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Recent years have seen the discovery of systems featuring fragile topological states. These states 
of matter lack certain protection attributes typically associated with topology and are therefore 
characterized by weaker signatures that make them elusive to observe. Moreover, they are typically 
confined to special symmetry classes and, in general, rarely studied in the context of phononic 
media. In this article, we theoretically predict the emergence of fragile topological bands in the 
spectrum of a twisted kagome elastic lattice with three-fold rotational symmetry, in the so-called 
self-dual configuration. A necessary requirement is that the lattice is a structural metamaterial, in 
which the role of the hinges is played by elastic finite-thickness ligaments. The interplay between 
the edge modes appearing in the bandgaps bounding the fragile topological states is also responsible 
for the emergence of corner modes at selected corners of a finite hexagonal domain, which qualifies 
the lattice as a second-order topological insulator. We demonstrate our findings through a series 
of experiments via 3D Scanning Laser Doppler Vibrometry conducted on a physical prototype. 
The selected configuration stands out for its remarkable geometric simplicity and ease of physical 
implementation in the panorama of dynamical systems exhibiting fragile topology. 

 
Topological Insulators (TIs), materials with a gapped 

band structure characterized by topological invariants, 
have been gaining increasing attention due to their 
unique topologically protected edge dynamics. As a re- 
sult of the so-called bulk-boundary correspondence, they 
can support edge and interface modes that are immune 
to back scattering and robust against perturbations that 
preserve the topology of the bulk [1, 2]. Recently, the 
concept of Higher-Order Topological Insulators (HOTIs) 
has been proposed: a nth-order HOTI of D-dimensions 
is characterized by topologically protected modes that 
manifest at a D n dimensional boundary [3, 4]. For 
instance, two-dimensional second-order TIs host no 1D 
edge states but exhibit 0D topological signatures local- 
ized at their corners [5]. Recent studies have introduced 
a new class of so-called fragile topological states [6– 
17]. A set of m frequency bands of a Hamiltonian 
with some symmetries is called fragile topological if the 
bands cannot be represented by Symmetric (constrained 
by the symmetries of the Hamiltonian) exponentially 
Localized Wannier Functions (SLWF) -generalization of 
atomic orbitals- in real space; but addition of n triv- 
ial bands to those bands allows for representation of the 
total (m + n) bands by SLWF [6–8, 11]. This is in con- 
trast with conventional topological bands where addition 
of trivial bands does not trivialize the topology. This 
fragility of the topology means that there cannot ex- 
ist robust edge states protected by the nontrivial topol- 
ogy at the boundary of such a system. However, fragile 
topological systems in 2D are predicted to have corner 
modes [8, 10, 13, 18]. Furthermore, since fragile topology 
may be protected by only spatial symmetries [11], they 

 
 

 
∗Electronic address: sgonella@umn.edu 

are ubiquitously observed in both quantum and classical 
systems [12, 16, 19]. 

Another class of systems of interest in topological me- 
chanics is Maxwell lattices. Maxwell lattices have an 
equal number of degrees of freedom and constraints in 
the bulk [20, 21] and are therefore on the verge of me- 
chanical instability [22–25]. A typical example in 2D is 
the kagome lattice, whose unit cell consists of two tri- 
angles pinned at a vertex and relatively rotated by a 

given twist: equilateral triangles rotated by 180◦ yield 

the classical regular kagome lattice, while other angles 
yield twisted kagome configurations [26]. Several stud- 
ies have addressed the mechanical properties [26–31] and 
wave propagation characteristics [32–35] of these lattices 
under a variety of cell shapes and effective hinge condi- 
tions. Fruchart et al. [36] showed that twisted kagome 
lattices exhibit a special type of duality, whereby a hid- 
den symmetry guarantees that any pair of configurations 
that are symmetrically located (in configuration space) 
with respect to a critical configuration referred to as 
self-dual, display identical phonon spectra - a condition 
that is however relaxed working with non-ideal lattices 
of beams [37]. The self-dual case presents peculiar dy- 
namics, with a two-fold degenerate spectrum over the 
entire Brillouin Zone (BZ). Relevant work has been de- 
voted to study the faith of mechanical and topological 
properties in the transition from ideal configurations fea- 
turing perfect hinges to structural lattices, as they would 
be obtained via machining, cutting or 3D printing. It 
has been shown that several properties, including the 
topological polarization, are preserved, albeit diluted in 
strength, and the zero modes are shifted to finite frequen- 
cies becoming floppy edge phonons [38, 39]. 

In this article, we delve deeper into the dynamics of 
self-dual kagome lattices in search for additional emerg- 
ing behavior that can be linked to their topology. In 
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comprising two 90◦-rotated equilateral triangles, a config- 

uration known as self-dual [36], with e1 and e2 denoting 
the primitive lattice vectors. Here, the lattice consists 
of rods supporting only tension/compression connected 
with ideal hinges that allow free rotation. The corre- 
sponding band diagram, shown in Fig. 1(b), features a 
two-fold degenerate spectrum over the entire BZ, shown 
in the inset, with three pairs of overlapping bands and 
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a double Dirac cone at the High Symmetry Point (HSP) 
Γ between bands 3-6. The frequency is normalized as 

Ω = ω/ω◦, where ω◦ = π/L  E/ρ is the first natural 
frequency of a rod of length L, Young’s modulus E and 
density ρ. Fig. 1(c) documents the transition to a struc- 
tural lattice configuration, in which the triangles are elas- 
tic domains and the role of the hinges is played by finite- 
thickness ligaments. These changes induce a profound re- 
configuration of the band structure (Fig. 1(d)), whereby 
(i) the two-fold degenerate spectrum is lifted, (ii) a sec- 
ond BG is opened between bands 4 and 5, leading to the 
appearance of two isolated finite frequency modes, and 
(iii) a quadratic band crossing is observed at the HSP Γ, 
between the third and the fourth bands. We also study 
the evolution of the band diagram upon progressive soft- 
ening of the hinges in order to reveal the existence of 
possible phase transitions. We introduce softening by 
reducing the Young’s modulus of the material in the im- 
mediate neighborhood of the hinges, as captured by the 
ratio r = Eligaments/Ebulk where, for instance, r = 1% 
yields very soft hinges while r = 100% returns the mono- 
material cell. Specifically, here we monitor the frequen- 

FIG. 1: (a) Geometry of ideal self-dual twisted kagome unit 
cell. (b) Corresponding band diagram with first BZ shown in 
inset. (c) Wigner-Seitz unit cell (left) of structural self-dual 
twisted kagome lattice, labeled with red dot, green square 
and blue cross markers representing 1a, 2b, and 3c Wyckoff 
positions, respectively, and its equivalent conventional unit 
cell (right). (d) Corresponding band diagram with emerging 
isolated modes 3 and 4 highlighted in maroon. The labels de- 
note irrep at HSPs for the first four bands. The corresponding 
mode shapes are shown in SM.S-1) (e) Effects of the ligaments 
softening (r = Eligaments/Ebulk) on the frequency fΓ of the 
HSP Γ for bands 3-5, with insets showing the neighborhood of 
the hinge and the corresponding band diagram near Γ, color- 
coded proportionally to the softness ratio. 

 

 
the vein of the above-mentioned discourse on structural 
lattices, our first goal is to study the evolution of the 
band diagram when the cell is modeled as a 2D elastody- 
namic continuum. We show that the continuum elastic- 
ity treatment is responsible for a dramatic band recon- 
figuration that involves a change in the BandGap (BG) 
landscape. Our second and more important goal is to 
determine whether this transition is responsible for the 
emergence of new phenomena rooted in the lattice topol- 
ogy. We are going to show that the band reconfiguration 
results in the emergence of fragile topological states and 
we are documenting the availability of different sets of 
corner modes. 

Fig. 1(a) shows the unit cell of a twisted kagome lattice 

cies fΓ of bands 3-5 at the HSP Γ, whose evolution with 
r is illustrated in Fig. 1(e). We find that, as the hinge 
properties evolve, the gap closes and reopens at a cer- 
tain value of the control parameter (here "'" 6.6%), with 
the quadratic crossing migrating from below to above 
the gap, which unequivocally denotes a phase transition. 
The insets show, for a few selected configurations, the 
immediate neighborhood of the hinge along with the cor- 
responding band diagram (limited to the neighborhood 
of the HSP Γ) with the hinge and the bands color-coded 
proportionally to the softness ratio. Interestingly, at the 
critical point, the band crossing becomes linear and ex- 
hibits a three-fold degeneracy with an almost flat band 
(Dirac-like cone). Very recently, a dynamic homogeniza- 
tion framework has been established to explicitly demon- 
strate the linear wave motion within a spectral neighbor- 
hood of Dirac points in periodic origami structures [40]. 

We now claim that the nature of the above-mentioned 
phase transition is topological. Specifically, reopen- 
ing the BG induces fragile topological states within 
bands 3 and 4 protected by three-fold rotation symme- 
try C3. This can be shown using the recently developed 
method of symmetry indicators [41, 42], band structure 
combinatorics [43] and Topological Quantum Chemistry 
(TQC) [44, 45]. This method provides a full classifica- 
tion of topological states protected by spatial symme- 
tries, and can detect any such topological states by inves- 
tigating how the eigenfunctions of the bands transform 
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FIG. 2: (a) Band diagram of a 15-cell structural self-dual twisted kagome super-cell with Bloch-periodic boundary condition 
along e2 and open boundary condition along e1. (b-e) Mode shapes of degenerate edge mode pairs, sampled at ξ = 0, π and 

highlighted with green markers, within the first (b-c) and second (d-e) BG. (f-g) Eigenfrequencies (f) in an interval encompassing 
the second BG, with three degenerate modes at f=16.01 kHz, highlighted in the inset, and corresponding corner mode (from 
linear superposition of the degenerate modes) shown in (g). (j-m) Snapshots of wavefields for narrow-band burst excitation 
with carrier frequency at 16.01 kHz in the second BG (signal in (m) and corresponding spectrum in (l)), during the 30-cycle 
energy pumping stage (j) and relaxation time (k) of the excitation. The wavefields suggest strong localization of the second BG 
corner modes. (h-i),(n-q) Same quantities discussed in (f-g),(j-m) for corner modes in the first BG at 7.34 kHz. The wavefields 
suggest weak corner localization promoted by activation of edge modes. Colors are proportional to the in-plane displacement 
normalized by the maximum value. 

 
 

under symmetries, i.e., the representation labels of the 
eigenfunctions, at the HSPs of the BZ. Conveniently, all 
possible representation labels that a set of bands gener- 
ated by SLWF can feature, are tabulated in the Bilbao 
Crystallography Server (BCS) [46–50]. We start by not- 
ing that our system falls under G = p31m wallpaper 
group. The HSPs Γ, K and M (shown in the inset of 
Fig. 1(b)) have little co-groups C3v, C3v and Cs, respec- 
tively. The eigenfunctions at these HSPs transform under 
the representations of the corresponding little co-group. 
From FEM, we find that degenerate eigenfunctions at Γ 
point of bands 3-4 transform under 2d irreducible repre- 
sentation (irrep) Γ3, the eigenfunctions at M transform 
under 1d irreps M2 and M1, and the eigenfunctions at K 
transform under 1d irreps K2 and K1, which are denoted 
in Fig. 1(d) (see also Supplemental Material (SM).S-1 for 
corresponding eigenfunctions). A quick check with BCS 
reveals that these irreps cannot be represented by any 
SLWF, which implies that these two bands are topolog- 
ical [44]. As a result, the change in behavior observed 
at r = 6.6% in Fig. 1(e) can be qualified as a topologi- 
cal phase transition. In fact, the irreps of bands 3-4 are 
consistent with the formal difference: 

(E ↑ G)2b 0 (E ↑ G)1a, (1) 

where E represents two SLWFs with angular momentum 
1 (px and py type orbitals), where 1a and 2b are Wyck- 
off positions as shown in Fig. 1(c). In words, this means 

 

that irrep labels for bands 3 and 4 are consistent with 
the difference between px py type orbitals at position 
2b (see Fig. 1(c); position 2b has multiplicity 2 in the unit 
cell, so in total 4 orbitals in the unit cell) and px py 
type orbitals at position 1a (position 1a has multiplicity 
1 in the unit cell, in total 2 orbitals in the unit cell). 
Furthermore, since the irrep labels of the bands 1-2 are 
Γ3  M1  M2  K3 and are consistent with the SLWFs 
(E G)1a (which renders bands 1-2 topologically triv- 
ial), together bands 1-4 can be represented by SLWFs 
(E G)2b, meaning that bands 1-4 together are topo- 
logically trivial. This is the distinguishing characteristic 
of fragile topological bands - addition of trivial bands to 
them render the topology trivial [11]. We also verify the 
topological non-triviality of bands 3-4 by calculating the 
winding of hexagonal Wilson Loop (WL) [7] (see SM.S- 
2 for details of WL calculation). Importantly, here the 
fragile topology of bands 3-4 is protected by C3 (that this 
fragile topology only depends on C3, not the mirrors can 
be understood from the fact that, if we break the mir- 
ror symmetry perturbatively such that bands 3-4 are still 
isolated from other bands, the irrep labels at the HSPs 
would be Γ2  Γ3  2M1  2K1, which also correspond 
to fragile topological bands [11]). To our knowledge, this 
result is the first realization of C3 symmetry-protected 
fragile topology in a phononic system. 

We now shift our attention to the two BGs bound- 
ing the fragile topological states, looking for any edge 
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FIG. 3: (a) Experimental setup for 3D SLDV testing of structural self-dual twisted kagome hexagonal prototype. (b-c) 
Experimental (b) and simulation (c) transmissibility curve with regions of attenuation highlighted in light purple. (d-e) Optical 
mode reconstruction from experimental (d) and simulation (e) data; the reconstruction involves collecting time histories at the 
sampling points marked by red dots in the insets and subjecting them to 2D-DFT, repeating the procedure for several carrier 
frequencies in the interval of interest. The 2D-DFT yields spectral amplitude contours, here superimposed to the band diagram 
to highlight modal activation. (f-h) Snapshots of the wavefields induced through burst excitations within the pass-band (f), 
and at the frequencies of the first (g) and second (h) BGs corner modes, respectively, with colorbar referring to the amplitude 
of velocity of the scan points. 2D-DFT and the wavefield data are normalized by the highest value in their respective data sets 
and proportionally color-coded. 

 
 

and corner modes comprised therein. To this end, we 
first perform a super-cell analysis on a 15-cell super-cell 
modeled with the same finite element discretization used 
for the unit cell analysis. The resulting band diagram 
is plotted in Fig. 2(a). We observe a pair of degenerate 
bands in each BG (shaded regions) indicated by green 
lines. The super-cell mode shapes at ξ = 0 and ξ = π 
within the first and the second BGs (marked by the green 
markers) are displayed in Figs. 2(b-c) and (d-e), respec- 
tively. The high decay rate and the emergence of lo- 
calization at two opposite edges qualify these branches 
as non-polarized edge modes, as expected for a twisted 
kagome lattice (see SM.S-3 for discussion on the edge 
mode emergence). Then, we calculate eigenfrequencies 
and mode shapes for a finite hexagon-shaped domain as 
shown in Figs. 2(g) and (i). The eigenfrequencies in in- 
tervals encompassing the two BGs are shown in Figs. 2(f) 
and 2(h). The insets zoom in on two sets of three degen- 
erate modes inside the second (f =16.01 kHz) and first (f 
=7.34 kHz) BG; the corresponding mode shapes depicted 
in Figs. 2(g) and 2(i), obtained by superposition of the 
degenerate modes, reveal localization of deformation at 
the corners of the hexagon, which allow us to qualify 
these as corner modes and label the lattice a 2D second 
order TI. Interestingly, the mode shapes of the two sets 
feature localizations at alternating corner locations and 
have distinct morphological characteristics. Specifically, 
corner modes appearing in the first BG have lower decay 

 

rate, likely due to their higher proximity to (and contam- 
ination from) the bulk band and the edge modes observ- 
able in the top portion of the gap. Conversely, the second 
BG corner modes show stronger localization. Additional 
evidence of the differences between the two sets of cor- 
ner modes is found via full-scale transient simulations, 
in which we excite the bottom-right corner (marked with 
a black star) of the domain with 30-cycle narrow-band 
tone burst force excitations with carrier frequencies of 

16.01 and 7.34 kHz, corresponding to the second BG and 
first BG corner modes, respectively (time histories and 
spectra are depicted in Figs. 2(m),(q) and Figs. 2(l),(p)). 
For each carrier, two snapshots of the resulting wave- 
fields are shown in Figs. 2(j),(k) for the second BG and 
Figs. 2(n),(o) for the first BG. For the second BG, we ob- 
serve strongly localized deformation in the neighborhood 
of the excitation point, matching the mode shape pattern 
in Fig. 2(g) and confirming the notion that the second BG 
corner modes minimally leak into edge and bulk modes. 
In contrast, the wavefield for the first BG corner modes 
shows very different dynamics. While in the early time 
snapshot of Fig. 2(n) some degree of localization is estab- 
lished around the excitation point, the signal eventually 
travels along the edge and eventually migrates to the ad- 
jacent corner, as visible in Fig. 2(o). This transfer can be 
explained by the combination of three factors: the lack 
of a corner mode for the excited corner in the first BG, 
the availability of a corner mode, at that same frequency, 
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in the adjacent corner, and the spectral proximity of the 
signal carrier to prominent edge modes. 

We substantiate the theoretical findings discussed 
above - emergence of fragile topological states and es- 
tablishment of corner modes - through a series of laser 
virbometry experiments performed on a physical proto- 
type, whose setup is depicted in Fig. 3(a). All details 
on prototype fabrication, laser vibrometer specifications 
and setup are provided in MethodI. First, we want to 
demonstrate experimentally the opening of the second 
BG, which is absent in the ideal self-dual kagome lat- 
tice, as a result of the finite-thickness hinges of the struc- 
tural metamaterial. To this end, we prescribe a broad- 
band pseudo-random excitation at the point marked by 
the yellow dot (Fig. 3(a)), measure the in-plane velocity 
at the designated sampling points inside the green box 
(Fig. 3(a)), and normalize the average value by that of the 
excitation point to construct a measure of transmissibil- 
ity versus frequency, plotted in Fig. 3(b). An analogous 
transmissibility curve, plotted in Fig. 3(c), is obtained 
via full-scale steady-state simulation of a finite hexagonal 
domain under sustained harmonic excitation, by sweep- 
ing the frequency. Both curves, in reasonable agreement, 
feature two distinct regions of attenuation, highlighted in 
light purple, supporting the existence of finite frequency 
isolated band(s) in the mid-frequency spectrum. The at- 
tenuation intervals are overall in satisfactory agreement 
with the BGs predicted via Bloch analysis (Fig. 1(d)). 
(See also SM.S-4 for details on the discrepancies between 
experiments and theory) 

We now seek evidence of the fragile topological nature 
of the intermediate bands by experimentally reconstruct- 
ing the morphological characteristics of the branches of 
the band diagram. To this end, we collect the time his- 
tories of the lateral in-plane velocity at evenly distanced 
points along the Γ-K direction (red dots in the insets 
of the Figs. 3(d),(e), for experiment and simulation, re- 
spectively) for several tone burst excitation signals with 
different carrier frequencies within the pass-band regions. 
Subsequently, we perform 2D Discrete Fourier Transform 

(2D-DFT) on each spatio-temporal data set and we ag- 
gregate all the resulting spectral amplitude contours and 
superimpose them on the band diagram (see SM.S-5 for 
full depiction). Overall the contours of the bursts popu- 
late the spectral plane in a way that follows the morpho- 
logical attributes of the band diagram. Focusing on the 
mid-frequency range, the peculiar shape of the third and 
forth modes associated with fragile topology, featuring 
the bands crossing at Γ without retouching elsewhere at 
the boundary of the BZ [or at the other HSPs] is cap- 
tured perfectly. Finally, we conduct three experiments 
with three distinct tone bursts (applied at the bottom 
corner) at three carrier frequencies falling in the acoustic 
pass-band, first BG and second BG. The objective here is 
to reconstruct experimentally the wave propagation pat- 
terns established in different frequency regimes and doc- 
ument the establishment of corner modes. In Fig. 3(f) 
a carrier frequency of 3 kHz generates a wavefield that 
propagates through the bulk, which is the signature of 
pass-band behavior. For an excitation in the first BG 
(Fig. 3(g)), we observe wave propagation along the edge 
and accumulation at the next available corner. The be- 
havior is consistent with the localized modal landscape in 
the first BG, in which the corner modes do not appear at 
the set of corners that include the excitation point and, 
moreover, well-defined edge modes exist in the gap. In 
contrast, for excitation in the second BG, we observe a 
highly localized and persistent corner mode (Fig. 3(h)), 
even after long relaxation times for the bursts. 

In conclusion, in this article, we have provided an un- 
equivocal experimental demonstration of the existence of 
special optical modes protected by fragile topology and 
the emergence of a diverse landscape of corner modes in 
the dynamics of self-dual kagome metamaterials. 
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I. METHOD 

 
A. Material properties and specimen geometry 

 
We build a finite element model of the hexagonal meta- 

material consisting of 108 cells, discretized with a mesh 
of plane-stress quadrilateral isoparametric elements, with 
appropriate mesh refinement in the neighborhood of the 
hinges where we expect concentration of deformation. 
This modeling is done using the software GMSH and ex- 
ported as a “.STL” file for the manufacturing process. 
Fig. 4 shows the geometry of the fabricated specimen ob- 
tained via water-jet cutting from a 2-mm thick sheet of 
Aluminum. The hexagonal domain has six unit cells on 
each edge. All the sides of the triangles in the kagome 
lattice and the widths of the ligaments constituting the 
structural hinges are 45 mm and 0.9 mm, respectively 
(see insets). The material properties of Aluminum are: 
Young’s modulus E = 71 GPa, Poisson’s ratio ν = 0.33 
and density ρ = 2700 kg/m3. 

 

 
FIG. 4: Hexagonal prototype manufactured via Water-jet 
cutting from Aluminum thin sheet, with insets indicating di- 
mensions and showing details of the hinges. 

 
 

 
B. Experimental procedure for transmissibility 

analysis 

 
The setup depicted in Fig. 3(a) shows the specimen 

vertically constrained via boundary supports and the 
three scanning laser heads of the (Polytec PSV 400 3D 

Scanning Laser Doppler Vibrometer (SLDV) required to 
acquire in-plane velocity measurements. The excitation 
is applied by an electromechanical shaker (Brü el & Kjær 
Type 4810) with an amplifier (Brü el & Kjær Type 2718) 
at the yellow dot probing the lattice surface. In-plane 
velocity is measured at three scan points per triangle. 
Retro-reflective tape is applied at the scan points to in- 
crease the reflectivity and reduce noise in the data. A 
broadband pseudo-random excitation is applied to excite 
a broad range of frequencies. To supply enough energy 
at higher frequency to the shaker, we apply the signal in 
the 0-20 kHz range in two 10-kHz increments, prescrib- 
ing higher amplitudes in the second step to yield roughly 
equal amount of energy injection for both intervals. 

 
 

C. Band diagram reconstruction via 2D-DFT and 
wavefield acquisition 

 
For transient analysis, we modify the specimen setup 

such that it is vertically constrained only from one edge 
while the opposite edge is free as shown in the inset of 
Fig. 3(d). This setup allows better investigating the be- 
havior of the corners, while still allowing measurements 
in the bulk. To reconstruct the band diagram, we sepa- 
rately apply 11 Hann-windowed burst excitations span- 
ning both pass-band regions (with carrier frequencies 
of  2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 13.7 kHz) via a stinger 
probing the lattice in-plane at the bottom corner. We 
employ 5-cycle and 25-cycle bursts for the first 4 signals 
within the acoustic modes and the other 7 signals within 
the optical bands, respectively. The high number of cycle 
bursts help to excite narrower-band spectra, which is im- 
portant in the reconstruction of the optical bands, where 
we seek evidence of fragile topology, since the branches 
are relatively flat in that range. We apply a high-pass 
filter (embedded in the vibrometer software) to filter out 
the low-frequency response dominated by spurious am- 
bient vibrations. The in-plane and out-of-plane velocity 
components are measured by the laser heads at each of 
the 12 scan points denoted by red dots in Fig. 3(d), which 
lie along the Γ K direction. The time histories of the x̂ 
and yˆ in-plane components of the velocity, which corre- 
spond to lateral and axial components with respect to the 
selected direction, are then subjected to 2D-DFT, per- 
formed in MATLAB, (see SM.S-5) to obtain the spectral 
amplitude contour maps shown in Fig. 3(d). We use a 
similar setup to reconstruct the wavefield patterns estab- 
lished in the bulk and on the edges of the specimen. We 
use three different tone bursts with carrier frequencies of 

3, 6.85, and  15 kHz, lying in the pass-band, first 
BG and second BG, respectively. The measurements are 
performed at three scan points per each triangle of the 
lattice to strike a balance between the accuracy of the 
achieved spatial reconstruction of motion and the parsi- 
mony of the sensing strategy. As a standard procedure 
in time-domain laser vibrometry, we prescribe enough re- 
laxation time to ensure that bursts have fully dissipated 
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by damping before the next measurement is taken. The 
wavefield data is exported to MATLAB in the form of a 

( x̂  yˆ time) data cube. The slices of this cube represents 
wavefields at different time instants. 

 

 

Supplemental Material 
 

S-1. MODE SHAPES OF THE LOWEST FOUR BANDS AT THE HIGH SYMMETRY POINTS (HSP) 
OF THE BRILLOUIN ZONE (BZ) 

 
 
 

 

FIG. S1: Deformation of the unit cell corresponding to the eigenfunctions at HSPs Γ (first row), M (second row) and K (third 
row). Mode numbers are counted from the lowest band upward. The irreducible representation (irrep) labels are marked along 
with the mode shapes. 

 

In Fig. S1, we show the mode shapes of the the lowest four bands at the HSPs. The lowest two modes at Γ are just 
the two uniform translations. Since translation transforms as a vector, they form Γ3 representation (see the Bilbao 
Crystallography Server (BCS) for the notation [1–3]). Modes 3 and 4 at Γ are even and odd under horizontal mirror 
(passing through the center of the unit cell) reflection, but transform into each other under C3, hence they also form 
Γ3 representation. The modes at M each√form the basis of M1 or M2 representation depending on if they are even or 
odd under the mirror parallel to (−1/2, 3/2) direction and passing through the center of the unit cell. The lowest 
two modes at K transform into each other under mirror reflection and C3, hence they form K3 representation. Mode 
3 (4) at K transforms into itself under C3 but is odd (even) under the horizontal mirror; hence it forms K2 (K1) 
representation. 

 
 
 

S-2. WILSON LOOP (WL) CALCULATION 
 

In the main text we established the fact that the fragile topology of bulk bands 3-4 is protected by three-fold rotation 
symmetry C3. Here, we will show that the nontrivial topology of the fragile bands can be captured by the winding 
of a hexagonal WL (see Fig. S2(a)). Hexagonal WL was introduced in [4] (for a good review on WLs see [5]) and 
was used on a tight binding model with p3m1 symmetry. Here, we have p31m space group, but we show analytically 
(slightly modifying the expression in [4] to adapt it to p31m space group) that the eigenvalues of the hexagonal WL 



9 
 

− − 
· 

k2 

IT 
k1 

a b 

k | ) 

3−4 

3−4 
3−4 3−4 

k k 
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ŷ

'

 
2 

 
 

 4π 

 
 

2 2 

( √
3 1 

' 
 

(S1) 

g1 = √
3a

 

4π 
g2 = √

3a 
ŷ 

x̂ +  ŷ 
2 2 

such that ei gj = 2πδij. Written in the basis of g1 and g2, the HSPs are given by Γ = (0, 0), M = (1/2, 0), 
M i = (0, 1/2), M ii = ( 1/2, 1/2), K = (1/3, 1/3), Ki = ( 1/3, 2/3). As shown in Fig. S2(a), the hexagonal WL at a 
distance Λ from the Γ point is defined as: 

 

Wh(Λ)    =W(4Λ/3,−2Λ/3)←(2Λ/3,−4Λ/3)W(2Λ/3,−4Λ/3)←(−2Λ/3,−2Λ/3)W(−2Λ/3,−2Λ/3)←(−4Λ/3,2Λ/3)× 

W(−4Λ/3,2Λ/3)←(−2Λ/3,4Λ/3)W(−2Λ/3,4Λ/3)←(2Λ/3,2Λ/3)W(2Λ/3,2Λ/3)←(4Λ/3,−2Λ/3), 

where Wk2 ←k1 is defined on a straight line joining k1 and k2 as 

 
(S2) 

 
 

mn 
k2 ←k1 

 
= (um | 

 

k2 ←k1 

 
 

k 

 
P (k)|un ), 

 
 

(S3) 

Pab(k) = 
 
 |u )(u |, 

 

 
 

where ua is the ath eigenvector (of the modified dynamical matrix D̃ (k)  = M −1/2D(k)M −1/2, where M is mass 

matrix) at momentum k, the ordered product is being taken over N points on the straight line joining k1 and k2 
with some discretization of the line into N points (see Fig. S2(a)), and P (k) is the projection operator onto the bands 
under consideration at point k. Note that in the limit of N → ∞, Wk2 ←k1 is a unitary matrix satisfying [5]: 

W −1 = W † = Wk ←k . (S4) 
k2 ←k1 k2 ←k1 1 2 

Therefore, Wh(Λ) is also unitary and its eigenvalues are of the form eiθ(Λ). If we only consider bands 3 and 4, 

Wh,3−4(Λ) is a 2 × 2 matrix. In the following, using the irrep labels of band 3-4 at HSPs, we prove that θ(1) (Λ) 

and θ(2) (Λ) (e 
Fig. S2(b). 

iθ(1) (Λ) and e iθ
(2) (Λ) being the eigenvalues of Wh,3−4(Λ)) wind in the opposite direction as shown in 

 
 

 
2Λ 2Λ 

 
FIG. S2: (a) Descritized hex√agonal loops using for WL calculation. The outer loop represents BZ and the distance of each 
loop from the HSP Γ is 4πΛ/ 3a. (b) WL of the first-second bands (top left), third-fourth bands (top right), fifth-sixth bands 
(bottom left), first-fourth bands (bottom right). 

i∈bands being considered 

(a) 
  𝐾 (b) Modes:1-2 Modes:3-4 

 𝑀 

4𝜋ΛΤ 3a  
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To this end, we define a Wilson line over the path P = (−2Λ/3, 4Λ/3) ← (2Λ/3, 2Λ/3) ← (4Λ/3, −2Λ/3): 

WP (Λ) = W(−2Λ/3,4Λ/3)←(2Λ/3,2Λ/3)W(2Λ/3,2Λ/3)←(4Λ/3,−2Λ/3). (S5) 
 

Then, the following is true: 
 

Wh(Λ) = WC2 P (Λ)WC3 P (Λ)WP (Λ) 

= C2WP (Λ)C−2C3WP (Λ)C−1WP (Λ) 
3 3 3 (S6) 

= C−1WP (Λ)C−1WP (Λ)C−1WP (Λ) 
3 3 3 

= (C−1WP (Λ))3, 

 
where C3P is the path obtained by rotating P counterclockwise by an angle 2π/3 around the Γ point, and we used 

C2 = C−1. Defining W3(Λ) ≡ C−1WP (Λ), we have Wh(Λ) = (W3(Λ))3. Since WP (Λ) has matrix elements between 
|u(4Λ/3,−2Λ/3)) and |u(−2Λ/3,4Λ/3)), and C3 has matrix elements between |uk) and |uC−1 k), the matrix elements of 

W3(Λ) are 

Wmn(Λ) = (um |C−1  
 

|u )(u |  WP |un ), (S7) 

 

which implies that under some unitary gauge transformation of the eigenvectors |um ) → G |u(4Λ/3,−2Λ/3)), 

W3 transforms covariantly (i.e., W3 → GW3G†); as a result the eigenvalues of W3(Λ) are gauge invariant. 
Next we show that due to mirror symmetry my (my(x, y) = (x, −y)), the eigenvalues of W3(Λ) come in pairs 

e±iθ3 (Λ) and consequently, the eigenvalues of Wh(Λ) come in pairs e±i3θ3 (Λ). To show this, we note that 

myW3(Λ)m−1 = myC−1WP (Λ)m−1 
y 3 y 

= C3myWP (Λ)m−1 

=  C3my W(−2Λ/3,4Λ/3)←(2Λ/3,2Λ/3)W(2Λ/3,2Λ/3)←(4Λ/3,−2Λ/3)m
−1

 

= C3my W(−2Λ/3,4Λ/3)←(2Λ/3,2Λ/3)m
−1my W(2Λ/3,2Λ/3)←(4Λ/3,−2Λ/3)m

−1
 

y y 

= C3W(−2Λ/3,−2Λ/3)←(2Λ/3,−4Λ/3)W(2Λ/3,−4Λ/3)←(4Λ/3,−2Λ/3) (S8) 
= (C3W(−2Λ/3,−2Λ/3)←(2Λ/3,−4Λ/3)C

−1)(C3W(2Λ/3,−4Λ/3)←(4Λ/3,−2Λ/3)C
−1)C3 

3 3 

= W(4Λ/3,−2Λ/3)←(2Λ/3,2Λ/3)W(2Λ/3,2Λ/3)←(−2Λ/3,4Λ/3)C3 

= (C−1W(−2Λ/3,4Λ/3)←(2Λ/3,2Λ/3)W(2Λ/3,2Λ/3)←(4Λ/3,−2Λ/3))
−1

 

= W −1(Λ), 
 

where going from first to second equality, we used myC−1m−1 = C3, and in various places we used the fact the 
3 y 

properties of W in Eq. S4.  This implies that the set of eigenvalues of W3(Λ) and W −1(Λ) are same, i.e., the 

eigenvalues of W3(Λ) come in pairs e±iθ3 (Λ). 

Now, we specialize to bands 3-4 to check the eigenvalues of W3,3−4(Λ) and Wh,3−4(Λ) for different values of Λ. At 
Λ = 0, we have 

 

Wmn(0) = (um |C |u ), (S9) 
 

which is the representation matrix of C−1 in the basis of eigenvectors of bands 3-4 at Γ point. Since the irrep label 
3 

of bands 3-4 is Γ3, the eigenvalues of W3(0) are ω and ω2 where ω = (−1 + 
√

3i)/2. This implies {e iθ3,3−4 (0) 

i2π/3 , e−i2π/3 }. Consequently, we have  
 
Wmn(0) = δmn, (S10) 

 

and {eiθ3−4 (0)} = {1, 1}. 

3 

(0,0) 

} = 
{e 
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Things are more complicated at Λ = 1/2: 
 

W3(1/2) = C3  WKt ←KWK←(Kt +g1 −g2 ) 
−1 −1 

= (C3  WKt ←KC3)C3  WK←Kt +g1−g2 

= W(Kt+g1 −g2 )←(K−g2 )C3  WK←Kt +g1 −g2 

= V (g1 − g2)WKt ←(K−g1 )V (g1 − g2)C3 WK←Kt +g1−g2 
† −2 −1 

= V (g1 − g2)WKt ←(K−g1 )V 

= V (g1 − g2)WKt ←(K−g1 )V 

= V (g1 − g2)WKt ←(K−g1 )V 
−1 

(g1 − g2)C3 (C3WK←Kt +g1 −g2 C3 )C3 

(g1 − g2)C3 WK−g1 ←Kt C3 

(g1 − g2)C3 WK−g1 ←Kt C3 
† 

(S11) 

C3W3(1/2)C3 = C3V (g1 g2)WKt  ← (K−g1  )V 
i 

(g1 − g2)C3WK−g1 ←Kt 

= BC3 (K + g1 − g2)WKt ←(K−g1 )BC3 (K − g1)WK−g1 ←Kt , 

where the matrix V (g) at reciprocal lattice vector g is defined as |um ) = V (g)|uk ) (i.e., for singly degenerate 
bands V (g) = e−ig·x]_), and the sewing matrix BC (k) is defined as BC (k) = (uC k|C3|uk). Now, since the irreps at 
the K point are K1 and K2 (which have character 1 under C3) for bands 3-4, BC (K − g1) = ]_ = BC (Ki + g1 − g2). 

3 3 

This implies 
 

C3W3(1/2)C3 = WKt ←(K−g1 )WK−g1 ←Kt  = ]_, (S12) 

where we used the properties in Eq. S4. Since C3 is unitary, this implies eiθ3,3−4 (1/2)  = 1, 1 , and as a consequence, 

eiθ3−4 (1/2)  =  1, 1 . 

From our analysis above, we see that eiθ3,3−4  go from ei2π/3, e−i2π/3 to 1, 1 as Λ goes from 0 to 1/2. Since 
the eigenvalues of W3(Λ) can only change continuously, the eigenvalues have to cross e±iπ/3 odd number of times. 
Hence, going from 1, 1 to 1, 1 , the eigenvalues of Wh(Λ) pass through e±iπ odd number of times as Λ goes from 
0 to 1/2. This proves the winding seen in Fig. S2(b) for bands 3-4. 

In case of bands 1  2, the story is the same at Λ = 0. However, at Λ = 1/2, BC3 (K  g1) = ]_ since the the irrep 
label at the K point for these two bands is K3. Consequently, the eigenvalues of W3(1/2) can be any general phase 
e±iθ3 . This is why for bands 1 − 2, the eigenvalues of log Wh are non-zero at Λ = 1/2 as can be seen in Fig. S2(b). 
Similar things can be shown for bands 5 − 6. 

 
S-3. EXPLANATION FOR THE APPEARANCE OF EDGE MODES IN THE FIRST AND SECOND 

BANDGAPS (BG) 

 
The origin of the edge modes in Figs. 2(b-e) can be understood in the following way. Starting from the band 

structure of the fully periodic system in Fig. 1(d) of the main text, if we create a super-cell with 15 unit cells in the e1 
direction (still with fully periodic boundary condition), each band is going to fold 15 times. Since there are two bands 
in Fig. 1(d) below the first BG, there will be 30 bands below the first gap in the super-cell band structure. Similarly, 

 
 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

 

 

FIG. S3: Deformation of the unit cell corresponding to the eigenfunctions at the HSPs Γ (first row) and M (second row) for the 
first six modes. Note that unlike the Wigner-Seitz unit cell in Fig. S1, this choice of unit cell is compatible with the supercell 
considered in Figs. 2(a-e) of the main text. 

† 

† 
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between the first and second BG there will be 30 bands in the super-cell band structure. Now, if we open a boundary 
parallel to e2 of this super-cell, due to the open boundary condition, the band frequencies will change. Some bands 
may be pushed up or down in frequency from the bulk bands to go into the bulk gap and, as a result, will become 
edge bands. We see such two edge bands in the first BG in Fig. 2(a). We ask if those were pushed up from the bands 
below the gap or pushed down from the bands above. This can be answered easily by counting the number of bands 
below and above the first BG. We find that below BG1, there are 30 bands where between BG1 and BG2 there are 
28 bands. This means that the two edge bands in BG1 were pushed down from bulk bands above BG1. 

Another way to confirm this is to compare the mode shapes of the edge modes to the modes shapes of the bulk 
modes. We know that the M point (Γ and M points) of the bulk single unit cell band structure gets projected to the 
ξ = π (ξ = 0) of the super-cell band structure. Therefore, the edge modes at ξ = π corresponding to the edge bands 
in BG1 should have the same character as (in other words, it should look like) the mode shape at the M below or 
above the gap depending on if the edge gap is pushed up from the bulk below or pushed down from the bulk above, 
respectively. Comparison of the edge modes in Fig. 2(c) with the bulk modes in Fig. S3 shows that the edge modes in 
Fig. 2(c) has the character of mode 3 at the M point in Fig. S3. Similarly, a comparison of the edge modes in Fig. 2(b) 
(ξ = 0) with the bulk modes in Fig. S3 shows that the edge modes in Fig. 2(b) has the character of mode 3 at the 
M point in Fig. S3. These considerations confirm that the edge modes in the BG1 are actually pushed down from 
the bulk bands just above BG1. Similarly, there are only 28 bulk bands above BG 2 in Fig. 2(a) and the character of 
the edge modes in Figs. 2(d-e) is the same as that of mode 5 at Γ and M in Fig. S3, meaning that the edge modes 
in BG2 are pushed down from the bulk bands above BG2. This scenario is reminiscent of Rayleigh waves in elastic 
systems, which appear below the bulk acoustic bands. 

 

 
S-4. NOTE ON THE DISCREPANCY BETWEEN THE EXPERIMENT AND SIMULATION RESULTS 

 

The observed mismatch between experiments and theory shown in Fig. 3(b), which is especially pronounced at the 
onset of the higher frequency gap, can be comfortably ascribable to the inevitable deviations of the specimen from 
the nominal characteristics of the model. Specifically, variability in the water-jet cutting process is responsible for 
a deviation/reduction of the average hinge thickness compared to the nominal 0.9 mm value, de facto softening the 
structure. Additionally, differences in material properties, geometric variabilities such as fluctuation of the hinges 
thickness from one cell to another and tapered thickness in the out-of-plane direction, and other non-idealities, 
including the formation of jagged edges during cutting process, also contribute to these discrepancies. 

 

 
S-5. 2D DISCRETE  FOURIER  TRANSFORM (2D-DFT) 

 

Figs. S4(a) and (b) show the reconstruction of the acoustic and optical branches of the band diagram from time 
histories over n time instants collected at m points located along the Γ K direction, from simulations and experimental 
data, respectively. 

The procedure involves 2D-DFT of the m  n spatio-temporal data matrix encompassing the time histories at 
all the selected points stacked as columns. The outcome of the 2D-DFT is a matrix of spectral amplitudes, which 
represents the dependence of spectral amplitudes upon frequency and a scalar wave number sampled along Γ K. 
The simulation data consists of nodal displacements from the FEM transient simulations, while the experimental data 
are velocities measured by the vibrometer at the available scan points. For each point, we have two components of 
the displacement(velocity) vector, an axial component parallel to the Γ K direction and a lateral one perpendicular 
to it. The spectral amplitude contours obtained form the different bursts are superimposed to the band diagram 
obtained via unit cell analysis to highlight the most relevant mode activation at each frequency and obtain a piece- 
wise reconstruction of the band diagram branches. 

Overall, the qualitative behavior of the reconstructed acoustic modes, including the folding at the edge of the 
BZ, is captured correctly. Quantitatively, we report a frequency discrepancy that becomes more pronounced as we 
approach the onset of the BG. This discrepancy may be in part attributed to spurious boundary effects that are not 
accounted for in the band diagram (which assumes an infinite lattice) but can be conspicuous in the finite-domain 
transient simulations, especially working with a lattice with low unit cell count. The frequency shifting can also be in 
part associated with the fluctuations of material properties that have already been discussed as a probable cause of 
the downward shift of the BG onset in the steady-state transmissibility analysis. Interestingly, the agreement is far 
superior for the optical branches, which are of interests for the discussion on fragile topology reported in the main 
article. A complete understanding of the reasons for the different degree of agreement between acoustic and optical 
modes is still missing and warrants additional investigation in future studies. In general, it can be seen that the lateral 
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FIG. S4: 2D-DFT plots of the axial and lateral in-plane displacement (velocity) via simulation (a) (experiment (b)) carried 
out at several carrier frequencies 

 

 
component of the displacement(velocity) vector yields a better agreement, which suggests that shear-like mechanisms 
may be dominant in the modal characters of these branches. 
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