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Advances in the field of topological mechanics have highlighted a number of special mechanical 
properties of Maxwell lattices, including the ability to focus zero-energy floppy modes and states of 

self-stress (SSS) at their edges and interfaces. Due to their topological character, these phenomena 
are protected against perturbations in the lattice geometry and material properties, which makes 
them robust against the emergence of structural non-idealities, defects, and damage. Recent com- 
putational work has shown that the ability of Maxwell lattices to focus stress along prescribed SSS 
domain walls can be harnessed for the purpose of protecting other regions in the bulk of the lattice 
from detrimental stress concentration and, potentially, inhibiting the onset of fracture mechanisms 
at stress hot spots such as holes and cracks. This property provides a powerful, geometry-based tool 

for the design of lattice configurations that are robust against damage and fracture. In this work, 
we provide a comprehensive experiment-driven exploration of this idea in the context of realistic 
structural lattices characterized by non-ideal, finite-thickness hinges. Our experiments document 
the onset of pronounced domain wall stress focusing, indicating a remarkable robustness of the po- 
larization even in the presence of the dilutive effects of the structural hinges. We also demonstrate 
that the polarization protects the lattice against potential failure from defected hinges and cracks in 

the bulk. Finally, we illustrate numerically the superiority of SSS domain walls compared to other 
trivial forms of reinforcements. 

 

INTRODUCTION 
 

Metamaterials are engineered solids with specially de- 

signed qualities, defined by their microstructure, that are 

not typically found in nature [1]. In particular, mechani- 

cal metamaterials are designed to display unconventional 

mechanical properties and exhibit unique responses to 

external loading [2, 3]. Several recent developments in 

the field of metamaterials have arisen from the injection 

of the notion of topological mechanics in the design of 

architected media. A class of systems of great inter- 

est in topological mechanics is based on the so-called 

topological Maxwell lattice. Maxwell lattices have the 

same number of constraints and degrees of freedom in 

the bulk [4], thus being on the verge of mechanical in- 

stability. In two dimensions, this class of lattice includes 

square and kagome lattices [5–7]. In the presence of open 

boundary conditions (i.e., in a finite domain), topologi- 

cal Maxwell lattices have the ability to localize their re- 

sponse along their boundaries, making them a mechan- 

ical analogue to topological insulators in quantum elec- 

tronic systems [8]. Specifically, they can localize zero- 

frequency floppy modes along what is referred to as a 

“floppy edge,” while leaving the opposite edge rigid, ulti- 

mately displaying an asymmetric mechanical response [8– 

13]. This topological behavior can be quantified by a po- 

larization vector that defines the direction along which 

floppy modes tend to exponentially localize. The bulk- 

edge correspondence implies that the polarization is not 
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an intrinsic property of the edges; rather it is a property 

of the bulk that manifests at the edges. Therefore, it is 

guaranteed to persist as long as the topological properties 

of the bulk are not altered; this immunity is referred to 

as topological protection [14, 15]. The ability to localize 

deformation at the edges results in an ability to absorb 

localized loads without transferring significant stresses 

into the bulk, a property that can be exploited for static 

cloaking of sharp objects [16] and impact protection. 

Recently, relevant work has been devoted to study 

the resilience of mechanical and topological properties 

in the transition from ideal configurations featuring per- 

fect hinges to structural lattices, as they would be ob- 

tained via machining, cutting, or 3D-printing. Specifi- 

cally, it has been shown that the topological polarization 

is preserved, albeit diluted in strength [17, 18], as a re- 

sult of the additional interactions between unit cells that 

over-constrain the lattices. These kinematics cause the 

boundary modes predicted for ideal Maxwell lattices to 

migrate to finite frequencies in the form of floppy edge 

phonons [19–21]. More directly relevant to this work are 

a number of experimental efforts that have characterized 

the static mechanical response of structural Maxwell lat- 

tices. Paulose et al. investigated layered kagome lattices 

and experimentally demonstrated the onset of selective 

buckling behavior controlled by the availability of domain 

walls [14]. Work by Chapuis et al. experimentally char- 

acterized the material properties of topological Maxwell 

beam networks capable of localizing stress along non- 

linear interfaces [22]. Chen et al. used microtwist mod- 

eling to characterize hinged kagome lattices [18]. Due 

to the reconfigurability that they easily undergo through 

simple relative deformations or relative rotations of the 

ar
X

iv
:2

2
0

9
.1

4
4
6
3
v
1
 
[c

o
n
d
-m

at
.m

tr
l-

sc
i]
 
2

8
 S

ep
 2

0
2
2
 

mailto:sgonella@umn.edu


2 
 

 

 
 

FIG. 1. (a) Lattice with SSS domain wall under tensile boundary conditions; a row of unit cells at the top is uniformly 
translated axially, and roller boundary conditions restricting axial displacement are applied at the bottom. Colormap shows 

von Mises stress. (b) Idealized unit cell geometry with coordinates of the upper triangle marked in centimeters. Primitive 
lattice vectors are also marked. (c) Evolution of bulk-to-domain wall stress ratio as a function of normalized hinge thickness. 
The trend shows a drop in focusing ability going from thin to thick hinges; nevertheless, even for thick hinges, a considerable 
level of focusing is preserved. 

 
 

triangles, kagome lattices have also been studied for their 

potential as transformable metamaterials. In this vein, 

Rocklin et al. were able to track the evolution of their 

topological behavior as a function of changes in the twist 

angle through phase maps that revealed the emergence 

of topological phase transitions [23]. 

In parallel to floppy modes, Maxwell lattices can also 

support states of self-stress (SSS), i.e., self-equilibrated 

states of stress in the bonds that do not result in net 

forces at the lattice sites [8, 14, 22]. When we con- 

sider lattices with periodic boundary conditions (infinite 

lattices), SSS can develop in the bulk, and are associ- 

ated with the existence of directions of aligned bonds, 

or fibers, as observed for instance along three major di- 

rections in the regular kagome lattice [10]. For the case 

of finite lattices, a condition of special interest is the lo- 

calization of SSS at interfaces (or domain walls) between 

lattice domains. In this vein, Kane and Lubensky showed 

that zero modes localize at the interfaces between differ- 

ently polarized lattices [8]. Specifically, interfaces ob- 

tained by stitching a floppy edge to another floppy edge, 

or to a trivial non-polarized region, result in a soft do- 

main wall. Conversely, interfaces obtained by stitching 

a rigid edge to another rigid edge, or to a non-polarized 

region, localize SSS and focus stress. Paulose et al. were 

the first to demonstrate experimentally the potential of 

SSS domain walls as effective stress guides [14]. 

Zhang and Mao further investigated SSS of topologi- 

cal kagome lattices for their stress focusing and fracture 

protection potential [15]. They noted that such stress 

localization has an implication of major engineering sig- 

nificance: when a conventional material with a crack, 

defect, or sharp notch is mechanically loaded, the stress 

inevitably focuses at their tips, making them mechanical 

 

hot spots that can potentially lead to catastrophic fail- 

ure. In contrast, when a topological Maxwell lattice with 

an SSS domain wall is loaded, the stress tends to focus 

predominantly on the domain wall even in the presence 

of defects, holes, or cracks in the bulk. As a result, the 

severe stress concentration effect classically observed at 

a crack tip can be avoided or significantly reduced. 

The main objective of this study is to assess exper- 

imentally the robustness of stress focusing at SSS do- 

main walls in structural lattices featuring hinges with 

finite thickness. Along with previous experimental stud- 

ies, this investigation closes the loop on the question of 

whether the topological phenomena of Maxwell lattices 

survive in the presence of the structural conditions nat- 

urally encountered in working with realistic hinged lat- 

tices and, if so, to what degree of dilution. The other 

part of our study is devoted to showing how the topolog- 

ical attributes of the lattice set them apart from other 

mechanical systems in which similar protection may be 

sought via fiber reinforcement strategies [24, 25]. 

 

 
STRESS FOCUSING AT SSS DOMAIN WALLS 

 
To first assess the ability of Maxwell metamaterials 

to focus stress, we construct a two-dimensional contin- 

uum elasticity model featuring two oppositely polarized 

regions of unit cells, as shown in Fig. 1(a). The unit 

cell for the selected configuration, in its idealized form, 

is pictured in Fig. 1(b) with the coordinates for the up- 

per triangle marked in centimeters; the primitive lattice 

vectors are also marked. The polarization is determined 

using the criterion provided in [8], which allows us to cal- 

culate the direction of the polarization vector using only 
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FIG. 2. (a) SSS domain wall specimen set in MTS load frame, with details of load cell and gripping device with bolted 

connections. (b) Top-to-bottom: Close-up of unit cells. Close-up of a single strain gage. Close-up of four strain gages that 
are used to monitor decay of axial strain into the bulk with colored markers. (c) FEM model of lattice matching geometry 
and pinned boundary conditions of specimen and axial load applied to the holes to mimic action of grippers. The stress map 
shows strong localization at the SSS domain wall. Close-up of hinge where the strain is measured by strain gage in the physical 
specimen, with inset showing the nodes falling in the area of the strain gage, whose values are averaged to extract the measure 
to compare against the gage measurement. (d) Plot of axial strain in the center gage vs. force showing linearity and matching 
loading and unloading paths. (e) Experimental strain-force curves displaying nonlinearities in the early loading stages to be 

attributed to adjustments in the frame-specimen setup until sufficiently large values of force are reached and calling for a 
slope-correction procedure. (f) Axial strain in the hinges of unit cells progressively moving away from the the domain wall: 
experimental measurements from the strain gages and numerical estimates from the FEM model are in excellent qualitative 
agreement, capturing a sharp decay rate into the bulk while also displaying remarkable quantitative agreement. 

 
 

the primitive kagome lattice vectors (ap) and the deflec- 

tions of the sites of the unit cell relative to the sites of a 

regular kagome unit cell (xp): 

RT = 
L

(apsgn xp)/2 (1) 

p=1 
 

Here, the configuration is polarized in the horizontal di- 

rection, making it amenable to mirroring about the verti- 

cal axis and stitching. The stitching operation is enabled 

by the introduction of a one cell-wide layer of modified 

cells to properly join the two subdomains, following a 

protocol successfully used in previous works [14, 15, 22]. 

 

A finite element model (FEM) of the lattice, 20 unit cells 

wide by 12 unit cells tall, is assembled in ABAQUS, using 

a mesh of two-dimensional, four-noded plane-stress ele- 

ments with appropriate mesh refinement at the hinges. 
 

The model, shown in Fig. 1(a), implements boundary 

conditions mimicking as closely as possible those used on 

ideal Maxwell lattices in [15], where an axial displace- 

ment is applied uniformly to the top row of unit cells 

and a roller boundary condition restricting only axial dis- 

placement is applied along the bottom row. The hinge 

thickness is h̄ = 2 mm in Fig. 1(a). Linear static analysis 

reveals a significant amount of stress focusing occurring 
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FIG. 3. (a) FEM model of lattice with offset loading. Dashed box marks sampling region for stress. (b) Displacement, von 

Mises stress, and axial strain (cell averages) plotted against cell index for cells inside highlighted row, for both the offset and 
centered loading cases. Strains and stresses clearly show peaks at the SSS domain wall despite the offset. (c) Decay of axial 
strain from the domain wall into the bulk of the lattice, displaying excellent agreement between experiments and numerics. 
Inset photo shows specimen in the load frame in the offset configuration, for reference. 

 
 

at the SSS domain wall of the lattice, with most of the 

decay into the bulk occurring within one cell from the 

interface. In order to assess this degree of dilution of the 

ability to focus stress introduced by the finite thickness 

of the structural hinges, we repeat the analysis for sev- 

eral hinge thicknesses h, as shown in Fig. 1(c). For each, 

we compute a bulk-to-domain wall stress ratio by taking 

the von Mises stress averaged over the unit cells in the 

bulk (starting one cell away from the domain wall) and 

dividing it by a corresponding quantity averaged along 

the domain wall. We plot this stress ratio against a nor- 

malized hinge thickness in Fig. 1(c). As expected, lower 

thicknesses approaching the ideal limit cause a greater 

concentration of stress at the domain wall, but a con- 

siderable level of focusing is preserved even for thicker 

hinges. 

We now proceed to demonstrate the stress-focusing be- 

havior experimentally. Using the same geometry shown 

in Fig. 1, we cut a lattice from a 3.175 mm-thick sheet 

of stainless steel using water-jet cutting. Fig. 2(a) shows 

the experimental setup for tensile tests in an MTS servo- 

hydraulic load frame. It is important to recognize that, 

in the loading configuration considered in Fig. 1, which is 

ideal for demonstrating the focusing effect, a distributed 

force is applied along the entire loaded edge, while op- 

erating with a load frame requires that the load is pre- 

scribed as a concentrated force. In order to mitigate this 

discrepancy, we introduce a modification of the specimen 

design, whereby we bound the lattice with two strips of 

solid material (geometrically stiffer in-plane than the lat- 

tice) at the top and bottom edges, to distribute the con- 

centrated load evenly along the edges. At the center of 

the top edge, the specimen is fixed to the load frame 

 

through a load cell, which monitors the axial force, and 

a gripper that is secured to the lattice through bolted 

connections. At the center of the bottom edge, the lat- 

tice is connected to an actuating piston through a second 

gripper. Four strain gages are attached to the hinge lig- 

aments of four cells located at increasing distance from 

the domain wall, as shown in Fig. 2(b), to capture the 

decay of axial strain from the domain wall into the bulk. 

While this setup approximates the conditions of Fig. 1, 

the point load is expected to slightly bias the loading 

process along the mid line despite the presence of the 

solid layer. To capture these conditions in the numer- 

ics, we update the FEM model as shown in Fig. 2(c), 

where we explicitly model the holes for the bolted con- 

nections and apply traction boundary conditions at these 

sites. At the bottom edge we apply an axial load along 

the bottom halves of the hole perimeters to model the 

way in which the bolted connections transfer load from 

the loading piston to the lattice. The material properties 

are those of the 304 stainless steel used for the speci- 

men: Young’s modulus E = 200 GPa and Poisson’s ratio 

ν = 0.29. Fig. 2(c) shows levels of stress focusing simi- 

lar to Fig. 1(a). The load is capped at 1700 N to avoid 

inducing yield in the lattice; as shown in Fig. 2(c), the 

maximum stress is 200 MPa, not exceeding the approx- 

imate yield stress of 215 MPa for a typical 304 stainless 

steel. 

 

We conduct the experiments by loading the lattice to 

1700 N at a rate of 20 N/s, while sampling the relative 

change in voltage of the strain gages at 2 Hz. In post- 

processing, we convert the change in the voltage out- 

putted by the strain gages to a measure of axial strain, 
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FIG. 4. (a) Von Mises stress field of lattice with cut at a hinge. (b) Close-up of specimen with four cuts, mimicking conditions 
of an effective horizontal crack. (c-f) Decay of axial strain in the hinge ligaments from the domain wall into the bulk, for 
increasing number of cuts; comparison of FEM calculations and experimental strain gage readings. Numerics and experiments 
are in agreement and indicate robust focusing at the domain wall even in the presence of multiple cuts, and consequently 
protection of the damage zone. (g) Plot of von Mises stress vs. unit cell index for the lattice with and without cuts, showing 

larger sensitivity of von Mises stress to the cuts, compared to axial strain. 

 
 

Eyy, through shunt calibration and the following formula: 
 

This observation warrants the question whether this se- 

lection of boundary conditions exaggerates the results, 

Eyy 

 Rg  

= 
V ∗ GF ∗ (R + R ) 

∗ ∆V (2)
 

making the observed strain localization along the cen- 

ter line a trivial artifact of the load axis selection. To 

prove that the localization is non-trivial and actually re- 
where the resistance of the strain gage Rg = 120.3 Ω, the 

resistance of the shunt Rc = 174800 Ω, the gage factor 

GF = 2.09, and the input voltage Vi = 1.215 V . ∆V 

is the change in voltage measured in the gage. Fig. 2(d) 

shows the history of axial strain in the gage located at 

the domain wall (cell 0) vs. the applied force, which 

grows linearly. The nearly perfect overlap of the loading 

and unloading curves suggests no hysteresis, confirming 

that the process remains in the elastic regime. The im- 

perfect connections between the specimen and the load 

frame, which are especially relevant at low load levels 

(when the bolt connections are loose due to their fabri- 

cation tolerances) inevitably result in some nonlinearity 

in the strain-force curves, shown in Fig. 2(e). To fil- 

ter out these spurious effects and probe the gages in the 

appropriate linear regime, we extract the slope of the fi- 

nal 10% of the curve and extrapolate it over the entire 

load history. To extract analogous information for axial 

strains in the hinges from the numerics, we proceed as 

illustrated in Fig. 2(c): for each hinge, we average strain 

values at the nodes of a portion of the mesh inside a 2 × 
1 mm rectangle corresponding to the area that is covered 

by the strain gage in the specimen. We compare experi- 

mental and numerical strains in Fig. 2(f) and we observe 

an overall excellent agreement, both in terms of decay 

rate, which is nearly perfect, and in terms of quantita- 

tive strain estimates, whose difference is less than 8%. 

We recognize that, in the lattice configuration consid- 

ered so far, the applied load is coaxial to the domain wall. 

sulting from the lattice polarization, we consider a mod- 

ified configuration in which the load is applied with an 

eccentricity from the domain wall. Fig. 3(a) shows the 

updated FEM model using the same material properties 

and boundary conditions used before. Looking at the 

field of von Mises stress, we still observe a substantial lo- 

calization at the domain wall. For a clearer comparison, 

in Fig. 3(b), for both loading configurations, we sample 

the axial displacement, von Mises stress, and axial strain, 

averaged over the cell, and plot it against the cell index 

along the row of unit cells enclosed in the dashed box. 

Unlike the centered loading case, the offset loading pro- 

duces a displacement field that grows linearly from left 

to right. However, while globally the von Mises stress 

and axial strain fields also display similar trends, they 

both still feature a clear peak at the domain wall (unit 

cell 0). To reproduce the same loading conditions in the 

experiment, we leverage the solid edges at the top and 

bottom to introduce additional off-center holes to install 

the lattice in the offset configuration, as shown in the 

inset in Fig. 3(c). The strain values measured by the 

gages are plotted in Fig. 3(c) alongside the values in- 

ferred from FEM. Here again, numerics and experiments 

show good qualitative agreement and confirm the per- 

sistence of strong localization at the domain wall. For 

completeness, we report some appreciable quantitative 

discrepancy between experimental readings and numer- 

ics, incidentally mostly occurring at low levels of strain, 
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FIG. 5. (a) Schematic of topological kagome lattice with SSS domain wall. Insets show the domain wall region and close-up 
of cells directly adjacent to the domain wall. Black and blue dashed boxes identify regions of stress sampling for plots in (e) 
and (f), respectively. (b) Schematic of unpolarized regular kagome lattice with a solid wall along its center axis. Insets show 
a concentration of stress along the domain wall. (c) Schematic of topological kagome lattice with SSS domain wall with a cut 

introduced at row 5. Insets show the exact location of the cut and the evolution of the stress field around it. The SSS domain 
wall keeps focusing stress despite the cut. (d) Schematic of the regular kagome lattice with solid wall and cut introduced at 
row 5. Insets show significant concentration of stress at unit cells directly adjacent to the cut. The domain wall does not 
focus stress effectively along its length. (e) Plot of (normalized) cell-averaged von Mises stress vs. unit cell index along vertical 
sampling region. (f) Plot of (normalized) cell-averaged von Mises stress vs. horizontal unit cell index. 

 
 

where the sensitivity of the gages and other non-idealities 

in the measurements may more heavily affect the read- 

ings. However, these deviations do not make the emer- 

gence of the localization any less evident. 

 

 

EVIDENCE OF TOPOLOGICAL PROTECTION 
AGAINST DAMAGE 

 

As our next step, we want to verify experimentally the 

robustness of the stress focusing against the introduction 

of defects in the bulk. To this end, we conduct a series 

of finite element analyses and experiments on configura- 

tions in which we introduce a variety of cuts in the hinge 

ligaments (akin to severed bonds in the ideal treatment 

in [15]) to capture the onset of damage zones with pro- 

gressively increasing size. Starting with one cut directly 

adjacent to the fourth strain gage, we progressively add 

cuts to increase the length of an “effective crack.” The 

 

finite element model of the lattice with a single cut is 

shown in Fig. 4(a), and a close-up detail of the specimen 

showing all four cut hinges is shown in Fig. 4(b). 

From the von Mises stress field in Fig. 4(a), we observe 

that significant stress focusing persists along the SSS do- 

main wall despite the addition of the cut. In Fig. 4(c- 

f), we increase the effective length of the “crack.” For 

each case we plot the axial strain in the hinge ligaments, 

as extracted from the strain gages and computed from 

the FEM calculations. Numerics and experiments are in 

agreement and capture a strain landscape in which the 

focusing at the domain wall remains sharp and largely 

unaffected by the cuts. This result demonstrates robust- 

ness of the focusing behavior against defects, an effect 

afforded by the topological protection inherent to the 

lattice. The numerics allow us to take a look at other 

local mechanisms of deformation of the hinges beyond 

the axial strain that the gages can capture. In Fig. 4(g), 

we plot the magnitude of von Mises stress in the hinges 
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FIG. 6. (a) Schematic and FEM model of the lattice with long cut across the SSS domain wall. Boxes mark rows sampled 
for the von Mises stress. Insets show evolution of stress field in a large diamond-like pattern around the cut. (b) Schematic 
and FEM model of lattice with two domain wall cuts highlighting persistent stress focusing along all the uncut portions of the 
domain wall, despite the loss of continuity. (c) Plot of domain wall-normalized von Mises stress vs. unit cell for the boxed 
rows, showing migration of highest stress away from the domain wall. At the highest sampled row, at the tip of the diamond 

region, the stress concentration returns to the domain wall. (d) Plot of stress sampled in the three boxed rows, confirming 
strong localization in each portion of the domain wall. 

 
 

for the right half of the lattice. For this metric, we do 

observe a more significant change near the crack tip as 

more cuts are introduced. What this result suggests is 

that other components of the stress tensor aggregated in 

the von Mises stress, other than the axial one, start play- 

ing a major role in the deformation of the hinges. These 

other components of stress are likely caused by the bend- 

ing mechanisms related to the opening of the cut under 

uniaxial tension of the lattice. However, it still appears 

that four cuts are not enough to completely overwhelm 

the stress focusing at the SSS domain wall and nullify 

the topological protection of the crack. 

 

 
COMPARISON WITH BAR-LIKE 

REINFORCEMENTS 
 

The SSS domain wall studied thus far acts as a sort 

of “reinforcement,” whereby stress and strain are trans- 

ferred away from critical locations where we want to 

avoid potential failure (e.g., the bulk of the lattice) to- 

wards a pre-designed location. This observation begs for 

the following question: what aspects, and how much of 

the strength of the observed effect, can be attributed to 

the topological polarization, rather than to a generic ca- 

pability to focus stress displayed by a broader class of 

trivial mechanical systems endowed with some form of 

reinforcement? In other words, how does an SSS domain 

 

wall compare against a more conventional, non-polarized 

lattice featuring a solid bar-like or fiber-like reinforce- 

ment? To address this question, we consider a regular 

kagome lattice, which is non-polarized, and we endow it 

with a vertical solid wall in the form of a slender bar, as 

shown in Fig. 5(b); this effectively partitions the lattice 

into two subdomains, to mimic the conditions considered 

so far for the topological case. While this wall is not 

topological, i.e., it does not bound regions with different 

topological polarizations, its fiber-like morphology and 

orientation with respect to the direction of loading ar- 

guably make it an effective pathway for localizing stress. 

As shown in the insets in Fig. 5(b), the stress indeed lo- 

calizes along the length of the solid wall. If we compare 

this outcome against the polarized kagome lattice studied 

so far, reported side-by-side in Fig. 5(a), one would be 

tempted to conclude that the lattice polarization does not 

offer major advantages. An immediate counterargument 

could be that, in Fig. 5(a), we preserve a Maxwell cellular 

architecture over the whole structure, albeit with a local 

change in cell shape at the domain wall; this significantly 

limits any detrimental impact introduced by the domain 

wall on the mechanical properties (e.g., effective elastic 

moduli) and elastodynamic behavior (e.g., domain wall 

scattering) of the structure, which are instead severe with 

a solid interface. 

There are other considerations, more germane to the 

discussion on topological polarization, that provide ad- 
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ditional arguments in support of the superiority of the 

topological domain wall. To elucidate these, we proceed 

in a similar manner to the previous section and we in- 

troduce cuts along the walls for both cases, as shown in 

Fig. 5(c) and (d). For the SSS domain wall (Fig. 5(c)), 

like the previous results, we observe a local reconfigura- 

tion of the stress in the neighborhood of the cut, where 

the stress flow necessarily extends to the cells bounding 

the domain wall and bypasses the cut. However, the en- 

tire domain wall continues to act as an effective stress 

guide, despite the cut. In contrast, the same cut ap- 

plied to the solid wall makes the stress localized to the 

interface drop drastically, as shown in Fig. 5(d). This is a 

powerful demonstration of topological protection: as long 

as the polarization of the bulk is preserved, the domain 

wall conserves its attributes despite major local modifi- 

cations of its geometry. The fact that focusing is main- 

tained even in these drastic cases, with the stress localiza- 

tion systematically bounding the domain wall despite its 

snaky profile, represents another eloquent demonstration 

of the topological protection. In order to better quantify 

these different effects, in Fig. 5(e) we calculate the av- 

erage von Mises stress in one-cell-tall sections inside the 

vertical region (marked by a black dashed line) and we 

plot it (normalized by the highest value) against the ver- 

tical unit cell index. This metric is supposed to capture 

the degree of homogeneity of the stress along the domain 

wall. Clearly, without the cut, the average stress is fairly 

constant with either domain wall (gray curves). How- 

ever, when we introduce the cuts, the SSS domain wall 

continues to focus stress (blue circular markers), while 

for the solid wall, all the stress peaks near the cut (or- 

ange square markers). Another difference concerns the 

strength of the decay into the bulk featured by the two 

domain walls, which is captured by the graph in Fig. 5(f), 

in which we plot the average cell stress against the cell 

index sampled along the horizontal region marked by the 

blue dashed line. Clearly, for the SSS domain wall lattice, 

even in the presence of a cut, the stress remains effec- 

tively localized at the domain wall with sharp decay into 

the bulk. In contrast, while the regular kagome lattice 

shows good stress focusing when uncut, the cut lattice 

actually shows a significant decrease in performance; the 

maximum stress is no longer located at the domain wall, 

rather it is concentrated in the unit cells immediately 

adjacent to the domain wall. 

 

 
FURTHER EVIDENCE OF DOMAIN WALL’S 

TOPOLOGICAL ATTRIBUTES 

 
We further bolster the evidence of the topological pro- 

tection granted by the SSS domain wall with two more 

FEM models: one featuring a longer cut extending from 

the domain wall into the bulk, and the other featur- 

ing multiple cuts along it.  Starting from the lattice in 

Fig. 5(c), we extend the cut through an additional two 

unit cells on both sides of the domain wall, as shown in 

Fig. 6(a). As visible on the von Mises stress field map, the 

introduction of this cut dramatically alters the morphol- 

ogy of the stress field about the domain wall to that of 

a large diamond-like shape. To quantitatively document 

the shape of the localization profile, we plot the stress 

(averaged and normalized as in previous cases) along four 

rows of cells at different distances from the cut marked 

by the dashed boxes in Fig. 6(a). The plot in Fig. 6(c) 

shows a consistent pattern, whereby the stress peaks pro- 

gressively migrate outwards as we move closer to the cut 

rows, with a drop in stress over a larger set of cells across 

the cut region. The fact that the localization always oc- 

curs at the domain wall (or at the closest solid feature), 

regardless of the shape of the interface, confirms that 

such localization is guaranteed regardless of the domain 

wall morphology - a testament to the power of topolog- 

ical protection. For the second model we introduce two 

short cuts to the lattice at separate spots along the do- 

main wall as shown in Fig. 6(b). We observe that, while 

the stress field detours around both cuts, the localization 

remains pronounced along each uncut portion of the do- 

main wall, even between cuts, despite the interruption of 

the effective continuity of the interface. In essence, each 

surviving portion of the domain wall still acts as an effec- 

tive pathway for the localization of stress. In Fig. 6(d), 

we see that the normalized stress plotted along the rows 

marked by the shaded boxes undergoes the same evolu- 

tion, peaking at the domain wall and rapidly decaying 

into the bulk. 

 

 

 

 

CONCLUSION 
 
 

We have demonstrated topologically protected stress- 

focusing behavior in a topological metamaterial with 

finite-thickness hinges, through both simulations and ex- 

periments. The selected lattice configuration is found to 

feature significant stress focusing along the domain wall 

between the subdomains. Experiments with strain gages 

capture a sharp decay of axial strain measured in the 

hinges from the domain wall into the bulk. This strain- 

focusing is observed even under the action of highly ec- 

centric loading and, more importantly, in the presence of 

defects in the bulk. The experiments demonstrate that 

the SSS domain wall de facto protects the lattice from 

the potential of damage and fracture by mitigating the 

stress localization in the neighborhood of stress hot spots 

such as the tips of cracks. Finally, through numerics, we 

also have been able to demonstrate the superiority of the 

topological kagome paradigm over a more generic type of 

fiber-reinforced structure. 



9 
 

ACKNOWLEDGMENTS 
 
 

The authors acknowledge the support of the National 

Science Foundation (award CMMI-2027000). The au- 

thors are grateful to the Minnesota Supercomputing In- 

stitute for access to software and computational resources 

used in the simulations. The authors are also grateful to 

Pouyan Asem for his help with the experimental setup, 

and to Harry Liu for assistance with the theoretical back- 

ground. S.G. is especially grateful to Kuan Zhang for his 

deep insight and discussions on the problem. 

 
 

 

[1] T. Cui, D. Smith, and R. Liu, Metamaterials: Theory, 
Design, and Applications (2010) pp. 1–367. 

[2] K. Bertoldi, V. Vitelli, J. Christensen, and M. Hecke, 
Flexible mechanical metamaterials, Nature Reviews Ma- 
terials 2, 17066 (2017). 

[3] J. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, and N. Fang, 
Mechanical metamaterials and their engineering appli- 
cations, Advanced Engineering Materials 21, 1800864 
(2019). 

[4] J. C. Maxwell, L. on the calculation of the equilibrium 
and stiffness of frames, The London, Edinburgh, and 
Dublin Philosophical Magazine and Journal of Science 
27, 294 (1864). 

[5] A. S. Phani, J. Woodhouse, and N. Fleck, Wave propa- 
gation in two-dimensional periodic lattices, The Journal 
of the Acoustical Society of America 119, 1995 (2006). 

[6] A. Souslov, A. J. Liu, and T. C. Lubensky, Elasticity and 
response in nearly isostatic periodic lattices, Phys. Rev. 

Lett. 103, 205503 (2009). 
[7] X. Mao, O. Stenull, and T. C. Lubensky, Elasticity of 

a filamentous kagome lattice, Phys. Rev. E 87, 042602 

(2013). 
[8] C. Kane and T. Lubensky, Topological boundary modes 

in isostatic lattices, Nature Physics 10, 39 (2013). 
[9] D. Z. Rocklin, Directional mechanical response in the 

bulk of topological metamaterials, New Journal of 

Physics 19, 065004 (2017). 
[10] X. Mao and T. C. Lubensky, Maxwell lattices and topo- 

logical mechanics, Annual Review of Condensed Matter 
Physics 9, 413 (2018). 

[11] G. Baardink, A. Souslov, J. Paulose, and V. Vitelli, Lo- 
calizing softness and stress along loops in 3d topological 

metamaterials, Proceedings of the National Academy of 
Sciences 115, 489 (2018). 

[12] D. Zhou, L. Zhang, and X. Mao, Topological edge floppy 
modes in disordered fiber networks, Phys. Rev. Lett. 120, 
068003 (2018). 

[13] D. Zhou, L. Zhang, and X. Mao, Topological boundary 
floppy modes in quasicrystals, Phys. Rev. X 9, 021054 

(2019). 
[14] J. Paulose, A. Meeussen, and V. Vitelli, Selective buck- 

ling via states of self-stress in topological metamaterials, 
Proceedings of the National Academy of Sciences of the 
United States of America 112, 7639 (2015). 

[15] L. Zhang and X. Mao, Fracturing of topological maxwell 
lattices, New Journal of Physics 20, 063034 (2018). 

[16] W. Zunker and S. Gonella, Soft topological lattice wheels, 
Extreme Mechanics Letters 46, 101344 (2021). 

[17] M. Pishvar and R. Harne, Soft topological metamateri- 
als with pronounced polar elasticity in mechanical and 
dynamic behaviors, Physical Review Applied 14, 044034 
(2020). 

[18] H. Chen, S. Wang, X. Li, and G. Huang, Two- 

dimensional microtwist modeling of topological polariza- 
tion in hinged kagome lattices and its experimental val- 
idation, International Journal of Solids and Structures 
254-255, 111891 (2022). 

[19] J. Ma, D. Zhou, K. Sun, X. Mao, and S. Gonella, Edge 

modes and asymmetric wave transport in topological lat- 
tices: Experimental characterization at finite frequencies, 
Phys. Rev. Lett. 121, 094301 (2018). 

[20] O. Stenull and T. Lubensky, Signatures of topological 
phonons in superisostatic lattices, Physical Review Let- 

ters 122, 248002 (2019). 
[21] M. Charara, K. Sun, X. Mao, and S. Gonella, Topologi- 

cal flexural modes in polarized bilayer lattices, Physical 
Review Applied 16, 064011 (2021). 

[22] J. N. Chapuis, T. S. Lumpe, and K. Shea, Mechani- 
cal properties of topological metamaterials, Extreme Me- 
chanics Letters 55, 101835 (2022). 

[23] D. Rocklin, S. Zhou, K. Sun, and X. Mao, Transformable 
topological mechanical metamaterials, Nature Communi- 
cations 8, 14201 (2017). 

[24] S. Erden and K. Ho, Fiber Technology for Fiber- 
Reinforced Composites (2017) pp. 51–79. 

[25] I. Giorgio, A. Ciallella, and D. Scerrato, A study about 
the impact of the topological arrangement of fibers on 
fiber-reinforced composites: Some guidelines aiming at 
the development of new ultra-stiff and ultra-soft meta- 

materials, International Journal of Solids and Structures 
203, 73 (2020). 

https://doi.org/10.1007/978-1-4419-0573-4
https://doi.org/10.1007/978-1-4419-0573-4
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1002/adem.201800864
https://doi.org/10.1002/adem.201800864
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1121/1.2179748
https://doi.org/10.1121/1.2179748
https://doi.org/10.1103/PhysRevLett.103.205503
https://doi.org/10.1103/PhysRevLett.103.205503
https://doi.org/10.1103/PhysRevE.87.042602
https://doi.org/10.1103/PhysRevE.87.042602
https://doi.org/10.1038/nphys2835
https://doi.org/10.1088/1367-2630/aa7155
https://doi.org/10.1088/1367-2630/aa7155
https://doi.org/10.1146/annurev-conmatphys-033117-054235
https://doi.org/10.1146/annurev-conmatphys-033117-054235
https://doi.org/10.1073/pnas.1713826115
https://doi.org/10.1073/pnas.1713826115
https://doi.org/10.1103/PhysRevLett.120.068003
https://doi.org/10.1103/PhysRevLett.120.068003
https://doi.org/10.1103/PhysRevX.9.021054
https://doi.org/10.1103/PhysRevX.9.021054
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1088/1367-2630/aac765
https://doi.org/10.1016/j.eml.2021.101344
https://doi.org/10.1103/PhysRevApplied.14.044034
https://doi.org/10.1103/PhysRevApplied.14.044034
https://doi.org/10.1103/PhysRevLett.121.094301
https://doi.org/10.1103/PhysRevLett.122.248002
https://doi.org/10.1103/PhysRevLett.122.248002
https://doi.org/10.1103/PhysRevApplied.16.064011
https://doi.org/10.1103/PhysRevApplied.16.064011
https://doi.org/10.1038/ncomms14201
https://doi.org/10.1038/ncomms14201

