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A B S T R A C T   

Protein–DNA interactions play an important role in various biological processes such as gene expression, 
replication, and transcription. Understanding the important features that dictate the binding affinity of protein- 
DNA complexes and predicting their affinities is important for elucidating their recognition mechanisms. In this 
work, we have collected the experimental binding free energy (ΔG) for a set of 391 Protein-DNA complexes and 
derived several structure-based features such as interaction energy, contact potentials, volume and surface area 
of binding site residues, base step parameters of the DNA and contacts between different types of atoms. Our 
analysis on relationship between binding affinity and structural features revealed that the important factors 
mainly depend on the number of DNA strands as well as functional and structural classes of proteins. Specifically, 
binding site properties such as number of atom contacts between the DNA and protein, volume of protein binding 
sites and interaction-based features such as interaction energies and contact potentials are important to un
derstand the binding affinity. Further, we developed multiple regression equations for predicting the binding 
affinity of protein-DNA complexes belonging to different structural and functional classes. Our method showed 
an average correlation and mean absolute error of 0.78 and 0.98 kcal/mol, respectively, between the experi
mental and predicted binding affinities on a jack-knife test. We have developed a webserver, PDA-PreD (Protein- 
DNA Binding affinity predictor), for predicting the affinity of protein-DNA complexes and it is freely available at 
https://web.iitm.ac.in/bioinfo2/pdapred/   

1. Introduction 

Protein-DNA interactions are essential components for all biological 
systems. These interactions control/regulate replication, repair, 
methylation, transcription and maintain the genome stability [1]. 
Numerous studies have been carried out to understand the structur
e–function relationship of protein-DNA complexes such as identification 
of DNA binding proteins, predicting the binding site residues, binding 
affinity of protein-DNA complexes and recognition mechanism of 
protein-nucleic acid complexes [2–7]. 

The function of a protein-DNA complex is dictated by its binding 
affinity [8], which is quantitatively measured using dissociation con
stant (Kd) and binding free energy (ΔG). Understanding the affinity of 
protein-DNA interactions is important to study the effects on gene ex
pressions, delineate the recognition mechanism based on interactions 

between protein and DNA and so on [9,10]. It has a broad spectrum of 
applications such as designing complexes with the desired affinities, 
developing prediction methods for the target sites, and quantitative 
simulation of gene regulation networks. 

Experimentally, binding affinities of protein-nucleic acid complexes 
are studied with electrophoretic mobility shift assay, filter binding 
assay, fluorescence spectroscopy, isothermal titration calorimetry, and 
surface plasmon resonance. These experimental data are compiled in 
ProNAB database, which contains more than 20,000 entries on binding 
affinities of protein-nucleic acid complexes and their mutants [11]. 

Computationally, Protein-DNA binding affinities are studied through 
molecular dynamics simulations, statistical methods and machine 
learning techniques [12]. Barissi et al. [13] developed a physics-based 
machine learning method, DNAffinity, for predicting the binding affin
ity of transcription factors using the features derived from molecular 
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dynamics stimulations. Rastogi et al. [10] proposed a method to quan
tify the sequence-affinity relationship by analyzing data from DNA 
sequencing experiments to comprehensively probe protein-DNA in
teractions. Yang et al. [14] developed a structure-based machine 
learning method, PredDBA, for predicting the binding affinity of 
protein-DNA complexes using a limited set of non-redundant complexes. 
Most of these methods are focused on a specific protein-DNA complex or 
a small set of data. In addition, the performance of available methods is 
not uniform in different structural and functional classes of protein-DNA 
complexes. On the other hand, the availability of protein-DNA binding 
affinity data in ProNAB database aid to develop reliable methods for 
binding affinity prediction. Understanding the binding affinity is also 
crucial for structure modeling of protein-DNA complexes [15]. 

In this work, we constructed a non-redundant dataset for binding 
affinities of protein-DNA complexes with known three-dimensional 
structures. We classified the complexes based on their structural and 
functional classes, and derived features at three levels such as protein, 
DNA and protein-DNA interactions. These features are related with 
binding affinity using machine learning techniques. Our method showed 
a correlation and mean absolute error of 0.78 and 0.98 kcal/mol, in jack- 
knife test, respectively. The salient features of important structural pa
rameters and performance of the method based on structural and 
functional classifications are discussed. 

2. Materials and methods 

2.1. Dataset 

We obtained the binding affinity of protein-DNA complexes from 
ProNAB database using the following criteria: (i) experimentally known 
binding affinity (ΔG), (ii) known 3D structure and (iii) non-redundant 
complex structures. ProNAB is a well-curated database with the high
est number of protein-DNA binding affinity data. In some complexes, 
multiple binding affinity values were reported for the same protein-DNA 
complex, determined from different experimental methods or conditions 
such as pH, temperature, or buffer. In such cases, the affinity determined 
at physiological conditions (pH: 7; T: 298 K) was selected. The average 
ΔG was considered for the complexes where multiple data were reported 
in the literature. Using the above criteria, we obtained the binding af
finity of 391 complexes. These complexes were grouped into different 
classes based on their structure (all-α: 113; all-β: 45; αβ: 181 and others: 
36), function (Regulatory: 187 and others: 152) and percentage of 
binding site residues. The structural and functional classification were 
obtained from NDB [16]. 

2.2. Development of features 

We derived a set of 117 features from protein-DNA complex struc
tures. Features were grouped as (i) protein-based, (ii) DNA-based and 
(iii) interactions between protein and DNA. 

2.3. Protein-based features  

(i) Accessible surface area of polar and non-polar atoms in the 
interface of the protein using NACCESS [17].  

(ii) Residue depth of binding site residues using the python package, 
Bio.PDB.  

(iii) Volume and surface area at the binding site of the protein using 3 
V server [18].  

(iv) Percentage of helix, sheet and coil at the binding interface of the 
protein.  

(v) Total Accessible surface area of residues in the interface of the 
apo-protein and in the complex using NACCESS  

(vi) Number of polar, non-polar and charged residues in the binding 
interface  

(vii) Number of C, N, O, S atoms in the interface. 

2.4. DNA-based features  

(i) Number of P, O, N, C atoms in the interface.  
(ii) Accessible surface area of nucleotides in the interface of apo-DNA 

and in the complex using NACCESS  
(iii) Base step parameters obtained using the webserver w3DNA [19], 

which includes shift, slide, rise, tilt, roll and twist of the DNA. 

2.5. Features based on protein-DNA interactions  

(i) Interaction energy between protein and DNA, which includes van 
der Waals and electrostatic energies.  

(ii) Interaction energy due to main chain-main chain (mc-mc), side 
chain-side chain (sc-sc), main chain- side chain (mc-sc) and side 
chain - main chain (sc-mc) of protein and DNA.  

(iii) Number and percentage of atom contacts between protein and 
DNA (OC, NO, ON, NP, CP, CC, NC, OP, OO, CN, NN, SN, SC, SO 
and SP). 

(iv) Residue based contact potentials of protein-DNA complexes, ob
tained with a cut off distance of 3.5 Å and 6 Å.  

(v) Atom based contact potentials with a cut off 3.5 Å.  
(vi) Accessible surface area of interface residues in a protein, DNA 

and overall.  
(vii) Accessible surface area of polar and non-polar residues in the 

interface of protein-DNA complexes, and ASA difference of 
interface residues between uncomplex and complex forms.  

(viii) Energetic parameters of protein-DNA complexes obtained using 
FOLDX [20]. 

2.5.1. Interaction energy 
The interaction energy of protein-DNA complexes was calculated 

using the formula [21] 
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The total interaction energy is calculated as the sum of van der Waals 
and electrostatic interaction energies. We also calculated the interaction 
energy contributed by the main chain and side chain atoms such as 
interaction energy due to main chain-main chain, main chain-side chain, 
side chain-main chain and side chain-side chain atoms of protein and 
DNA respectively. 

2.5.2. Development of contact potentials 
We constructed a non-redundant dataset of 989 protein-DNA com

plexes with a sequence identity of ≤ 25% for developing atom–atom and 
amino acid residue-nucleotide contact potentials. 

2.5.3. Atom propensity 
We computed the preference of the interacting atoms at the interface 

of a protein-DNA complex as described in Shanmugam et al. [22]. It is 
given by 

Propensity(i, j) =
Nij/NPD

(ni/np*nj/nd)
(2)  

where, Nij is the number of contacts of type ‘i’ in protein and ‘j’ in DNA. 
ni and nj are total number of atoms of type i and j in protein and DNA, 
respectively. NPD, np and nd are the number of interacting atoms in the 
protein-DNA interface, number of atoms in proteins and number of 
atoms in DNA, respectively. 
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2.5.4. Residue propensity and contact potentials 
We have computed the propensity of amino acid-nucleotide contacts 

between protein and DNA using the equation [23]: 

Propensity(i, j) =
Nij

/ ∑
Nij

Tj

/∑
jTj

(3)  

where Nij is the total number of contacts between base i and amino-acid 
residue j, and Tj is the total number of residue j in the whole data set. We 
have computed the propensities for the distance cut-off of 3.5 and 6 Å, 
which are widely used in the literature. 

The propensity has been converted into potentials using the equation 
[23]: 

Potential (i, j) = –RT ln [propensity (i, j) ] (4) 

where R is the gas constant and T is the temperature. 

2.6. Development of multiple regression models 

We have developed multiple regression equations to relate the 
binding affinity with different features developed from protein-DNA 
complexes. It is defined as, 

yi = β0 + β1Xi1 + β2Xi2 + ⋯ + βpXip + ε (5)  

where, i is the number of observations, yi is the dependent variable 
(binding affinity), Xi are the structure-based parameters, β0, β1 … βp are 
regression coefficients and ε is the error term of the model. 

2.7. Procedure for feature selection 

We have carried out an exhaustive systematic search for all possible 
combinations of four features and selected the best combination based 
on correlation. Further, additional features were added until there was 
no increase in correlation (r) and the number of features reaches the 
square root of the number of data points. The selected features were used 
for the development of the final model. We have utilized the python 
machine learning package scikit-learn for constructing linear regression 
models [24]. A similar procedure was used to develop models for all the 
classes. 

2.8. Assessment of prediction performance 

The performance of the method was assessed using Pearson (r) and 
Spearman correlation coefficients, which explain the relationship be
tween the experimental and predicted binding affinities, and mean ab
solute error (MAE) to examine the absolute difference between 
predicted and experimental affinity values using the SciPy package of 
python [25]. The model was further validated using a jack-knife test, 
where regression equations were developed using (n − 1) data points 
and used the same to predict the ΔG of the left-out complex, recursively. 

3. Results and discussion 

3.1. Analysis of binding affinity of protein-DNA complexes 

We have analyzed the binding affinity of 391 protein-DNA com
plexes and the distribution of ΔG values is shown in Fig. 1. We observed 
that ΔG ranges from −20 kcal/mol to −4 kcal/mol and 70% of the 
complexes have the ΔG of −11 to −7 kcal/mol. The complexes 1P47 
(Zif268-DNA complex) and 4DTM (RB69 DNA Polymerase-DNA com
plex) have the highest and lowest affinities of −20.0 kcal/mol and −3.9 
kcal/mol, respectively. 

Further analysis revealed that 67% of residues in Zif268 are inter
acting with DNA in 1P47 whereas only 20% are at the interface of 
4DTM. In addition, 1P47 has twice the number of charged residues at the 
interface as well as more interface area compared to 4DTM. Fig. 2 shows 
the protein atoms, which are in contact with the DNA in both high 
(1P47) and low affinity (4DTM) complexes. Interestingly, 1p47 has 
more polar atoms and spanned with larger interface area compared to 

Fig. 1. Distribution of experimental binding affinity (ΔG) in a set of 391 
protein-DNA complexes. 

Fig. 2. Examples for high and low affinity complexes, showing the interactions between protein and DNA: (a) high affinity complex (1P47) with larger interface area 
and more charged contacts (blue) and (b) low affinity complex (4DTM) with more non-polar contacts (green) and comparatively less dispersed area of interactions. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4DTM, which has more non-polar residues and less interface area. 
We explored the binding affinities of protein-DNA complexes based 

on structural and functional classes and the results are presented in 
Supplementary Fig. S1. The analysis revealed that the range of ΔG for 
all-α, all-β and mixed class is −13.1 to −5.9 kcal/mol, −14.4 to −5.8 
kcal/mol and −20.0 to −3.9 kcal/mol, respectively. Based on functional 
classification, the range is −20.0 to −4.7 kcal/mol for regulatory and 
−17.4 to −3.9 kcal/mol for other complexes. 

3.2. Atomic contact potentials 

We have computed the propensity of atomic contacts at the interface 
of protein-DNA complexes (Eqn. (2)).These propensity values were 
converted to contact potentials (Eqn. (4)) and the results are presented 
in Supplementary Table S1. We observed that N-O atom pairs are the 
most preferred ones with the lowest energy of −0.97 kcal/mol, which 
are involved in electrostatic interactions. Further, contacts between C 
and O atoms between protein and DNA, occur more frequently at the 
interface of the protein-DNA complexes and are energetically favorable 
with a contact potential of −0.28 kcal/mol. Interestingly, similar results 
are also reported for protein-carbohydrate complexes, with preferred C- 
O contacts between proteins and carbohydrates [22]. 

3.3. Amino acid-nucleotide contact potentials 

We have computed the preference of amino acid-nucleotide contacts 
between protein and DNA and the results obtained with a distance cutoff 

of 3.5 Å are presented in Supplementary Table S2. We observed that all 
the four bases (A, T, G, C) prefer to interact with the positive charged 
amino acids Arg (20–25%) and Lys (14–16%), along with higher pref
erence for Arg compared to Lys, which is similar to the observations 
reported in [23]. Further, Cytosine and Adenine tend to prefer most of 
the polar and charged amino acids such as Arg, Lys, Tyr, Ser, Thr and 
Asn at the interface. In addition, Thymine occurred most frequently at 
the protein-DNA interface, which agrees well with the previous result 
reported by Meysman et al. [26]. In addition, Cys, Asp, Met are less 
favored at the interfaces of protein-DNA complexes. 

We calculated amino acid-base propensities from the number of 
contacts, and further obtained the contact potentials, and the results are 
presented in the Table 1. Overall, Thymine-Trp interaction is energeti
cally favorable at the interface with −2.25 kcal/mol, showing the 
importance of π-π interactions [27]. Further, Trp-Thymine has the 
strongest interaction among other aromatic amino acids Phe and Tyr. 
Frequently occurring amino acids Arg and Lys have the interaction en
ergy of −0.93 and −0.91 kcal/mol, respectively with Thymine. 

3.4. Relationship between structure-based features and the binding 
affinity 

We have related the parameters derived from structures of proteins, 
DNA and protein-DNA complexes (Materials and methods) with binding 
affinities to explore the relationship between them. Interestingly, 
although the direct correlation between each property and binding af
finity is poor, we observed an increase in specific properties with 
different ranges of binding affinities. 

The features related to binding interface of protein-DNA complexes 
such as contact potentials and total number of polar residues directly 
relate with protein-DNA binding affinity. Fig. 3 shows the data obtained 
with specific parameters such as (i) contact potentials at 3.5 Å (Fig. 3a) 
and (ii) number of polar residues in the interface of protein-DNA com
plexes (Fig. 3b). We observed that the average contact potentials (3.5 Å) 
of the complexes decreases from −31.95 to −8.22 kcal/mol with the 
decrease in the affinity range of the complex from −20 to −16 kcal/mol 
and −8 to −4 kcal/mol (Fig. 3a). For the complexes with the binding 
affinity of −20 to −16 kcal/mol and −8 to −4 kcal/mol, the average 
number of polar residues are 82 and 43 (Fig. 3b), respectively. Inspec
tion of results revealed that the average number of polar residues and 
contact potential decreases approximately two and four folds with the 
decrease in affinity in the range of −20 to −16 kcal/mol to −8 to −4 
kcal/mol. 

3.5. Prediction of binding affinity 

3.5.1. Single property correlation 
We related the binding affinity of 391 protein-DNA complexes with 

each feature derived from protein-DNA complexes and obtained a 

Table 1 
Amino acid-nucleotide contact potential for protein-DNA complexes.  

DNA bases      
Amino acids  G C A T  

Ala  −0.65  −0.46  −0.73  −1.00  
Arg  −0.81  −0.63  −0.85  −0.93  
Asn  −0.98  −0.83  −1.12  −1.25  
Asp  −0.90  −0.92  −0.93  −0.87  
Cys  −1.89  −1.59  −1.66  −1.66  
Gln  −0.89  −0.93  −1.15  −1.23  
Glu  −0.62  −0.67  −0.76  −0.84  
Gly  −0.91  −0.74  −0.79  −1.01  
His  −1.44  −1.19  −1.38  −1.65  
Ile  −0.70  −0.72  −0.89  −0.90  
Leu  −0.39  −0.31  −0.42  −0.83  
Lys  −0.73  −0.61  −0.80  −0.91  
Met  −1.31  −1.11  −1.56  −1.62  
Phe  −0.97  −0.85  −1.12  −1.34  
Pro  −0.99  −0.77  −1.14  −1.26  
Ser  −0.81  −0.66  −0.85  −0.99  
Thr  −0.92  −0.69  −0.96  −1.07  
Trp  −1.47  −1.49  −1.93  −2.25  
Tyr  −1.03  −0.89  −1.27  −1.40  
Val  −0.74  −0.52  −0.84  −0.94  

Fig. 3. Variation of structural features of protein-DNA complexes at various ranges of binding free energies as (a) contact potentials at 3.5 Å and (b) number of polar 
residues in the interface of protein-DNA complexes. 
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maximum correlation (r) of 0.21. Earlier studies showed that the clas
sification of protein–protein/protein-nucleic acid complexes based on 
structure and function improved the correlation for understanding the 
relationship between sequence/structural features with binding affinity 
[14,28–30]. Hence, we classified the dataset based on functional and 

structural classes of proteins as well as number of binding site residues 
with the condition that sufficient number of data are present in each 
class. Table 2 shows the correlation between structural features and 
binding affinity of protein-DNA complexes belonging to of different 
classes. 

N: number of complexes; αβ includes α + β and α/β classes of 
proteins. 

The classification of protein-DNA complexes based on structure, 
function and percentage of binding site residues improved the correla
tion in the range of 0.35–0.75. In single-stranded DNA, we obtained a 
maximum correlation of 0.75 between energy due to side chain 
hydrogen bonds and binding affinity (Fig. 4). Interestingly, previous 
study showed that hydrogen bonds at the interface are the major con
tributors to protein–ssDNA binding affinity [31]. In addition, electro
static interactions, which are favored by the highly negatively charged 
surface of DNA with positive charged amino acid residues also showed a 
correlation of 0.61 in the αβ-regulatory with high percentage of binding 
site residues. In all-β-regulatory complexes contact potentials showed 
the highest correlation of 0.58. 

3.5.2. Multiple regression technique for predicting the binding affinity 
We have utilized multiple regression technique to combine the fea

tures for predicting the binding affinity and the results are presented in 
Table 3. The selected features and regression equations obtained for 
each class are presented in Supplementary Table S3 and Supple
mentary Table S4, respectively. We observed that the correlation lies in 
the range of 0.77 to 0.98 with MAE in the range of 0.16 to 1.27 kcal/mol 
in all the sub classes in the training set. Further, on evaluating the model 

Table 2 
Best single property correlation for different classes of protein-DNA complexes.  

DNA strand Structural 
class 

Functional 
class 

% Binding site 
residues 

Feature N Maximum 
correlation (r) 

Single stranded DNA 
(ssDNA)    

Sidechain Hydrogen bond energy 16  0.75 

Double stranded DNA 
(dsDNA) 

all-α Regulatory High Tilt of each strand of DNA 48  0.44 
all-α Regulatory Low Percentage of NN contacts between the protein and DNA 36  0.45 
all-α Not- 

regulatory  
Percentage of beta sheet in the binding site 29  0.51 

all-β Regulatory  Contact potential calculated with binding site cut off 
3.5 Å 

24  0.58 

all-β Not- 
regulatory  

Number of Interface Residues Clashing 21  0.54 

αβ Regulatory High Electrostatic interaction 44  0.61 
αβ Regulatory Low van der Waals clashes among the protein residues at the 

interface of the complex 
35  0.43 

αβ Not- 
regulatory 

High Contact potential calculated with binding site cutoff 6 Å 49  0.41 

αβ Not- 
regulatory 

Low Percentage of atom contacts between N and C atoms of 
protein and DNA 

53  0.35 

Others   van der Waals clashes among the DNA residues at the 
interface of the complex 

36  0.41  

Fig. 4. Relationship between side chain hydrogen bond energy and experi
mental binding affinity of protein-single stranded DNA complexes. 

Table 3 
Prediction of experimental ΔG using multiple linear regression technique.  

Classes N Features Self-consistency Jack-knife test 
r MAE p-value spearman r MAE p-value spearman 

ssDNA 16 4  0.98  0.16 9.01E-11  0.94  0.96  0.24 6.99E-09  0.93 
dsDNA           
all-α-regulatory-high 48 7  0.81  1.02 4.85E-12  0.75  0.72  1.22 6.81E-09  0.65 
all-α-regulatory-low 36 6  0.84  0.74 1.27E-10  0.79  0.75  0.94 1.77E-07  0.68 
all-α-not regulatory 29 5  0.81  0.84 8.70E-08  0.77  0.68  1.11 0.000047  0.68 
all-β-regulatory 24 5  0.93  0.64 3.66E-11  0.93  0.81  1.04 0.000002  0.86 
all-β-not regulatory 21 5  0.96  0.43 1.27E-11  0.89  0.92  0.61 5.41E-09  0.84 
αβ-regulatory-high 44 7  0.89  0.79 4.69E-16  0.76  0.80  1.01 7.14E-11  0.67 
αβ-regulatory-low 35 6  0.86  0.72 2.62E-11  0.83  0.79  0.89 2.36E-08  0.76 
αβ-not-regulatory-high 49 7  0.77  1.27 1.54E-10  0.70  0.64  1.53 8.27E-07  0.63 
αβ-not regulatory-low 53 7  0.81  1.1 1.85E-13  0.75  0.74  1.32 2.44E-10  0.69 
Others 36 6  0.82  0.67 7.66E-10  0.77  0.75  0.83 1.84E-07  0.67  
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with jack-knife test, we obtained a correlation in the range of 0.64 to 
0.96 with MAE of 0.24 to 1.53 kcal/mol. Overall, our method could 
relate the binding affinity of 391 complexes with a correlation of 0.86 
and MAE of 0.76 kcal/mol on training, and a correlation of 0.78 and 
MAE of 0.98 kcal/mol, in jack-knife test. The relationship between 

experimental and predicted binding affinities are shown in Fig. 5, and 
for all the individual classes of protein-DNA complexes are provided in 
Supplementary Fig. S2. Further, we have examined the performance 
using 10-fold cross validation and the results are presented in Supple
mentary Table S5. Our method showed an average correlation and MAE 
of 0.75 and 1.02 kcal/mol, respectively. 

3.6. Analysis of features important for binding affinity of protein-DNA 
complexes 

The features selected in each class of protein-DNA complexes to 
predict the binding affinity are presented in Supplementary Table S3. 
Further, we grouped these features based on interaction energy, struc
tural features, percentage of secondary structures, accessible surface 
area and base step parameters, and the results are shown in Table 4 
under different categories such as protein-based, DNA-based and inter
action-based. We observed that interaction-based features are important 
in most of the models (except all-α-regulatory-high and αβ-regulatory- 
low). Single-stranded DNA class mainly depends on interaction-based 
features whereas DNA-based features are dominant in αβ-regulatory- 
low class. 

We observed that base step parameters and accessible surface area 
are important to predict the binding affinity in most of the classes of 
protein-DNA complexes. In addition, atomic contacts and contact po
tentials are identified in mixed class proteins (αβ). Interestingly, non- 
regulatory proteins belonging to mixed class is dominated with inter
action energies. This analysis reveals the importance of specific features 
common to several classes of protein-DNA complexes. Detailed analysis 
of each class is provided in Supplementary information. 

3.7. Comparison of our method with PreDBA 

Yang et al. [14] developed a machine-based learning model, PreDBA, 
to predict the protein-DNA binding affinity, which was trained on 100 
non-redundant complexes. To compare our predictions with PreDBA, we 
tested the model developed in Yang et al. [14] with our dataset. We 
excluded the redundant protein-DNA complexes that are used in their 
training dataset and obtained a test dataset of 225 complexes. PreDBA 
provides the binding affinity for each chain of the protein against each 
strand of DNA. Hence, protein-DNA complexes with more than one 
protein or DNA chain, we computed the affinity for all the possible 
combinations of DNA and protein pairs and considered the closest pre
diction to the experimental binding affinity to estimate the correlation/ 
MAE. Fig. 6 shows the relationship between experimental and predicted 
binding affinities obtained with PreDBA (Fig. 6a) and in the present 
work (Fig. 6b). 

We observed that our method predicted with an average correlation 
of 0.76 and MAE of 0.98 kcal/mol, while average correlation of PreDBA 
was 0.32 with MAE of 1.86 kcal/mol. The improved performance in our 
method is mainly due to the classification of complexes and the avail
ability of experimental affinity for a large number of protein-DNA 
complexes in ProNAB database [11]. Supplementary Table S6 shows 
the results for each class of protein-DNA complexes based on structure 
and function. 

3.8. Prediction on the web 

We have developed a web server, PDA-PreD, for predicting the 
binding affinity of protein–DNA complexes. It takes the protein–DNA 
complex structure in PDB format or the PDB ID as input. The output 
includes the predicted value of binding affinity ΔG and the dissociation 
constant (Kd) computed using the equation, ΔG = -RT ln(Kd). The web 
server is freely accessible at https://web.iitm.ac.in/bioinfo2/pdapred/. 

Fig. 5. A scatter plot showing the relationship between experimental and 
predicted binding affinities on jack-knife test. 

Table 4 
Comparison of features used in each classification model.  

Single Stranded- 
DNA 

all-α-regulatory 
-high 

all- 
α-regulatory- 
low 

all-α-not- 
regulatory 

Interaction-based 
features 
Ionization Energy 
Electrostatic energy 
Number of 
interface atoms 
van der Waals 
energy 

Protein-based 
features 
Volume 
ASA 
% secondary 
structure 
Helix dipole 
DNA-based 
features 
Base step 
parameters 

Protein-based 
features 
Volume 
DNA-based 
features 
Base step 
parameters 
Interaction-based 
features 
Torsional clash 
Atomic contacts 

Interaction- 
based features 
Torsional clash 
Protein-based 
features 
% secondary 
structure 
DNA-based 
features 
Base step 
parameters  

all-β-regulatory all-β-not 
regulatory 

αβ -regulatory- 
high 

αβ -regulatory- 
low 

Interaction-based 
features 
Atomic contacts 
ASA 
Contact potential  

Interaction-based 
features 
ASA 
Protein-based 
features 
% secondary 
structure  

Interaction-based 
features 
ASA 
Electrostatic 
energy 
Atomic contacts 
Protein-based 
features 
Residue depth 

DNA-based 
features 
Base step 
parameters  

αβ-not regulatory- 
high 

αβ-not 
regulatory-low 

others 

Interaction-based 
features 
Contact Potential 
ASA 
DNA-based 
features 
Base step 
parameters 
Protein-based 
features 
% secondary 
structure 

Interaction-based 
features 
Atomic contacts 
van der Waals 
energy 
Solvation energy 
Interaction 
energy 
Ionization 
Energy 
Hydrogen bond 

Interaction-based features 
Interaction Energy 
Solvation energy 
Atomic contacts 
DNA-based features 
ASA 

* The features present in 2 or more classes are shown in italics. 
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3.9. Case study with DNA Polymerase I -DNA complex 

We have explored the binding affinity of DNA Polymerase I-DNA 
complex (2HHU) using structural features identified in this work. It 
belongs to αβ non-regulatory class with binding site residues less than 
the average. It has the experimental binding affinity of −4.03 kcal/mol 
and our model predicted the affinity as −4.33 kcal/mol, which shows a 
good agreement. Fig. 7 shows the interactions between the sugar- 
phosphate backbone of the DNA and the protein. We analyzed the in
dividual features used in the model to predict the binding affinity of the 
complex. Our analysis showed that it has high percentage of CO atom 
contacts with preferred atomic contact potentials, backbone hydrogen 
bond energy of −10.6 kcal/mol and favorable van der Waals and total 
interaction energies of −24.5 kcal/mol and −162.3 kcal/mol, respec
tively. The combination of these parameters could correctly predict the 
binding affinity of the complex with a deviation of 0.3 kcal/mol. 

4. Conclusions 

We have systematically analyzed the relationship between structural 
features of protein, DNA as well as interaction energy, and binding af
finity of protein-DNA complexes. Our analysis showed that interaction 
energy, contact potential, number of interface atoms, ASA of protein and 
DNA, surface area and volume of the protein, and DNA base step pa
rameters are important to understand the binding affinity. Further, 
classification of complexes based on structure, function and binding site 
residues are important to account the binding affinity. We have devel
oped multiple regression-based methods for predicting the binding af
finities of the protein-DNA complexes and our method showed an 
average correlation of 0.78 and MAE of 0.98 in a jack-knife test, which 

are better than other existing methods in the literature. We have 
developed a web server for predicting the binding affinity and it will be 
useful for large scale analysis and developing strategies for therapeutic 
targets. 

CRediT authorship contribution statement 

K. Harini: Methodology, Software, Writing – original draft. Daisuke 
Kihara: Methodology. M. Michael Gromiha: Conceptualization, 
Methodology, Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

We acknowledge the Indian Institute of Technology Madras and 
Purdue University for computational facilities. We thank all the mem
bers from Protein Bioinformatics Lab for providing valuable suggestions 
and Rahul Nikam for helping with the web server. Ms. Divya Sharma is 
acknowledged for critical reading of the manuscript. The work is 
partially supported by the Science and Engineering Research Board 
(SERB), Ministry of Science and Technology, Government of India to 

Fig. 6. Prediction of protein-DNA binding affinity in a set of 225 non-redundant complexes (a) PreDBA and b) present work.  

Fig. 7. a) Structure of DNA Polymerase I-DNA complex (2HHU), b) Interaction between the sugar-phosphate backbone of the DNA (in orange) and amino acid 
residues (in yellow) in the protein. The backbone phosphate is highlighted in magenta, and the hydrogen bond interactions are shown in red dotted lines. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

K. Harini et al.                                                                                                                                                                                                                                  



Methods 213 (2023) 10–17

17

MMG (No. CRG/2020/000314) and Overseas Visiting Doctoral Fellow
ship program (OVDF 2022) to HK. DK acknowledges support from the 
National Institutes of Health (R01GM123055, R01GM133840, 
3R01GM133840-02S1) and the National Science Foundation 
(DMS2151678, DBI2003635, CMMI1825941, DBI2146026, 
IIS2211598, and MCB1925643) of USA. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ymeth.2023.03.002. 

References 

[1] Y. Wu, J. Lu, T. Kang, Human single-stranded DNA binding proteins: guardians of 
genome stability, Acta Biochim. Biophy. Sin. 48 (7) (2016) 671–677. 

[2] M.M. Gromiha, R. Nagarajan, Computational approaches for predicting the binding 
sites and understanding the recognition mechanism of protein-DNA complexes, 
Adv. Protein Chem. Struct. Biol. 91 (2013) 65–99. 

[3] R. Nagarajan, S. Ahmad, M.M. Gromiha, Novel approach for selecting the best 
predictor for identifying the binding sites in DNA binding proteins, Nucleic Acids 
Res. 41 (16) (2013) 7606–7614. 

[4] J. Si, R. Zhao, R. Wu, An overview of the prediction of protein DNA-binding sites, 
Int. J. Mol. Sci. 16 (3) (2015) 5194–5215. 

[5] T. Aderinwale, C.W. Christoffer, D. Sarkar, E. Alnabati, D. Kihara, Computational 
structure modeling for diverse categories of macromolecular interactions, Curr. 
Opin. Struct. Biol. 64 (2020) 1–8. 

[6] M.M. Gromiha, Protein Interactions: computational methods, analysis and 
applications, World Scientific, Singapore, 2020. 

[7] Y. Zhang, W. Bao, Y. Cao, H. Cong, B. Chen, Y. Chen, A survey on protein-DNA- 
binding sites in computational biology, Brief. Funct. Genomics 21 (5) (2022) 
357–375. 

[8] J. Crocker, E.P. Noon, D.L. Stern, The Soft Touch: Low-Affinity Transcription 
Factor Binding Sites in Development and Evolution, Curr. Top. Dev. Biol. 117 
(2016) 455–469. 

[9] J.E. Ladbury, Counting the calories to stay in the groove, Structure 3 (7) (1995) 
635–639. 

[10] C. Rastogi, H.T. Rube, J.F. Kribelbauer, J. Crocker, R.E. Loker, G.D. Martini, 
O. Laptenko, W.A. Freed-Pastor, C. Prives, D.L. Stern, R.S. Mann, H.J. Bussemaker, 
Accurate and sensitive quantification of protein-DNA binding affinity, Proc. Natl. 
Acad. Sci. U.S.A. 115 (16) (2018). 

[11] K. Harini, A. Srivastava, A. Kulandaisamy, M.M. Gromiha, ProNAB: database for 
binding affinities of protein-nucleic acid complexes and their mutants, Nucleic 
Acids Res. 50 (D1) (2022) D1528–D1534. 

[12] P. Pant, A. Pathak, B. Jayaram, Bicyclo-DNA mimics with enhanced protein 
binding affinities: insights from molecular dynamics simulations, J. Biomol. Struct. 
Dyn. (2022) 1–8. 
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