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SPECKLE MEMORY EFFECT IN THE FREQUENCY DOMAIN AND
STABILITY IN TIME-REVERSAL EXPERIMENTS*

JOSSELIN GARNIER' AND KNUT SOLNAF

Abstract. When waves propagate through a complex medium like the turbulent atmosphere
the wave field becomes incoherent and the wave intensity forms a complex speckle pattern. In this
paper we study a speckle memory effect in the frequency domain and some of its consequences. This
effect means that certain properties of the speckle pattern produced by wave transmission through a
randomly scattering medium is preserved when shifting the frequency of the illumination. The speckle
memory effect is characterized via a detailed novel analysis of the fourth-order moment of the random
paraxial Green’s function at four different frequencies. We arrive at a precise characterization of the
frequency memory effect and what governs the strength of the memory. As an application we quantify
the statistical stability of time-reversal wave refocusing through a randomly scattering medium in
the paraxial or beam regime. Time reversal refers to the situation when a transmitted wave field
is recorded on a time-reversal mirror then time reversed and sent back into the complex medium.
The re-emitted wave field then refocuses at the original source point. We compute the mean of the
refocused wave and identify a novel quantitative description of its variance in terms of the radius
of the time-reversal mirror, the size of its elements, the source bandwidth, and the statistics of the
random medium fluctuations.
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1. Introduction. For imaging or communication purposes it is important to
understand how waves propagate through a randomly scattering medium. The quan-
tities of interest can generally be expressed in terms of statistical averages. Usually the
first- and second-order moments of the Green’s function are sufficient to characterize
them. However in some circumstances fourth-order moments are needed, for instance,
for scintillation problems [10, 14] or the analysis of intensity correlation-based imag-
ing [2, 22]. For imaging with narrow or broad band signals it is also important to
characterize multifrequency moments [4]. We consider here the paraxial regime corre-
sponding to high-frequency and long-range propagation of a wave beam. The paraxial
regime is physically relevant and it models many situations, for instance, laser beam
propagation [1, 30] or underwater acoustics [31]. The equations that govern the evo-
lution of the fourth-order moments in the paraxial regime have been known for a long
time [32] and [20, sect. 20.18]. The solution of the fourth-order moment problem was
recently analyzed and discussed in [14, 15] when the four Green’s functions involved
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in the fourth-order moment are evaluated at the same frequency. In this paper, we
extend this result to the case when the four Green’s functions have different frequen-
cies. This new result makes it possible to analyze a number of configurations in wave
propagation and imaging. Here we consider two main motivating applications.

The first motivating application is time-harmonic wave focusing through a random
medium. Wavefront-shaping—based schemes [27, 29, 33, 34, 35] have attracted atten-
tion in recent years, particularly because of their potential applications for focusing
and imaging through scattering media. The primary goal is to focus monochromatic
light through a layer of strongly scattering material. This is a challenging problem
as multiple scattering of waves scrambles the transmitted light into random interfer-
ence intensity patterns called speckle patterns [19]. This is shown in Figure 1.1(a):
without control of the source the intensity of the transmitted field forms a complex
speckle pattern. However, by using a spatial light modulator (SLM) before the scat-
tering medium, it is possible to focus light as first demonstrated in [34]. Indeed, the
elements of the SLM can impose phase shifts, and an optimization scheme makes
it possible to choose the phase shifts so as to maximize the intensity transmitted
at one target point behind the scattering medium. This is shown in Figure 1.1(b).
The optimal phase shifts depend on the medium, and they are equal to the opposite
phases of the field emitted by a point source at the target point and recorded in the
plane of the SLM [25]. In other words, the wavefront-shaping optimization procedure
is equivalent to phase conjugation or time reversal. This is illustrated in Figure 1.2
which describes a time-reversal experiment. A time-reversal experiment consists of
two steps, and it is based on the use of a special device, a time-reversal mirror (TRM),
that is used as an array of receivers in the first step and as an array of sources in the
second step. The first step is described in Figure 1.2(a): a point source emits a wave
that propagates through a scattering medium and that is recorded by the TRM. The
second step is described in Figure 1.2(b): the recorded signals are time-reversed and
re-emitted into the same medium by the TRM, and the re-emitted waves then focus
at the original source point. At a single frequency this process corresponds to phase
conjugation or re-emission of the complex conjugate of the recorded wave field by the
TRM; with some abuse of notation we refer to this process as time-harmonic time
reversal. It has been shown that the speckle memory effect [7, 11] allows to focus on
a neighboring point close to the original target point [33, 34, 35], which opens the
way for the transmission of spatial patterns [16, 17, 18, 28]. Indeed, one the main
manifestations of the spatial memory effect is the following one: by applying an ap-
propriate and deterministic spatial phase modulation to the conjugated source field in
the second step of the time-reversal experiment (Figure 1.2(b)) one can achieve that
the focusing (red spot) in the bottom right plot is shifted. By properly composing
such modulated source fields one can transmit a pattern; see [16] for a detailed dis-
cussion. A main question we want to address here is whether such speckle memory
effects can be exploited also in the frequency domain. In fact, we show that it is pos-
sible to focus a time-harmonic signal with a different frequency than the one of the
field recorded by the TRM in Figure 1.2(a). One can even focus a broadband pulse
and this opens the way to the transmission of short pulses; see [25] for experimental
verification of the frequency memory effect. The process then corresponds to using
and processing the reference phase-conjugated field in Figure 1.2(b) in order to focus
coherently time-harmonic waves with slightly shifted frequencies. The reference field
or a “guide star” field may then be used over a frequency band to obtain focusing for
pulses. The theoretical description of such a frequency memory effect has so far been
an open question. In section 6 we give a quantitative description of the effect of a

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/27/23 to 169.234.35.13 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

82 JOSSELIN GARNIER AND KNUT S@OLNA

N
. s

Target plane

Scattering medium

Source
—
(b) Target point 5

SLM Scattering medium

FiG. 1.1. Focusing wave through a scattering medium. Without any control one gets a speckle
pattern in the target plane (a). With an SLM one can focus on a target point by imposing appropriate
phase shifts (b) (From [16]).
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Fic. 1.2. Time-reversal experiment through a scattering medium. In the first step of the exper-
tment (a) a time-harmonic point source emits a wave that propagates through the scattering medium
and is recorded by the TRM used as an array of receivers. In the second step of the experiment
(b) the TRM is used as an array of sources; it emits the complez-conjugated recorded field, and the
wave refocuses at the original source location (the cross in the right image stands for the original
source location; the focal spot is centered at the cross) (From [16]).

frequency shift on refocusing, which is directly related to the speckle memory effect
in the frequency domain. We show that the speckle pattern is only slightly changed
when shifting the frequency so that we can use the same source phase field over a
range of frequencies and still obtain focusing for all frequencies in the band. A main
result presented in section 6 is that the width  of the frequency band for which we
can use the same recorded and conjugated field at the TRM and still achieve focusing
is determined by the speckle coherence frequency gpec:

l
< .— _par
(1.1) Q < Qpec T’

where T = L/c, is the travel time over the distance L from the source to the TRM

for a background wave speed ¢, and £, is the paraxial distance introduced in (5.32)
below. The paraxial distance corresponds to the travel distance at which the paraxial
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description of the wave beam in the random medium breaks down and is inversely
proportional to a measure of the lateral scattering strength in the random medium.
It follows that for longer propagation distances and stronger medium fluctuations the
frequency band at which the frequency memory holds becomes narrower since the
speckle pattern then becomes more sensitive to a shift in the source frequency.

The second motivation for our multifrequency analysis is statistical stability in
time reversal. Time reversal for waves in random media has indeed been studied
theoretically, numerically, and experimentally (see the review [8]). As mentioned
above when a wave is emitted by a point source and recorded by a TRM, which then
re-emits the time-reversed recorded signals, then in general the wave refocuses on
the original source location; see Figure 1.2. It moreover turns out that refocusing
is enhanced when the medium is randomly scattering, and that the time-reversed
refocused wave is statistically stable, in the sense that its shape depends on the sta-
tistical properties of the random medium, but not on its particular realization. The
phenomenon of focusing enhancement has been analyzed quantitatively [3, 9, 24, 26].
Statistical stability of time-reversal refocusing for broadband pulses is usually qualita-
tively proved by invoking the fact that the time-reversed refocused wave is the super-
position of many independent frequency components, which gives the self-averaging
property in the time domain [3, 26]. However, so far, there has not been a fully
satisfactory analysis of the statistical stability phenomenon, because it involves the
evaluation of a fourth-order moment of the Green’s function of the random wave
equation. This problem has been addressed in [21] in a situation similar to the one
addressed in this paper, but using the circular complex Gaussian assumption for the
evaluation of the fourth-order moments that are needed for the analysis. Here we
will not make use of this assumption, rather we will prove that the fourth-order mo-
ments can be computed, and this allows us to give a detailed analysis of the statistical
stability of the time-reversed refocused wave. In section 7 we quantify time-reversal
refocusing and stability as functions of the size of the TRM, the size of its elements,
the source bandwidth, and the statistical properties of the random medium. The
main results can be summarized as follows: if the bandwidth B of the source is small
so that B < Qgpec and also if the scattering is strong enough so that the spreading of
the beam is large relative to its original width, then the signal-to-noise ratio (SNR)
of the refocused wave is roughly equal to the number of elements in the TRM:

2
(1.2) SNR ~ N for N := (TO) ,
Po
with r¢ being the size of the TRM and pg the size of the elements. If the bandwidth
B of the source is large so that B > ()s,ec and if scattering is strong, then

e (2) ().

This shows that the source bandwidth improves the statistical stability of the refo-
cused wave, provided it is larger than the speckle coherence frequency. This then
quantifies the usual assertion found in the literature that the profile of the time-
reversed field is self-averaging by independence of the frequency components of the
wave field and clarifies the hypotheses which ensure that such a result is valid. We
remark here also that in the strongly scattering situation and small mirror elements
it is a classic result that the time-reversal refocusing resolution R can be expressed as
the Rayleigh resolution formula R = AL/A.g evaluated at the central wavelength A
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and at the scattering-enhanced aperture A.g which scales with propagation distance
as L3/2 [16]. In the notation introduced here this means that

~ gpar
where we need £y, > L for the paraxial approximation to be valid. Note that this
resolution measure is independent of the actual TRM radius.

The paper is organized as follows. First in section 2 we outline the main setting
with scalar waves propagating in a random medium and summarize the main result
regarding the paraxial approximation that we use, the solution of the It6—Schrodinger
equation. In section 3 we describe the two main applications that we have introduced:
time-harmonic refocusing and broadband time reversal. In sections 4-5 we study
in detail the second- and fourth-order moments of the paraxial Green’s function at
different frequencies and how we get successively simpler expressions for the moments
by making further assumptions regarding the scaling regime. We quantify the focusing
properties of the two main applications in terms of resolution and stability in sections
6-7. In Appendix A we discuss in more detail the scaling regime that we use and
how it relates to the It6—Schrodinger equation that is fundamental to our asymptotic
moment analysis.

2. Paraxial waves in random media. We consider scalar waves and assume
the governing equation

2
(2.1) (02 + Ag)u— %afu =0,
o

for (z, ) € R x R?, the space coordinates. In (2.1) n(z, z) is the local index of refrac-
tion that we model as random. We remark that even though the scalar wave equation
is simple and linear, the relation between the statistics of the index of refraction and
the statistics of the wave field is highly nontrivial and nonlinear. Originally motivated
by elastic problems in geophysics, we assume that the privileged propagation axis is
the z-direction and will consider beam waves propagating into the z-direction, thus
corresponding to the horizontal direction in Figures 1.1 and 1.2. We model moreover
the complex medium as a random medium and do this by letting the local index of
refraction in (2.1) be parameterized by

(2.2) n*(z,z) =1+ v(z,x)

for v being the centered random medium fluctuations. We assume that v is a station-
ary zero-mean random field that is mixing in z and with integrable correlations.
It is now convenient to Fourier transform in time:

(2.3) W(w,z,x) = /Ru(t,z, ) exp (iwt)dt.

We then obtain the Helmholtz or reduced wave equation:
w2
(2.4) (0% 4+ Ag)i + c—2n2(z, x)i =0,
o
with k = w/c, being the free space wavenumber.
A particular solution of (2.4) in the case of a homogeneous medium n = 1 is a
plane wave propagating in the z direction:

N LW
U = exp (z—z).
Co
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We make the ansatz of a slowly varying envelope around a plane wave going into the
z-direction

(2.5) i(w, z, ) = exp (izj—oz)v(w, Z, ).

In the white-noise paraxial regime (which holds when the wavelength is much smaller
than the correlation length of the medium and the beam radius, which are themselves
much smaller than the propagation distance) we can then model v in terms of the
solution of the following It6—Schrédinger equation:

(2.6) 2ikdv + Agvdz + k*vodB(z, ) = 0.

In Appendix A we discuss in detail the scaling assumptions of the white-noise paraxial
regime leading to the model (2.6). We remark that the symbol o stands for the
Stratonovich stochastic integral, B(z, ¢) is a real-valued Brownian field over [0, 00) x
R? with covariance

(2.7) E[B(z,2)B(z,2")] = min{z, 2'}C(z — z'),

and C' is determined by the two-point statistics of the fluctuations of the random
medium as

(2.8) Clz) = /R E[(0, 0)(z, z)|dz,

with v being the random medium fluctuations in (2.2). Note that the width of C
is the correlation length of the medium fluctuations. The It6—Schrodinger equation
was analyzed for the first time in [5], and it was derived from first principles by a
multiscale analysis of the wave equation in a random medium in [13]. The model
(2.6) leads to closed equations for wave field moments of all orders. We discuss in the
appendix the first-order moment equation that is readily solvable. The second-order
one-frequency moment equations are also explicitly solvable, while the fourth-order
equations are not explicitly solvable in the white-noise paraxial regime, neither in
the one-frequency nor in the multifrequency cases. However, in a secondary scaling
regime that we denote the scintillation regime we will be able to solve both the second-
order and fourth-order multifrequency moments. We will push through this moment
analysis in section 5. Before this, in section 3, we discuss the detailed modeling of the
two applications which motivates the particular form of the second- and fourth-order
multifrequency moments that we consider. In section 4 we express these moments
in terms of the moments of the Green’s function associated with the It6—Schrodinger
equation (2.6).

3. Time-reversal experiment. We assume that a TRM is located in the plane
z = 0. The radius of the mirror is R,, and the radius of its elements is py.

3.1. Time-harmonic refocusing experiment. In the first step of the time-
harmonic time-reversal experiment, a point source localized at (y, L) emits a time-
harmonic signal at frequency @ (see Figure 3.1). The TRM is used as an array
of receivers and records the wave emitted by the point source. The size pg of the
elements of the TRM is taken into account in the form of a Gaussian smoothing
kernel with radius pg. We denote the time-harmonic Green’s function from (,,0) to
(y,L) by G(@, L, y, x,,) (which is equal to the Green’s function from (y, L) to (€, 0)
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1>§y Oy

z=0 2=L z=0 iy
TRM array TRM array

F1G. 3.1. Time-reversal experiment. Left: first step of the experiment (a point source transmits
from (y, L) and the TRM in the plane z = 0 is used as an array of receivers). Right: second step of
the experiment (the TRM is used as an array of sources).

by reciprocity). By last term in the next equation (3.1) we remove the expected phase
wL/c, from the time-harmonic field at frequency @ recorded at (,,,0) and get

(5 ’ |517/|2 , LW
9@, Ly, xm + )exp(— 202 )da: exp(—z;L).

3.1) Upec(Tm;y) =
(3.1) drec(Tm; y) 2108 Jaz
In the second step of the experiment, the TRM is used as an array of sources. It emits
the complex-conjugated (time-reversed) recorded field . at frequency w, which can
be different from @. From the field observed in the plane z = L at the point (x, L)
we again remove the expected phase wL/c, and get

‘mm|2

DYoo (- 121)

Uem (W, T; T4, ) €XP (— ;
(o]

(3:2) tuleiy) = |
R2
Here we have assumed that the TRM has a radius R,, and can be modeled by a
Gaussian spatial cut-off function. Moreover, we again take into account the size pg of
the elements of the TRM by considering that from any point (,,,0) the TRM can
transmit from an element with radius pg and with a Gaussian form, which generates
the following field at point (z, L):
|2

Q(w, Lz, z,, +z')exp ( - —)dm’.

3.3 Uem (W, T; T ) =
(33) (@, @ 2m) 7

2105 Jr2

The time-reversed field observed in the plane z = L can therefore be expressed as

e (2 ) 4w K ,(Z}—wL // lz'|>  |y'|?
(23 y) = exp | i exp | ——— —
o Y Cg P Co R2 xR2 P T'g 4,0(2)

!/ !/
(3.4) X g(<,u,L7 z,z’ + %)Q(Q,L, y,x’ — %)daz’dy’,
with
CZ(TQ . pz)
3.5 Ko=—2-2 0 5 =RZ +pp.
(3:5) 0= TbrwipZ2 0~ 'm0

From now on we will take Ko = 1 as this multiplicative factor does not play any role
in what follows.

The goal of the forthcoming analysis is to quantity the refocusing properties in
terms of resolution and stability and to make it precise for which frequency offset
w — w it is possible to observe refocusing.
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Remark. In this paper we model the global shape of the TRM and the local shape
of the elements of the TRM by soft Gaussian cut-off functions, instead of hard cut-off
functions such as 1y g, j(|Zm|) or 1jg . (|Z'|), because this makes it possible to get
simpler expressions. This does not affect qualitatively the results.

3.2. Broadband time-reversal experiment. In the first step of the broad-
band time-reversal experiment, a point source localized at (y, L) emits a short pulse
f(t) (see Figure 3.1). The pulse has central frequency wg and bandwidth B. The
TRM in the plane z = 0 is used as an array of receivers and records the wave emitted
by the point source around the expected arrival time L/c,:

1 R
rec (£, Tm; =75 N9 92 7L7 sy bm !
veelt i) Tz [ [, 966 vt )
|2'?
203

(3.6) X exp ( - zw(é + t))f(w)dw’dw.

In the second step of the experiment, the TRM is used as an array of sources. It emits
the time-reversed recorded field. We observe the field around the original source loca-
tion (y, L) and around the expected arrival time L/c, to study the wave refocusing:

]. ~ r 2 =
Utr(tam;y) :%//2 uem(wam;mm)exp(f |Rﬂ;| )urec(wvmm;y)
RJR m

(3.7) X exp ( - 2w<c£ + t))d:l:mdw7
o

with fiem (w, ; €,,) defined by (3.3) and dyec(w, m; y) being the Fourier transform
of tree(t, m; y) given by (3.6). We aim at characterizing the statistical stability of
the refocused wave, in terms of the number of elements of the TRM and in terms of
bandwidth of the pulse, as well as the refocusing resolution.

We consider the case when the bandwidth B of f is smaller than its central
frequency wy, for instance, when the source is a modulated Gaussian with central
frequency wg and bandwidth B:

(3.8) flw) = \/;? exp ( - %)

The time-reversed field observed in the plane z = L around the expected arrival time
L/¢, can be expressed as

4f 2P WP NFo
t,x;y) = K e (f - - t)
wltowin) =gk [ [ o0 (5 g ~ )76

(3.9) X Q(w,L, z,z' + %)Q(w,L, y, ' — %)dm’dy’dw,

with Ko = [c2(r3 — p?)]/[167w3p3rd]. Corresponding to the situation above we will
take Ky = 1 below.

The goal of the forthcoming analysis is to quantity the refocusing properties in
terms of resolution and stability and to clarify the role of the source bandwidth as
well as the parameters of the TRM.

4. The Green’s function in the white-noise paraxial regime. In the white-
noise paraxial regime the Green’s function G is of the form [15]

Q(W7L7 Z, y) = %eiiLé(wVL’ T, y)7
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where w/c, is the homogeneous wavenumber and the function G is the solution of the
It6-Schrédinger equation introduced in (2.6):

(A1) dG(w 2 e.y) = T2AG(w, 2@ y)dz + 5 G(w, 2. y) 0 dB(z, ),
w Co

with the initial condition in the plane z = 0: é(w, z2=0,z,y) =0(x —y).

In this context, the time-reversed field (3.4) observed at (z, L) when the original
source is at (y, L) in the wave refocusing experiment of section 3.1 is

X > |y']?
12 ey = [[ e (- )
’ R2 xR2 7"8 49(2)

li
x G(w, Lz, z" + )G( Ly, — %)dm’dy’.

The mean time-reversed field is

(4.3) Mi(z;y) = B (z; y)],

and it can be expressed as

lz']> |y']?
Ml(az;y):// exp(— — )
R2 xR2 T% 4P%

/
X E[G(M,L,w,w’—&— %)G(w Ly,xz — —)}dw’dy’.

The covariance function of the time-reversed field is
(4.4) Mo(z, T y) = El,(@; y) e (25 y)]

and it can be expressed as

:// exp(— 21 + |z ? |y1/|2+|y2/‘2>
R2xR2 7”8 4,0(2)

x]E[G( Lz, z; —&-*)@( Ly, xo) +y72)

X G‘(&,L,y,wl’ — 71)@( L&, xs' — —)]dml’dy 'dzs'dy,.
These expressions show that we need to study the second- and fourth-order moments
of the random paraxial Green’s functions at different frequencies.

5. The moments of the Green’s function. This section contains the detailed
analysis of the second- and fourth-order moments that are needed to study the time-
reversed field.

5.1. The second-order moment. Let us consider two frequencies w,®. We
consider the second-order moment:

z'>  |y']?
M]_(Z,CB,’!/):// exp(— - )
R2 xR2 T% 4/7(2)

/
(5.1) X E[G’(w,z,m,x’ + %)G(w z,y, @ — —)}dw’dy
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M satisfies the system:

(amaMi“%(1AméAQA@+1(m@cmy)@ﬂ+w%cm»Mh

0z 2 8c?

starting from

w o

ClztyP |z - yl2)

arg g /)

5.2. The fourth-order moment. Let us consider four frequencies wy,ws, @1,
wo. We consider the fourth-order moment

MI(Z = 0,$,y) = exp(

MZ(Z; T1,T2,Yq, y2)

|z [* + |22’ |y + o'
= exp(— 2 - 2 >
R2 XR2 X R? X R? o 4p

/ !/
X ]E[G(wl,z,ml, x + %)G(WQazymZa xo' + y%)
. I Yo'
(5.3) « G(d}l,z, i, &1 — 71)6'(@2,2, Yo, To' — %)}dwl/dylfdwgldyzl.
It satisfies
8M2 iCO 1 1 1 1
o (A, A, - —A, — —A )M
02 9 (Wl x + Wo T2 ~ Y1 @2 Y2 2
1
(5.4) + 12 V2 (1,22, 41, 92) Mo,

with the generalized potential

Us(z1, 2,91, Ys) = wi@1C(z1 — yy) + w1@20(21 — Yy) + w2 C(z2 — yy)
+ wanC(T2 — Yg) — wiwaC(x1 — T2) — 102C (Y, — Ys)

(0),

B w%+w§+@%+@§c

(5.5) .

and it starts from

- |1 + 91> + 22 + Z/zP)
47"%

Cm g P e - Z/2|2)
43 '

5.3. The scintillation regime. In this paper we address a regime which can
be considered as a particular case of the paraxial white-noise regime: the scintillation
regime. The scintillation regime is valid if the correlation length of the medium (i.e.,
the transverse correlation length of the Brownian field B) is smaller than the radius of
the TRM and the size of the TRM elements. If the correlation length is our reference
length, this means that in this regime the covariance function C¢, the radius of the
TRM r§, the TRM element size pj, and the propagation distance L® are of the form

My(z=0,21,T2,Y;,Ys) = exp (

xexp(

(5.6) Ci(z)=eClz), ro="2, 5= =L
€ € €
Here ¢ is a small dimensionless parameter, and we will study the limit ¢ — 0.
Note that in section 5.7 we will address a slightly different version of the scintil-
lation regime, which is (5.6) in which the size of the TRM elements is of the same

order as the correlation length of the medium: p§ = po.
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5.4. The second-order moment in the scintillation regime. Let us con-
sider the second-order moment (5.1) in the scintillation regime (5.6). We assume that
the two frequencies are close to each other, and we parameterize them as

w = wy + €9, w = wpy — &fl.
We parameterize the two points  and y as

Tty
2 b

g=z—y.

We consider a long propagation distance of the form z/e.
In the variables (z/¢, q, ) the function M7 satisfies the equation

OM¢ ic, ic,) 1 wg
= =2V, Vo M§ — = (74 + Ag) MF + 2 - C(0)) M,
r = eV VeMi - (FAr +4q) 1+403(C(q) C(0)) M;

starting from

r? la/?
Mi(z=0,q,7 :exp(—52| —¢? ),
i : g 405

and where we have not written terms of order e. The Fourier transform (in g and )
of the second-order moment of the paraxial Green’s function is defined by

(5.7) M; (g,&,C) = //]R?><1R2 M; (z, q,r) exp (—ig-&—ir-¢)drdg.

It satisfies

OME ico L i (1 .
Lo Zoe oo+ 2 (J1cP 4 leP) o
0

0z wWoEe 4

+ o [ G- N6, + N e — k)] ak.

Let us absorb the rapid phase in the function

1CoZ

(5.8) M (2.6.¢) = 17 (2.6,¢) exp (¢ ¢).

wo€

In the scintillation regime the rescaled function Mf satisfies the equation with fast
phases

oM ico,f) (1 ~
ook = oo (TP + i) 71
0
2
_“ A _ e Tre(e S
(59) + Tz [ O~ 3T (6.0 + M (6 — k. O 54 a,
starting from
(5.10) M; (= =0,€,¢) = (2m)*¢%55, ()65, 5(C);
where we have denoted
2 2
= _ 14 _L 2
(5.11) 2(6) = oz exp (— 25 1¢7).
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Note that ¢f belongs to L' and has a L'-norm equal to one and that it behaves like
a Dirac distribution as € — 0.

PrOPOSITION 5.1. The function Mf(z/s,é,() defined by (5.8) can be expanded

as
M (2,6.¢) = K(2)975,, (6)65, ,,5(0)

(5.12) #0504 (2.6..0) 4 Ri(.0),

where the function K is defined by

(5.13) K(z) = (2r)* exp ( - ZéC(O)z),

the function (z,&) — A(z,&,¢, Q) is the solution of

azA—“O \£|2A+ 2 2/ C(k)[A(E — k)e 5 ¢ — A(¢)]dk
wh Ay e
(514) + WK(Z)C(é)e s

starting from A(z =0,&,(,Q) = 0, and the function RS satisfies

e—0
(5.15) sup [[R5(z,, )l o wexme) = 0
z€[0,Z]

for any Z > 0.
Proof. We introduce

M3 6.) = 3 (2. 6.) op (%57 (F1c +167) <)
Af(z,6,¢)=A (Z,E, g,Q) exp (—z’(:g|£|2z) .

We first note that, for any ¢, we have using Bochner’s theorem

9 A%(2, -, Ol <

C(0)[|A=(z, -, )l pr + QK( 2)C(0),

22 4c

which shows by Gronwall’s lemma that

sup 0.1 4%(z, -, )l < oo
z€[0,Z],£€R?

If we define the operator £¢ from L'(R? x R?) to L!(R? x R?)

CHTIE, ¢) = - 62/ C (e —k, O)e ;€0 (Ik\2_2§ k)ztigokCz (&C)]dk

whose norm is bounded by ||£%| 11 < C( ), then we get from (5.9) that M;

satisfies the equation

202

DM = L5ME.
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Denoting
RE(2,€,) = Mi(2,6,¢) = N*(2,£,€), ]
N¥(2,€,¢) = K(2)9 5, ()¢5, ,5(0) + 67, 5(0A(2,€,C),

we have

(5.16) O.R° = LR + S°,

with

S‘E(z7£,c) = 782N€(Z755C) + ["ENE(Z755C)'

The function S¢ is equal to

wo

S°(2,€,¢) = (7)203"((2) io/ﬁ(C)e

<[ [ Ce =i, e T 0]

. e o e2
nggg'cz—z Sg €172

Its L'-norm can be evaluated as follows for z € [0, Z]:

155z, -, )l s
B w0K2 c //dcd€¢l vl ‘/C ch)pl g, (R)e TR gy
—0<£>\

2 R _igfok.C2 ia2“°§2 2, R
3% / / / d¢dgdke, | 5(C)bys,, (k)‘C(E—Ek)e S keatis” S k| ~cte)
< W0K2 2 //dCdkd)l /\f (bfpo [/‘C —ck) |d£]

K —te 2k Cz i82% 2,
w"zﬂn /// ACEdRs!, | 5(Q)0' 5, (RC(E)]e T Ty
2
< woicg) /dk(;ﬁi/i |:/ |C & —ck) |d£:|

4 ZC 2] 0Q
L nwsC(0)2 / / dCdko, | 5(0)0ys5,, (k) (e;|k|4| + ¢ ng kIQ) :

The term within the square brackets is bounded by 2(27)?C(0) and goes to zero as
¢ — 0 for any k (because C € L' and C is continuous, as it is the inverse Fourier
transform of an L'-function), so the first term of the right-hand side goes to zero
as ¢ — 0 by Lebesgue’s dominated convergence theorem. The second term of the
right-hand side is of order € and it goes to zero as € — 0. As a result,

sup [|5%(z, )| =5 0.
z€[0,Z]

Integrating (5.16) and taking the L'-norm, we find that for any z € [0, Z]:

pe w2 : DE - Qe
IR € 55000 [ IR s+ [ 155l
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Applying Gronwall’s lemma gives

e—0

(5.17) sup ||Rs(z Mz = 0.
z€[0,Z]

Finally, the residual R§ defined by (5.12) can be expressed as

e (3162 1) =)
KT@¢3mm@%ﬁd¢ﬂCﬂem>G‘}(4KF44£F>Z)—1}
05, 2(0AG€.£.9) [exp (125 110P) —1].

ﬁ@f&)-W@£CMm<

The L'-norm in (&, ¢) of the first term of the right-hand side goes to zero by (5.17).
The L'-norm of the second term is

[ ik @0, @06, 0] e (125 (Fie2 + 1) 2) -

which is bounded by

4092
CLlYE 7 [ deacos, (€161, (1167 + 1eF)

which goes to zero as € — 0. The L'-norm of the third term is

[ deicel, a01aGg e (25 11c2) 1

which is bounded by

CO\Q|€

2 [[ deics}, . 5(O1AG€CICE,

which goes to zero as ¢ — 0 because sup,¢jo 7] cer2 [[A(2,, ¢)[[1 is bounded. This
completes the proof of the proposition. ]

We remark that A defined by (5.14) describes how energy is transferred from the
coherent part to the incoherent part of the wave field and also in between different
lateral slowness modes. The first term in the right-hand side of (5.14) captures the
decorrelation due to frequency separation, the second term captures random forward
scattering and transfer of incoherent energy between different lateral slowness modes,
and the third term captures transfer of energy from the coherent part to the scattered
part of the wave field.

5.5. The fourth-order moment in the scintillation regime. Let us consider

the fourth-order moment (5.3) in the scintillation regime (5.6). We assume that the
four frequencies are close to each other, and we parameterize them as
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OJ0+€(Ql +Qg+93), WQZWQ+E(—Ql+Q2—Qg),
0 =wo+ (1 — N2 — Q3), Wo = wo + (= — Q2 + Q3).

w1

We parameterize the four points @1, €2, Y, y, in (5.4) in the special way:

_rit+Tratqtaq, Tt Tra—q— gy
T = 2 ) yl_ 2 9
ri—T2t+q,—4q Ti—T2—4q;+4q
S : 1= 42 Yy = - 1+t 4

We consider a long propagation distance of the form z/e. In the variables
(z/e, 41, g4, 71, T2) the function M5 satisfies the equation

oOMs ic, 1S

62’ - rﬁ(vrl : Vql + V'rg : V‘lz)MQE - wg (VT1 : qu + v7‘2 : v‘h)MQE
1Cof2 ico{2
— ﬁ(Am + Arz + AQQ + AQQ)MS o :)3 : (le ’ vf‘z + vql ’ qu)MQE
(5.18)

2

W
+ ﬁUQ(qla q-,T1, r2)M257

o

with the generalized potential

U(qy,q9,71,m2) = C(q3+ q1) +C(q3 — q1) + C(r2+ q) + C(r2 — q4)
(5.19) —C(qy +12) — C(gqy — 72) — 2C(0),

and where we have not written terms of order e. The initial condition for (5.18) is

olri +lra”  olai* + |‘I2|2>

MQE(Z:()aq17q2?r17r2) :eXp<—€ 2/r8 2p%

The Fourier transform (in ¢y, g, 71, and r3) of the fourth-order moment of the
paraxial Green’s function is defined by

N z
M3 (*751,527@»@’2) = // M; <*a¢I1>¢I2aT‘17T2>
€ R2 xR2 X R2 X R2 €
><exp(—iq1 &y —iry - ¢y —iq2-£2—ir2-C2)
(5.20) x dridraodg,dg,.

Let us absorb the rapid phase in the function

1CoZ

(5:21) M5 (2.61,€5,61.Co) = M5 (2.61.60,61. G ) xp (S5 (6 - o + 61 C))-

wop€

In the scintillation regime (5.6) the rescaled function Mf satisfies the equation with
fast phases
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OMS zcle
322 = (&1 -Ca+ &y Cl)
chQQ
2w 2
’LCOQg

(&1 -&+¢, - Cz)

2
“o
+

+ M (€, )
+ M5(&, — k,€5,€1.Co — k)e'
+ M5 (& + k. &y — k. €y, Cp)e’ 0
+ M5 (&, + k,€5,C1.Co — k)e'
— M5 (&€, — k.Cy. ¢y — k)e’

( )

(5.22) — M

starting from

(5.23)  M5(z=0,&,&5,¢y,Co) = (2m)5¢5, (€1)

evolving at the order one scale.

PrOPOSITION 5.2. The function Mg(z/5,51,£2,C1,C2) defined by (5.21) can be

expanded as

(16112 + €212 + €1 + |¢o ) M5

W /]R2 C(k) [ - 2M§(£1,§2,C17C2)

— k& - kch@éwo<ﬁ“
L2 k. (€54¢,)

e swo

—¢1)
222 k-(€2—C1)

282 (k- (CaHE2)—[k[%)

e £wo

€16 — k.1 Gy + R)e! o (G e D gy,
1,62 1552

po (§2)97,(€1) 97, (C2),

where ¢ is defined by (5.11). The following result shows that MQE exhibits a multiscale
behavior as e — 0, with some components evolving at the scale € and some components

(z)o A<Z, El CQ;C1,92793

Co +€1 £2+C1 S+ 0
€

2y T

G- 51@ & -Gg, g

7Q2+Qs)

M; (2,61,65.€1.C2) = K(2)%65,(61)95,(62)65, (6165, (Co)
K
+EB zo(giﬁf2>¢axcn i(Cﬁfl<
+K(Z) 5 <€1+€2>
2 PO \/§
+K§Z)¢%O <£1\/§ 2>¢0 A(
b (858
<g><@>(a§§5%@j@
( & - slgscl%_ga
F (e 04 (=S58 B8 0, 40,

X

a(n658 8 g )

(524) +R;(z7£1a€27clac2)a

£2+€1 CZ—;CI QQ+QB

1
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where

1 1/1 1
5.25 ===
( ) R: 2 (r% + pg)’
the function K is defined by (5.13), the function (z,€) — A(z,&,¢, ) is the solution
of (5.14), and the function RS satisfies

e—=0
(526) sup HR;(Z,',',',')HLl(R2XR2XR2XR2) i) 0
z€[0,Z]

for any Z > 0.

This result is an extension of Proposition 1 in [15] in which the case ro = pg and
Q = 0 is addressed (whose proof follows the same lines as the one of Proposition 5.2).
It shows that, if we deal with an integral of Mj against a bounded function, then we
can replace M$ by the right-hand side of (5.24) without the R§ term up to a negligible
error when ¢ is small. Note also that the result shows that the fourth-order moment
My can be expressed in terms of second-order moment A in (5.14) and in terms of
the source field, which can be seen as a “quasi-Gaussian property” [15].

5.6. The strongly scattering regime. Our goal is to find an explicit expres-
sion of the function A defined by (5.14). The equation (5.14) for A (in which ¢ and
Q are frozen parameters) can be solved exactly when 2 = 0:

K(Z) wg 8 Co :
(5.27) A(2,£,¢,0)= @n)? /R? [exp (@/0 C(z+ w—oz')dz’)—l} exp (—i&-z)dw.
When Q # 0 it is possible to find an approximate expression for A(z,&,¢,Q) in
the strongly scattering regime as we show below. The strongly scattering regime
corresponds to

(5.28) WiC(0)L/c2 > 1,

which means that the propagation distance L is larger than the scattering mean free
path defined by )
8¢,

5.29 lsca = —5—2—.

1520 = 30

Indeed, the scattering mean free path is the characteristic decay length of the mean
Green’s function, as shown by the form of the mean Green’s function obtained by
[t6’s formula

. A 2C(0)L
E[G(w, L@, y)] = Golw, L@, y) exp ( ”08%)
where Gy is the homogeneous Green’s function
Go(w, L, 2, y) = —2 ex (ZM)
O B Y = GimeL TP\ ae, L )

see also the discussion in Appendix A.
We assume that the medium fluctuations are isotropic and smooth enough so that
the coefficient

1 A 2
(5.30) D= W/R C(k) k|2 dk
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is finite. The coeflicient D is homogeneous to the inverse of a length. This length
is the paraxial length; i.e., the propagation distance beyond which the paraxial ap-
proximation is not valid anymore. Indeed, in the strongly scattering regime L > Vs,
(which is equivalent to w3C(0)L/c2 > 1), the second moment of the Green’s function
is (see Proposition 12.7 in [12])

- - _ pl|2
E[G(wa La Z, y)G(w, La wlv y)] = GO(wa La T, y)GO(wa L7 wla y) €Xp ( - %)a
where X (L) is the correlation length of the wave field

\/gco
\/EWO\/E .
When the correlation length of the field becomes of the order of the wavelength, i.e.,

when woX.(L)/¢, ~ 1, then the paraxial approximation is not valid anymore. The
paraxial distance £p,, such that woXc(fpar)/co =1 is

3

D

Note that lpay >> lsca. The ratio lpar/lsca is of the order of the square of the ratio of
the correlation length of the medium over the wavelength.

(5.31) Xo(L) =

(532) épar =

PROPOSITION 5.3. When L > lyc., the function A solution of (5.14) can be
approzimated by the solution of the parabolic partial differential equation
w%D
1603

1co§2

(5.33)  0.A, = |g\2 Aedy — 25

24, - 2i°%¢. VgAs},
wWo

starting from Ag(z = 0,€,¢,Q) = (2m)*5(€).

The approximation holds in the sense that, for any continuous and bounded
function f and for any Z > 0:

FEAZ.€.¢,0)dg 2 / F€)AZ.6,¢. Q) dE.
]RZ

Proof. In the proof we assume that the correlation function of the medium is of
the form C%(x) = 6 2C(6x) and we study the convergence as 0 — 0 of the solution of
(5.14). Note that the corresponding coefficient £2_, defined by (5.29) is proportional
to 62 while the corresponding coefficient D? defined by (5.30) is independent of § in
this scaling regime.

In the case © = 0 the result can be obtained from the explicit expression (5.27).
By taking the limit § — 0 and using the expansion C%(x) = §~2C(0) — D|z|?/4+0(1),
one gets the function

Ay(2.€,¢,0) = (2n)? /Rzexp 1602/ =+ °C #|ds' ~ i€ a)da.

that is, the solution of (5.33) in the special case 2 = 0.
In the general case (2 # 0 we use a probabilistic representation and invoke a
diffusion-approximation theorem. First, we introduce

) + (2m)* exp ( - M)(S({).

2
4cz

A(2,6,¢,9) = A°(2,€,¢,9Q) exp ( _
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It is the solution of
YRS
wg

- iCo ~ w2 A i A
.40 = (e - 2¢O A+ T [ CIAE ) - Aa,

wo

starting from A%(z = 0,&,¢,Q) = (2m)*6(€). Second we define the operators

(5.34) L1 = 5z |, CWIIE k) f©)]dk,
(5.35) £IE) = 2 Acr(€).

Since C?(k) = 6~*C(k/d), the operator £ can be written as

2
“o

o _ A _ _
£ 1) = sz [, COIFE— k) = )] ak.

and it is the infinitesimal generator of the random process Z°(z) = 6 Z(z/2) defined
as

E(z) = E(0) + Yk,

k=1

where N, is a homogeneous Poisson point process with intensity w2C'(0)/(4c?) and
(kk)k>1 is a sequence of independent and identically distributed R?-valued random
variables with the probability density function

C(k)

P8 = Grpem)

These random variables have mean zero and finite variance D/C(0). The compound
Poisson process E has independent and stationary increments, with the distribution
characterized by the characteristic function

(5.36)  E[exp (iz - (B(2' + 2) — B(z')))] = exp (

Let us denote

o) Co
2 ‘£|2 - C£
Wy wo

V() =
For any continuous and bounded function f and Z > 0, the solution of
0.1 =iV (&)u’ — L°°,

with the terminal condition @°(z = Z,£) = f(&), can be expressed by the Feynman—
Kac formula as

(0 =B[@ @) e (i [ VE )

=9(z) = g].
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We can check that

. / (2, €) A0 (2, £)d€ = 0;
]RQ

therefore

/ FEA (2.8)d¢ = / D(Z.E)A(7,6)dE = / (0.4 (0, £)de
Rz R? RZ
= (2m)*a°(0,0).

By Donsker’s invariance principle the random process =0 weakly converges (as a
cadlag process) to a Brownian motion W with generator £. This shows that (0, 0)
converges to @(0,0), where 4(z, &) is defined by

i(2.€) = E[J(W(2)) exp ( - i/ZZ V(W ()d!)

which is solution of
0,u =1V (§)u — Lau,

with the terminal condition @(z = Z, &) = f(£). If we denote by A the solution of

0. A=iV(E)A+ LA,

0,€) = (2m)"

with the initial condition A(z = , then we find that

( (©)
/f A(2,6)de = / HZ.O)A(Z,€)de = / (0, )A(0, £)de = (2r)"a(0,0).

This establishes that, for any continuous and bounded function f and Z > 0,

/f Aézsde‘m/f A(7,8)d,

which proves that A% converges to A. By considering Ay(z, &) = A(z, &) exp (f)‘;z{ <)
we find that Ag satisfies (5.33), and A% converges to A, which is the desired result. O

Let us consider the partial inverse Fourier transform

(537) Afew.6.0) = o [ A6 C D explie - a)ie.

1
(2m)?

PROPOSITION 5.4. The partial inverse Fourier transform As(z, x,¢, Q) has the
form

(5:38) As(z,2,¢,92) = (1) exp [ — aq(2) — ba(2)|z]* = ca(2)z - ¢ — da(2)I¢[].
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3 ‘ 102
) 7.6
25— ‘I’b(s) 1l-- ‘I’b(s)
W (s) 1000w (s)
2 Y408 T y(s)
@ O [V e—
515 > Tl
e @ 10" T~
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051 \::\;\;_‘77> 10
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F1G. 5.1. Real values of the functions Wq p . 4 in linear scale (left) and log scale (right).

where
(5.39) aqn(z) =Y, (1/ fcsz z) ,
2
_ wyDz DQ
(540) bQ(Z) = 1663 \Ifb ( 400 Z> ,

B woD#> DQ
(5.41) calz) = 16c, U, (,/ e z> ,
D23 [ D)
(542) dQ(Z) = E\de ( 4co Z) s

with the functions W, . q defined by

(5.43) U,(s) =1In {cosh (7% 8)},

(5.41)  Wy(s) = ARl

e"iis
e "istanh(e T s) — 1 + cosh ™ (e % s)
(5.45) U.(s) =21 2 )
3 [° iz - ‘x
(5.46) Ty(s)=1-— S—; (e7'%s tanh(e "4s') — 1 4 (cosh(e"zs'))_lfds’.
0

The real parts of the functions W, .4 are plotted in Figure 5.1. Note that
they are positive valued. By Propositions 5.1 and 5.2 this result gives a complete
and explicit expression of the second-order and fourth-order moments in the strongly
scattering regime L > fg.,.

Proof. By Proposition 5.3, Aj is solution of

icoQ . . WwiD 2%

2Cq
— Ay Ay — . Zo
wg 16¢2

2
22 [¢7 +2
Wy wo

0.4, = [l + ¢ a4,

starting from Ag(z = 0,z,¢,Q) = (27)2. The solution has the form (5.38), where
(aq,ba, ca,dq) is the solution of the system of ordinary differential equations:
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daQ

4 —_—
(5.47) P
(5.48) dbo
dCQ

4 —_—
(5:49) dz
ddg

(5.50) &

dz

4e,0
=1 5 bQ7
“wo
wdD  4c,Q
7 Hi—5b9,
16c3 wp
D 4c,2
= w2 +1 602 bQCQ,
8¢ wi
Dz?  ¢,Q ,
6 T

101

starting from (agq, ba, cq, dq)(z = 0) = (0,0,0,0). We have (a_q,b_q,c—q,d—q)(z) =

(@q, ba,Cq, do)(z), and by solving the system, we obtain the desired result.

|

When DQ2%/c, < 1, we can use Taylor series expansions of the functions Yo bed

to obtain

D22

ag(z) ~ —i o
o
N w%DZ(
T 16c2
_woD2? (1
16¢,

"T2¢, 1202
DOz2  7D%2024 (D3Q3z6))

D202 24 D336
192¢2 ( 3 )’

2 2002 ,4 30136
.DQz _DQz (D(%Z))’

"T6e, 11522 c3

o

dQ (Z) ~ 48

D14 DI o))

3
Co

The leading-order terms (with @ = 0) are consistent with the limit of (5.27) in the
strongly scattering regime L > fy,.
When DQ2%/c, > 1, we can use asymptotic expressions for the functions Yo bed

to obtain

w13

12

da(z) ~é!

up to terms of relative order exp(—+/D$/(8¢,)z).

D
—n2,

e 2

weD
64c3Q°

wpD s
16¢,92 20
CODZ2 iCoZ gz c3

640 0 ° ADOB’

Note that, for the asymptotic

expansion of dg, we used the fact that [~ 2(s — 1)[s(tanh(s) — s + cosh™(s)] +
[s(tanh(s) — s + cosh™!(s)]2ds = 1 in order to compute the O(1)-term. Compared to
the small (or vanishing) Q case, we can see that the growth rate in z of the coefficients
are very different. This will have dramatic impact in the analysis of the refocused
wave that we carry out in the next sections.
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5.7. The scintillation regime revisited. In the scintillation regime (5.6) ad-
dressed in the previous section, the TRM element size pf is assumed to be of order
e~1, that is to say, larger than the correlation length of the medium. We can also
address the case where the TRM element size pj is of the same order as the correlation
length of the medium:

To

L
(5.51) C*(z) =eClx),  5=—, p=p, L°=-—.

The previous analysis can be revisited in the revised scintillation regime (5.51) and
we get the following results.

PROPOSITION 5.5. In the scintillation regime (5.51), the function ME(z/e,€, )
defined by (5.8) can be expanded as

1 (26.6) = 07, a(0 (6.

where the function (z,€) — A(z,&,¢,Q) is the solution of

n)+mw@4x

1co§2

(5.52) 9,A= |£\ A+t 2 2/ Ck k)e 5 ke — A(&)]dk,

starting from A(z =0,€,(,Q) = (27r)4<;15}/§p0 (&), and the function RS satisfies

e—0
(5.53) sup [[R(z,, )| o wexme) = 0
2€[0,Z]

for any Z > 0.

In particular, we have

(5.54) A(2,€,¢,0)
|33|2 5[ 067’ .
- (27r)4/]Rz exp (-4[% L(; e (w + CWOZ ) — C(0)d — i€ - :1:) dz

PROPOSITION 5.6. In the scintillation regime (5.51), the function M5 (z/e, &, &y,
¢1,¢y) defined by (5.21) can be expanded as

( 517€2aC1aC2): o (C1) io(CQ)A( £2+£1 C2+C1 QQ+QS)
xA(%§£a@<a%Qg
2 €
(555) +R§(Zv£17£27C1aC2)a

where the function (z,€) — A(z,€,¢, ) is the solution of (5.52), and the function
RS satisfies

0
(5.56) sup [|R5(z, -, ')||L1(R2><R2><]R2><1R2) =0

z€[0,Z]

for any Z > 0.
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In the strongly scattering regime L > f4.,, Proposition 5.3 is still valid except
that the initial condition for Ag is As(z = 0,£,¢,Q) = (27‘(‘)4(;51/5’)0 (&) instead of
As(z =0,€,¢,9Q) = (2m)*6(€). As a result, the expression of A, given in Proposition
5.4 has to be updated. The updated result is given in the following proposition.

PROPOSITION 5.7. The partial inverse Fourier transform As(z, x,¢, Q) has the
form (5.38), where (aq, b, ca, dq) are given by (5.39)—(5.42) and the functions Yo p c.d
are defined by

(5.57) W4(s)=1In [cosh (e7"is) + Tpsinh (e '3 s)},
To + tanh(e ' s)
e T s[1 + Ty tanh(e % s)]’

e—ifs To+tanh(ef_ii%ls)
14Ty tanh(e™ "4 s)

(5.58)  Wy(s) =

— 1+ [cosh(e™%is) + Ty sinh(e % s)] 71
(5.59)  W.(s) = 2i

2 Y

S
) s —i T o/
Uy(s)=1-— 3t —iz o, To+ tanh(e _»435 ) )
s 0 1—|—Totanh(e ’45’)
2
(5.60) + [cosh(e™ ') + T sinh(e‘iis'ﬂ‘l) ds’,

with

2e7T [e30)
5.61) Ty = =)
( 2a VD

When py — +00, we have Ty = 0, and we recover the result of Proposition 5.4.

Proof. Ay is given by (5.38), and the functions (aq, ba, cq, da) satisty the system of
differential equations (5.47)—(5.50), with the initial condition bo(0) = 1/(4p3) instead
of bn(0) = 0. By solving the differential equations we get the desired result. O

We remark that when 2 = 0, we have

2 2 3
wiDz 1 woDz Dz
. e(2) = , do(z) = ==

162 T ap ©B) T g, W) =g

(5.62) ag(z) =0, bo(z) =

6. Time-harmonic wave refocusing. We address the situation described in
section 3.1 in the scintillation regime (5.6). We consider two nearby frequencies w =
wo +€Q and & = wy — ). The goal is to determine the profile of the refocused wave
and its SNR. We also want to determine for which frequency offset Q time-reversal
refocusing is still effective.

6.1. The mean refocused wave. We first give the general expression of the
mean refocused field in the scintillation regime.
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PROPOSITION 6.1. In the scintillation regime (5.6) the mean refocused field is

E [utr (y —l—w;%)] =9 g(? gexp( o\C|2 C)dC
27T //R2 . 477 o\C|2 +iz-E+iy-C ) (L, &, ¢, Q)dedC.

Proof. By using (5.1) and by taking C' — ¢C, ro — ro/e, po — po/e, y — y/e,
L — L/e, the mean refocused wave is given by

ol (Fon Y (Zen)
e g 3 g
L
_M1< ’ y+2aq_w)

(2m)* //RR ( “)

xexp(i:c-{—l—i(‘g—f—w ¢ —

5)

) dede.

In the limit € — 0, we find from Proposition 5.1 the desired result. 0

In the weakly scattering regime L < fs., (which is equivalent to w3C(0)L/c?
< 1), we have K(L) ~ (2r)* and A ~ 0 so

2
E {ﬁtr (E + x; E)] =9 exp <_|y2|> ,
€ € U

which shows that there is no refocusing. This is because the TRM elements are too
large, and there is no multipathing effect due to the random medium.

In the strongly scattering regime L >> fy., (which is equivalent to w3C(0)L/c?
> 1), we find by Proposition 5.4 that

—aQ(L) 2
. Y Y\ e—0 € ) 2 2
E LA ] —ea(D)|CP? = fa(L)z - ¢ — ba(L
fine (L + 0 2)] = 8 | exp (= calDIP — falD)a ¢~ baD)lal
+i¢ - y)d¢,
with
2 2.2
ea(z) =2 +d zfcozc erﬁb z
a(z) = - +da(2) woﬂ() wgn()
réd D23 D
(61) = Zo'i‘ﬂ(\:[/d—?)\:[jc“r?)\l’b) ( dc Z),
200
fa(z)ea(z) — ba(z)
_woDz DQ
(6.2) = e, (@C—2xyb)< 4002«).

This shows that the mean refocused wave has the form of a Gaussian peak centered
at the target location. More exactly, if we consider the case when y = 0, then we find
that the mean refocused wave is
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efa(z(L),,,Q
(6.3) E[a (2;0)] = Wexp(—gg@)lm\?),
with
P 2
n(s) = bal2) ~ 4o

=

2D D22 (@, — 20)?2 DO
(6.4) =0 g, - 5 ( ) 2.

1600 T% + 1; (\I/d — 3\ch + B\I]b) 4CO
When DQL?/c, < 1, we have

(6.5) E [ (2;0)] ~

DL3
w2DL 1+ 45z ‘2)

1
——— 5 exXp ( - x
DL? 2 DL3?
1+ 12r2 16¢5 1+ 1272

which is the expression of the mean refocused wave when Q = 0 [16], which does

not depend on the array element size py (which is too large to ensure refocusing) but

strongly depends on the properties of the random medium (which is scattering enough

to ensure the multipathing effect that gives rise to refocusing). We observe a power-

law decay of the mean peak amplitude as a function of the propagation distance.
When DQL?/c, > 1, we have

2exp fe*i”/‘*,/DTQL _ 2
(6.6) E[de (2;0)] ~ ( deo ) exp (—6”/4% Dco|cc|2> :

1+ ke 83V Q

2
Qrg

We observe an exponential decay of the mean peak amplitude, of the form
D
— L
exp ( it ) ,
while the radius of the mean peak becomes equal to
67027/4 4/ Q )
wo Dec,

These results (concerning the mean refocused wave) do not depend on the array size
ro or array element size pg. They show that the amplitude of the mean refocused
wave is noticeable provided DQL?/(8¢c,) < 1. We will see in the next section that the
SNR indeed dramatically decays when this condition is not fulfilled.

6.2. SNR analysis. We now give the general expression of the second-order
moment of the refocused field in the scintillation regime.
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PROPOSITION 6.2. In the scintillation regime (5.6) the second-order moment of
the refocused field is

R 2] & K(L)? T ¢J?
E[utr(“w;i’)\ } - (223 O L
e Iy

//]R{?x]R{? 4r timety S )

X exp ( - )A(L, £.¢. Q)dgd¢

2.2 2 2 2
Poro roro/¢| - 2p5 2|y|

//]RZ><R2 2R +73) ( 203 +08) Y 7"3+p3)

X exp ( - )A(L €.¢.0)dgdc

2 //sz 1 © 0|d2+zw E+iy - C— ) (L,€,¢,Q) dEdC‘

8% (7T0+Po 2 2, 70— 1% , )
o [ e (= G+ )+ B,

xexp iy (Ca = 6) = t(€a Ca— € )
A(Lv €a7 Caa O)A(Lv gb, Cba O)dgadgdeadCb'

Proof. The second moment of the refocused wave is given by

2
E[ﬁtr(ymy)’ ] — Mo (Yra Y aY)
13 19 13

L
—MZ( 7’1—2 +x,72=0,q, =0, ‘12—33>

o /[ (5,51,52741,@)

exp (m: €yt (2% + a:) . C1)
Lec,
X €xp (Z “ (€1-C1+ & C2)> d€,d€5dC,dCy,

EWp

with Q1 = Qo = 0 and Q3 = Q. In the limit £¢ — 0, we find from Proposition 5.2 the
desired result. 0

In the weakly scattering regime L < fy.,, we find

i (2 22)] =2l (L4 2) - e (4 2))

€ 07
which follows since the scattering is negligible and the propagation approximately as
in a homogeneous medium.
In the strongly scattering regime L >> ls., we find by Proposition 5.4 that

Var i (2 05 2)] = [fe (Lt 2)[ ] f e (2 s

c0 TEPE 8+ 3 2 o, 70— P
— (471—)2//]RZ><]R2 exXp (— 3 (1€ " +1Co %)+ 1 Ca'Cb)
X exp ( - dO(L)(|Ca|2 + |Cb|2) + Z(Ca - Cb) ! y)dCadCba

Ik

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/27/23 to 169.234.35.13 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SPECKLE MEMORY EFFECT IN THE FREQUENCY DOMAIN 107

with

D23

Note that the variance does not depend on the frequency offset 2, and we recover the
result known in the case 2 = 0 [16], while we have shown above that the amplitude
of the main refocused wave decays as || increases. Therefore the SNR will decrease
as Q] increases, as we explain below.

If we consider the case when y = 0, then we find that the variance of the refocused
wave has the form

1
(6.7) Var [ (2;0)] = DL? DL3Y"
(1 + 12r2 ) (1 + 12pg)
The SNR defined by
. 2
(6.8) sng = (GO0
Var [ﬁtr (:1:; 0)]
is given by
6—2Rc[ag(L)]7,4 DIL3 DIL3
6.9 SNR = 0 (1 1+ —— .
(69) e (1) (1 132
When DQL?/c, < 1, we have
+ DL?
SNR ~ — 70
1 1272

This result has already been obtained (when Q = 0) in [16]. When DL? > r3, p2, we
find that the SNR varies as 73 /p3, that is to say, as the number of elements of the
TRM.

When DQL?/c, > 1, we have

2exp (— QDCQ L) DI3 DIL3
NR =~ - 1 1
o (i) (i)

which is dominated by the exponentially decaying term.

Conclusion. To summarize, refocusing can be achieved provided DQUL?/(8¢,) < 1,
which is a condition that depends only on the frequency offset 2, the coefficient D or
paraxial distance £,,, = 3/D, and the propagation distance L.

6.3. The scintillation regime revisited. In the scintillation regime (5.51),
where pg is of the same order as the correlation length of the random medium, we
find from Proposition 5.5 that the mean refocused wave is

1
B [ (¥4 5 2)] =8
13 g

(2m)*
7"(% T%|C|2 . . Lc,
X//szﬂvﬂexp ) +”"5“y'C—ZWO€'C>A(L7€7¢7ﬂ)dédc,

where A is given by (5.52).
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In the weakly scattering regime L < /s, (which is equivalent to wC(0)L/c?
< 1), we have A(L,€,¢, Q) = (271')4#[ (£)exp(icoQ|€|2L/w§) and therefore

€ 3¢ 2 . .
E[utr(y—i-:c— i9// 42 <—0|C—p(2)£|2+z:c-§+zy-cj
R2xR2 4T

cOQL Lco
|€\2 E C) d€dg.
If y = 0, then we get
c 1 |:1:|2
E[ﬂtr(m;O)] =9 exp ,
coL coUL
L+ e — 15,2 a1+ w2p2rg —itly)

which shows that we can get refocusing because the TRM element size is small enough.
The frequency shift |Q| should be smaller than w2 p3/(c,L) so that the quality of the
refocusing is not affected.

In the strongly scattering regime L >> s, (which is equivalent to w3C(0)L/c?
> 1), we find by Proposition 5.7 that

ofin (2n )

efaQ(L),r,Q

= TO/GXP(—en(L>IC|2—fQ(L)m-c—bQ(L)|m|2+i¢.y)d¢7

with aq defined by (5.39), (eq, fa) defined by (6.1)—(6.2), and (¥, ¥y, ., ¥;) defined
by (5.57)—(5.60). More exactly, if we consider the case when y = 0, then we find that
the mean refocused wave is

e—aq (L)’I"2

% exp (— ga(L)|z[?),

(6.10) Bl (2:0)] = “ 7

with go defined by (6.4).
When DQL?/c, < 1, we have

(6.11)
wiDL DL 1 DL3?
El4 ) 1 106cg (1+48r)+m(1+w) 2
[utr(w,O)] R e OXP ( — o DL ar |z )
+ 12r + w2p2rg + 127" w2p2rg

We can identify the radius R of the mean refocused wave:

DL? c2L?
(6.12) R? = GRNNe

‘ o DL3 1 DL3\ '
8c2 (1 + 4812 ) + m(l + 127«3)

The radius of the mean refocused wave is smaller when pg is smaller and when the
random medium is more scattering (i.e., D is larger). When py becomes large, we
recover the expression (6.5).

When DLL? /¢, > 1, we get the result (6.6), and we observe again an exponential
decay of the mean peak amplitude.

Finally, we find from Proposition 5.6 that

e (g s y)ﬂ — lim |E [atr (% P y)} ‘2.

£ e—0 IS

(6.13) lim E {
e—0

The refocused wave is statistically stable in this regime, because there are many
elements (of the order of ¢72) in the TRM.
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7. Time-reversal stability. We address the situation described in section 3.2
in the scintillation regime (5.6). We consider a pulse whose bandwidth is small, of
order €:

. Vor w—wp)?
Fe) =S eo (- Eagih)

The goal is to determine the profile of the refocused wave and its SNR. In particular
we want to determine for which bandwidth B time-reversal refocusing is statistically

stable.

7.1. The mean refocused wave. In the limit € — 0, we find from (3.9) and
Proposition 5.1 that the mean refocused wave is given by

t
g ¢ €

_ 3242 /9 p—iwot/e 2
51>06Xp( B*t?/2)e {K(L)exp(—'y—|)

(2m)* 3
2 2|12 Le,
+//RZXR2%Texp(_ 7"0|4C| +iw-€+iy-c—z’wco g.C)A(L,g,c,o)dgdg},

In the weakly scattering regime L < lgcn, we find

t .

which shows that there is not refocusing.
In the strongly scattering regime L >> ls.., we find by Proposition 5.4 that

t 2 —B2t2/9 —iwot/e
E [utr <7y T; z):| _ 0 exp( 4ﬂ_/ Je

< [ e (el DICE = fo(L)a ¢ = boDlaf +iC - y)dC.

with

wiDz r2 D23 woDZ?
bo(z) = 106(:2 , eo(2) = ZO LT folz) = — Tec.

In particular, if y = 0, we find

. DL3
t e~ iwot/e B*t?  w2DL I+ &= 9
(71) ]E |:utr (€7w70>:| = 1+ DL; €Xp - 2 - 160% 1+ DL% CCI )
127§ 12rg

which shows that there is refocusing, with a focal spot radius that is all the smaller
as the medium is more scattering.
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7.2. SNR analysis. Let us consider the second moment of the refocused wave.
In the limit € — 0, we find from Proposition 5.2 that

ly y\|?
utr<,+w;> ]
e € e

E

e K(L)? exp(~B*?) [ 13 eXp( oIC\2+2w g)dc
( ) RQ 27T
K(L)exp 32t2 gl ly/*
0[] B o
X exp ( LCO& C) (L7€7C7O)d£dcd9

o ], ol
\/>B R2 xR2 2’/T pO +TO)

r2p2|¢ 2 203 _ 2yl

XexP( 203+ ) B 7“5+03)

2

<o (- 901 - %)A(L,a,c,mdsdcm

eeth
R2 xR2 471'
5 2
X exp ( O‘Cl +ix - £ + Zy C — )A(L7£7 C7O)d€dc

/// 50
(2m) \fB R? xR? xR2 xR2 (47)2

2 _ 2
x exp(— A (¢, 4+ 16,7) + 1B, ¢,
xoxp (1Y (€= G) = 1t € Co = 6+ G1)) ALy o DAL, € )

2

0
X eXp ( — 201 — ﬁ)dgadgbd(jadcbdfz.

In the weakly scattering regime L < lgc,, we get
ty Y ty v ty Y
Var |:Utr < + w,)] =E [utr <, =+ >' ] - ‘E |:Utr (, =+ ﬂ
€ € € €' € € e € €

e—0
In the strongly scattering regime L >> ls.,, we find by Proposition 5.4 that

— 0.
t t 2 t

Var |:'U/tr <y+wy)] =E [utr (,y+w; y) ] - ‘E |:utr <y+wy>}
g g 13 g g € g

e=0 —0 0P 7‘0—|—p0 9 (2)—,0(2) . )
e [ e (G e < e

x exp (— aq(L) — ha(L)[¢, |2—GQ(L) ha(L)|¢y%)

Q
xexp (i(Cy =€) -y — 2062 — —5 ) dC,dC,d

2
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with

ho(2) = “2-ba(z) — %CQ(@ +da(2)

Dz3 DQ
(7.2) = s (Vg — 3V, +30,) (,/ I, z> .

For y = 0, this gives

t 1 DL3hg\ 1
Var |ug | —, ;0 :—/dsexp(fszfQiBts)(l+ 5 )
g ﬁ R 12p0
DL3ES)—1
1212 ’

with as = exp(—2Re(aps(L))) and Dl—égﬁs = 4Re(hps(L)). More explicitly,

LA DBL?|s| A(s) — 2
aS_A( 4c, )7 Als) (cos—&—cosh)(\/%)’

hs =H (Dif‘s'> . H(s) = Re{(\lld — 30, + 3\1/(,)(\/5)}.

x(1+

The SNR defined by

|E[u, (0,0;0)]|”

SNR = Var [utr (0, x; O)}

is therefore

ds.

%3 2 1+ DL exp (— 2
(7.3) SNR™! = i/ A(PBLs 3 ( 12;0) ( : ) 2
V7 Jo 4c, (1+ BLy 7y (BBL2s)) (1 4 DL 7y (DBL:s))

4c, 4c,
We can observe that there is a complicated interplay betwee3n spagial and fre%uency
effects that depends on three dimensionless parameters: 1D2£2, 1D2i2, and %. We
plot in Figure 7.1 the SNR for different values of these three para(x)meters, where we
can see that the SNR increases with these three parameters, and analyze below its
asymptotic behavior.

The functions A and # satisfy

. 1 if s <1, - 1 if s < 1,
f“s)—{ texp (= VE) s> 1, ”(8>—{ B2 s 1.

Therefore, if B is much smaller than 4c¢,/(DL?), then

12p32 12r2

1+ 2L,
(7.4) SNR ~ 171)5
12r2

which shows that the source bandwidth does not affect the statistical stability of the
refocused wave under these conditions. We have

3
1 ifpg>%,
pr* ., DI?
(7.5) SNR ~ i}i};% if 7o > ‘7[54* > £05
ﬁ 'fDL3 9
p% 1 T >Tg-
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Fi1G. 7.1. SNR (7.3) of the time-reversed refocused wave. We denote B, = deq

SNR

0 L L L L
10 0 0.1 0.2 0.3 0.4 0.5
N / " Po / "
DL® _ DL® _
12r2 10 12r2 100

DLZ- The value of

the SNR for B =0 is (7.4).

In particular, we recover the fact that, when DL3/12 > r2, the SNR is equal to the
number r2/p3 of elements of the TRM.
If B is much larger than 4c,/(DL?), then

. dey 2 [ . (1+25)°
(10 SN DBLW%/O A T DR (1 + DEA)

12p2 12r2

ds,

and we find

DL’B o DL

i DL”

dc Ay R T
7.7 SNR DL*B DL if 2>—DL3 > 03
(7.7) T deA 122 T 07 12 T 0

DL?Br  _DL*

vl lf —_ > To,

4co A3 p§ 12
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where

o0
o [T A,
VT o H(s)it
or more explicitly A; ~ 2.81, A5 ~ 4.40, and A3 ~ 8.05. This shows that the source
bandwidth improves the statistical stability of the refocused wave, provided it is larger
than 4c,/(DL?). In particular, if scattering is so strong that both DL3?/12 > rZ and
4c,/(DL*) < B, then the SNR is proportional to the number of elements 73/p3
of the TRM times the number of uncorrelated frequency components (DBL?)/(4c,)
(i.e., the ratio of B over the coherence frequency 4c,/(DL?)). The equations (7.5) and
(7.7) give the SNR in the different cases and quantify the usual assertion found in the
literature that the profile of the time-reversed field is self-averaging by independence
of the frequency components of the wave field.

7.3. The scintillation regime revisited. In the scintillation regime (5.51) (in
which pg is of the same order as the correlation length of the random medium), we
find from Proposition 5.5 that the mean refocused field is

t _BQt2 2 —iwot/e
B e (L 40 V)] =20 SRCE/2e
e e 3 (2m)4

o 0|C|2
x// —exp( +ix-&+iy- ¢
R2 xR2 47

where A is given by (5.52).
In the weakly scattering regime L < lscq, we find

(¢)A(L,€,¢, 0)dgdc,

t ,
E [utr <7 LA x; y)] =9 exp(—B?t?/2)e~iwot/e
e e €

2.2 2112
<[ B e (- DL e i g iy )agdc.
R2 xR2 47 4
More exactly, if y = 0, we get
t 0 eXp(—BQtZ/Q) —iwot/e |m|2
E |:utr (5’33;0)} = a2 Xp | = ez |
Lt oo 45 (1+ mz)

which shows that we get refocusing because the TRM element size pg is small enough.
When pg becomes very small, i.e., smaller than ¢,L/(worg), then the radius of the
refocused wave is v/2¢,L/(worg), which is the diffraction limit or Rayleigh resolution
formula.

In the strongly scattering regime L >> (.., we find by Proposition 5.7 that

t 2 —B2t2/9 —iwot/e
E[Utr (573;4-113;’!;)} = ro exp [2e

4
<[ e (el DICE = fo(L)a ¢ = bDlaf + i€ - y)dC.

with

wiDz 1 r2  Dz? 222 woD2z? Co?Z
b :70 —_— :—0 _— o~ _ = — — ° .
0@=Fez Tz =Tt ey BT T
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In particular, if y = 0, we find

t e—iwot/s B2
ol (fo)] g g 0 ()

121”% w%p%r%
2
woDL DL? 1 DL?
(1 + ) + 2 (1 + B=)
16¢2 48rg 4p5 12rg 2
(7.8) x exp | — YE ey lz)* ],
L+ 127"(2] + wgpgrg

which makes it possible to identify the amplitude and the radius R of the refocused
wave (as in (6.11)—(6.12)):

DL? L
(7.9) R = L Tyt
' w2DL DL3 1 DL3\
gcg (1 + 487"3) + m(l + 127«3)

The radius is smaller when the TRM element size pg is smaller (we have 9R/9py > 0)
and when the random medium is more scattering (we have OR/9D < 0). It is not
surprising that time-reversal refocusing is improved when the TRM has many ar-
ray elements and better resolve the wave field on the mirror; moreover, it is well-
known that random scattering improves time-reversal refocusing by multipathing
[3, 9. When pg becomes very small, i.e., smaller than ¢,L/(wyrg) and ¢,/(woDL),
then the radius of the refocused wave is equal to

V2e,L

)
/.2 | DL3
wo/ Ty + 3

which is the Rayleigh resolution formula but with the enhanced TRM radius 7. =

72 + BL%. This result can be found in the literature [3].
Finally, we find from Proposition 5.6 that

t t
Uty <7y+mvy> :hm E|:utr <7y+$7y>:|
g € 3 e—0 g € &

The refocused wave is statistically stable in this regime, because there are many
elements (of the order of ¢2) in the TRM.

R:

2 2

(7.10)  lLmE
e—0

8. Conclusion. In this paper we have analyzed the fourth-order moment of the
random paraxial Green’s function at four different frequencies. We have obtained a
complete characterization in the scintillation regime, which makes it possible to quan-
tify the speckle memory effect in the frequency domain in terms of the propagation
distance through the scattering medium and statistics of the medium fluctuations.
Using this result we have also been able to obtain for the first time a quantitative
characterization of the statistical stability in the classic time-reversal refocusing ex-
periment. This characterization depends on the radius of the time-reversal mirror, the
size of its elements, and the source bandwidth, as well as the statistics of the medium
fluctuations. As anticipated and observed in experiments [6, 23], when the medium is
strongly scattering, the SNR of the time-reversed refocused wave is given by the num-
ber of elements of the time-reversal mirror times the number of independent frequency
components in the source bandwidth.

The results of the paper are obtained in the white-noise paraxial regime, which
holds when the wavelength is smaller than the correlation length of the medium and
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the beam radius, which are themselves smaller than the propagation distance. In
such a regime backscattering is negligible. Beyond this regime, when backscattering
becomes significant, other asymptotic theories could turn out to be more relevant and
useful, such as radiative transfer theory. This problem is left for future research.

Appendix A. The white-noise paraxial regime and the scintillation
regime In this paper we consider a primary scaling regime in which the solutions of
the Helmholtz equation (2.4) can be approximated in terms of the Green’s function
solving the It6—Schrodinger equation (2.6). This is the white-noise paraxial regime
where the propagation distance is large compared to the correlation length of the
medium which is on the same scale as the beam radius (or source width), which in
turn is large compared to the wavelength. The [t6—-Schrédinger description allows us
to get explicit expressions for the second-order moments of the wave field at a fixed
frequency. In this paper we use the second moment at two frequencies to describe the
mean refocused wave field in time reversal when we average with respect to the random
medium in (2.2) corresponding to averaging with respect to the driving Brownian
motion B in (2.6). It is also important to describe the statistical stability of empirical
covariances or time-reversed fields when formed from one realization of the medium.
Such statistical stability or SNR analysis requires expressions for the fourth moment
of the wave field with the wave field components in the moment evaluated at different
frequencies. In this paper we consider a secondary scaling regime, the scintillation
regime, which allows us to get explicit expressions for the multifrequency moments
of the wave field. The scintillation regime is valid in the paraxial white-noise regime
when, additionally, the correlation length of the medium is small compared to the
beam radius as described in section 5.3.

In this appendix we discuss these two scaling regimes, the paraxial white-noise and
scintillation regimes, and the relation to the It6—Schrédinger equation, and we refer
to [13, 15] for the full derivation. Consider (z, x) satisfying the Helmholtz equation
(2.4). Let o be the standard deviation of the fluctuations of the index of refraction
n in this equation. Moreover, assume here that the random fluctuations of the index
of refraction is isotropic and denote by [. the correlation length of the fluctuations,
by A the wavelength, by L the typical propagation distance, and by r, the transverse
radius of the initial beam, which in this paper corresponds to the dimension of the
time-reversal mirror. We introduce the wavenumber defined by

(A.1) k===

with ¢, the background wave speed. In this framework the variance C(0) of the
Brownian field in the It6-Schrédinger equation (2.6) is of order 0%/, and the transverse
scale of variation of the covariance function C(z) in (2.8) is of order ..

First, we consider the primary (paraxial white-noise) scaling that leads to the
It6—Schrédinger equation (A.2), which corresponds to zooming in on a high-frequency
beam that propagates over a distance that is large relative to the correlation length
of the medium, which is itself large relative to the wavelength; moreover, the medium
fluctuations are small. Explicitly, we assume the primary scaling when

l l le

o1, e, Eag!

2 3
~0
o L A ¢ :

where 6 is a small dimensionless parameter. We introduce dimensionless coordinates
by
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k/

!
_¥ ) — 62 (P
0 v(LZ' l.x') =6 V(G,:l:),

T =l.x, z= L, k
with v being the relative fluctuations of the random medium (2.2). Then dropping
“primes” we find that in dimensionless coordinates the Helmholtz equation reads

(0202 + A,) @ + Zé (1+0*2 (Z.2)) i’ =o.

We look for the behavior of the slowly varying envelope v? for propagation distances
of order one in the dimensionless coordinates

@’ (z,z) = exp (i];—j)ve(z, x)

that satisfies (by the chain rule)
92827}9 + | 2ik0 Ug + A ’UG + 7]6 V( m)ve =0
z z T 91/2 9’ .

Heuristically, when # < 1 the backscattering term 6202v? can be neglected, and
we obtain a Schriodinger-type equation in which the potential fluctuates in z on the
scale @ and is of amplitude §~'/2. This diffusion approximation then gives the It6—
Schrodinger equation or white-noise limit driven by a Brownian field

(A.2) 2ikdv + Agvdz + k*vodB(z,x) =0,

or (2.6). This heuristic derivation can be made rigorous as shown in [13]. This
equation is written in Stratonovich form as represented by the o symbol. This reflects
the fact that we arrive at this description as a scaling limit of a physical model where
the fluctuating random field v multiplying the wave field u has a finite correlation
length in the z-direction. The Stratonovich stochastic integral can be interpreted in
the simplest case as the limit when the integrand is evaluated at the midpoint of
the interval of increment of the driving Brownian field and thus naturally appears in
the diffusion limit when v is replaced by a driving Brownian field. Note that the It
interpretation of (A.2) has the form

(A.3) dv = isz dz —
In this representation the last term integrates to a zero-mean martingale term, and
the added damping term is the Stratonovich corrector. We then have for the mean
field v = E[v]: ,
(A.4) 0,0 = iAz@ _F (’;(0)@.
Here the damping term reflects scattering and transfer of energy from the coherent
part of the wave field to the incoherent part so that the mean field is exponentially
damped. Indeed the reciprocal of the damping parameter was referred to as the
scattering mean free path in (5.29) and characterizes the distance a coherent wave
can travel before wave energy is scattered to the incoherent part.

The representation (A.3) gives closed equations for moments of all orders. We
can easily solve explicitly the first-order moment in (A.4) and also the second-order
moment equations at a single frequency. As mentioned, however, there is no explicit

2 .
b CE;(O) vdz + %v dB(z,x).
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solution for the fourth moment equations. We discuss now the secondary scaling limit
that we refer to as the scintillation regime where we can solve explicitly for the fourth
moment both in the single frequency case (and also in the multifrequency case up to
a second-order lateral scattering function that can be explicitly characterized in the
case of relatively strong scattering). In the scintillation regime the correlation length
of the medium /. is smaller than the initial beam radius r,. Moreover, the medium
fluctuations are weak, and the beam propagates deep into the medium. We then get
the modified scaling picture

(A.5) — ~eg, — ~fe, Xwﬁfl, 0% ~ 0%,

and we assume 0 < ¢ < 1. This means that the paraxial white-noise limit 8 — 0 is
taken first, and we find

2ikdv® + Ay dz + k*0° 0 dBS(z, ) = 0,

where the radius ¢ of the initial condition is of order e~!, the variance C¢(0) of

the Brownian field B is of order ¢, and the propagation distance Lf is of order

e, Then the limit ¢ — 0 is applied, corresponding to the scintillation regime. In

the regime (A.5) the effective strength k2C¢(0)L¢ of the Brownian field is of order
one since 02l.L/\?> ~ 1. Moreover, L°\/(r¢)? is of order e. That is, the typical
propagation distance is smaller than the Rayleigh length of the initial beam. Here
the Rayleigh length corresponds to the distance when the transverse radius of the
beam has roughly doubled by diffraction in the homogeneous medium case and it is
given by 72 /). Indeed, it is seen in section 5 that the propagation distance at which
relevant phenomena arise in the random case is of the order of r,l./A, which is smaller
than the Rayleigh distance of the homogeneous medium 72 /).
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