape contexts, however, conflict and
movement permeability may be uncorrelated (23, 44), expanding
the scope of the connectivity—conflict interface. Mapping the con-
nectivity—conflict interface can sharpen conservation strategies and
enable them to be locally designed toward mitigating conflict with-
out leading to a loss of connectivity.

Materials and Methods

The SAMC Framework. The SAMC framework captures processes of movement
and absorption (i.e., the termination of movement from mortality, settlement, or
related processes) through the construction of a probability matrix, P, that contains
both transition probabilities between transient states (e.g., patches or landscape
cells) and one or more absorbing states. For a landscape divided into C cells or
patches, matrix P can be written as:
(o)
01/

(1]
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where @is a C x C transition matrix reflecting transitions between transient
states, R is a C x 1vector containing transition probabilities from the transient
states to the absorbing state, and @is a1 x C vector of zeros. The elements p;
describe the probability of transitioning from state i to j in one time step.

We extend this model to include multiple absorbing states. Here, we show how
two different absorbing states can be considered: one reflecting natural causes of
mortality and a second reflecting absorption due to removal from human-wildlife
conflict. Our new P matrix can be described as:

QR, R,
01 0Y[ [2]
001

which is a (C +2) x (C + 2) transition matrix, where R,, contains the
absorption probabilities reflecting natural causes of mortality, and R, contains
the absorption probabilities reflecting removal due to human-wildlife conflict. For
each row,z’,c:2 p; = 1.Consequently, this extension allows the decomposition
of different types of absorption on movement and connectivity across landscapes.

With this matrix, we can map the long-term (asymptotic) probability of conflict
atlocation j if starting in location 7 as the (i, j) th element of B,

B=FR, [3]

where F = (1—Q)~"(aka the “fundamental matrix"), I is an identity matrix,
and R, is a C x C matrix with diagonal elements equal to R, and off-diagonal
elements equal to 0(23).

We also calculated time-specific conflict predictions. The probability of expe-
riencing conflictat location j within t or fewer steps if starting in location i is the
(i, j)th element of the matrix,

B, =<Z"=10 o") R=01-0)" (1-Q)R,. (4]
We incorporate variation in population size of elephants in protected areas as:
7B, (5]

where ¥ is a vector of relative abundances of length C for relative abundance
across the landscape and T is the transpose of this vector.

Finally, we mapped the predicted movement and flow of elephants based
underassumptions of no constraints regarding absorption from natural mortality
or conflict relative to expectations of flow under human-elephant conflict. To do
s0, we calculated net visitation rates over space (34). Visitation rates are the (i, j)
th element of F, which describe the total time a disperser spends at location j if
starting in location . The net visitation rates describe the net movement prob-
abilities between k and / if starting in location i, which are proportional to the
difference intime spent at a location times the transient transition probabilities:

Iy o abs (fi.qy = fiqy) s (6]

where f;and g;; are elements of the matrices Fand @ (34). This metricis iden-
tical to the mapping of “current density” as accomplished with circuit theory (30)
when no absorption occurs. We scaled this metric to elephant population size in
each of the five protected areas, our key populations, as:

Iy o abs (l//,-fiqu/ - Wifilq/k) 1 7]

wherey;isthe population size of elephants for key population i. Consequently,
net visitation rates in this context describe the expected net movement rates
of individuals. We compared this idealized situation with the expectation for
human-elephant conflict to impede movement across the landscape.

Parameterizing the SAMC Model. We parameterized the SAMC model in the
following way. First, we resampled 30 x 30-m land cover to a 500 x 500-m res-
olution formapping. We used this resolution to reflect average hourly movement
of elephants, based on GPS-telemetry that shows average elephant movement
of 0.35t0 0.52 km per h across different land uses (49-51); thus, we assume a
time step in the Markov chain reflects approximately 1 h.

We then created a resistance layer based on the inverse of estimates of occu-
pancy (derived from survey data as described in the section below) by the propor-
tion of each land-cover type within each 500 x 500-m cell (habitation, plantation,
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open crop, water, other plantation, forest) and human population density to
parameterize @. We excluded habitation because it was redundant with human
population density. Exploratory analyses showed no effect of the proportion of
water on occupancy or conflict, so we removed that land-cover covariate from
models. For our estimates, we clamped estimated effects across the landscape
based on the observed data used in the occupancy model, as described below.

Empirical Data for Modeling Connectivity and Conflict. To guide our
field survey and ensure spatial coverage, we mapped a 6-km buffer around
Nagarahole, Bandipur and Bhadra, and overlaid a network of 3.6-km grid cells
over this buffer. This provided us with a combined network of 182 grid cells
around Nagarahole and Bandipur (Nagarahole: 84, Bandipur: 98), spanning an
area of 2,366 km?; and 113 grid cells around Bhadra, spanning an area of 1,469
km?. We used Quantum Geographic Information System (QGIS) v. 2.18.26 for
GIS-related analyses.

We interviewed respondents, mainly farmers, in our grid network to record
information on elephant use of the area and the incidence of conflict. Interviews
were conducted by trained teams in the local language, Kannada. Our interview
and survey methodology were reviewed and approved by the institutional ethics
committee for research on human subjects of the Centre for Wildlife Studies. All
surveys were carried out by trained teams and were preceded by a plain lan-
guage statementin the local language Kannada, describing the survey objectives,
and policy of anonymity. Consent was obtained orally from respondents before
initiating the survey. Respondents within each grid cell were chosen opportun-
istically and separated spatially by distance intervals of at least 700 m to ensure
independence of responses and adequate spatial coverage of each grid cell. We
interviewed four to six respondents within each grid cell. We focused on grid
cells with agriculture, plantations, and habitation; grid cells with complete forest
cover, mountainous terrain, and those without any habitation or agriculture were
excluded from our survey, as these cells lacked respondents to report elephant
use, nor were they prone to conflict.

We used structured questionnaires, recording in each survey whether respond-
ents had noted elephant presence in their neighborhood in the previous month.
Wherever possible, we validated the presence of elephants by documenting signs
such as footprints or dung. We also recorded if the respondents had faced con-
flict, in the form of crop loss, property damage, or human injury and loss of life.
We surveyed the landscape for six time periods to capture seasonal conflict or
elephant use of the landscape, on a bimonthly basis, covering in total a period of
a year between January and December 2017. Respondents across surveys were
independent of each other.

Parameterizing Resistance and Conflict Intensity. We used logistic regression
to test the effect of land use and human density on a) elephant use of the multi-use
landscape, and b) probability of conflict, conditional on elephant use ("conditional
conflict”). We recorded land use information from ourfield surveys and categorized
the following land cover types: i) human habitation, ii) agroforest (primarily coffee,
rubber, and mixed plantations), iii) cropland (including all open food crops and
some cash crops like tobacco), iv) water body, v) open plantation (coconutand areca
nut) and vi) forest, with a resolution of 250 m and an overall classification accuracy
of 0.89 and a x statistic of 0.81. We collated information on pixel-level human pop-
ulation density, adjusted to match UN-population estimates, from the Worldpop
database v. 2.0 (from www.worldpop.org) for the year 2015. We considered both
untransformed values and a log-transformed measure of human population size.
We tested additive and interactive effects of land cover and population density,
and selected the best-supported model using the Akaike's Information Criterion.

Toassign pixel-wise land use classes to the Mysore ER, we obtained Landsat 8
OLI/TIRS Level-2 multispectral satellite images with 30-m resolution, for the period
of March to April 2017, for cloud-free images. We used 27 polygons of each of the
classes as training data, obtained from photo interpretation of satellite imagery
and the 11,762 ground-truth points recoded during field surveys. We used a
supervised classification approach using a spectral angle mapping algorithm
within the semi-automatic classification plugin on QGIS. We then extracted the
modal, or most represented, land use in a 250-m pixel. We used this information,
in combination with human population density, as obtained from the WorldPop
database, to predict resistance (from the inverse of probability of elephant use
of the landscape), and probability of conflict, conditional on elephant use, from
the models described above. We scaled the resistance values to appropriately
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represent heterogeneity in the landscape and seta ceiling value of 500 to ensure
model convergence. In our landscape, there were estimates of human density
(urban environments) in the region that were greater than what we observed in
the data used for model building. Clamping, or setting a ceiling value of predicted
resistance, resulted in predictions that assumed that these more urban settings
would have similar effects on movement/connectivity as the most urban areas
we used in model building. This approach has frequently been used to bound
predictions in distribution modeling (e.g., ref. 52). We treated the probability of
conditional conflictas a proxy for conflict-induced mortality and assigned spatially
informed pixel-specific indices of conflict probability across the Mysore ER. We
scaled probabilities such that baseline mortality, and conflict-induced mortality
of elephants matched realistic values (32).

To parameterize R, or absorption arising from natural (nonconflict) mortality,
we assumed a constant probability of mortality per time step derived from annual
estimates of survival of Asian elephants of 0.97 (32).To parameterize R,, or absorp-
tion arising from conflict-driven mortality, we estimated expected conflict, given
elephantuse in the following manner. We first fit a logistic regression model based
on locations where conflict was observed during field surveys using the proportion
of land cover and human population density, conditional on elephant presence
being reported from surveys. As land cover effects on conflict may be contingenton
human population density, we considered pairwise interactive effects in this model
inaddition to additive effects. Based on the most supported model, we then scaled
the odds from this model to observed variation in conflict reported previously from
the ER as the number of incidences of conflict per 100 km? per year (27). We con-
verted the minimum (1) and maximum (893) number of incidences to probabilities
per pixel per time step using the relationship of the Poisson distribution with the
complementary log-log link function. Given an area A and a location /, we assume
the number of reported incidences N, follows a Poisson distribution as:

N; ~ Pois (Aexp () , (8]

where o is the estimated number per unit area on the log link scale. The
probability of a conflict incidence given elephant use can be derived using the
complementary log-log link function:

Pr(N;>0) =1—exp (—exp (a+logA)). [9]

As such reported incidences implicitly reflect an unknown density of elephants
moving through the region, we also conducted a sensitivity analysis on model
predictions based on varying both assumed annual mortality (0 to 0.06; 32) and
conflict rates. Overall, spatial patterns were similar to predictions shown here.

Finally, for abundances, we used empirical density estimates from the region
(53, 54). We scaled densities to the perimeter of each protected area, such that
dispersers started at the boundary of protected areas and the relative numbers
of dispersers were proportional to the density of elephants in the protected area.
This model was implemented with the samc package in R (55), which we extended
to allow for multiple absorption states.

Model Validation. We used two sources of data for model validation. First, we
collated reports of human-elephant conflict from a semi-structured question-
naire survey in the study region that occurred between April and December
2017, as part of a larger effort to assess the use and perceived efficacy of conflict
mitigation measures for different crop types. We also included a 6-km buffer
around an additional protected area, the Biligiri Ranganatha Swamy Temple
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media (e.g., newspapers) in the state of Karnataka for a 36-mo period between
2013 and 2015. We included newspapers in both English and Kannada (the
regional language in our study area) and used systematic online searches to
record any instances of conflict. Multiple reports of a single incident of conflict
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(51 Appendix, Fig. S2 and Tables S3 and $4) to understand whether an explicit con-
nectivity model was necessary for conflict predictions. For the distribution-based
model, we calculated the joint probability of conflict as the product of elephant
occupancy and conditional conflict (models shown in S/ Appendix, Tables S2-54).
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