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Dynamics of self-dual kagome metamaterials and the emergence of fragile topology
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Recent years have seen the discovery of systems featuring fragile topological states. These states
of matter lack certain protection attributes typically associated with topology and are therefore
characterized by weaker signatures that make them elusive to observe. Moreover, they are typically
confined to special symmetry classes and, in general, rarely studied in the context of phononic
media. In this article, we theoretically predict the emergence of fragile topological bands in the
spectrum of a twisted kagome elastic lattice with three-fold rotational symmetry, in the so-called
self-dual configuration. A necessary requirement is that the lattice is a structural metamaterial, in
which the role of the hinges is played by elastic finite-thickness ligaments. The interplay between
the edge modes appearing in the bandgaps bounding the fragile topological states is also responsible
for the emergence of corner modes at selected corners of a finite hexagonal domain, which qualifies
the lattice as a second-order topological insulator. We demonstrate our findings through a series
of experiments via 3D Scanning Laser Doppler Vibrometry conducted on a physical prototype.
The selected configuration stands out for its remarkable geometric simplicity and ease of physical

implementation in the panorama of dynamical systems exhibiting fragile topology.

Topological Insulators (TIs), materials with a gapped
band structure characterized by topological invariants,
have been gaining increasing attention due to their
unique topologically protected edge dynamics. As a re-
sult of the so-called bulk-boundary correspondence, they
can support edge and interface modes that are immune
to back scattering and robust against perturbations that
preserve the topology of the bulk [1, 2]. Recently, the
concept of Higher-Order Topological Insulators (HOTIs)
has been proposed: a nth-order HOTI of D-dimensions
is characterized by topologically protected modes that
manifest at a D -« dimensional boundary [3, 4]. For
instance, two-dimensional second-order TIs host no 1D
edge states but exhibit oD topological signatures local-
ized at their corners [5]. Recent studies have introduced
a new class of so-called fragile topological states [6—
17]. A set of m frequency bands of a Hamiltonian
with some symmetries is called fragile topological if the
bands cannot be represented by Symmetric (constrained
by the symmetries of the Hamiltonian) exponentially
Localized Wannier Functions (SLWF) -generalization of
atomic orbitals- in real space; but addition of n triv-
ial bands to those bands allows for representation of the
total (m + n) bands by SLWF [6—8, 11]. This is in con-
trast with conventional topological bands where addition
of trivial bands does not trivialize the topology. This
fragility of the topology means that there cannot ex-
ist robust edge states protected by the nontrivial topol-
ogy at the boundary of such a system. However, fragile
topological systems in 2D are predicted to have corner
modes [8, 10, 13, 18]. Furthermore, since fragile topology
may be protected by only spatial symmetries [11], they
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are ubiquitously observed in both quantum and classical
systems [12, 16, 19].

Another class of systems of interest in topological me-
chanics is Maxwell lattices. Maxwell lattices have an
equal number of degrees of freedom and constraints in
the bulk [20, 21] and are therefore on the verge of me-
chanical instability [22—25]. A typical example in 2D is
the kagome lattice, whose unit cell consists of two tri-
angles pinned at a vertex and relatively rotated by a
given twist: equilateral triangles rotated by 180° yield
the classical regular kagome lattice, while other angles
yield twisted kagome configurations [26]. Several stud-
ies have addressed the mechanical properties [26—31] and
wave propagation characteristics [32—35] of these lattices
under a variety of cell shapes and effective hinge condi-
tions. Fruchart et al. [36] showed that twisted kagome
lattices exhibit a special type of duality, whereby a hid-
den symmetry guarantees that any pair of configurations
that are symmetrically located (in configuration space)
with respect to a critical configuration referred to as
self-dual, display identical phonon spectra - a condition
that is however relaxed working with non-ideal lattices
of beams [37]. The self-dual case presents peculiar dy-
namics, with a two-fold degenerate spectrum over the
entire Brillouin Zone (BZ). Relevant work has been de-
voted to study the faith of mechanical and topological
properties in the transition from ideal configurations fea-
turing perfect hinges to structural lattices, as they would
be obtained via machining, cutting or 3D printing. It
has been shown that several properties, including the
topological polarization, are preserved, albeit diluted in
strength, and the zero modes are shifted to finite frequen-
cies becoming floppy edge phonons [38, 39].

In this article, we delve deeper into the dynamics of
self-dual kagome lattices in search for additional emerg-
ing behavior that can be linked to their topology. In
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FIG. 1: (a) Geometry of ideal self-dual twisted kagome unit
cell. (b) Corresponding band diagram with first BZ shown in
inset. (c) Wigner-Seitz unit cell (left) of structural self-dual
twisted kagome lattice, labeled with red dot, green square
and blue cross markers representing 1a, 2b, and 3¢ Wyckoff
positions, respectively, and its equivalent conventional unit
cell (right). (d) Corresponding band diagram with emerging
isolated modes 3 and 4 highlighted in maroon. The labels de-
note irrep at HSPs for the first four bands. The corresponding
mode shapes are shown in SM.S-1) (e) Effects of the ligaments
softening (r = Eligaments/ Evuik) on the frequency fr of the
HSP T for bands 3-5, with insets showing the neighborhood of
the hinge and the corresponding band diagram near I', color-
coded proportionally to the softness ratio.

the vein of the above-mentioned discourse on structural
lattices, our first goal is to study the evolution of the
band diagram when the cell is modeled as a 2D elastody-
namic continuum. We show that the continuum elastic-
ity treatment is responsible for a dramatic band recon-
figuration that involves a change in the BandGap (BG)
landscape. Our second and more important goal is to
determine whether this transition is responsible for the
emergence of new phenomena rooted in the lattice topol-
ogy. We are going to show that the band reconfiguration
results in the emergence of fragile topological states and
we are documenting the availability of different sets of
corner modes.

Fig. 1(a) shows the unit cell of a twisted kagome lattice
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comprising two 9o°-rotated equilateral triangles, a config-
uration known as self-dual [36], with e; and e; denoting
the primitive lattice vectors. Here, the lattice consists
of rods supporting only tension/compression connected
with ideal hinges that allow free rotation. The corre-
sponding band diagram, shown in Fig. 1(b), features a
two-fold degenerate spectrum over the entire BZ, shown
in the inset, with three pairs of overlapping bands and
a double Dirac cone at the High Symmetry Point (HSP)
I’ between bands 3-6. The freguency is normalized as
Q = &/w., where w. = /L E/p is the first natural
frequency of a rod of length L, Young’s modulus E and
density p. Fig. 1(c) documents the transition to a struc-
tural lattice configuration, in which the triangles are elas-
tic domains and the role of the hinges is played by finite-
thickness ligaments. These changes induce a profound re-
configuration of the band structure (Fig. 1(d)), whereby
(i) the two-fold degenerate spectrum is lifted, (ii) a sec-
ond BG is opened between bands 4 and 5, leading to the
appearance of two isolated finite frequency modes, and
(iii) a quadratic band crossing is observed at the HSP T,
between the third and the fourth bands. We also study
the evolution of the band diagram upon progressive soft-
ening of the hinges in order to reveal the existence of
possible phase transitions. We introduce softening by
reducing the Young’s modulus of the material in the im-
mediate neighborhood of the hinges, as captured by the
ratio r = Eiigaments/ Evux Where, for instance, r = 1%
yields very soft hinges while r = 100% returns the mono-
material cell. Specifically, here we monitor the frequen-
cies fr of bands 3-5 at the HSP T, whose evolution with
r is illustrated in Fig. 1(e). We find that, as the hinge
properties evolve, the gap closes and reopens at a cer-
tain value of the control parameter (here " 6.6%), with
the quadratic crossing migrating from below to above
the gap, which unequivocally denotes a phase transition.
The insets show, for a few selected configurations, the
immediate neighborhood of the hinge along with the cor-
responding band diagram (limited to the neighborhood
of the HSP I') with the hinge and the bands color-coded
proportionally to the softness ratio. Interestingly, at the
critical point, the band crossing becomes linear and ex-
hibits a three-fold degeneracy with an almost flat band
(Dirac-like cone). Very recently, a dynamic homogeniza-
tion framework has been established to explicitly demon-
strate the linear wave motion within a spectral neighbor-
hood of Dirac points in periodic origami structures [40].

We now claim that the nature of the above-mentioned
phase transition is topological. Specifically, reopen-
ing the BG induces fragile topological states within
bands 3 and 4 protected by three-fold rotation symme-
try Cs. This can be shown using the recently developed
method of symmetry indicators [41, 42], band structure
combinatorics [43] and Topological Quantum Chemistry
(TQC) [44, 45]. This method provides a full classifica-
tion of topological states protected by spatial symme-
tries, and can detect any such topological states by inves-
tigating how the eigenfunctions of the bands transform
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FIG. 2: (a) Band diagram of a 15-cell structural self-dual twisted kagome super-cell with Bloch-periodic boundary condition
along e; and open boundary condition along e;. (b-e) Mode shapes of degenerate edge mode pairs, sampled at {= 0, rand
highlighted with green markers, within the first (b-c) and second (d-e) BG. (f-g) Eigenfrequencies (f) in an interval encompassing
the second BG, with three degenerate modes at f=16.01 kHz, highlighted in the inset, and corresponding corner mode (from
linear superposition of the degenerate modes) shown in (g). (j-m) Snapshots of wavefields for narrow-band burst excitation
with carrier frequency at ~16.01 kHz in the second BG (signal in (m) and corresponding spectrum in (1)), during the 30-cycle
energy pumping stage (j) and relaxation time (k) of the excitation. The wavefields suggest strong localization of the second BG
corner modes. (h-i),(n-q) Same quantities discussed in (f-g),(j-m) for corner modes in the first BG at 7.34 kHz. The wavefields
suggest weak corner localization promoted by activation of edge modes. Colors are proportional to the in-plane displacement

normalized by the maximum value.

under symmetries, i.e., the representation labels of the
eigenfunctions, at the HSPs of the BZ. Conveniently, all
possible representation labels that a set of bands gener-
ated by SLWF can feature, are tabulated in the Bilbao
Crystallography Server (BCS) [46—50]. We start by not-
ing that our system falls under G = p31m wallpaper
group. The HSPs I', K and M (shown in the inset of
Fig. 1(b)) have little co-groups Cs., Csv and Cs, respec-
tively. The eigenfunctions at these HSPs transform under
the representations of the corresponding little co-group.
From FEM, we find that degenerate eigenfunctions at T
point of bands 3-4 transform under 2d irreducible repre-
sentation (irrep) I's, the eigenfunctions at M transform
under 1d irreps Mz and M, and the eigenfunctions at K
transform under 1d irreps K> and Ki, which are denoted
in Fig. 1(d) (see also Supplemental Material (SM).S-1 for
corresponding eigenfunctions). A quick check with BCS
reveals that these irreps cannot be represented by any
SLWF, which implies that these two bands are topolog-
ical [44]. As a result, the change in behavior observed
at r = 6.6% in Fig. 1(e) can be qualified as a topologi-
cal phase transition. In fact, the irreps of bands 3-4 are
consistent with the formal difference:

(ET G)QbO(ET G)1a, (1)

where E represents two SLWFs with angular momentum
1 (px and py type orbitals), where 1a and 2b are Wyck-
off positions as shown in Fig. 1(c). In words, this means

that irrep labels for bands 3 and 4 are consistent with
the difference between pr py type orbitals at position
2b (see Fig. 1(c); position 2b has multiplicity 2 in the unit
cell, so in total 4 orbitals in the unit cell) and px py
type orbitals at position 1a (position 1a has multiplicity
1 in the unit cell, in total 2 orbitals in the unit cell).
Furthermore, since the irrep labels of the bands 1-2 are
I's —M; @4, K; and are consistent with the SLWFs
(E ©)1a (which renders bands 1-2 topologically triv-
ial), together bands 1-4 can be represented by SLWFs
(E B)2», meaning that bands 1-4 together are topo-
logically trivial. This is the distinguishing characteristic
of fragile topological bands - addition of trivial bands to
them render the topology trivial [11]. We also verify the
topological non-triviality of bands 3-4 by calculating the
winding of hexagonal Wilson Loop (WL) [7] (see SM.S-
2 for details of WL calculation). Importantly, here the
fragile topology of bands 3-4 is protected by C; (that this
fragile topology only depends on Cs, not the mirrors can
be understood from the fact that, if we break the mir-
ror symmetry perturbatively such that bands 3-4 are still
isolated from other bands, the irrep labels at the HSPs
would be I'n@I's —2M; —2K;i, which also correspond
to fragile topological bands [11]). To our knowledge, this
result is the first realization of C; symmetry-protected
fragile topology in a phononic system.

We now shift our attention to the two BGs bound-
ing the fragile topological states, looking for any edge
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FIG. 3: (a) Experimental setup for 3D SLDV testing of structural self-dual twisted kagome hexagonal prototype. (b-c)

Experimental (b) and simulation (c) transmissibility curve with regions of attenuation highlighted in light purple.

(d-e) Optical

mode reconstruction from experimental (d) and simulation (e) data; the reconstruction involves collecting time histories at the
sampling points marked by red dots in the insets and subjecting them to 2D-DFT, repeating the procedure for several carrier
frequencies in the interval of interest. The 2D-DFT yields spectral amplitude contours, here superimposed to the band diagram
to highlight modal activation. (f-h) Snapshots of the wavefields induced through burst excitations within the pass-band (f),
and at the frequencies of the first (g) and second (h) BGs corner modes, respectively, with colorbar referring to the amplitude
of velocity of the scan points. 2D-DFT and the wavefield data are normalized by the highest value in their respective data sets

and proportionally color-coded.

and corner modes comprised therein. To this end, we
first perform a super-cell analysis on a 15-cell super-cell
modeled with the same finite element discretization used
for the unit cell analysis. The resulting band diagram
is plotted in Fig. 2(a). We observe a pair of degenerate
bands in each BG (shaded regions) indicated by green
lines. The super-cell mode shapes at =0 and =1
within the first and the second BGs (marked by the green
markers) are displayed in Figs. 2(b-c) and (d-e), respec-
tively. The high decay rate and the emergence of lo-
calization at two opposite edges qualify these branches
as non-polarized edge modes, as expected for a twisted
kagome lattice (see SM.S-3 for discussion on the edge
mode emergence). Then, we calculate eigenfrequencies
and mode shapes for a finite hexagon-shaped domain as
shown in Figs. 2(g) and (i). The eigenfrequencies in in-
tervals encompassing the two BGs are shown in Figs. 2(f)
and 2(h). The insets zoom in on two sets of three degen-
erate modes inside the second (f =16.01 kHz) and first (f
=7.34 kHz) BG; the corresponding mode shapes depicted
in Figs. 2(g) and 2(i), obtained by superposition of the
degenerate modes, reveal localization of deformation at
the corners of the hexagon, which allow us to qualify
these as corner modes and label the lattice a 2D second
order TI. Interestingly, the mode shapes of the two sets
feature localizations at alternating corner locations and
have distinct morphological characteristics. Specifically,
corner modes appearing in the first BG have lower decay

rate, likely due to their higher proximity to (and contam-
ination from) the bulk band and the edge modes observ-
able in the top portion of the gap. Conversely, the second
BG corner modes show stronger localization. Additional
evidence of the differences between the two sets of cor-
ner modes is found via full-scale transient simulations,
in which we excite the bottom-right corner (marked with
a black star) of the domain with 30-cycle narrow-band
tone burst force excitations with carrier frequencies of
16.01 and 7.34 kHz, corresponding to the second BG and
first BG corner modes, respectively (time histories and
spectra are depicted in Figs. 2(m),(q) and Figs. 2(1),(p)).
For each carrier, two snapshots of the resulting wave-
fields are shown in Figs. 2(j),(k) for the second BG and
Figs. 2(n),(o) for the first BG. For the second BG, we ob-
serve strongly localized deformation in the neighborhood
of the excitation point, matching the mode shape pattern
in Fig. 2(g) and confirming the notion that the second BG
corner modes minimally leak into edge and bulk modes.
In contrast, the wavefield for the first BG corner modes
shows very different dynamics. While in the early time
snapshot of Fig. 2(n) some degree of localization is estab-
lished around the excitation point, the signal eventually
travels along the edge and eventually migrates to the ad-
jacent corner, as visible in Fig. 2(0). This transfer can be
explained by the combination of three factors: the lack
of a corner mode for the excited corner in the first BG,
the availability of a corner mode, at that same frequency,



in the adjacent corner, and the spectral proximity of the
signal carrier to prominent edge modes.

We substantiate the theoretical findings discussed
above - emergence of fragile topological states and es-
tablishment of corner modes - through a series of laser
virbometry experiments performed on a physical proto-
type, whose setup is depicted in Fig. 3(a). All details
on prototype fabrication, laser vibrometer specifications
and setup are provided in Methodl. First, we want to
demonstrate experimentally the opening of the second
BG, which is absent in the ideal self-dual kagome lat-
tice, as a result of the finite-thickness hinges of the struc-
tural metamaterial. To this end, we prescribe a broad-
band pseudo-random excitation at the point marked by
the yellow dot (Fig. 3(a)), measure the in-plane velocity
at the designated sampling points inside the green box
(Fig. 3(a)), and normalize the average value by that of the
excitation point to construct a measure of transmissibil-
ity versus frequency, plotted in Fig. 3(b). An analogous
transmissibility curve, plotted in Fig. 3(c), is obtained
via full-scale steady-state simulation of a finite hexagonal
domain under sustained harmonic excitation, by sweep-
ing the frequency. Both curves, in reasonable agreement,
feature two distinct regions of attenuation, highlighted in
light purple, supporting the existence of finite frequency
isolated band(s) in the mid-frequency spectrum. The at-
tenuation intervals are overall in satisfactory agreement
with the BGs predicted via Bloch analysis (Fig. 1(d)).
(See also SM..S-4 for details on the discrepancies between
experiments and theory)

We now seek evidence of the fragile topological nature
of the intermediate bands by experimentally reconstruct-
ing the morphological characteristics of the branches of
the band diagram. To this end, we collect the time his-
tories of the lateral in-plane velocity at evenly distanced
points along the I'-K direction (red dots in the insets
of the Figs. 3(d),(e), for experiment and simulation, re-
spectively) for several tone burst excitation signals with
different carrier frequencies within the pass-band regions.
Subsequently, we perform 2D Discrete Fourier Transform
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(2D-DFT) on each spatio-temporal data set and we ag-
gregate all the resulting spectral amplitude contours and
superimpose them on the band diagram (see SM.S-5 for
full depiction). Overall the contours of the bursts popu-
late the spectral plane in a way that follows the morpho-
logical attributes of the band diagram. Focusing on the
mid-frequency range, the peculiar shape of the third and
forth modes associated with fragile topology, featuring
the bands crossing at I without retouching elsewhere at
the boundary of the BZ [or at the other HSPs] is cap-
tured perfectly. Finally, we conduct three experiments
with three distinct tone bursts (applied at the bottom
corner) at three carrier frequencies falling in the acoustic
pass-band, first BG and second BG. The objective here is
to reconstruct experimentally the wave propagation pat-
terns established in different frequency regimes and doc-
ument the establishment of corner modes. In Fig. 3(f)
a carrier frequency of ~3 kHz generates a wavefield that
propagates through the bulk, which is the signature of
pass-band behavior. For an excitation in the first BG
(Fig. 3(g)), we observe wave propagation along the edge
and accumulation at the next available corner. The be-
havior is consistent with the localized modal landscape in
the first BG, in which the corner modes do not appear at
the set of corners that include the excitation point and,
moreover, well-defined edge modes exist in the gap. In
contrast, for excitation in the second BG, we observe a
highly localized and persistent corner mode (Fig. 3(h)),
even after long relaxation times for the bursts.

In conclusion, in this article, we have provided an un-
equivocal experimental demonstration of the existence of
special optical modes protected by fragile topology and
the emergence of a diverse landscape of corner modes in
the dynamics of self-dual kagome metamaterials.
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I. METHOD
A. Material properties and specimen geometry

We build a finite element model of the hexagonal meta-
material consisting of 108 cells, discretized with a mesh
of plane-stress quadrilateral isoparametric elements, with
appropriate mesh refinement in the neighborhood of the
hinges where we expect concentration of deformation.
This modeling is done using the software GMSH and ex-
ported as a “.STL” file for the manufacturing process.
Fig. 4 shows the geometry of the fabricated specimen ob-
tained via water-jet cutting from a 2-mm thick sheet of
Aluminum. The hexagonal domain has six unit cells on
each edge. All the sides of the triangles in the kagome
lattice and the widths of the ligaments constituting the
structural hinges are 45 mm and 0.9 mm, respectively
(see insets). The material properties of Aluminum are:
Young’s modulus E = 71 GPa, Poisson’s ratio v = 0.33
and density p = 2700 kg/m3.
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FIG. 4: Hexagonal prototype manufactured via Water-jet
cutting from Aluminum thin sheet, with insets indicating di-
mensions and showing details of the hinges.

B. Experimental procedure for transmissibility
analysis

The setup depicted in Fig. 3(a) shows the specimen
vertically constrained via boundary supports and the
three scanning laser heads of the (Polytec PSV 400 3D
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Scanning Laser Doppler Vibrometer (SLDV) required to
acquire in-plane velocity measurements. The excitation
is applied by an electromechanical shaker (Briiel & Kjaer
Type 4810) with an amplifier (Briiel & Kjaer Type 2718)
at the yellow dot probing the lattice surface. In-plane
velocity is measured at three scan points per triangle.
Retro-reflective tape is applied at the scan points to in-
crease the reflectivity and reduce noise in the data. A
broadband pseudo-random excitation is applied to excite
a broad range of frequencies. To supply enough energy
at higher frequency to the shaker, we apply the signal in
the 0-20 kHz range in two 10-kHz increments, prescrib-
ing higher amplitudes in the second step to yield roughly
equal amount of energy injection for both intervals.

C. Band diagram reconstruction via 2D-DFT and
wavefield acquisition

For transient analysis, we modify the specimen setup
such that it is vertically constrained only from one edge
while the opposite edge is free as shown in the inset of
Fig. 3(d). This setup allows better investigating the be-
havior of the corners, while still allowing measurements
in the bulk. To reconstruct the band diagram, we sepa-
rately apply 11 Hann-windowed burst excitations span-
ning both pass-band regions (with carrier frequencies
of~ 2,3,4,5,8,9,10,11,12,13,13.7 kHz) via a stinger
probing the lattice in-plane at the bottom corner. We
employ 5-cycle and 25-cycle bursts for the first 4 signals
within the acoustic modes and the other 7 signals within
the optical bands, respectively. The high number of cycle
bursts help to excite narrower-band spectra, which is im-
portant in the reconstruction of the optical bands, where
we seek evidence of fragile topology, since the branches
are relatively flat in that range. We apply a high-pass
filter (embedded in the vibrometer software) to filter out
the low-frequency response dominated by spurious am-
bient vibrations. The in-plane and out-of-plane velocity
components are measured by the laser heads at each of
the 12 scan points denoted by red dots in Fig. 3(d), which
lie along the I'— K direction. The time histories of the X
and y” in-plane components of the velocity, which corre-
spond to lateral and axial components with respect to the
selected direction, are then subjected to 2D-DFT, per-
formed in MATLAB, (see SM.S-5) to obtain the spectral
amplitude contour maps shown in Fig. 3(d). We use a
similar setup to reconstruct the wavefield patterns estab-
lished in the bulk and on the edges of the specimen. We
use three different tone bursts with carrier frequencies of
~ 3, ~ 6.85,and ~ 15 kHz, lying in the pass-band, first
BG and second BG, respectively. The measurements are
performed at three scan points per each triangle of the
lattice to strike a balance between the accuracy of the
achieved spatial reconstruction of motion and the parsi-
mony of the sensing strategy. As a standard procedure
in time-domain laser vibrometry, we prescribe enough re-
laxation time to ensure that bursts have fully dissipated
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by damping before the next measurement is taken. The (X~ y~ time) data cube. The slices of this cube represents
wavefield data is exported to MATLAB in the form of a wavefields at different time instants.

Supplemental Material

S-1. MODE SHAPES OF THE LOWEST FOUR BANDS AT THE HIGH SYMMETRY POINTS (HSP)
OF THE BRILLOUIN ZONE (BZ)

Mode 1 Mode 2 Mode 3 Mode 4

W ) IS ) [ ™
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FIG. S1: Deformation of the unit cell corresponding to the eigenfunctions at HSPs I (first row), M (second row) and K (third
row). Mode numbers are counted from the lowest band upward. The irreducible representation (irrep) labels are marked along
with the mode shapes.

In Fig. S1, we show the mode shapes of the the lowest four bands at the HSPs. The lowest two modes at T are just
the two uniform translations. Since translation transforms as a vector, they form I's representation (see the Bilbao
Crystallography Server (BCS) for the notation [1—3]). Modes 3 and 4 at I are even and odd under horizontal mirror
(passing through the center of the unit cell) reflection, but transform into each other under Cs, hence they also form
I's representation. The modes at M each,/form the basis of M or M, representation depending on if they are even or
odd under the mirror parallel to (-1/2, 3/2) direction and passing through the center of the unit cell. The lowest
two modes at K transform into each other under mirror reflection and Cs, hence they form K3 representation. Mode
3 (4) at K transforms into itself under C; but is odd (even) under the horizontal mirror; hence it forms K> (K1)
representation.

S-2.  WILSON LOOP (WL) CALCULATION

In the main text we established the fact that the fragile topology of bulk bands 3-4 is protected by three-fold rotation
symmetry Cs. Here, we will show that the nontrivial topology of the fragile bands can be captured by the winding
of a hexagonal WL (see Fig. S2(a)). Hexagonal WL was introduced in [4] (for a good review on WLs see [5]) and
was used on a tight binding model with p3mi symmetry. Here, we have p31m space group, but we show analytically
(slightly modifying the expression in [4] to adapt it to p31m space group) that the eigenvalues of the hexagonal WL



for bands 3-4 still winds. To do so, we start by setting the lattice vectors and reciprocal lattice vectors to be

e1=ag" \/ -

e=a — %+ 337
2 2 2
ar 1n (S1)
_ Y 3%+ 1y
81 = 3a 2 2

such that e; -g; = 2md;. Written in the basis of g; and g», the HSPs are given by I' = (0, 0), M = (1/2, 0),
Mi=(0,1/2), Mii=(-1/2,1/2), K= (1/3,1/3), K = (4/3, 2/3). As shown in Fig. S2(a), the hexagonal WL at a
distance A from the I point is defined as:

Wi(A) =Wuan/3,—20/3)—a/3,-4an/3) Wan/3,~an/3)— (-2n/3,-20/3) Wi—2n/3,-20/3) (~4a/3,20/3)% S2)
Wi—ans3,20/3)— (—2n/3,40/3) Wi—2n/3,40/3)— 20/3,20/3) Wian/3,20/3)— (40/3,-20/3)5
where Wk, —k, is defined on a straight line joining k; and k; as
mn kq:rkl
Wi, —x, = (Ui P(K)|ug,),
k (S3)

Peb(k)

) (ugl,

i€bands being considered

where [ug)is the at" eigenvector (of the modified dynamical matrix D(k) = M -2D(K)M -1/2 where M is mass

matrix) at momentum k, the ordered product is being taken over N points on the straight line joining k; and ko
with some discretization of the line into NV points (see Fig. S2(a)), and P (k) is the projection operator onto the bands
under consideration at point k. Note that in the limit of N - oo, Wk, -k, is a unitary matrix satisfying [5]:

w-1 = wt = Wk —x . (S4)
ky -k ky —k 1 2

Therefore, Wi(A) is also unitary and its eigenvalues are of the form e®). If we only consider bands 3 and 4,

Wh,3-4(A) is a 2 x 2 matrix. In the following, using the irrep labels of band 3-4 at HSPs, we prove that 64) (A)

and 62, (A) (e @ and &%% M being the eigenvalues of Wh3-4(A)) wind in the opposite direction as shown in
Fig. S2(b).

" [Modes:1-2 Modes:3-4

s Modeszs'f/-

] 0.5 ]

2A 2A

Modes:1-4

FIG. S2: (a) Descritized hexggonal loops using for WL calculation. The outer loop represents BZ and the distance of each
loop from the HSP I'is 4mA/ 3a. (b) WL of the first-second bands (top left), third-fourth bands (top right), fifth-sixth bands
(bottom left), first-fourth bands (bottom right).
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To this end, we define a Wilson line over the path P = (-2A/3,4A/3) « (2A/3,2A/3) « (4A/3, -2A/3):

Wp(A) = W_an/3,40/3)—(2n/3,20/3) Wian/3,20/3)— (4r/3,-20/3)- (S5)

Then, the following is true:

Wi(A) = Wezp (A) Weyp (A) We (A)
= CWe(A)C2CWe (A)C ! We (4)

= CWe(A)C ! We (A)C 1 We (4)
= (G1Wr(A))3,

(S6)

where CsP is the path obtained by rotating P counterclockwise by an angle 2m/3 around the I point, and we used

C3 = C3l. Defining W3(A) = C31We(A), we have Wi(A) = (W3(A))3. Since Wr(A) has matrix elements between
|w@nsa,—2as3)) and |w-2a/34n/3), and C; ! has matrix elements between |ux) and |uq1k), the matrix elements of

W3(A) are
C O

Wi(A) = (Whnsz—ons3 1G1 1U-2n/3.40/3 ) Y-2n/3.an/3 | B WP 1Y 5 0ns5))s  (S7)

lebands being considered

which implies that under some unitary gauge transformation of the eigenvectors [umip 3, —ons3)) = G Wz, —2n/3)>
W5 transforms covariantly (i.e., W53 - GW3Gt); as a result the eigenvalues of W3(A) are gauge invariant.

Next we show that due to mirror symmetry my (my(x, y) = (x, -y)), the eigenvalues of W3(A) come in pairs
e*®3(N) and consequently, the eigenvalues of Wi(A) come in pairs e*3), To show this, we note that

myWs(A)m-1 = my(,;:IWP A)m?
y y

CsmyWr (A) m!

-1
Csmy W(_an/3,40/3)—(20/3,20/3) %2{\/3,2A/3)«—(4A/3,—2A/3)m y
Camy Wi_on/3,.40/3)—@2a/3,20/3) My Wiop /300 /3)—(a0/3,~20/3) T
y y
=G %ZA/SﬁZA/S)w(2A/3,74A/3) Még/f§3ﬁ4A/3)e(4A/3,—2A/3) o (58)
= (C3W(_an/3,-20/3)— (20/3,~40/3) (C3Wian/3,-an/3)—(an/3,—20/3C ) C3
3 3

= Wian/3,-20/3)—20/3,20/3) Wian/3,20/3)— (—21/3,40/3)C3

= (C; ' W_an/3,40/3)—20/3,20/3) Wian/3,20/3)— (@0/3,-210/3))
= W;1(A),

where going from first to second equality, we used myCS‘—lm—1 = Cs, and in various places we used the fact the
y

properties of W in Eq. S4. This implies that the set of eigenvalues of Ws3(A) and W3!(A) are same, i.e., the
eigenvalues of W3(A) come in pairs e*i63(®),

Now, we specialize to bands 3-4 to check the eigenvalues of W5,3-4(A) and Wh,3-4(A) for different values of A. At
A = 0, we have

Wmn(0) = (u{(r)ljo) |C371|u(%10) ) (S9)

which is the representation matrix of C-! in the basis of eigenvectors of bands 3-4 at T point. Since the irrep label
3

of bands 3-4 is T's, the eigenvalues of W3(0) are @ and @? where @ = (-1+ 39/2. This implies {ei%- ()} =
{e2™3, e 2%3} Consequently, we have

Wf{m(O) = §mn, (SIO)

and {ei%-+0)} = {1,1}.



11

Things are more complicated at A = 1/2:

Ws(1/2) = Cél Wie - kWi (k481 -g2)
=(C; Wk gC3)C; Wk kiig g,
= Wikrg—go)— (k-22)Cs - Wi—K+g1 g
V(g1 - 82) Wit (k-g,)V (81 - gz)C§; Wk kt+g—g »
V(g1 - 82) Wikt (k-g,)V (81-82)C5 (C3Wk—ki+g,-g,C3 )C3 (S11)
V(g1 - 82) Wi (k—g,)V (81 - 82)C5° Wk—g, -k C3
V(g1 - 82) Wi (k—g,)V (81 - 82)C3% Wk—g, —k: C3
C3V(g1i —82) Wkt (k-g,)V (81 - 82)CWk g, i
= Bc,(K + 81 — 82) Wk (k—g,) B (K - 81) Wk—g, -kt

1
CsWs(1/2)Cy

where the matrix V(g) at reciprocal lattice vector g is defined as |uftg) = V ""(8)|uy) (i-e., for singly degenerate
bands V(g) = e~%'x] ), and the sewing matrix Bc (k) is defined as_Bc (k) = (uc x| C3|ux). Now, since the irreps at
the K point are K; and K> (which have character 1 under Cs) for bands 3-4, Bsc (K-gi)=1 = Bc3 (K'+g1-g2).

This implies
Cs W3(1/2)C3} = WKt,_(K_gI)WK—gIEKt =1, (S12)

where we used the properties in Eq. S4. Since Cs is unitary, this implieg ei®-+(1/2h = 11,1} and as a consequence,
{ei®2(1/2)} = f1,1}.

From our analysis above, we see thaf{ e®3+} go from {e2%3, e-27/3}t0 {, 1 Jas A goes from 0 to 1/2. Since
the eigenvalues of W5(A) can only change continuously, the eigenvalues have to cross e*/3 odd number of times.
Hence, going from{ 1, 1} to {1, 1} the eigenvalues of Wr(A) pass through e+ odd number of times as A goes from
0 to 1/2. This proves the winding seen in Fig. S2(b) for bands 3-4.

In case of bands 1- 2, the story is the same at A = 0. However, at A = 1/2, Bc,(K—-g1) = ]_ since the the irrep
label at the K point for these two bands is Kz. Consequently, the eigenvalues of W3(1/2) can be any general phase
e+ This is why for bands 1 — 2, the eigenvalues of log Wk are non-zero at A = 1/2 as can be seen in Fig. S2(b).
Similar things can be shown for bands 5 - 6.

S-3. EXPLANATION FOR THE APPEARANCE OF EDGE MODES IN THE FIRST AND SECOND
BANDGAPS (BG)

The origin of the edge modes in Figs. 2(b-e) can be understood in the following way. Starting from the band
structure of the fully periodic system in Fig. 1(d) of the main text, if we create a super-cell with 15 unit cells in the e;
direction (still with fully periodic boundary condition), each band is going to fold 15 times. Since there are two bands
in Fig. 1(d) below the first BG, there will be 30 bands below the first gap in the super-cell band structure. Similarly,

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

oA
I B R RV

0 1
FIG. S3: Deformation of the unit cell corresponding to the eigenfunctions at the HSPs T" (first row) and M (second row) for the
first six modes. Note that unlike the Wigner-Seitz unit cell in Fig. S1, this choice of unit cell is compatible with the supercell
considered in Figs. 2(a-e) of the main text.

-
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between the first and second BG there will be 30 bands in the super-cell band structure. Now, if we open a boundary
parallel to e of this super-cell, due to the open boundary condition, the band frequencies will change. Some bands
may be pushed up or down in frequency from the bulk bands to go into the bulk gap and, as a result, will become
edge bands. We see such two edge bands in the first BG in Fig. 2(a). We ask if those were pushed up from the bands
below the gap or pushed down from the bands above. This can be answered easily by counting the number of bands
below and above the first BG. We find that below BG1, there are 30 bands where between BG1 and BG2 there are
28 bands. This means that the two edge bands in BG1 were pushed down from bulk bands above BG1.

Another way to confirm this is to compare the mode shapes of the edge modes to the modes shapes of the bulk
modes. We know that the M point (I' and M points) of the bulk single unit cell band structure gets projected to the
&= 1 (€= 0) of the super-cell band structure. Therefore, the edge modes at £ =  corresponding to the edge bands
in BG1 should have the same character as (in other words, it should look like) the mode shape at the M below or
above the gap depending on if the edge gap is pushed up from the bulk below or pushed down from the bulk above,
respectively. Comparison of the edge modes in Fig. 2(c) with the bulk modes in Fig. S3 shows that the edge modes in
Fig. 2(c) has the character of mode 3 at the M point in Fig. S3. Similarly, a comparison of the edge modes in Fig. 2(b)
(¢ = 0) with the bulk modes in Fig. S3 shows that the edge modes in Fig. 2(b) has the character of mode 3 at the
M point in Fig. S3. These considerations confirm that the edge modes in the BG1 are actually pushed down from
the bulk bands just above BG1. Similarly, there are only 28 bulk bands above BG 2 in Fig. 2(a) and the character of
the edge modes in Figs. 2(d-€) is the same as that of mode 5 at I and M in Fig. S3, meaning that the edge modes
in BG2 are pushed down from the bulk bands above BG2. This scenario is reminiscent of Rayleigh waves in elastic
systems, which appear below the bulk acoustic bands.

S-4. NOTE ON THE DISCREPANCY BETWEEN THE EXPERIMENT AND SIMULATION RESULTS

The observed mismatch between experiments and theory shown in Fig. 3(b), which is especially pronounced at the
onset of the higher frequency gap, can be comfortably ascribable to the inevitable deviations of the specimen from
the nominal characteristics of the model. Specifically, variability in the water-jet cutting process is responsible for
a deviation/reduction of the average hinge thickness compared to the nominal 0.9 mm value, de facto softening the
structure. Additionally, differences in material properties, geometric variabilities such as fluctuation of the hinges
thickness from one cell to another and tapered thickness in the out-of-plane direction, and other non-idealities,
including the formation of jagged edges during cutting process, also contribute to these discrepancies.

S-5. 2D DISCRETE FOURIER TRANSFORM (2D-DFT)

Figs. S4(a) and (b) show the reconstruction of the acoustic and optical branches of the band diagram from time
histories over n time instants collected at m points located along the I- K direction, from simulations and experimental
data, respectively.

The procedure involves 2D-DFT of the m xn spatio-temporal data matrix encompassing the time histories at
all the selected points stacked as columns. The outcome of the 2D-DFT is a matrix of spectral amplitudes, which
represents the dependence of spectral amplitudes upon frequency and a scalar wave number sampled along F K.
The simulation data consists of nodal displacements from the FEM transient simulations, while the experimental data
are velocities measured by the vibrometer at the available scan points. For each point, we have two components of
the displacement(velocity) vector, an axial component parallel to the I'-K direction and a lateral one perpendicular
to it. The spectral amplitude contours obtained form the different bursts are superimposed to the band diagram
obtained via unit cell analysis to highlight the most relevant mode activation at each frequency and obtain a piece-
wise reconstruction of the band diagram branches.

Overall, the qualitative behavior of the reconstructed acoustic modes, including the folding at the edge of the
BZ, is captured correctly. Quantitatively, we report a frequency discrepancy that becomes more pronounced as we
approach the onset of the BG. This discrepancy may be in part attributed to spurious boundary effects that are not
accounted for in the band diagram (which assumes an infinite lattice) but can be conspicuous in the finite-domain
transient simulations, especially working with a lattice with low unit cell count. The frequency shifting can also be in
part associated with the fluctuations of material properties that have already been discussed as a probable cause of
the downward shift of the BG onset in the steady-state transmissibility analysis. Interestingly, the agreement is far
superior for the optical branches, which are of interests for the discussion on fragile topology reported in the main
article. A complete understanding of the reasons for the different degree of agreement between acoustic and optical
modes is still missing and warrants additional investigation in future studies. In general, it can be seen that the lateral
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FIG. S4: 2D-DFT plots of the axial and lateral in-plane displacement (velocity) via simulation (a) (experiment (b)) carried
out at several carrier frequencies

component of the displacement(velocity) vector yields a better agreement, which suggests that shear-like mechanisms
may be dominant in the modal characters of these branches.
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