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Advances in the field of topological mechanics have highlighted a number of special mechanical
properties of Maxwell lattices, including the ability to focus zero-energy floppy modes and states of
self-stress (SSS) at their edges and interfaces. Due to their topological character, these phenomena
are protected against perturbations in the lattice geometry and material properties, which makes
them robust against the emergence of structural non-idealities, defects, and damage. Recent com-
putational work has shown that the ability of Maxwell lattices to focus stress along prescribed SSS
domain walls can be harnessed for the purpose of protecting other regions in the bulk of the lattice
from detrimental stress concentration and, potentially, inhibiting the onset of fracture mechanisms
at stress hot spots such as holes and cracks. This property provides a powerful, geometry-based tool
for the design of lattice configurations that are robust against damage and fracture. In this work,
we provide a comprehensive experiment-driven exploration of this idea in the context of realistic
structural lattices characterized by non-ideal, finite-thickness hinges. Our experiments document
the onset of pronounced domain wall stress focusing, indicating a remarkable robustness of the po-
larization even in the presence of the dilutive effects of the structural hinges. We also demonstrate
that the polarization protects the lattice against potential failure from defected hinges and cracks in
the bulk. Finally, we illustrate numerically the superiority of SSS domain walls compared to other

trivial forms of reinforcements.

INTRODUCTION

Metamaterials are engineered solids with specially de-
signed qualities, defined by their microstructure, that are
not typically found in nature [1]. In particular, mechani-
cal metamaterials are designed to display unconventional
mechanical properties and exhibit unique responses to
external loading [2, 3]. Several recent developments in
the field of metamaterials have arisen from the injection
of the notion of topological mechanics in the design of
architected media. A class of systems of great inter-
est in topological mechanics is based on the so-called
topological Maxwell lattice. Maxwell lattices have the
same number of constraints and degrees of freedom in
the bulk [4], thus being on the verge of mechanical in-
stability. In two dimensions, this class of lattice includes
square and kagome lattices [5—7]. In the presence of open
boundary conditions (i.e., in a finite domain), topologi-
cal Maxwell lattices have the ability to localize their re-
sponse along their boundaries, making them a mechan-
ical analogue to topological insulators in quantum elec-
tronic systems [8]. Specifically, they can localize zero-
frequency floppy modes along what is referred to as a
“floppy edge,” while leaving the opposite edge rigid, ulti-
mately displaying an asymmetric mechanical response [8—
13]. This topological behavior can be quantified by a po-
larization vector that defines the direction along which
floppy modes tend to exponentially localize. The bulk-
edge correspondence implies that the polarization is not
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an intrinsic property of the edges; rather it is a property
of the bulk that manifests at the edges. Therefore, it is
guaranteed to persist as long as the topological properties
of the bulk are not altered; this immunity is referred to
as topological protection [14, 15]. The ability to localize
deformation at the edges results in an ability to absorb
localized loads without transferring significant stresses
into the bulk, a property that can be exploited for static
cloaking of sharp objects [16] and impact protection.

Recently, relevant work has been devoted to study
the resilience of mechanical and topological properties
in the transition from ideal configurations featuring per-
fect hinges to structural lattices, as they would be ob-
tained via machining, cutting, or 3D-printing. Specifi-
cally, it has been shown that the topological polarization
is preserved, albeit diluted in strength [17, 18], as a re-
sult of the additional interactions between unit cells that
over-constrain the lattices. These kinematics cause the
boundary modes predicted for ideal Maxwell lattices to
migrate to finite frequencies in the form of floppy edge
phonons [19-21]. More directly relevant to this work are
a number of experimental efforts that have characterized
the static mechanical response of structural Maxwell lat-
tices. Paulose et al. investigated layered kagome lattices
and experimentally demonstrated the onset of selective
buckling behavior controlled by the availability of domain
walls [14]. Work by Chapuis et al. experimentally char-
acterized the material properties of topological Maxwell
beam networks capable of localizing stress along non-
linear interfaces [22]. Chen et al. used microtwist mod-
eling to characterize hinged kagome lattices [18]. Due
to the reconfigurability that they easily undergo through
simple relative deformations or relative rotations of the
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FIG. 1. (a) Lattice with SSS domain wall under tensile boundary conditions; a row of unit cells at the top is uniformly
translated axially, and roller boundary conditions restricting axial displacement are applied at the bottom. Colormap shows
von Mises stress. (b) Idealized unit cell geometry with coordinates of the upper triangle marked in centimeters. Primitive
lattice vectors are also marked. (c) Evolution of bulk-to-domain wall stress ratio as a function of normalized hinge thickness.
The trend shows a drop in focusing ability going from thin to thick hinges; nevertheless, even for thick hinges, a considerable

level of focusing is preserved.

triangles, kagome lattices have also been studied for their
potential as transformable metamaterials. In this vein,
Rocklin et al. were able to track the evolution of their
topological behavior as a function of changes in the twist
angle through phase maps that revealed the emergence
of topological phase transitions [23].

In parallel to floppy modes, Maxwell lattices can also
support states of self-stress (SSS), i.e., self-equilibrated
states of stress in the bonds that do not result in net
forces at the lattice sites [8, 14, 22]. When we con-
sider lattices with periodic boundary conditions (infinite
lattices), SSS can develop in the bulk, and are associ-
ated with the existence of directions of aligned bonds,
or fibers, as observed for instance along three major di-
rections in the regular kagome lattice [10]. For the case
of finite lattices, a condition of special interest is the lo-
calization of SSS at interfaces (or domain walls) between
lattice domains. In this vein, Kane and Lubensky showed
that zero modes localize at the interfaces between differ-
ently polarized lattices [8]. Specifically, interfaces ob-
tained by stitching a floppy edge to another floppy edge,
or to a trivial non-polarized region, result in a soft do-
main wall. Conversely, interfaces obtained by stitching
a rigid edge to another rigid edge, or to a non-polarized
region, localize SSS and focus stress. Paulose et al. were
the first to demonstrate experimentally the potential of
SSS domain walls as effective stress guides [14].

Zhang and Mao further investigated SSS of topologi-
cal kagome lattices for their stress focusing and fracture
protection potential [15]. They noted that such stress
localization has an implication of major engineering sig-
nificance: when a conventional material with a crack,
defect, or sharp notch is mechanically loaded, the stress
inevitably focuses at their tips, making them mechanical

hot spots that can potentially lead to catastrophic fail-
ure. In contrast, when a topological Maxwell lattice with
an SSS domain wall is loaded, the stress tends to focus
predominantly on the domain wall even in the presence
of defects, holes, or cracks in the bulk. As a result, the
severe stress concentration effect classically observed at
a crack tip can be avoided or significantly reduced.

The main objective of this study is to assess exper-
imentally the robustness of stress focusing at SSS do-
main walls in structural lattices featuring hinges with
finite thickness. Along with previous experimental stud-
ies, this investigation closes the loop on the question of
whether the topological phenomena of Maxwell lattices
survive in the presence of the structural conditions nat-
urally encountered in working with realistic hinged lat-
tices and, if so, to what degree of dilution. The other
part of our study is devoted to showing how the topolog-
ical attributes of the lattice set them apart from other
mechanical systems in which similar protection may be
sought via fiber reinforcement strategies [24, 25].

STRESS FOCUSING AT SSS DOMAIN WALLS

To first assess the ability of Maxwell metamaterials
to focus stress, we construct a two-dimensional contin-
uum elasticity model featuring two oppositely polarized
regions of unit cells, as shown in Fig. 1(a). The unit
cell for the selected configuration, in its idealized form,
is pictured in Fig. 1(b) with the coordinates for the up-
per triangle marked in centimeters; the primitive lattice
vectors are also marked. The polarization is determined
using the criterion provided in [8], which allows us to cal-
culate the direction of the polarization vector using only
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FIG. 2. (a) SSS domain wall specimen set in MTS load frame, with details of load cell and gripping device with bolted
connections. (b) Top-to-bottom: Close-up of unit cells. Close-up of a single strain gage. Close-up of four strain gages that
are used to monitor decay of axial strain into the bulk with colored markers. (c) FEM model of lattice matching geometry
and pinned boundary conditions of specimen and axial load applied to the holes to mimic action of grippers. The stress map
shows strong localization at the SSS domain wall. Close-up of hinge where the strain is measured by strain gage in the physical
specimen, with inset showing the nodes falling in the area of the strain gage, whose values are averaged to extract the measure
to compare against the gage measurement. (d) Plot of axial strain in the center gage vs. force showing linearity and matching
loading and unloading paths. (e) Experimental strain-force curves displaying nonlinearities in the early loading stages to be
attributed to adjustments in the frame-specimen setup until sufficiently large values of force are reached and calling for a
slope-correction procedure. (f) Axial strain in the hinges of unit cells progressively moving away from the the domain wall:
experimental measurements from the strain gages and numerical estimates from the FEM model are in excellent qualitative
agreement, capturing a sharp decay rate into the bulk while also displaying remarkable quantitative agreement.

the primitive kagome lattice vectors (ap) and the deflec-
tions of the sites of the unit cell relative to the sites of a
regular kagome unit cell (xp):

L3
(apsgn xp)/2 ey
p=1

Rr =

Here, the configuration is polarized in the horizontal di-
rection, making it amenable to mirroring about the verti-
cal axis and stitching. The stitching operation is enabled
by the introduction of a one cell-wide layer of modified
cells to properly join the two subdomains, following a
protocol successfully used in previous works [14, 15, 22].

A finite element model (FEM) of the lattice, 20 unit cells
wide by 12 unit cells tall, is assembled in ABAQUS, using
a mesh of two-dimensional, four-noded plane-stress ele-
ments with appropriate mesh refinement at the hinges.

The model, shown in Fig. 1(a), implements boundary
conditions mimicking as closely as possible those used on
ideal Maxwell lattices in [15], where an axial displace-
ment is applied uniformly to the top row of unit cells
and a roller boundary condition restricting only axial dis-
placement is applied along the bottom row. The hinge
thickness is h = 2 mm in Fig. 1(a). Linear static analysis
reveals a significant amount of stress focusing occurring
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FIG. 3. (a) FEM model of lattice with offset loading. Dashed box marks sampling region for stress. (b) Displacement, von
Mises stress, and axial strain (cell averages) plotted against cell index for cells inside highlighted row, for both the offset and
centered loading cases. Strains and stresses clearly show peaks at the SSS domain wall despite the offset. (c) Decay of axial
strain from the domain wall into the bulk of the lattice, displaying excellent agreement between experiments and numerics.
Inset photo shows specimen in the load frame in the offset configuration, for reference.

at the SSS domain wall of the lattice, with most of the
decay into the bulk occurring within one cell from the
interface. In order to assess this degree of dilution of the
ability to focus stress introduced by the finite thickness
of the structural hinges, we repeat the analysis for sev-
eral hinge thicknesses h, as shown in Fig. 1(c). For each,
we compute a bulk-to-domain wall stress ratio by taking
the von Mises stress averaged over the unit cells in the
bulk (starting one cell away from the domain wall) and
dividing it by a corresponding quantity averaged along
the domain wall. We plot this stress ratio against a nor-
malized hinge thickness in Fig. 1(c). As expected, lower
thicknesses approaching the ideal limit cause a greater
concentration of stress at the domain wall, but a con-
siderable level of focusing is preserved even for thicker
hinges.

We now proceed to demonstrate the stress-focusing be-
havior experimentally. Using the same geometry shown
in Fig. 1, we cut a lattice from a 3.175 mm-thick sheet
of stainless steel using water-jet cutting. Fig. 2(a) shows
the experimental setup for tensile tests in an MTS servo-
hydraulic load frame. It is important to recognize that,
in the loading configuration considered in Fig. 1, which is
ideal for demonstrating the focusing effect, a distributed
force is applied along the entire loaded edge, while op-
erating with a load frame requires that the load is pre-
scribed as a concentrated force. In order to mitigate this
discrepancy, we introduce a modification of the specimen
design, whereby we bound the lattice with two strips of
solid material (geometrically stiffer in-plane than the lat-
tice) at the top and bottom edges, to distribute the con-
centrated load evenly along the edges. At the center of
the top edge, the specimen is fixed to the load frame

through a load cell, which monitors the axial force, and
a gripper that is secured to the lattice through bolted
connections. At the center of the bottom edge, the lat-
tice is connected to an actuating piston through a second
gripper. Four strain gages are attached to the hinge lig-
aments of four cells located at increasing distance from
the domain wall, as shown in Fig. 2(b), to capture the
decay of axial strain from the domain wall into the bulk.
While this setup approximates the conditions of Fig. 1,
the point load is expected to slightly bias the loading
process along the mid line despite the presence of the
solid layer. To capture these conditions in the numer-
ics, we update the FEM model as shown in Fig. 2(c),
where we explicitly model the holes for the bolted con-
nections and apply traction boundary conditions at these
sites. At the bottom edge we apply an axial load along
the bottom halves of the hole perimeters to model the
way in which the bolted connections transfer load from
the loading piston to the lattice. The material properties
are those of the 304 stainless steel used for the speci-
men: Young’s modulus E =200 GPa and Poisson’s ratio
v =0.29. Fig. 2(c) shows levels of stress focusing simi-
lar to Fig. 1(a). The load is capped at 1700 N to avoid
inducing yield in the lattice; as shown in Fig. 2(c), the
maximum stress is 200 MPa, not exceeding the approx-
imate yield stress of 215 MPa for a typical 304 stainless
steel.

We conduct the experiments by loading the lattice to
1700 N at a rate of 20 N/s, while sampling the relative
change in voltage of the strain gages at 2 Hz. In post-
processing, we convert the change in the voltage out-
putted by the strain gages to a measure of axial strain,
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FIG. 4. (a) Von Mises stress field of lattice with cut at a hinge. (b) Close-up of specimen with four cuts, mimicking conditions
of an effective horizontal crack. (c-f) Decay of axial strain in the hinge ligaments from the domain wall into the bulk, for
increasing number of cuts; comparison of FEM calculations and experimental strain gage readings. Numerics and experiments
are in agreement and indicate robust focusing at the domain wall even in the presence of multiple cuts, and consequently
protection of the damage zone. (g) Plot of von Mises stress vs. unit cell index for the lattice with and without cuts, showing
larger sensitivity of von Mises stress to the cuts, compared to axial strain.

Eyy, through shunt calibration and the following formula:

Ry

E,

Yy = x AV
Vik GF * (R.+ R)

@)
where the resistance of the strain gage Ry =120.3 Q, the
resistance of the shunt R = 174800 Q, the gage factor
GF = 2.09, and the input voltage Vi = 1.215 V. AV
is the change in voltage measured in the gage. Fig. 2(d)
shows the history of axial strain in the gage located at
the domain wall (cell 0) vs. the applied force, which
grows linearly. The nearly perfect overlap of the loading
and unloading curves suggests no hysteresis, confirming
that the process remains in the elastic regime. The im-
perfect connections between the specimen and the load
frame, which are especially relevant at low load levels
(when the bolt connections are loose due to their fabri-
cation tolerances) inevitably result in some nonlinearity
in the strain-force curves, shown in Fig. 2(e). To fil-
ter out these spurious effects and probe the gages in the
appropriate linear regime, we extract the slope of the fi-
nal 10% of the curve and extrapolate it over the entire
load history. To extract analogous information for axial
strains in the hinges from the numerics, we proceed as
illustrated in Fig. 2(c): for each hinge, we average strain
values at the nodes of a portion of the mesh inside a 2 X
1 mm rectangle corresponding to the area that is covered
by the strain gage in the specimen. We compare experi-
mental and numerical strains in Fig. 2(f) and we observe
an overall excellent agreement, both in terms of decay
rate, which is nearly perfect, and in terms of quantita-
tive strain estimates, whose difference is less than 8%.
We recognize that, in the lattice configuration consid-
ered so far, the applied load is coaxial to the domain wall.

This observation warrants the question whether this se-

lection of boundary conditions exaggerates the results,
making the observed strain localization along the cen-
ter line a trivial artifact of the load axis selection. To
prove that the localization is non-trivial and actually re-
sulting from the lattice polarization, we consider a mod-
ified configuration in which the load is applied with an
eccentricity from the domain wall. Fig. 3(a) shows the
updated FEM model using the same material properties
and boundary conditions used before. Looking at the
field of von Mises stress, we still observe a substantial lo-
calization at the domain wall. For a clearer comparison,
in Fig. 3(b), for both loading configurations, we sample
the axial displacement, von Mises stress, and axial strain,
averaged over the cell, and plot it against the cell index
along the row of unit cells enclosed in the dashed box.
Unlike the centered loading case, the offset loading pro-
duces a displacement field that grows linearly from left
to right. However, while globally the von Mises stress
and axial strain fields also display similar trends, they
both still feature a clear peak at the domain wall (unit
cell 0). To reproduce the same loading conditions in the
experiment, we leverage the solid edges at the top and
bottom to introduce additional off-center holes to install
the lattice in the offset configuration, as shown in the
inset in Fig. 3(c). The strain values measured by the
gages are plotted in Fig. 3(c) alongside the values in-
ferred from FEM. Here again, numerics and experiments
show good qualitative agreement and confirm the per-
sistence of strong localization at the domain wall. For
completeness, we report some appreciable quantitative
discrepancy between experimental readings and numer-
ics, incidentally mostly occurring at low levels of strain,
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FIG. 5. (a) Schematic of topological kagome lattice with SSS domain wall. Insets show the domain wall region and close-up
of cells directly adjacent to the domain wall. Black and blue dashed boxes identify regions of stress sampling for plots in (e)
and (f), respectively. (b) Schematic of unpolarized regular kagome lattice with a solid wall along its center axis. Insets show
a concentration of stress along the domain wall. (¢) Schematic of topological kagome lattice with SSS domain wall with a cut
introduced at row 5. Insets show the exact location of the cut and the evolution of the stress field around it. The SSS domain
wall keeps focusing stress despite the cut. (d) Schematic of the regular kagome lattice with solid wall and cut introduced at
row 5. Insets show significant concentration of stress at unit cells directly adjacent to the cut. The domain wall does not
focus stress effectively along its length. (e) Plot of (normalized) cell-averaged von Mises stress vs. unit cell index along vertical
sampling region. (f) Plot of (normalized) cell-averaged von Mises stress vs. horizontal unit cell index.

where the sensitivity of the gages and other non-idealities
in the measurements may more heavily affect the read-
ings. However, these deviations do not make the emer-
gence of the localization any less evident.

EVIDENCE OF TOPOLOGICAL PROTECTION
AGAINST DAMAGE

As our next step, we want to verify experimentally the
robustness of the stress focusing against the introduction
of defects in the bulk. To this end, we conduct a series
of finite element analyses and experiments on configura-
tions in which we introduce a variety of cuts in the hinge
ligaments (akin to severed bonds in the ideal treatment
in [15]) to capture the onset of damage zones with pro-
gressively increasing size. Starting with one cut directly
adjacent to the fourth strain gage, we progressively add
cuts to increase the length of an “effective crack.” The

finite element model of the lattice with a single cut is
shown in Fig. 4(a), and a close-up detail of the specimen
showing all four cut hinges is shown in Fig. 4(b).

From the von Mises stress field in Fig. 4(a), we observe
that significant stress focusing persists along the SSS do-
main wall despite the addition of the cut. In Fig. 4(c-
f), we increase the effective length of the “crack.” For
each case we plot the axial strain in the hinge ligaments,
as extracted from the strain gages and computed from
the FEM calculations. Numerics and experiments are in
agreement and capture a strain landscape in which the
focusing at the domain wall remains sharp and largely
unaffected by the cuts. This result demonstrates robust-
ness of the focusing behavior against defects, an effect
afforded by the topological protection inherent to the
lattice. The numerics allow us to take a look at other
local mechanisms of deformation of the hinges beyond
the axial strain that the gages can capture. In Fig. 4(g),
we plot the magnitude of von Mises stress in the hinges
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FIG. 6. (a) Schematic and FEM model of the lattice with long cut across the SSS domain wall. Boxes mark rows sampled
for the von Mises stress. Insets show evolution of stress field in a large diamond-like pattern around the cut. (b) Schematic
and FEM model of lattice with two domain wall cuts highlighting persistent stress focusing along all the uncut portions of the
domain wall, despite the loss of continuity. (c) Plot of domain wall-normalized von Mises stress vs. unit cell for the boxed
rows, showing migration of highest stress away from the domain wall. At the highest sampled row, at the tip of the diamond
region, the stress concentration returns to the domain wall. (d) Plot of stress sampled in the three boxed rows, confirming

strong localization in each portion of the domain wall.

for the right half of the lattice. For this metric, we do
observe a more significant change near the crack tip as
more cuts are introduced. What this result suggests is
that other components of the stress tensor aggregated in
the von Mises stress, other than the axial one, start play-
ing a major role in the deformation of the hinges. These
other components of stress are likely caused by the bend-
ing mechanisms related to the opening of the cut under
uniaxial tension of the lattice. However, it still appears
that four cuts are not enough to completely overwhelm
the stress focusing at the SSS domain wall and nullify
the topological protection of the crack.

COMPARISON WITH BAR-LIKE
REINFORCEMENTS

The SSS domain wall studied thus far acts as a sort
of “reinforcement,” whereby stress and strain are trans-
ferred away from critical locations where we want to
avoid potential failure (e.g., the bulk of the lattice) to-
wards a pre-designed location. This observation begs for
the following question: what aspects, and how much of
the strength of the observed effect, can be attributed to
the topological polarization, rather than to a generic ca-
pability to focus stress displayed by a broader class of
trivial mechanical systems endowed with some form of
reinforcement? In other words, how does an SSS domain

wall compare against a more conventional, non-polarized
lattice featuring a solid bar-like or fiber-like reinforce-
ment? To address this question, we consider a regular
kagome lattice, which is non-polarized, and we endow it
with a vertical solid wall in the form of a slender bar, as
shown in Fig. 5(b); this effectively partitions the lattice
into two subdomains, to mimic the conditions considered
so far for the topological case. While this wall is not
topological, i.e., it does not bound regions with different
topological polarizations, its fiber-like morphology and
orientation with respect to the direction of loading ar-
guably make it an effective pathway for localizing stress.
As shown in the insets in Fig. 5(b), the stress indeed lo-
calizes along the length of the solid wall. If we compare
this outcome against the polarized kagome lattice studied
so far, reported side-by-side in Fig. 5(a), one would be
tempted to conclude that the lattice polarization does not
offer major advantages. An immediate counterargument
could be that, in Fig. 5(a), we preserve a Maxwell cellular
architecture over the whole structure, albeit with a local
change in cell shape at the domain wall; this significantly
limits any detrimental impact introduced by the domain
wall on the mechanical properties (e.g., effective elastic
moduli) and elastodynamic behavior (e.g., domain wall
scattering) of the structure, which are instead severe with
a solid interface.

There are other considerations, more germane to the
discussion on topological polarization, that provide ad-



ditional arguments in support of the superiority of the
topological domain wall. To elucidate these, we proceed
in a similar manner to the previous section and we in-
troduce cuts along the walls for both cases, as shown in
Fig. 5(c) and (d). For the SSS domain wall (Fig. 5(c)),
like the previous results, we observe a local reconfigura-
tion of the stress in the neighborhood of the cut, where
the stress flow necessarily extends to the cells bounding
the domain wall and bypasses the cut. However, the en-
tire domain wall continues to act as an effective stress
guide, despite the cut. In contrast, the same cut ap-
plied to the solid wall makes the stress localized to the
interface drop drastically, as shown in Fig. 5(d). This is a
powerful demonstration of topological protection: as long
as the polarization of the bulk is preserved, the domain
wall conserves its attributes despite major local modifi-
cations of its geometry. The fact that focusing is main-
tained even in these drastic cases, with the stress localiza-
tion systematically bounding the domain wall despite its
snaky profile, represents another eloquent demonstration
of the topological protection. In order to better quantify
these different effects, in Fig. 5(e) we calculate the av-
erage von Mises stress in one-cell-tall sections inside the
vertical region (marked by a black dashed line) and we
plot it (normalized by the highest value) against the ver-
tical unit cell index. This metric is supposed to capture
the degree of homogeneity of the stress along the domain
wall. Clearly, without the cut, the average stress is fairly
constant with either domain wall (gray curves). How-
ever, when we introduce the cuts, the SSS domain wall
continues to focus stress (blue circular markers), while
for the solid wall, all the stress peaks near the cut (or-
ange square markers). Another difference concerns the
strength of the decay into the bulk featured by the two
domain walls, which is captured by the graph in Fig. 5(f),
in which we plot the average cell stress against the cell
index sampled along the horizontal region marked by the
blue dashed line. Clearly, for the SSS domain wall lattice,
even in the presence of a cut, the stress remains effec-
tively localized at the domain wall with sharp decay into
the bulk. In contrast, while the regular kagome lattice
shows good stress focusing when uncut, the cut lattice
actually shows a significant decrease in performance; the
maximum stress is no longer located at the domain wall,
rather it is concentrated in the unit cells immediately
adjacent to the domain wall.

FURTHER EVIDENCE OF DOMAIN WALL’S
TOPOLOGICAL ATTRIBUTES

We further bolster the evidence of the topological pro-
tection granted by the SSS domain wall with two more
FEM models: one featuring a longer cut extending from
the domain wall into the bulk, and the other featur-
ing multiple cuts along it. Starting from the lattice in

Fig. 5(c), we extend the cut through an additional two
unit cells on both sides of the domain wall, as shown in
Fig. 6(a). As visible on the von Mises stress field map, the
introduction of this cut dramatically alters the morphol-
ogy of the stress field about the domain wall to that of
a large diamond-like shape. To quantitatively document
the shape of the localization profile, we plot the stress
(averaged and normalized as in previous cases) along four
rows of cells at different distances from the cut marked
by the dashed boxes in Fig. 6(a). The plot in Fig. 6(c)
shows a consistent pattern, whereby the stress peaks pro-
gressively migrate outwards as we move closer to the cut
rows, with a drop in stress over a larger set of cells across
the cut region. The fact that the localization always oc-
curs at the domain wall (or at the closest solid feature),
regardless of the shape of the interface, confirms that
such localization is guaranteed regardless of the domain
wall morphology - a testament to the power of topolog-
ical protection. For the second model we introduce two
short cuts to the lattice at separate spots along the do-
main wall as shown in Fig. 6(b). We observe that, while
the stress field detours around both cuts, the localization
remains pronounced along each uncut portion of the do-
main wall, even between cuts, despite the interruption of
the effective continuity of the interface. In essence, each
surviving portion of the domain wall still acts as an effec-
tive pathway for the localization of stress. In Fig. 6(d),
we see that the normalized stress plotted along the rows
marked by the shaded boxes undergoes the same evolu-
tion, peaking at the domain wall and rapidly decaying
into the bulk.

CONCLUSION

We have demonstrated topologically protected stress-
focusing behavior in a topological metamaterial with
finite-thickness hinges, through both simulations and ex-
periments. The selected lattice configuration is found to
feature significant stress focusing along the domain wall
between the subdomains. Experiments with strain gages
capture a sharp decay of axial strain measured in the
hinges from the domain wall into the bulk. This strain-
focusing is observed even under the action of highly ec-
centric loading and, more importantly, in the presence of
defects in the bulk. The experiments demonstrate that
the SSS domain wall de facto protects the lattice from
the potential of damage and fracture by mitigating the
stress localization in the neighborhood of stress hot spots
such as the tips of cracks. Finally, through numerics, we
also have been able to demonstrate the superiority of the
topological kagome paradigm over a more generic type of
fiber-reinforced structure.
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