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Unlocking the Performance of Proximity Sensors

by Utilizing Transient Histograms

Carter Sifferman1, Yeping Wang1, Mohit Gupta1, and Michael Gleicher1

AbstractÐWe provide methods which recover planar scene
geometry by utilizing the transient histograms captured by a class
of close-range time-of-flight (ToF) distance sensor. A transient
histogram is a one dimensional temporal waveform which en-
codes the arrival time of photons incident on the ToF sensor.
Typically, a sensor processes the transient histogram using a
proprietary algorithm to produce distance estimates, which are
commonly used in several robotics applications. Our methods
utilize the transient histogram directly to enable recovery of
planar geometry more accurately than is possible using only
proprietary distance estimates, and consistent recovery of the
albedo of the planar surface, which is not possible with pro-
prietary distance estimates alone. This is accomplished via a
differentiable rendering pipeline, which simulates the transient
imaging process, allowing direct optimization of scene geometry
to match observations. To validate our methods, we capture
3,800 measurements of eight planar surfaces from a wide range
of viewpoints, and show that our method outperforms the
proprietary-distance-estimate baseline by an order of magnitude
in most scenarios. We demonstrate a simple robotics application
which uses our method to sense the distance to and slope of a
planar surface from a sensor mounted on the end effector of a
robot arm.

Index TermsÐRGB-D Perception, Range Sensing

I. INTRODUCTION

O
PTICAL time-of-flight proximity sensors which measure

scene transients have recently become widely available.

These sensors operate by illuminating the scene with a pulse of

light, and measuring the shape of that pulse over time as it re-

turns back from the scene in a transient histogram, as shown in

Figure 1. These transient sensors have seen use in robotics due

to their ability to reliably report a distance estimate over a wide

range (1cm - 5m) while being small (< 20 mm3), lightweight,

and low-power (on the order of milliwatts per measurement)

[1], [2]. Because of their form factor, transient sensors can be

placed in locations where higher resolution 3D sensors cannot,

such as on the gripper or links of a robot manipulator, or on

very small robots. While these sensors have many desirable

properties, existing robotics applications do not utilize the

transient histograms, instead relying on low-resolution (at most

4 × 4 pixel) proximity measurements generated onboard the
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Fig. 1: The transient histogram is a temporal waveform

which records the response of a scene patch when exposed

to a pulsed light source. Presently available commodity

sensors estimate the transient histogram through a repeated

process.

sensor. Due to the coarseness of their measurements, these

sensors are presently only used in robotics for coarse sensing,

e.g., detecting the presence of obstacles or distance to a target.

In this work, we utilize transient histograms directly to

recover accurate planar scene geometry, and consistent planar

albedo from a single 3 × 3 transient sensor measurement.

Planar geometry is an initial use case for our methods, and

is a special case of 3D sensing that has many applications

in robotics. A robot interacting directly with any planar

surface will benefit from sensing the geometry of that surface

accurately and at a close range. For example: a robot arm

placing an object on a tabletop, sweeping a floor, or writing

on a flat surface; a mobile robot localizing the floor and

walls of a room; or a drone finding a safe spot to land. Our

method enables accurate recovery of this planar geometry that

otherwise would have required multiple proximity sensors or

a depth camera, while maintaining the same very small form

factor and operating at ranges as low as 1cm.

This work is the first to demonstrate that utilizing transient

histograms can improve the performance of proximity sensors

over utilizing proprietary on-sensor distance estimates. To

achieve this, our contributions are 1) an effective forward

imaging model for commodity proximity sensors, 2) a dif-

ferentiable rendering pipeline which implements the forward
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imaging model and utilizes it to recover planar geometry and

albedo directly from transient histograms, 3) an empirically

calibrated approach which approximates the performance of

the differentiable rendering pipeline and acts as a baseline,

and 4) empirical evidence that our approaches outperform

alternative methods which do not utilize transient histograms.

We present two methods for recovery of planar geometry,

one of which can also be used to consistently recover the

albedo of the planar surface. To evaluate our methods, we

gather thousands of measurements of eight planar surfaces

with a commodity transient sensor from a range of angles-

of-incidence and distances. We find that our methods which

utilize the transient histogram are more accurate and robust

than those which rely on proprietary distance estimates. We

also find that our method recovers consistent planar albedo,

which is not possible to recover from proprietary distance

estimates, as they do not encode intensity information. We

build a demonstration application which takes advantage of

the small size of a transient sensor by mounting the sensor to

the gripper of a robot arm. Measurements from the sensor are

used to measure the distance to the surface below the gripper

and to ensure that the surface is level before placing an object.

II. BACKGROUND: TRANSIENT HISTOGRAMS

A transient is a one dimensional temporal waveform which

measures the light reflected from a scene over time in response

to a pulsed light source. Recently, sensors which are able

to capture a transient quantized over short (picosecond) time

scales have become available for distance/range measurement

using the time-of-flight principle. We refer to these sensors

as transient sensors. These sensors come in a range of form

factors: from high resolution lab-grade arrays to mobile device

LiDAR modules, to very small proximity sensors. Most no-

table of the currently available transient sensors is the single

photon avalanche diode (SPAD) [3], [4], which is inexpensive

and commonly used in robotics (see Section III-A).

As shown in Figure 1, a SPAD-based sensor approximates

the transient histogram through a repeated process. A con-

trolled pulse of light (typically infrared) flood-illuminates the

scene in front of the sensor. Each sensor pixel records the

elapsed time between this pulse being sent and a single photon

arriving at the pixel. This arrival time is quantized to a discrete

bin and accumulated in a transient histogram. Over many

photon arrivals, this histogram approximates the true transient.

In practice, a commodity sensor may record millions of photon

arrivals to form a transient histogram. In sensors with an array

of pixels, a transient histogram is generated for each pixel.

Currently available commodity transient sensors have many

desirable properties. Many are capable of gathering transient

histograms at 30 frames per second. Maximum range varies

by model, but may be as high as 5m, with a typical minimum

range of 1cm. There exist techniques for mitigating the effects

of high ambient light on these sensors, enabling their operation

in diverse environments [5], [6].

In this work, we evaluate our method using the SPAD-

based TMF8820 sensor manufactured by AMS. We choose

this sensor because it 1) allows access to transient histograms

through an official driver, 2) captures a 3× 3 grid of transient

histograms at a time, each from a different region of its field-

of-view, and 3) provides access to a ªreference histogramº

which encodes the intensity of the laser pulse over time. In

the sensor’s default configuration, transient histograms are

summarized onboard the sensor via a proprietary algorithm,

and a distance and confidence estimate are reported for each

field-of-view region. We reconfigure the sensor to report a

transient histogram and proprietary distance estimate for each

FoV region. While we utilize the TMF8820 in this work,

the methods we propose can be applied to any sensor which

reports a transient histogram.

III. RELATED WORK

A. Transient Sensors in Robotics

Transient sensors are widely used in robotics applications

as they provide highly reliable distance measurements, while

being lightweight, low-cost and low-power. Tsuji and Kohama

[7] demonstrate a ªsensitive skinº for a robot arm consisting

of many single-pixel transient sensors. Similarly, Adamides et

al. [8] propose an array of transient sensors mounted around

a robot wrist to achieve safe human-robot collaboration.

Escobedo et al. place transient sensor on robot joints and

use them to actively avoid collisions [9]. Transient sensors

have been used to detect obstacles when mounted on a drone

[10]. Our previous work characterized two transient sensors

and demonstrated a method for extrinsically calibrating their

position relative to a robot arm to which they are attached [11].

Outside of robotics, commodity transient sensors have seen use

in wearable computing [12] and inspection applications [13].

In these prior works, only the sensor’s proprietary distance

estimates are utilized. To our knowledge, our work is the first

to utilize the transient histogram in a robotics setting.

B. Inference from Transient Histograms

Our differentiable rendering pipeline and forward imaging

model are heavily inspired by prior work in imaging. Photon

arrival times, like those encoded by a transient histogram,

are heavily utilized in non-line-of-sight (NLOS) imaging,

pioneered by Velten et al. [14]. In NLOS imaging, scene

geometry is recovered from around the corner by reflecting

a powerful pulsed laser off a diffuse surface. Recent NLOS

works utilize the same single photon avalanche diode (SPAD)

technology as the sensor that we use in this work [15], [16].

However, the imaging setup used in NLOS imaging requires a

high-powered laser and relatively large, expensive laboratory

grade SPAD sensors, which have thousands of histogram bins

and very precise timing. In contrast, the sensor that we use

in this work is readily available, small, lightweight, and eye

safe, but reports only 128 histogram bins, and has less precise

timing and optical characteristics.

A number of recent papers have utilized transient histograms

from commodity SPADs to perform scene inference. Each

of these works uses sensors which are very similar to the

one used in this paper in terms of technology, form factor,

and cost. Callenberg et al. [17] propose the use of transient
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histograms from a SPAD to classify materials based on sub-

surface scattering (with the sensor placed in direct contact),

generate higher resolution depth imagery, and perform non-

line-of-sight imaging (with additional hardware). Becker and

Koerner [18] also classify materials, but in a non-contact

setting. Ruget et al. [19] perform super resolution and use

supervised machine learning to estimate human poses from

transient histograms. Other works also perform super resolu-

tion to resolve higher resolution depth images from relatively

few transient histograms [20], [21].

The differentiable rendering approach used in this work

is inspired by Jungerman et al. [22], who use differentiable

rendering to recover partial plane parameters from a single

transient histogram. Because the sensor used by Jungerman et

al. reports only a single transient histogram, only two of the

three planar degrees of freedom could be recovered from a

single sensor measurement. In contrast, the multiple transient

histograms reported by the sensor used in this work enable

recovery of all plane parameters from a single measurement,

and our work is the first to do so.

IV. FORWARD IMAGING MODEL

An accurate forward imaging model is crucial to enabling

our differentiable rendering method. In this section, we give

an overview of our forward imaging model, which is designed

for the TMF8820 sensor, but can in principle be adapted to

other sensors. Our model assumes planar scene geometry, with

uniform albedo and reflectance model parameters per-plane.

For a more general forward imaging model that is sensor

agnostic, refer to previous work [22]. We consider a set of

transient histograms which are simultaneously captured by

a transient sensor over different fields-of-view. We refer to

this set of histograms as an image Φ. Each image consists

of n histograms φ ∈ Φ. Each histogram consists of m bins,

φi : 1 ≤ i ≤ m.

A. Surface Reflection Model

We utilize the Phong reflection model [23], in which a

surface’s reflection properties are parameterized by its albedo

α, specular exponent ke, and specular weight ks. We assume

that the light source and sensor are co-located, the pulsed

laser source is the only light in the scene, and the strength

of illumination is uniform over the field of view. The intensity

I of incident light returned by a ray r ∈ R
3 intersecting with

plane ax+ d = 0 is given by:

I = α ∗ (1− ks)(r · a) + ks((2(r · a)a+ r) · r)ke (1)

B. SPAD Saturation

The Phong reflection model alone does not take into account

light falloff or unique properties of the SPAD sensor. Previous

work [24] has established that, due to the nature of SPADs,

the number of detected photons p follows a soft saturation

curve in relation to the number of incident photons ϕ, given

by p = 1 − e−φ. Due to the inverse-square law, a ray which

travels distance r from the sensor before bouncing off the

scene returns with an intensity of 1/r2. We incorporate the

=

Rendered Histogram Reference Histogram Output Histogram

Fig. 2: The raw rendered histogram is cross-correlated with the

reference histogram (which encodes the laser pulse intensity

over time) to generate the output histogram of our forward

imaging model.

plane’s albedo α, as well as the output I from the lighting

model given in Equation (1). The asymptotic highest possible

photon detection count σ is a property of the sensor. The

sensor gain parameter g scales the intensity for an individual

ray±this is included because in practice we do not simulate

as many rays as photons are actually measured by the sensor.

The number of detected photons p is then given by:

p = σ(1− e−gI/(σr2)) (2)

C. Histogram Formation

Consider a histogram φ which images a plane given by

ax+d = 0, with a uniform albedo and reflectance parameters.

Let the sensor reside at the origin, and let R be a set of rays

uniformly sampled from the field-of-view which φ images. If

φ has n bins, a bin temporal ªsizeº of t, and a bin offset ω
(meaning a flight time of t is recorded as t+ ω), the value of

an individual histogram bin is given by:

is = ω + t(i− 1) ie = ω + ti

φraw
i =

∑

r∈R







p(r) if is ≤
2||isect(r,a, d)||2

c
< ie

0 otherwise
(3)

Where p(r) is the intensity of light returned by ray r, as given

in Equation (2), c is the speed of light, and isect(·) ∈ R
3 is

the intersection point of r with ax+d = 0. Because the sensor

that we model (TMF8820) filters out ambient light on-sensor,

we assume no ambient light in our imaging model.

D. Laser Impulse

The sensor which we model records the intensity of its laser

impulse over time by piping the laser pulse directly to a SPAD

[1], and reports the result as a ªreference histogramº. The

captured transient histogram is effectively temporally blurred

by a kernel matching the reference histogram. To replicate

this effect, we cross-correlate the reference histogram with the

generated histogram as a step in our forward process, as shown

in Figure 2. In the case of the TMF8820 sensor that we utilize,

the temporal scale (bin size) is not the same in the reference

histogram δ as in the transient histogram φ, so we temporally

scale δ by a factor sδ before applying the cross-correlation.

The histogram after correlation is given by

φcorr = φraw ⋆ rescale(δ, sδ) (4)

Where ⋆ denotes the cross-correlation operation, and the

rescale function scales the function δ temporally by sδ .
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E. Inter-histogram Interference

The sensor that we model suffers from inter-histogram

interference, meaning light detected in one histogram is also

detected in other histograms, scaled by a factor. We assume

that one histogram interferes with all other histograms with

an equal magnitude ψ, meaning that a bin value of x in

one histogram will manifest as ψx in all other histograms.

Formally, for a histogram φ ∈ Φ, where φi is the ith bin of φ,

φi = φcorr
i + ψ

∑

ϕ̃corr∈Φcorr

φ̃corr
i (5)

V. DIFFERENTIABLE RENDERING PIPELINE

Our differentiable rendering pipeline recovers plane param-

eters by minimizing the loss between an observed histogram

and the output of a render function. The render function

renders a histogram image Φr as a function of four sets of

variables: the scene geometry G, reflectance model parameters

F , the sensor’s forward imaging model parameters C, and the

sensor’s reported laser impulse δ:

Φr = R(G,F,C, δ) (6)

The render function assumes that the sensor is placed at the

origin and the optical axis is aligned with the positive z axis.

The planar geometry G is given by the angle of incidence θ of

the optical axis to the plane, the intersection point of the plane

with the z axis Z0, and the azimuth angle ϕ, which denotes

rotation about the optical axis.

The lighting parameters F are comprised of the Phong

reflection model parameters (ks, ke, α). The camera param-

eters C are comprised of those described in Section IV

(n, t, g, ψ, sδ, σ), along with 36 scalar parameters which define

the height, width, and center of each of the sensor’s 9 FoV

regions. These FoV parameters are derived from the TMF8820

specification sheet [1], and are not differentiable in our imple-

mentation. Also included in C is an integer which denotes the

number of random ray samples used to render the transient

histogram. We keep this fixed at 2304 per FoV region. The

impulse response function δ is reported by the sensor along

with every image.

To compare the rendered histogram Φr to the observed

histogram Φo, the following loss function L is used:

L(Φr,Φo) =
∑

(ϕr,ϕo)∈Φr,Φo

∣

∣

∣

∣

∣

∣

∣

∣

φr

max(φo)
−

φo

max(φo)

∣

∣

∣

∣

∣

∣

∣

∣

2

(7)

Dividing by the magnitude of the observed histogram ensures

that high magnitude histograms do not dominate the loss.

Unlike previous work [22], we do not use a Fourier transform-

based loss function. In our tests, the L2-norm function above

performed slightly better. We believe this is because we utilize

a good initial estimate from the histogram peak based approach

described in Section VI. A Fourier-based loss excels when the

rendered and observed histograms are very different, but may

not provide as strong of a signal when they are similar. We

adapt Mu et al.’s Python implementation [25] of the algorithm

given by Urea et al. [26] to uniformly sample rays from the

rectangular FoV of the TMF8820.

The process of assigning a value to a histogram bin is

inherently non-differentiable, as there is an instantaneous

change in the output histogram as the input crosses a bin

boundary. Following previous work [22], we make the render

function differentiable via a soft binning process, in which a

Gaussian kernel is generated centered at each input datapoint,

and these Gaussians sampled at the bin centers and summed

across the datapoint dimension to generate an approximation

of the histogram. In our implementation, each Gaussian is

also weighted according to its intensity, which is given by

Equation (2). The same soft binning process is used to

temporally scale the reference histogram δ.

To tune the parameters of our forward imaging model,

we utilize a large dataset D of (Φo, δ) pairs, each with

an associated ground truth geometry G. We minimize the

reconstruction loss, as given in Equation (7) over the entire

dataset to find the ideal camera parameters C∗:

C∗ = argmin
C

∑

(Φo,G,δ)∈D

L(R(G,F,C, δ),Φo) (8)

Where the reflectance model parameters F are free variables.

This optimization only needs to be performed once, as C∗

remains fixed for a given sensor.

To recover the geometric parameters G∗ of a planar surface

from a single image Φo with reference histogram δ, we use

the optimized forward imaging parameters C∗, while allowing

the scene geometry G and reflectance model parameters F to

change:

G∗, F ∗ = argmin
G,F

L(R(G,F,C∗, δ),Φo) (9)

Performing this optimization also recovers the reflectance

model parameters F ∗ of the surface. We evaluate the con-

sistency of the surface albedo recovered by this approach in

section Section VII-D. Recovery of other reflectance parame-

ters is left for future work as it is outside of the scope of this

paper, and evaluation of these parameters is difficult.

Optimization is performed via stochastic gradient descent

using the Adam optimizer [27]. The render function R is

implemented in PyTorch with gradients generated through

automatic differentiation. To initialize G in Equation (9), we

use the output of the histogram peak based approach described

in Section VI. We observe that regardless of what reasonable

starting estimate is used, the optimization tends to converge

to the same solution for planar geometry.

VI. HISTOGRAM PEAK BASED APPROACH

We provide an empirically calibrated approach which is able

to approximate the performance of differentiable rendering on

the plane recovery task. This method operates by estimating

the distance to the plane in each field of view, projecting

outwards by the distance, and fitting a plane to the projected

points. To tune the method, we optimize a linear mapping

from histogram bin to distance (given by parameters m and

b below). We also optimize the angle at which points are

projected outwards; a different angle is used depending on

whether the histogram corresponds to a field of view region
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on the edge or corner of the overall 3 × 3 region field-of-

view (se or sc respectively). The algorithm for this approach

is shown in Algorithm 1.

Algorithm 1 Empirically calibrated algorithm for recovering

planar geometry from a set of transient histograms using

histogram peaks

function RECOVERPLANE(Φ, m, b, se, sc)

pts← [ ]
for φ in Φ do

i← the temporal coordinate of the peak of φ
dist← i ∗m+ b
u← unit vector pointing to center of FoV of φ
if φ images an edge FoV region then

Scale angle of u from optical axis by se
else if φ images a corner FoV region then

Scale angle of u from optical axis by sc
end if

pt← u ∗ dist
Append pt to pts

end for

Fit a plane to pts via SVD [28]

return the parameters a, d of the fit plane

end function

To find the location of the peak in a histogram φ, we fit a

piecewise cubic curve to the 128-bin histogram, and sample

that curve at 10× density around the highest individual bin.

The temporal position of the highest point on the interpolated

curve is the location of the peak. This process captures

variations smaller than the ∼ 1.2cm equivalent bins of the

histogram by using the relative intensity between adjacent

bins. We find empirically that this approach outperforms

picking the highest bin without interpolation.

To determine the optimal parameters m, b, se, and sc to

the RecoverPlane function, we find the parameters which

minimize the error in the reconstructed plane over some

calibration dataset D which contains images Φ along with

ground truth planar geometry a, d:

m∗, b∗, s∗e, s
∗

c = argmin
m,b,se,sc

∑

Φ,a,d∈D

ϵp(f(Φ,m, b, se, sc),a, d)

(10)

where the ϵp is the point error between two planes, as

defined in Equation (11), and f is the RecoverPlane function

given in Algorithm 1. We perform this optimization using the

Nelder-Mead method [29] with finite difference estimation of

derivatives, via the SciPy Python library. As this optimization

is performed only once, speed is not crucial.

VII. EXPERIMENTAL RESULTS

A. Sensor Configuration

We run the TMF8820 in ªshort range, high accuracyº mode,

in which it reports 128 bins with an individual bin size

equivalent to ∼ 1.2cm of distance. We run the sensor in the

default configuration of 4 million iterations (light pulses) per

measurement, and use the default field-of-view configuration,

which gives an FoV of 33◦ × 34◦, divided into 3× 3 regions,

with a transient histogram reported for each region.

Fig. 3: Materials on which we evaluate planar recovery. (a)

aluminum foil; (b) red painted drywall; (c) wooden table; (d)

whiteboard; (e) white paper; (f) black fabric; (g) checkerboard;

(h) patterned rug.

B. Metrics

We use three metrics to measure the accuracy of plane

recovery. Assume that we are comparing two planes given

by a1x + d1 = 0 and a2x + d2 = 0, where d1 > 0, d2 > 0,

then the angular error ϵa = arccos(a1 · a2). Linear error is

given by ϵl = |d1 − d2|. These metrics are intuitive, but the

trade-off between the two is not clear. To capture error with

a single metric, we define point error ϵp. Given a random ray

originating at the sensor and within the sensor’s FoV, point

error captures the expected difference between the intersection

of that ray with the predicted plane and with the ground truth

plane. Formally:

ϵp =

∑

r∈R ||isect(a1, d1, r)− isect(a2, d2, r)||2

|R|
(11)

where isect(a, d, r) returns the 3D point of intersection

between plane ax + d = 0 and ray r, and R is a randomly

sampled set of rays originating at the sensor and within the

sensor’s FoV. In practice, we set R to be an 8×8 grid of rays

which uniformly cover the sensor’s FoV for repeatability.

C. Planar Recovery

We evaluate five different approaches for planar recovery:

1) Differentiable rendering, the optimization problem in

Equation (9) is solved.

2) Peak finding - calibrated, the histogram peak based

approach given by Algorithm 1 is performed with opti-

mized parameters given by Equation (10).

3) Proprietary distances - calibrated, the same as 2), but

utilizing distance estimates generated onboard the sensor

rather than histogram peak locations.

4) Peak finding - naive, the histogram peak based approach

is used, but without optimized parameters.

5) Proprietary distances - naive, the same as 4), but utilizing

distance estimates generated onboard the sensor rather

than histogram peaks.

To generate ground truth data, we mount a TMF8820 sensor

to a custom 3D printed end effector for a Universal Robots

UR5 robot arm. We manually calibrate the position of the

sensor relative to the end effector, and use the robot’s forward

kinematics (which are quoted as precise to ± 0.1mm) to gather

ground truth sensor poses. To determine the position of the

plane relative to the robot, the end effector is touched to the
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Fig. 4: Higher angle-of-incidence leads to higher error

in reconstruction. Measurements of materials (c)-(h) cover

distance range 0-30cm. Whiskers extend to 5th and 95th

percentile.
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Fig. 5: Distance to the planar surface has little effect on

reconstruction error. Measurements of materials (c)-(h) cover

AoI range 0-30◦. Whiskers extend to 5th and 95th percentile.

Ticks on x axis denote center of 54mm bins.

plane at a number of points, and a ground truth plane is fit

to these points. The robot is used to automatically move the

sensor, allowing us to generate a large dataset of planar images

(3,800 images total) from a variety of distances (Z0), angles-

of-incidence (θ), and azimuth angles (ϕ). All measurements

were captured in an artificially lit room.

To ensure the validity of our results when comparing

differentiable rendering to other approaches, we use the worst-

performing naive proprietary distances approach as a starting

estimate, and perform 100 iterations of gradient descent. One

iteration takes about 0.05 seconds on a mid-range laptop (i7-

10705H, NVIDIA GTX 1650Ti). In real-world operation, a

better starting estimate could be used and fewer iterations

performed. The peak-based approaches operate at 95Hz on

the same hardware, exceeding the 30Hz at which the sensor

reports data.

A comparison between the five approaches is given in Ta-

ble I. Methods which utilize transient histograms consistently

outperform those which rely on proprietary distance estimates.

We see that the differentiable rendering approach, which

utilizes the entirety of the information in all nine histograms,

outperforms peak finding approaches, in which each histogram

is reduced to a single value. Our peak finding approach comes

close to the performance of differentiable rendering across the

board, even outperforming it in some cases, offering speed at

the expense of generality. We believe the large gap between

the ªpeak findingº and ªproprietary distancesº approaches can

partially be explained by a difference in interpolation method;

the interpolation method used onboard the sensor may be

less accurate than the one used in our peak finding method.

However, in our testing we found that even when using no in-

terpolation at all, our peak finding approach outperformed the

proprietary distances approaches, necessitating an additional

explanation.

We suspect that the proprietary algorithm onboard the

sensor is not overly naive, but instead is designed to be

more general purpose than our approach. Plane fitting is a

special case; an algorithm which performs well for a variety

of potential use cases may not be optimal for plane fitting.

The peak finding method that we use was chosen because

it is effective at recovering planar surfaces. By accessing the

transient histograms directly, we were afforded the ability to

make this choice. Results of planar recovery over a wider range

of sensor poses are shown in Table II. The effect of angle-of-

incidence (AoI) and distance on reconstruction error is shown

in Figure 4 and Figure 5.

We evaluate our method on a range of surfaces and report

the results in Table III. The parameters of the ªcalibratedº

methods and imaging model parameters of the differentiable

rendering methods were trained on measurements of the red

painted drywall. We see that our methods are generally robust

to this change from training to testing surface, particularly

when that surface has a uniform texture and albedo. Our

methods are slightly less robust to textured surfaces such as

wood and a patterned rug. We see diminished performance

with the slightly glossy whiteboard, and the checkerboard

surface, which has spatially varying albedo. Performance is

significantly diminished on the specular aluminum foil.

We observe that the proprietary distance based approach

tends to overfit when calibrated to a dataset. There is evidence

of this overfitting in the longer range test in Table II; the cali-

brated histogram approach improves over the naive approach,

while the calibrated proprietary distance approach performs

worse than the naive. This is because the parameters of

the ªcalibratedº approaches were calibrated to recover planar

geometry on images of a different surface over a different

range of distances and angles of incidence. While the his-

togram based approaches, including differentiable rendering,

are robust to this change in surface, the approaches which

utilize proprietary distances are not.

D. Albedo Recovery

We evaluate the performance of our differentiable renderer

for recovering surface albedo, as given in Equation (9) by

recovering the albedo from images of three planar surfaces

which have a uniform texture and albedo. We only evaluate the

consistency of the recovered albedo, not the accuracy. Evalu-

ating the accuracy would require an accurate characterization
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Angular Error (◦) Linear Error (mm) Point Error (mm)
Method Mean Median 95% Mean Median 95% Mean Median 95%

Differentiable Rendering* 3.40 1.97 12.90 2.46 1.90 6.51 3.79 3.17 8.46

Peak Finding - Calibrated² 3.57 2.22 13.44 2.67 2.11 7.13 3.94 3.52 7.92

Peak Finding - Naive 5.68 3.87 18.42 6.15 5.28 13.56 7.70 6.96 14.28

Proprietary Distances - Calibrated² 7.34 4.71 25.97 49.20 60.31 68.41 52.44 62.96 69.60
Proprietary Distances - Naive 8.87 4.71 30.06 60.31 71.96 78.14 65.45 76.26 83.15

TABLE I: Methods which utilize the histogram outperform those which use proprietary distance estimates in all metrics.

Images in range 1-30cm to plane, 0-30◦AoI on surfaces (c) - (h). 400 measurements per surface. Measurements of surface (b)

from the same range were used optimize forward model of differentiable method (*) and calibrate ªcalibratedº methods (²).

95% refers to the 95th percentile of error. See Section VII-C for a description of methods.

Point Error (mm)
Method Mean Median 95%

Differentiable Rendering* 6.26 3.52 22.31

Peak Finding - Calibrated² 6.80 3.78 23.58
Peak Finding - Naive 15.84 11.45 44.56
Proprietary Distances - Naive 42.23 22.15 130.46

Proprietary Distances - Calibrated² 74.45 75.45 143.51

TABLE II: Methods which utilize the histogram outperform

those which use proprietary distance estimates in larger

range of plane parameters. Measurements cover range 1-

70cm, 0-45◦AoI of surface (b). Measurements of surface (e)

from range 0-30cm, 0-30◦ AoI were used optimize forward

model of renderer (*) and to calibrate ªcalibratedº methods

(²).

Mean Point Error (mm)

Material
Diff.

Render
Peak
Find

Propr.
Dist.

(b) Red drywall* 2.05 3.09 4.68
(e) White paper 2.51 3.45 63.0
(f) Black fabric 2.51 3.35 72.5
(h) Patterned rug 2.69 3.62 62.7
(c) Wood 4.19 4.03 60.7
(d) Whiteboard 5.12 5.82 54.9
(g) Checkerboard 6.94 4.12 61.1
(a) Aluminum foil 12.7 15.0 25.3

TABLE III: Our methods are generally robust to surface

properties, aside from highly specular aluminum foil.

Images in range 1-30cm, 0-30◦ AoI. *measurements of red

drywall are used to optimize forward model of differentiable

method and to calibrate peak finding and proprietary distance

approaches.
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Fig. 6: Our method recovers consistent surface albedo

under various distances and angles-of-incidence. Recovered

albedo is in the wavelength of the sensor light source (940nm

IR), and may vary significantly from the albedo as it appears

to the human eye under visible light. Each surface is observed

from 300 poses in range 7-40cm, 0-30◦ AoI.

of the wavelength of the sensor light source, and surfaces with

a known albedo in that wavelength, which is outside the scope

of this work. We find that this method recovers a consistent

albedo per-surface relatively invariant to distance in the range

7-40cm and angle-of-incidence in the range 0-30◦, allowing

discrimination between surfaces, as shown in Figure 6.

VIII. EXAMPLE APPLICATION

We build an application to showcase our methods, in which

a robot arm is holding a cup of liquid. The robot’s goal is

to safely place the cup on a tabletop below, which is at an

unknown distance and may have regions which are not level. In

our application, we attach a TMF8820 transient sensor directly

to the gripper of the robot arm. Due to its small size, the

sensor can be placed centimeters away from the jaws of the

gripper, where it senses the surface below directly, making it

invulnerable to occlusions.

Using our approach for recovering planar geometry, the

robot is able to sense the distance to and slope of the surface

below the cup being held in the end effector, as shown in

Figure 7. The robot uses this information to know when it

is close enough to the surface to place the cup down, and to

ensure that the surface is level enough to safely release the

cup.

IX. LIMITATIONS

While the differentiable rendering method given in this

work can in principle recover any unknown parameters to the

render function, we only evaluate recovery of scene geometry

and albedo. A next step is to investigate recovery of the

reflectance model parameters of a surface. While our method

in principle enables such recovery, evaluation is difficult.

Another next step is recovering other types of geometry.

Our approach can in principle easily be adapted to other

parameterized surfaces, e.g., a sphere or cube. Extending to

arbitrary geometry would require a more general differentiable

representation, e.g. a neural representation akin to NeRF [30].

As both of these tasks introduce extra degrees of freedom into

the optimization process, they may require a more accurate

and/or sophisticated model of the transient histogram imaging

process to sufficiently constrain optimization.

One challenge for future work is the low bandwidth avail-

able on commodity sensors. In our test setup, histograms are

read from the sensor at 4.5 frames per second (where one

ªframeº consists of nine histograms) despite the sensor gener-

ating proximity estimates at 150Hz. This is not a limitation of
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TMF8820 Sensor

Robotiq Gripper

Arduino

Distance: 19.7cm

AoI: 0.1°

Distance: 15.2cm

AoI: 9.8°

Sensor

Fig. 7: We mount a proximity sensor on a robot gripper (top).

The sensor detects when the surface below the gripper is level

and safe to place a cup full of liquid (bottom left) or is not

level and therefore unsafe (bottom right).

the sensor technology, but of the I2C interface over which it

transmits data. We hope that commodity SPAD sensors will in

the future come packaged with high bandwidth interfaces to

enable granular and high-speed sensing. Algorithms will also

need to be optimized to perform inference quickly enough to

keep pace with higher bandwidth sensors.

Lastly, we provide only a basic demonstration of utilizing

transient histograms in a robotics setting. It is yet to be

shown that utilizing these histograms leads to improvement

in performance of downstream robotics tasks. An important

next step is to build a complete robotics system which utilizes

transient histogram data, and evaluate the system performance

compared to alternative sensing modalities. We are hopeful

that future robotics systems will harness the power of transient

histograms to be highly aware of their environment on a low

size, weight, and power budget.
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