Methods 213 (2023) 10-17

Contents lists available at ScienceDirect

METHODS

Methods

FI. SEVIER

journal homepage: www.elsevier.com/locate/ymeth

Check for

PDA-Pred: Predicting the binding affinity of protein-DNA complexes using |%&s
machine learning techniques and structural features

K. Harini?, Daisuke Kihara >, M. Michael Gromiha >%"

@ Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
Y Department of Biological Sciences, Purdue University, West Lafayette, IN, United States

¢ Department of Computer Science, Purdue University, West Lafayette, IN, United States

4 International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan

ARTICLE INFO ABSTRACT

Keywords:

protein-DNA complex
Binding free energy
Contact potentials
Structure-based features

Protein-DNA interactions play an important role in various biological processes such as gene expression,
replication, and transcription. Understanding the important features that dictate the binding affinity of protein-
DNA complexes and predicting their affinities is important for elucidating their recognition mechanisms. In this
work, we have collected the experimental binding free energy (AG) for a set of 391 Protein-DNA complexes and
derived several structure-based features such as interaction energy, contact potentials, volume and surface area
of binding site residues, base step parameters of the DNA and contacts between different types of atoms. Our
analysis on relationship between binding affinity and structural features revealed that the important factors
mainly depend on the number of DNA strands as well as functional and structural classes of proteins. Specifically,
binding site properties such as number of atom contacts between the DNA and protein, volume of protein binding
sites and interaction-based features such as interaction energies and contact potentials are important to un-
derstand the binding affinity. Further, we developed multiple regression equations for predicting the binding
affinity of protein-DNA complexes belonging to different structural and functional classes. Our method showed
an average correlation and mean absolute error of 0.78 and 0.98 kcal/mol, respectively, between the experi-
mental and predicted binding affinities on a jack-knife test. We have developed a webserver, PDA-PreD (Protein-
DNA Binding affinity predictor), for predicting the affinity of protein-DNA complexes and it is freely available at
https://web.iitm.ac.in/bioinfo2/pdapred/

1. Introduction between protein and DNA and so on [9,10]. It has a broad spectrum of

applications such as designing complexes with the desired affinities,

Protein-DNA interactions are essential components for all biological
systems. These interactions control/regulate replication, repair,
methylation, transcription and maintain the genome stability [1].
Numerous studies have been carried out to understand the structur-
e—function relationship of protein-DNA complexes such as identification
of DNA binding proteins, predicting the binding site residues, binding
affinity of protein-DNA complexes and recognition mechanism of
protein-nucleic acid complexes [2-7].

The function of a protein-DNA complex is dictated by its binding
affinity [8], which is quantitatively measured using dissociation con-
stant (Kq) and binding free energy (AG). Understanding the affinity of
protein-DNA interactions is important to study the effects on gene ex-
pressions, delineate the recognition mechanism based on interactions
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developing prediction methods for the target sites, and quantitative
simulation of gene regulation networks.

Experimentally, binding affinities of protein-nucleic acid complexes
are studied with electrophoretic mobility shift assay, filter binding
assay, fluorescence spectroscopy, isothermal titration calorimetry, and
surface plasmon resonance. These experimental data are compiled in
ProNAB database, which contains more than 20,000 entries on binding
affinities of protein-nucleic acid complexes and their mutants [11].

Computationally, Protein-DNA binding affinities are studied through
molecular dynamics simulations, statistical methods and machine
learning techniques [12]. Barissi et al. [13] developed a physics-based
machine learning method, DNAffinity, for predicting the binding affin-
ity of transcription factors using the features derived from molecular
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dynamics stimulations. Rastogi et al. [10] proposed a method to quan-
tify the sequence-affinity relationship by analyzing data from DNA
sequencing experiments to comprehensively probe protein-DNA in-
teractions. Yang et al. [14] developed a structure-based machine
learning method, PredDBA, for predicting the binding affinity of
protein-DNA complexes using a limited set of non-redundant complexes.
Most of these methods are focused on a specific protein-DNA complex or
a small set of data. In addition, the performance of available methods is
not uniform in different structural and functional classes of protein-DNA
complexes. On the other hand, the availability of protein-DNA binding
affinity data in ProNAB database aid to develop reliable methods for
binding affinity prediction. Understanding the binding affinity is also
crucial for structure modeling of protein-DNA complexes [15].

In this work, we constructed a non-redundant dataset for binding
affinities of protein-DNA complexes with known three-dimensional
structures. We classified the complexes based on their structural and
functional classes, and derived features at three levels such as protein,
DNA and protein-DNA interactions. These features are related with
binding affinity using machine learning techniques. Our method showed
a correlation and mean absolute error of 0.78 and 0.98 kcal/mol, in jack-
knife test, respectively. The salient features of important structural pa-
rameters and performance of the method based on structural and
functional classifications are discussed.

2. Materials and methods
2.1. Dataset

We obtained the binding affinity of protein-DNA complexes from
ProNAB database using the following criteria: (i) experimentally known
binding affinity (AG), (ii) known 3D structure and (iii) non-redundant
complex structures. ProNAB is a well-curated database with the high-
est number of protein-DNA binding affinity data. In some complexes,
multiple binding affinity values were reported for the same protein-DNA
complex, determined from different experimental methods or conditions
such as pH, temperature, or buffer. In such cases, the affinity determined
at physiological conditions (pH: 7; T: 298 K) was selected. The average
AG was considered for the complexes where multiple data were reported
in the literature. Using the above criteria, we obtained the binding af-
finity of 391 complexes. These complexes were grouped into different
classes based on their structure (all-a: 113; all-p: 45; ap: 181 and others:
36), function (Regulatory: 187 and others: 152) and percentage of
binding site residues. The structural and functional classification were
obtained from NDB [16].

2.2. Development of features

We derived a set of 117 features from protein-DNA complex struc-
tures. Features were grouped as (i) protein-based, (ii) DNA-based and
(iii) interactions between protein and DNA.

2.3. Protein-based features

(i) Accessible surface area of polar and non-polar atoms in the
interface of the protein using NACCESS [17].
(ii) Residue depth of binding site residues using the python package,
Bio.PDB.
(iii) Volume and surface area at the binding site of the protein using 3
V server [18].
(iv) Percentage of helix, sheet and coil at the binding interface of the
protein.
(v) Total Accessible surface area of residues in the interface of the
apo-protein and in the complex using NACCESS
(vi) Number of polar, non-polar and charged residues in the binding
interface
(vii) Number of C, N, O, S atoms in the interface.
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2.4. DNA-based features

(i) Number of P, O, N, C atoms in the interface.
(ii) Accessible surface area of nucleotides in the interface of apo-DNA
and in the complex using NACCESS
(iii) Base step parameters obtained using the webserver w3DNA [19],
which includes shift, slide, rise, tilt, roll and twist of the DNA.

2.5. Features based on protein-DNA interactions

(i) Interaction energy between protein and DNA, which includes van
der Waals and electrostatic energies.

(ii) Interaction energy due to main chain-main chain (mc-mc), side
chain-side chain (sc-sc), main chain- side chain (mc-sc) and side
chain - main chain (sc-mc) of protein and DNA.

(iii) Number and percentage of atom contacts between protein and
DNA (OC, NO, ON, NP, CP, CC, NC, OP, OO, CN, NN, SN, SC, SO
and SP).

(iv) Residue based contact potentials of protein-DNA complexes, ob-
tained with a cut off distance of 3.5 A and 6 A.

(v) Atom based contact potentials with a cut off 3.5 A.

(vi) Accessible surface area of interface residues in a protein, DNA
and overall.

(vii) Accessible surface area of polar and non-polar residues in the
interface of protein-DNA complexes, and ASA difference of
interface residues between uncomplex and complex forms.

(viii) Energetic parameters of protein-DNA complexes obtained using
FOLDX [20].

2.5.1. Interaction energy
The interaction energy of protein-DNA complexes was calculated
using the formula [21]
+ 61:‘%‘]
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The total interaction energy is calculated as the sum of van der Waals
and electrostatic interaction energies. We also calculated the interaction
energy contributed by the main chain and side chain atoms such as
interaction energy due to main chain-main chain, main chain-side chain,
side chain-main chain and side chain-side chain atoms of protein and
DNA respectively.

@

2.5.2. Development of contact potentials

We constructed a non-redundant dataset of 989 protein-DNA com-
plexes with a sequence identity of < 25% for developing atom-atom and
amino acid residue-nucleotide contact potentials.

2.5.3. Atom propensity

We computed the preference of the interacting atoms at the interface
of a protein-DNA complex as described in Shanmugam et al. [22]. It is
given by

Nij/Nep

("i/”p*”//"d)

Propensity(i, j) = (2)

where, Nj; is the number of contacts of type ‘i’ in protein and ‘j’ in DNA.
n; and n; are total number of atoms of type i and j in protein and DNA,
respectively. Npp, n, and ng are the number of interacting atoms in the
protein-DNA interface, number of atoms in proteins and number of
atoms in DNA, respectively.
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Fig. 1. Distribution of experimental binding affinity (AG) in a set of 391
protein-DNA complexes.

2.5.4. Residue propensity and contact potentials
We have computed the propensity of amino acid-nucleotide contacts
between protein and DNA using the equation [23]:

Ni/ XNy

3
T/,

Propensity(i,j) =

where Nj; is the total number of contacts between base i and amino-acid
residue j, and Tj is the total number of residue j in the whole data set. We
have computed the propensities for the distance cut-off of 3.5 and 6 A,
which are widely used in the literature.

The propensity has been converted into potentials using the equation

[23]:
Potential (i,j) = —RT In [propensity (i,j)] “4)

where R is the gas constant and T is the temperature.

2.6. Development of multiple regression models

We have developed multiple regression equations to relate the
binding affinity with different features developed from protein-DNA
complexes. It is defined as,

()
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where, i is the number of observations, y; is the dependent variable
(binding affinity), X; are the structure-based parameters, po, p; ... p, are
regression coefficients and ¢ is the error term of the model.

2.7. Procedure for feature selection

We have carried out an exhaustive systematic search for all possible
combinations of four features and selected the best combination based
on correlation. Further, additional features were added until there was
no increase in correlation (r) and the number of features reaches the
square root of the number of data points. The selected features were used
for the development of the final model. We have utilized the python
machine learning package scikit-learn for constructing linear regression
models [24]. A similar procedure was used to develop models for all the
classes.

2.8. Assessment of prediction performance

The performance of the method was assessed using Pearson (r) and
Spearman correlation coefficients, which explain the relationship be-
tween the experimental and predicted binding affinities, and mean ab-
solute error (MAE) to examine the absolute difference between
predicted and experimental affinity values using the SciPy package of
python [25]. The model was further validated using a jack-knife test,
where regression equations were developed using (n — 1) data points
and used the same to predict the AG of the left-out complex, recursively.

3. Results and discussion
3.1. Analysis of binding affinity of protein-DNA complexes

We have analyzed the binding affinity of 391 protein-DNA com-
plexes and the distribution of AG values is shown in Fig. 1. We observed
that AG ranges from —20 kcal/mol to —4 kcal/mol and 70% of the
complexes have the AG of —11 to —7 kcal/mol. The complexes 1P47
(Zif268-DNA complex) and 4DTM (RB69 DNA Polymerase-DNA com-
plex) have the highest and lowest affinities of —20.0 kcal/mol and —3.9
kcal/mol, respectively.

Further analysis revealed that 67% of residues in Zif268 are inter-
acting with DNA in 1P47 whereas only 20% are at the interface of
4DTM. In addition, 1P47 has twice the number of charged residues at the
interface as well as more interface area compared to 4DTM. Fig. 2 shows
the protein atoms, which are in contact with the DNA in both high
(1P47) and low affinity (4DTM) complexes. Interestingly, 1p47 has
more polar atoms and spanned with larger interface area compared to

Fig. 2. Examples for high and low affinity complexes, showing the interactions between protein and DNA: (a) high affinity complex (1P47) with larger interface area
and more charged contacts (blue) and (b) low affinity complex (4DTM) with more non-polar contacts (green) and comparatively less dispersed area of interactions.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Amino acid-nucleotide contact potential for protein-DNA complexes.
DNA bases
Amino acids G C A T
Ala —0.65 —0.46 -0.73 —1.00
Arg —0.81 —0.63 —0.85 —0.93
Asn —0.98 -0.83 —-1.12 -1.25
Asp —-0.90 —0.92 —-0.93 —0.87
Cys -1.89 -1.59 —1.66 -1.66
Gln —0.89 —0.93 -1.15 -1.23
Glu —0.62 —0.67 —0.76 —0.84
Gly —-0.91 —-0.74 -0.79 -1.01
His —1.44 -1.19 -1.38 —1.65
Ile -0.70 —-0.72 —0.89 —0.90
Leu -0.39 —0.31 —0.42 —0.83
Lys -0.73 —0.61 —0.80 -0.91
Met -1.31 -1.11 —1.56 -1.62
Phe -0.97 —0.85 -1.12 —-1.34
Pro —0.99 -0.77 -1.14 —-1.26
Ser —0.81 —0.66 —0.85 -0.99
Thr —0.92 —-0.69 —-0.96 -1.07
Trp —-1.47 —-1.49 —-1.93 —-2.25
Tyr -1.03 —0.89 -1.27 —1.40
Val —-0.74 —0.52 —0.84 —0.94

4DTM, which has more non-polar residues and less interface area.

We explored the binding affinities of protein-DNA complexes based
on structural and functional classes and the results are presented in
Supplementary Fig. S1. The analysis revealed that the range of AG for
all-a, all-p and mixed class is —13.1 to —5.9 kcal/mol, —14.4 to —5.8
kcal/mol and —20.0 to —3.9 kcal/mol, respectively. Based on functional
classification, the range is —20.0 to —4.7 kcal/mol for regulatory and
—17.4 to —3.9 kcal/mol for other complexes.

3.2. Atomic contact potentials

We have computed the propensity of atomic contacts at the interface
of protein-DNA complexes (Eqn. (2)).These propensity values were
converted to contact potentials (Eqn. (4)) and the results are presented
in Supplementary Table S1. We observed that N-O atom pairs are the
most preferred ones with the lowest energy of —0.97 kcal/mol, which
are involved in electrostatic interactions. Further, contacts between C
and O atoms between protein and DNA, occur more frequently at the
interface of the protein-DNA complexes and are energetically favorable
with a contact potential of —0.28 kcal/mol. Interestingly, similar results
are also reported for protein-carbohydrate complexes, with preferred C-
O contacts between proteins and carbohydrates [22].

3.3. Amino acid-nucleotide contact potentials

We have computed the preference of amino acid-nucleotide contacts
between protein and DNA and the results obtained with a distance cutoff
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of 3.5 A are presented in Supplementary Table S2. We observed that all
the four bases (A, T, G, C) prefer to interact with the positive charged
amino acids Arg (20-25%) and Lys (14-16%), along with higher pref-
erence for Arg compared to Lys, which is similar to the observations
reported in [23]. Further, Cytosine and Adenine tend to prefer most of
the polar and charged amino acids such as Arg, Lys, Tyr, Ser, Thr and
Asn at the interface. In addition, Thymine occurred most frequently at
the protein-DNA interface, which agrees well with the previous result
reported by Meysman et al. [26]. In addition, Cys, Asp, Met are less
favored at the interfaces of protein-DNA complexes.

We calculated amino acid-base propensities from the number of
contacts, and further obtained the contact potentials, and the results are
presented in the Table 1. Overall, Thymine-Trp interaction is energeti-
cally favorable at the interface with —2.25 kcal/mol, showing the
importance of n-n interactions [27]. Further, Trp-Thymine has the
strongest interaction among other aromatic amino acids Phe and Tyr.
Frequently occurring amino acids Arg and Lys have the interaction en-
ergy of —0.93 and —0.91 kcal/mol, respectively with Thymine.

3.4. Relationship between structure-based features and the binding
affinity

We have related the parameters derived from structures of proteins,
DNA and protein-DNA complexes (Materials and methods) with binding
affinities to explore the relationship between them. Interestingly,
although the direct correlation between each property and binding af-
finity is poor, we observed an increase in specific properties with
different ranges of binding affinities.

The features related to binding interface of protein-DNA complexes
such as contact potentials and total number of polar residues directly
relate with protein-DNA binding affinity. Fig. 3 shows the data obtained
with specific parameters such as (i) contact potentials at 3.5 A (Fig. 3a)
and (ii) number of polar residues in the interface of protein-DNA com-
plexes (Fig. 3b). We observed that the average contact potentials (3.5 /O\)
of the complexes decreases from —31.95 to —8.22 kcal/mol with the
decrease in the affinity range of the complex from —20 to —16 kcal/mol
and —8 to —4 kcal/mol (Fig. 3a). For the complexes with the binding
affinity of —20 to —16 kcal/mol and —8 to —4 kcal/mol, the average
number of polar residues are 82 and 43 (Fig. 3b), respectively. Inspec-
tion of results revealed that the average number of polar residues and
contact potential decreases approximately two and four folds with the
decrease in affinity in the range of —20 to —16 kcal/mol to —8 to —4
kcal/mol.

3.5. Prediction of binding affinity

3.5.1. Single property correlation
We related the binding affinity of 391 protein-DNA complexes with
each feature derived from protein-DNA complexes and obtained a

Experimental AG (kcal/mol)

Fig. 3. Variation of structural features of protein-DNA complexes at various ranges of binding free energies as (a) contact potentials at 3.5 A and (b) number of polar

residues in the interface of protein-DNA complexes.
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Table 2
Best single property correlation for different classes of protein-DNA complexes.
DNA strand Structural Functional % Binding site Feature N Maximum
class class residues correlation (r)
Single stranded DNA Sidechain Hydrogen bond energy 16 075
(ssDNA)
Double stranded DNA all-a Regulatory High Tilt of each strand of DNA 48  0.44
(dsDNA) all-a Regulatory Low Percentage of NN contacts between the protein and DNA 36 0.45
all-a Not- Percentage of beta sheet in the binding site 29 0.51
regulatory
all-p Regulatory Contact potential calculated with binding site cut off 24 0.58
354
all-p Not- Number of Interface Residues Clashing 21 0.54
regulatory
ap Regulatory High Electrostatic interaction 44 0.61
ap Regulatory Low van der Waals clashes among the protein residues at the 35 043
interface of the complex
ap Not- High Contact potential calculated with binding site cutoff 6 A 49 041
regulatory
ap Not- Low Percentage of atom contacts between N and C atoms of 53 0.35
regulatory protein and DNA
Others van der Waals clashes among the DNA residues at the 36  0.41

interface of the complex
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Fig. 4. Relationship between side chain hydrogen bond energy and experi-
mental binding affinity of protein-single stranded DNA complexes.

maximum correlation (r) of 0.21. Earlier studies showed that the clas-
sification of protein—protein/protein-nucleic acid complexes based on
structure and function improved the correlation for understanding the
relationship between sequence/structural features with binding affinity
[14,28-30]. Hence, we classified the dataset based on functional and

Table 3
Prediction of experimental AG using multiple linear regression technique.

structural classes of proteins as well as number of binding site residues
with the condition that sufficient number of data are present in each
class. Table 2 shows the correlation between structural features and
binding affinity of protein-DNA complexes belonging to of different
classes.

N: number of complexes; af includes a + p and a/p classes of
proteins.

The classification of protein-DNA complexes based on structure,
function and percentage of binding site residues improved the correla-
tion in the range of 0.35-0.75. In single-stranded DNA, we obtained a
maximum correlation of 0.75 between energy due to side chain
hydrogen bonds and binding affinity (Fig. 4). Interestingly, previous
study showed that hydrogen bonds at the interface are the major con-
tributors to protein—ssDNA binding affinity [31]. In addition, electro-
static interactions, which are favored by the highly negatively charged
surface of DNA with positive charged amino acid residues also showed a
correlation of 0.61 in the ap-regulatory with high percentage of binding
site residues. In all-p-regulatory complexes contact potentials showed
the highest correlation of 0.58.

3.5.2. Multiple regression technique for predicting the binding affinity

We have utilized multiple regression technique to combine the fea-
tures for predicting the binding affinity and the results are presented in
Table 3. The selected features and regression equations obtained for
each class are presented in Supplementary Table S3 and Supple-
mentary Table S4, respectively. We observed that the correlation lies in
the range of 0.77 to 0.98 with MAE in the range of 0.16 to 1.27 kcal/mol
in all the sub classes in the training set. Further, on evaluating the model

Classes N Features Self-consistency Jack-knife test
T MAE p-value spearman r MAE p-value spearman

ssDNA 16 4 0.98 0.16 9.01E-11 0.94 0.96 0.24 6.99E-09 0.93
dsDNA

all-a-regulatory-high 48 7 0.81 1.02 4.85E-12 0.75 0.72 1.22 6.81E-09 0.65
all-o-regulatory-low 36 6 0.84 0.74 1.27E-10 0.79 0.75 0.94 1.77E-07 0.68
all-a-not regulatory 29 5 0.81 0.84 8.70E-08 0.77 0.68 1.11 0.000047 0.68
all-p-regulatory 24 5 0.93 0.64 3.66E-11 0.93 0.81 1.04 0.000002 0.86
all-p-not regulatory 21 5 0.96 0.43 1.27E-11 0.89 0.92 0.61 5.41E-09 0.84
ap-regulatory-high 44 7 0.89 0.79 4.69E-16 0.76 0.80 1.01 7.14E-11 0.67
ap-regulatory-low 35 6 0.86 0.72 2.62E-11 0.83 0.79 0.89 2.36E-08 0.76
op-not-regulatory-high 49 7 0.77 1.27 1.54E-10 0.70 0.64 1.53 8.27E-07 0.63
ap-not regulatory-low 53 7 0.81 1.1 1.85E-13 0.75 0.74 1.32 2.44E-10 0.69
Others 36 6 0.82 0.67 7.66E-10 0.77 0.75 0.83 1.84E-07 0.67
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Fig. 5. A scatter plot showing the relationship between experimental and
predicted binding affinities on jack-knife test.

Table 4
Comparison of features used in each classification model.
Single Stranded- all-a-regulatory all- all-a-not-
DNA -high wa-regulatory- regulatory
low
Interaction-based Protein-based Protein-based Interaction-

features features features based features
Ionization Energy Volume Volume Torsional clash
Electrostatic energy ASA DNA-based Protein-based
Number of % secondary features features
interface atoms structure Base step % secondary
van der Waals Helix dipole parameters structure
energy DNA-based Interaction-based =~ DNA-based
features features features
Base step Torsional clash Base step
parameters Atomic contacts parameters
all-g-regulatory all-g-not aff -regulatory- of -regulatory-
regulatory high low
Interaction-based Interaction-based  Interaction-based =~ DNA-based
features features features features
Atomic contacts ASA ASA Base step
ASA Protein-based Electrostatic parameters
Contact potential features energy
% secondary Atomic contacts
structure Protein-based
features
Residue depth
af-not regulatory- op-not others

high
Interaction-based

regulatory-low
Interaction-based

Interaction-based features

features
Contact Potential
ASA
DNA-based
features

Base step
parameters
Protein-based
features

% secondary
structure

features

Atomic contacts
van der Waals
energy

Solvation energy
Interaction
energy
Ionization
Energy
Hydrogen bond

Interaction Energy

Solvation energy
Atomic contacts

DNA-based features

ASA

* The features present in 2 or more classes are shown in italics.

with jack-knife test, we obtained a correlation in the range of 0.64 to
0.96 with MAE of 0.24 to 1.53 kcal/mol. Overall, our method could
relate the binding affinity of 391 complexes with a correlation of 0.86
and MAE of 0.76 kcal/mol on training, and a correlation of 0.78 and
MAE of 0.98 kcal/mol, in jack-knife test. The relationship between
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experimental and predicted binding affinities are shown in Fig. 5, and
for all the individual classes of protein-DNA complexes are provided in
Supplementary Fig. S2. Further, we have examined the performance
using 10-fold cross validation and the results are presented in Supple-
mentary Table S5. Our method showed an average correlation and MAE
of 0.75 and 1.02 kcal/mol, respectively.

3.6. Analysis of features important for binding affinity of protein-DNA
complexes

The features selected in each class of protein-DNA complexes to
predict the binding affinity are presented in Supplementary Table S3.
Further, we grouped these features based on interaction energy, struc-
tural features, percentage of secondary structures, accessible surface
area and base step parameters, and the results are shown in Table 4
under different categories such as protein-based, DNA-based and inter-
action-based. We observed that interaction-based features are important
in most of the models (except all-a-regulatory-high and ap-regulatory-
low). Single-stranded DNA class mainly depends on interaction-based
features whereas DNA-based features are dominant in of-regulatory-
low class.

We observed that base step parameters and accessible surface area
are important to predict the binding affinity in most of the classes of
protein-DNA complexes. In addition, atomic contacts and contact po-
tentials are identified in mixed class proteins (af). Interestingly, non-
regulatory proteins belonging to mixed class is dominated with inter-
action energies. This analysis reveals the importance of specific features
common to several classes of protein-DNA complexes. Detailed analysis
of each class is provided in Supplementary information.

3.7. Comparison of our method with PreDBA

Yang et al. [14] developed a machine-based learning model, PreDBA,
to predict the protein-DNA binding affinity, which was trained on 100
non-redundant complexes. To compare our predictions with PreDBA, we
tested the model developed in Yang et al. [14] with our dataset. We
excluded the redundant protein-DNA complexes that are used in their
training dataset and obtained a test dataset of 225 complexes. PreDBA
provides the binding affinity for each chain of the protein against each
strand of DNA. Hence, protein-DNA complexes with more than one
protein or DNA chain, we computed the affinity for all the possible
combinations of DNA and protein pairs and considered the closest pre-
diction to the experimental binding affinity to estimate the correlation/
MAE. Fig. 6 shows the relationship between experimental and predicted
binding affinities obtained with PreDBA (Fig. 6a) and in the present
work (Fig. 6b).

We observed that our method predicted with an average correlation
of 0.76 and MAE of 0.98 kcal/mol, while average correlation of PreDBA
was 0.32 with MAE of 1.86 kcal/mol. The improved performance in our
method is mainly due to the classification of complexes and the avail-
ability of experimental affinity for a large number of protein-DNA
complexes in ProNAB database [11]. Supplementary Table S6 shows
the results for each class of protein-DNA complexes based on structure
and function.

3.8. Prediction on the web

We have developed a web server, PDA-PreD, for predicting the
binding affinity of protein-DNA complexes. It takes the protein-DNA
complex structure in PDB format or the PDB ID as input. The output
includes the predicted value of binding affinity AG and the dissociation
constant (Kq) computed using the equation, AG = -RT In(Ky). The web
server is freely accessible at https://web.iitm.ac.in/bioinfo2/pdapred/.
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Prediction of protein-DNA binding affinity in a set of 225 non-redundant complexes (a) PreDBA and b) present work.
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Fig. 7. a) Structure of DNA Polymerase I-DNA complex (2HHU), b) Interaction between the sugar-phosphate backbone of the DNA (in orange) and amino acid
residues (in yellow) in the protein. The backbone phosphate is highlighted in magenta, and the hydrogen bond interactions are shown in red dotted lines. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.9. Case study with DNA Polymerase I -DNA complex

We have explored the binding affinity of DNA Polymerase I-DNA
complex (2HHU) using structural features identified in this work. It
belongs to af non-regulatory class with binding site residues less than
the average. It has the experimental binding affinity of —4.03 kcal/mol
and our model predicted the affinity as —4.33 kcal/mol, which shows a
good agreement. Fig. 7 shows the interactions between the sugar-
phosphate backbone of the DNA and the protein. We analyzed the in-
dividual features used in the model to predict the binding affinity of the
complex. Our analysis showed that it has high percentage of CO atom
contacts with preferred atomic contact potentials, backbone hydrogen
bond energy of —10.6 kcal/mol and favorable van der Waals and total
interaction energies of —24.5 kcal/mol and —162.3 kcal/mol, respec-
tively. The combination of these parameters could correctly predict the
binding affinity of the complex with a deviation of 0.3 kcal/mol.

4. Conclusions

We have systematically analyzed the relationship between structural
features of protein, DNA as well as interaction energy, and binding af-
finity of protein-DNA complexes. Our analysis showed that interaction
energy, contact potential, number of interface atoms, ASA of protein and
DNA, surface area and volume of the protein, and DNA base step pa-
rameters are important to understand the binding affinity. Further,
classification of complexes based on structure, function and binding site
residues are important to account the binding affinity. We have devel-
oped multiple regression-based methods for predicting the binding af-
finities of the protein-DNA complexes and our method showed an
average correlation of 0.78 and MAE of 0.98 in a jack-knife test, which
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are better than other existing methods in the literature. We have
developed a web server for predicting the binding affinity and it will be
useful for large scale analysis and developing strategies for therapeutic
targets.
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