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ABSTRACT

Molecular dynamics (MD) is the method of choice for understanding the structure, function, and interactions of molecules. However, MD
simulations are limited by the strong metastability of many molecules, which traps them in a single conformation basin for an extended
amount of time. Enhanced sampling techniques, such as metadynamics and replica exchange, have been developed to overcome this limita-
tion and accelerate the exploration of complex free energy landscapes. In this paper, we propose Vendi Sampling, a replica-based algorithm
for increasing the efficiency and efficacy of the exploration of molecular conformation spaces. In Vendi sampling, replicas are simulated in
parallel and coupled via a global statistical measure, the Vendi Score, to enhance diversity. Vendi sampling allows for the recovery of unbiased
sampling statistics and dramatically improves sampling efficiency. We demonstrate the effectiveness of Vendi sampling in improving molec-
ular dynamics simulations by showing significant improvements in coverage and mixing between metastable states and convergence of free
energy estimates for four common benchmarks, including Alanine Dipeptide and Chignolin.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166172

I. INTRODUCTION

The exchange between metastable configurations of proteins
and nucleic acids is essential to their biological function." Molecu-
lar dynamics (MD) simulations are widely adopted for simulating
the transitions between metastable states because they offer full
spatial and temporal resolution of molecular systems. These tran-
sitions can range from simple localized changes, such as aromatic
ring-flips,” to complex global structural rearrangements, includ-
ing protein folding’ ~ and protein-ligand binding.”” Experimental
techniques that enable the measurement of signals sensitive to
the exchange between these states'’”"” have greatly advanced the
study of these metastable states. However, low spatial resolution
and ensemble averaging are still challenges that complicate data
analyses.'*

MD simulations can predict stationary and dynamic cor-
relations, allowing for direct comparison to experimental data.

However, a significant limitation of MD arises due to the strong
metastability of many molecular systems, which can trap them in
a single conformational basin for an extended amount of time."” "’
This limitation undermines quantitative comparisons to experi-
ments because statistical sampling comes at a high computational
cost. To address this issue, there has been intense research aimed at
developing faster algorithms for sampling highly metastable systems
at a lower computational cost.'®

These enhanced sampling or extended ensemble methods
rely on two broad strategies: finding a surrogate of the Boltz-
mann ensemble that rapidly mixes between metastable states or
exchanging the state variable with one or multiple ensembles that
mix faster."””° To ensure that the modified ensembles sufficiently
overlap with the true Boltzmann ensemble, statistical reweighing
techniques such as importance sampling, the weighted histogram
analysis method,” the multistate Bennett acceptance ratio,”® or
transition-based methods™ " are used. These techniques allow for
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an effective reweighting of the equilibrium statistics but are disad-
vantaged by the intrinsic need to identify collective variables, per-
turb macroscopic thermodynamic variables, or alter Hamiltonians,
which often rely on manual trial-and-error of numerous poten-
tial candidates.'® The identification of useful collective variables is
a field of its own, with multiple application-specific approaches,
including for ligand binding®” and slow dynamics.” ** In particular,
collective variable estimation has seen a surge in interest in recent
years due to the broad accessibility of deep representation learning
methods.” "’

Machine learning-based approaches, such as Boltzmann
generators,”” *' learn surrogate models of the intractable Boltzmann
distribution. If these surrogate models allow for exact sample likeli-
hood estimation, highly effective sampling of unbiased equilibrium
statistics can be achieved via reweighting or importance sampling.
While a promising strategy, current architectural limitations in the
deep neural networks used to learn such surrogate models have
prevented their broad adoption.

In this paper, we propose a replica-based method called Vendi
Sampling where multiple copies of a molecular system are simu-
lated in parallel. To enhance the conformational space exploration,
the replicas are coupled via a global statistical measure, the Vendi
score.”” The Vendi score reflects the instantaneous and internal
diversity of the replicas and is a function of the eigenvalues of a
Gram matrix computed via a pre-specified kernel. The Gram matrix
is constructed by evaluating the kernel between all pairs of simula-
tion replicas. As such, the proposed Vendi sampling method does
not rely on modulating thermodynamic variables, Hamiltonians,
or defining collective variables to enhance sampling. Instead, an
extended ensemble is defined, which can drive sampling in infinite
dimensional feature spaces, without explicit calculation of collective
variables.

Our investigation of Vendi sampling in several challenging
systems reveals its ability to rapidly detect free energy minima, par-
ticularly in cases where there are large free energy barriers between
states. Moreover, Vendi sampling enables the rapid convergence to
the unbiased equilibrium statistics, facilitating the computation of
observables such as free energy differences. We accomplished these
findings using generic kernels, which do not encode slowly relaxing
degrees of freedom. However, the current implementation incurs
some computational overhead. We anticipate that further research
into the development of more efficient kernels and the use of mul-
tiple time-stepping schemes”’ can further boost the performance of
Vendi sampling.

Il. THEORY

Here we provide some background, describe Vendi sampling,
and explain how to recover unbiased observable statistics.

A. Boltzmann distribution, observables,
and free energies

At equilibrium, a single molecular system denoted by
x € Q c R* Y, where N is the number of atoms, has a distribution of
conformational states which is equal to the Boltzmann distribution,

p(0)=Z " exp (-BU(x)), (1)
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with inverse temperature f8, and Z = [exp (-fU(x))dx, is the par-
tition function. In MD simulations, we asymptotically generate
samples from this distribution.

Given a sample {x;}Y, drawn independently and
identically from p(x) (iid.), a state function—or forward-
model—corresponding to an experimental observable denoted by
f(x), we can compute bulk ensemble averaged observables using
the empirical average,

M
o = [ FOOpGIdx= 5 fx) @)

However, due to slow mixing between meta-stable states in MD
simulations, samples are not i.i.d., and consequently, Eq. (2), is
biased.

We can define the free energy of a state A c Q as a special case
of a stationary observable,

Fy = -log /Qp(x)(?(x €A)dx=-log P(xeA) (3)

where P(-) denotes the probability of an event. We can similarly
express the free energy difference between states A, B c Q) as

Fap = —log pr(x)(S(x € A)dx + log /Qp(x)(?(x € B)dx
P(xeA)

=18 pien)

(4)

1. Replicated systems and expanded ensembles

In replicated systems, N copies of the same system,
Z ={x1,X2,...,Xn}, are simulated simultaneously. Each copy
is referred to as a “replica.” In the simplest case, when the replicas
are uncoupled, they can be simulated independently as their joint
distribution factorizes as the product of the different marginal
distributions over each replica,

N
puncoupled(%v) = H Pi(xi)' (5)

i=1

Here the densities p,(-) can either be identical or different. One
common choice for rendering the densities different is by using
different temperatures f; for each of the replicas, as is done in
replica-exchange and parallel tempering methods.”*

In the case where the replicas are not independent, we call this
the coupled case, the replicas exchange information via an additional
function, 7(-), which depends on all or parts of the replicas. The
corresponding joint distribution can be written as

Pcoupled(fg{) = ﬂ(fbV)H Pi(Xi)- (6)

i=1

This approach is extensively used to impose experimental con-
straints on molecular simulations, e.g. by enforcing an averaged
experimental observable to match an average computed across
multiple replicas.””* '
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B. Vendi sampling

Here we introduce Vendi sampling a replica approach to
enhanced sampling. In Vendi sampling replicas are coupled using
a statistical measure of diversity, the Vendi Score.”” The goal is
to encourage the replicas to cover different regions of confor-
mation space, thereby rapidly discovering and mixing between
metastable states and allowing faster convergence of stationary
ensemble properties, such as free energy differences.

1. The Vendi score

The Vendi score* is an interpretable diversity metric that
quantitatively describes how diverse a collection of items is. It counts
the effective number of dissimilar elements in the collection being
evaluated for diversity. Given a collection of N items, the maxi-
mum possible value of the Vendi Score is N, when all items in
the collection are uniquely distinct from each other. The measure
of similarity between the items in the collection is an input to the
Vendi Score, which allows for a flexible specification of any form
of similarity. Mathematically, the similarities are computed using
kernels, k(,-).

The Vendi Score of a collection of samples {x1,Xz,...,Xm} is
defined as the Shannon entropy of the eigenvalues of a similarity
matrix,

M
VS({x1,...,Xm}) = exp (72 Ai log )Li). (7)

i=1

Here A; is the i'th eigenvalue of K, the matrix induced by a user-
defined similarity function k(-, ). Technically, the similarity matrix
K is a Kernel matrix with elements

Kj = k(x,%;), 0<i<M, 0<j<M. (8)
In Vendi sampling, the M samples correspond to M replicas of

amolecular system, and the resulting Vendi Score is a coupling term.
We combine Egs. (6) and (7),

N
Pvendifcoupled(%) o< VS(%)H Pi(xi)- (9)

i=1

Note that the joint distribution of the replicas is no longer normal-
ized as the Vendi Score is not a probability distribution function.
However, Vendi sampling doesn’t require normalization of the joint
distribution of the replicas. More specifically, we use the Vendi
energy function implied by the density p. .4 coupleas

N
Uvendifcoupled(%‘) = Z ui(xi) + /11' log Ai) (10)

i=1

where u;(-) £ B,Ui(-) is a unitless energy and A, is as described ear-
lier. We use the Vendi energy function to simulate the system using
the overdamped Langevin (Brownian) dynamics,’

d2(t)
dt

= _vUvendi—coupled(dﬁ'g(t))/y +v2D dw (11)
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where dW denotes a Weiner process, D is a diffusion constant and y
is a friction coefficient. Each replica evolves over time according to
the stochastic differential equation

dx(;gt) = —[Vui(Xi(t)) + vaendi(xi)]/y + \/ﬁdw (12)

where fyenai(Xi) = —a%i log VS(2") is the “Vendi force” for x;—a
repulsive force applied to x; to drive it away from the other
replicas—and v is an empirical weight factor. fyendi (xi) is computed
using automatic differentiation through PyTorch and Torch Force
for OpenMM,> and involves computation of the Kernel matrix
[Eq. (8)], its eigenvalues A;, and the log Vendi score [Eq. (7)].

In our experiments, we explore two types of Langevin sam-
pling to simulate the combined system [Eq. (9)]: we use overdamped
Langevin dynamics (Brownian dynamics) for the model systems
(the Prinz potential and the double well) and use the Langevin
thermostat™ for the molecular systems.

The weight v is a hyperparameter which we can vary during
simulation, through for instance, annealing schemes. We describe
the different schemes used in the experiments.

2. Recovering unbiased samples

After simulating an ensemble of coupled replicas for T time
steps {27(0),..., 2°(T)} we can reweigh these trajectories into an
unbiased ensemble by resampling using the state-dependent weights

wr = VS(2(t)) 7", (13)

which will yield asymptotically unbiased samples from the joint
distribution Eq. (5).

In practice, v = 0 for the vast majority of the simulation. So, we
collect statistics when v = 0, in between intermittent phases where
v > 0. In this case, samples do not need to be reweighed.

C. Kernels

The Vendi force applied to each replica at every simulation step
is contingent on the kernel matrix K, as it encodes the diversity
across replicas.

Kernels are inner-products in a feature space, 7, defined by the
feature function y : R® N — 7, for a three dimensional system of N
particles,

k(xisx7) = (w(x), w(x%))9 = v 9y (14)

where the latter equality holds if 7" is a vector space. In general,
the dimension of 7" is infinite. This gives rise to the celebrated
“Kernel trick” in machine learning,” where data is embedded in
to a high-dimensional space to allow for linear separation. In other
words, instead of specifying y(-) we can specify a kernel function
k(-,-), and avoid featurization into high-dimensional spaces. In the
context of molecular simulations, the kernel can be interpreted as
a way of comparing high-dimensional collective variables simul-
taneously, side-stepping the need to engineer the collective vari-
ables. Below we detail the kernel used in the molecular applications
we studied.

1. Invariant kernel for molecular systems

To ensure, we do not maximize diversity by rigid body trans-
formations, e.g. translation of the center-of-mass, or the rotation of

J. Chem. Phys. 159, 144108 (2023); doi: 10.1063/5.0166172
Published under an exclusive license by AIP Publishing

159, 144108-3

02:90:81 €20 JOqWBNON 60


https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics

the reference frame, we wish to define a kernel which is invariant
to these transformations. We note that these constraints are valid
when we consider MD simulations at equilibrium without exchange
of matter or energy with the environment, and without interactions
with an external field. Consequently, we require a kernel k(-, ) that
is invariant to those symmetries, e.g. does not change due when the
molecule is translated or rotated. Since we would like to quantify
some metric for distance within the space of possible molecular con-
formations, removing these symmetries in the space of all possible
molecular configurations is a necessary requirement for a diversity
metric that is accurate and efficient.
We achieve an invariant kernel, by using a Gaussian kernel,

20%

72
k(x,x") :exp(fu) (15)

where x and x’ are input coordinates, ¢ is a hyperparameter that
determines the width of the kernel, and | - | denotes the Euclidean
norm. The input coordinates are transformed to make k(x,x") con-
stant under rigid body transformations. Concretely, given some
replicas X = {xi,..., Xy}, we can ensure translational invariance by
forming a new set X that is mean-centered,

X:x-lz Xi. (16)

To ensure invariance of k(x,x’) under rotation we use a procedure
outlined previously to find rotation matrices U; which align all repli-
cas onto a common frame.’® These transformed coordinates are in
turn used to evaluate the kernel.

Ill. RESULTS

We compare Vendi sampling against an uncoupled replica
method with overdamped Langevin dynamics to showcase the added
benefit of enforcing a repulsive force through the Vendi Score. We
refer to this baseline as Replica sampling in the rest of the paper. We
report free energy profiles on two model systems, the Prinz potential
and the double well, and two molecular systems, Alanine dipeptide
in vacuum and Chignolin in implicit solvent. In all cases we found
Vendi sampling converges faster and explores energy surfaces better
than Replica sampling.

A. Model systems

We first test Vendi sampling on two low-dimensional model
systems that have exact expressions for their free energy functions.
For these systems we use the simple kernel function:

k(x,x')=1-

17)

1. Prinz potential

The “Prinz potential”'® is a four-well 1D potential that fea-
tures an energy barrier at x = 0. We test Vendi sampling’s ability
to both discover these wells and provide unbiased equilibrium sam-
pling statistics. We initialized the replicas uniformly from one side
of the central energy barrier (~ U[0,1]). We performed this exper-
iment ten times for each choice of replica size, comparing against

ARTICLE pubs.aip.org/aipl/jcp

Replica sampling with an integration step of # = 10™* for both sam-
plers. For all replica sizes, we used a linear annealing schedule for the
vendi force coefficient given by

t
vt:max(O,l——)*IOO Vt=0,1,2,. (18)
1000

We observe that Vendi sampling rapidly identifies modes on
the opposite side of the energy barrier [Figs. 1(a) and 1(b)]. After
10000 time steps, Replica sampling poorly characterizes the left-
most mode, while Vendi sampling is already able to approximate it
relatively well.

We compare the convergence of Vendi sampling and Replica
sampling, by observing the free energy difference [Eq. (4)] between
the segments A : {x € [-1,0]} and B: {x € [0,1]} for both methods,
as a function of simulation step. Vendi sampling consistently outper-
forms the Replica sampling baseline [Fig. 1(c)] by reaching the true
free energy difference within 0.1 kT in fewer steps. Specifically, for
four replicas Vendi sampling converged at 150 000 steps, whereas
for 8 and 16 replicas Vendi Sampling reached similar values by the
50 000th step. In contrast, Replica sampling required at least twice as
many steps to achieve similar convergence.

Vendi sampling discovers all high probability (low energy)
within 10000 time steps while Replica sampling requires an order
of magnitude more steps to discover all states.

To additionally demonstrate the role of the Vendi Force, we
vary the barrier height of the Prinz Potential function and measure
how long it takes for samples initialized on one side of the barrier
to cross over (Fig. 2). In this setting, we find that replica sampling’s
time to cross the barrier grows exponentially as the barrier height
increases. For large values of the Vendi force weight v, Vendi Sam-
pling scales well and does not require a noticeable increase in time
to cross.

2. Double well potential

To gauge the performance of Vendi sampling on systems with
a higher free energy barrier (>10 kT), akin to those observed in
protein folding-unfolding or in chemical reactions, we considered
a previously studied two-dimensional double-well benchmark.*®

We limited our experiments to 32 replicas for both Vendi sam-
pling and Replica sampling, with initial starting positions drawn
randomly in the interval x € [-2.5,2.5] and y € [-2.5,2.5]. The
free energy difference was calculate as before with Eq. (4), using
A={x €[-25,0],y €[-4,4]} and B={x €[0,2.5],y € [-4,4]}.
We used step-size 1 = 107> for both samplers. We again use a lin-
ear annealing schedule over the course of 50 000 steps for the Vendi
force weight v.

vtzmax(O,lf )*100 Vt=0,1,2,. (19)

50000

Vendi sampling converged within 0.2 kT of the true free energy
difference by the 1 000 000th step, whereas Replica sampling did not
reach this over the course of the entire simulation [Fig. 3(c)]. We
note that we observe ~1200 transitions over the energy barrier in
the time period while the Vendi Force is active, and ~500 for the
rest of the duration of the simulation. Replica sampling also observes
500 transitions over the course of the entire simulation.
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FIG. 1. Vendi sampler rapidly identifies states and quickly recovers ground-truth equilibrium statistics. (a) Probability density functions for Vendi sampling and Replica sampling
compared against the ground truth Prinz Potential density after 104 steps of each sampler for various replica sizes. (b) Energy functions for Vendi sampling and Replica
sampling after 10 steps for various replica sizes. (c) Free energy difference across boundary over time for both samplers. In all cases, the shaded region reflects uncertainty
as estimated using the standard deviation across n = 10 simulations after 10> burn-in steps.

B. Molecular systems ¢ (C-N-Ca-C) and y (N-Ca-C-N). Two of the basins occupy the
B-strand like structures and are disconnected by only a small free
energy barrier. The third, minor basin occupies the region of the
Ramachandran plot associated with left-handed helices, and is dis-

connected from the f-strand states by a large free-free energy barrier

Here we further investigate two molecular systems: capped
alanine (alanine di-peptide) and the miniprotein chignolin, in vac-
uum and implicit solvent respectively. These systems are established
benchmark systems to evaluate sampling methods in molecular

dynamics.””* We perform similar benchmarks as above, however. >10kpT in the Amber99SB forcefield at 300 K.°" All simulations were
we use a kernel which is invariant to rotations and translation as carried 9|ut L}sing t}}e Langevin integrator implem.eljlted in OpenMM
described in Sec. II C using kernel bandwidth parameter o = \/I . (v. 8'0); with a time step of 2.0 fs and a collision frequency of

2 1.0 ps™ . A free energy baseline was established by running ten sim-

This kernel ensures only internal degrees of freedom are encouraged
to diversify, and avoids that the center of mass and orientation of the
molecular system influences the Vendi score.

ulations of 100 ns each, as depicted in supplementary material Fig. 1.
To analyze the conformational distribution, we recorded the y and
¢ backbone dihedral angles of each sample. The free energy differ-
ence was calculated via Eq. (4) with A = {¢ € [-7,0],y € [-m, 7]}
and B={¢ € [0,7],y € [-m, 7]}

1. Alanine dipeptide in vacuum

Alanine dipeptide (Ala2) or capped alanine is a small, yet mean-
ingful benchmark system to test enhanced sampling methods and
the impact of solvation.”® "’

In vacuum, Ala2 exhibits a three-basin free-energy land-
scape in the Ramachandran plot of the back-bone dihedral angles

For Vendi sampling we computed the Vendi Force that was
applied to the Langevin dynamics at every timestep for the first 10 ps,
with a learning rate of v =1000. After 10 ps, the Vendi Sampler
reverted to using standard Langevin dynamics.

We experimented with 32-replica systems for both Vendi sam-
pling and Replica sampling, initializing all replicas in the 3-stranded
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FIG. 2. The Vendi sampling can overcome Free Energy Barriers of varying heights. (a) Six Different Prinz Potentials, each with a varied height of the central barrier at x = 0,
as well as the initial 16 sample positions. (b) The average number of steps required for Replica Sampling and Vendi Sampling to have at least one sample cross the energy
barrier. Vendi force coefficient v is varied. Shaded regions represent uncertainty as estimated using the standard deviation across n = 20 simulations.
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FIG. 3. The Vendi sampler rapidly converges in the double well potential. (a) The underlying 2D free energy surface. (b) The marginal free energy along the x-axis. The
initial conditions are shown as dots on the curve and the free energy boundary for free energy calculations is shown with a dashed line. (c) Comparison of convergence over
2.5 x 108 steps for Vendi sampling and Replica sampling. The shaded area represents uncertainty as measured by the standard deviation over n = 10 experiments and after

50000 steps.

state. We find that the Vendi sampler effectively used the Vendi
force to break the hydrogen bonds between the amide nitrogen
and carbonyl oxygen atoms stabilizing the S-stranded states, result-
ing in several replicas transitioning to the left-handed state within
the first 1.0 ns [Figs. 4(a) and 4(b)]. In contrast, the Replica sam-
pler relies on thermal fluctuations to cross this free energy barrier.
Replica sampling, further requires an approximate three-fold larger
simulation effort to equilibrate the average relative state popula-
tions within the accuracy of the baseline estimate. This demonstrates
Vendi sampling’s enhanced capacity for climbing the large energy

barrier and discovering the left-handed minima quickly. The
increased mode coverage during the early stages of the simulation
facilitated faster convergence to the true free energy difference, as
illustrated in Fig. 4(d). It also important that our sampler encourages
mixing across modes in the MD trajectories. We observe that while
the Vendi force is applied over the first 10 ps of the simulation, the
Vendi Sampler provides much better mixing in the MD simulation
[Figs. 5(a)-5(c)]. The Replica sampler would mostly transition to the
left-handed state later in the simulation [Figs. 5(d)-5(f)], by which
time the Vendi sampler had already converged.
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across ten long runs.

C. Protein folding chignolin in implicit solvent
(CLNO25)

Chignolin is a small artificial mini-protein with fast-folding
kinetics, is a widely used model system for computational and exper-
imental study of protein folding.””**"" Its folded state conformation
is characterized by a strong hydrogen bonding network between the
backbone amide and carbonyl groups forming a stable -hairpin
conformation.

We used the CHARMM?22 protein force field from MacKerell
et al.°* with the OBC2 (Onufriev-Bashford-Case) implicit solvent
model® implemented by OpenMM to simulate Chignolin at a tem-
perature of 350 K. Vendi sampling and Replica sampling both used
the standard Langevin integrator from OpenMM with constraints
on bonds to hydrogens and hydrogen mass repartitioning, time step
of 4.0 fs and a collision frequency of 0.1 ps™'. The Vendi sampler
additionally incorporated a Vendi Force that was applied to the
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Langevin dynamics at every timestep for the first 40 ps, with a weight
coefficient of v = 1000. After 40 ps, the Vendi sampler reverted to
using standard Langevin dynamics.

As for Ala2, we used a 32-replica setup to compare Vendi
sampling and Replica sampling. We initializing all replicas in the
misfolded state shown in supplementary material Fig. 2(a). A free
energy baseline was established by running ten simulations of 150 ns
each. Using previously published simulation data on Chignolin in
explicit water” to identify collective variables via TICA (time-lagged
independent component analysis).””®” We used all pair-wise Ce dis-
tances as features and a lag-time of 5 ns. The first two TICs separate
folded and unfolded states, and are used to compute free ener-
gies. The two primary TICs are shown in supplementary material
Fig. 2(a). The free energy difference was calculated via Eq. (4) with
A ={TICAI <0} and B = { TICAI > 0} (Fig. 6).

We observe that the Vendi sampling average across trials con-
verges to the estimated true free energy difference in the first 25 ns

of the simulation. We see from the marginal free energy show in
supplementary material Fig. 2(b) and the reference free energy sur-
face in supplementary material Fig. 2 that the Vendi sampler is
observing folding events earlier in the simulation.

We define folding events using TICA 1 features, measuring if
at a given timestep the replica has had TICA 1 < - 0.2 at least five
times within a 100 step window. If so, then we mark the replica as
in a folded state and then count the number of total transitions into
the folded state we observe. We use a similar method for counting
the number of transitions into the unfolded state in supplementary
material Fig. 2(c), instead looking at TICA 1 € [0.5,2.5] and TICA 2
€ [-0.5,-3.5].

Supplementary material Table S1 shows that the Vendi Force
calculation is quite expensive, but the force is only applied over a
small fraction (0.3%) of steps. It’s application over even a small
number of steps is enough to achieve a noticeable improvement in
performance.
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IV. DISCUSSION AND CONCLUSION

We introduced Vendi sampling, a replica-based sampling
method for molecular simulations. Vendi sampling overcomes large
free energy barriers and enhances sampling. While there is a wide
variety of enhanced sampling techniques available in the litera-
ture,'’® Vendi sampling, to our best knowledge, takes a unique
approach to the problem. It is driven by a diversity metric, the
Vendi score, which is computed according to a kernel matrix that
performs pairwise comparisons of the states of all replicas. Conse-
quently, the system of coupled replicas defined by Vendi sampling
forms an extended ensemble that is neither driven by the choice
or modulation of a macroscopic thermodynamic parameter (e.g.
temperature or Hamiltonian) nor by the definition of a collective
variable. Instead, the extended ensemble is defined by a kernel func-
tion. The kernel function computes inner products in feature spaces,
e.g. high-dimensional collective variables. However, since we do not
need to explicitly compute the features in the kernel formalism, the
underlying features can, in principle, be infinite-dimensional. We
can thereby avoid costly collective variable identification, without
suffering from “the curse of dimensionality.”

It is important to note that the use of kernels is not new in
enhanced sampling, however, previous use has focused on estimat-
ing an adaptive biasing potential.”*** "’ While these approaches can

yield low-variance free energy estimates, they intrinsically have to
balance exploration and accuracy,”’ e.g. by slowly tampering off
the estimation of the adaptive biasing potential.”> On the contrary,
Vendi sampling yields high-variance sample estimates, yet avoids
problems associated with adaptive biasing potential estimation.

Through our analyses of tractable model systems and bench-
mark molecular systems, we find that Vendi sampling indeed excels
in cases that are defined by high free energy barriers in two ways:
it rapidly covers the local minima of the free energy landscape and
enables fast mixing across free energy barriers to allow for fast con-
vergence of free energy estimates. However, while not observed in
any systems considered in this manuscript, in certain extreme cases,
where very high free energy barriers separate meta-stable states and
populations between the states are highly skewed, Vendi sampling
may require an impractical number of replicas to ensure accurate
free energy estimates.

Future work will explore whether Vendi sampling can benefit
from more advanced kernel functions, e.g. in the context of sampling
interfacial water molecules, which may be important for molecu-
lar processes such as ligand binding. Finally, exploring alternative
annealing strategies of the Vendi force during sampling may lead to
further efficiency gains, and speeding up Vendi calculations through
more efficient implementations and approximations, may further
extend the practical scope of the approach.
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Additional figures and one table is available in the
supplementary material.
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