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ABSTRACT
A theory for the characterization of the fourth-order moment of electromagnetic
wave beams is presented in the case when the source is partially coherent. A
Gaussian-Schell model is used for the partially coherent random source. The white-
noise paraxial regime is considered, which holds when the wavelength is much smaller
than the correlation radius of the source, the beam radius of the source, and the
correlation length of the medium, which are themselves much smaller than the prop-
agation distance. The complex wave amplitude field can then be described by the
Itô-Schrödinger equation. This equation gives closed evolution equations for the
wave field moments at all orders and here the fourth-order moment equations are
considered. The general fourth-order moment equations are solved explicitly in the
scintillation regime (when the correlation radius of the source is of the same order as
the correlation radius of the medium, but the beam radius is much larger) and the
result gives a characterization of the intensity covariance function. The form of the
intensity covariance function derives from the solution of the transport equation for
the Wigner distribution associated with the second-order wave moment. The fourth-
order moment results for polarized waves are used in an application to imaging of
partially coherent sources.

KEYWORDS
Random media, electromagnetic waves, multiple scattering, Schrödinger equation,
Gauss-Schell Model, scintillation, source imaging.

1. Introduction

We consider beam wave propagation in complex media in the situation when we model
both the source and the medium as being random. Modeling with a random or complex
medium in the context of wave propagation is natural in many situations. In the early
foundational work [37, 38] and also in [1, 27] a main motivation was propagation
through the turbulent atmosphere, but there are many other important applications
as well. In cases where one considers propagation through the fluctuating ocean, the
earth’s crust or through biological tissue it is also natural and convenient in many cases
to model in terms of a random medium [12, 27, 30]. In these cases the medium may be
too complex to describe pointwise, but one can hope to be able to describe or model the
statistics of the medium fluctuations. The challenge is then to capture the complicated
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coupling between the medium fluctuations and the wave field and to understand how
a particular model for the random medium statistics affects the statistics of the wave
field which becomes a random field due to random scattering. In this paper we consider
the case of beam waves or paraxial waves in a high-frequency long-range propagation
scenario, when the wavelength is much smaller than the correlation radius of the
source, the beam radius of the source, and the correlation length of the medium,
which are themselves much smaller than the propagation distance. In this case we can
approximate the wave field in terms of the solution of the Itô-Schrödinger equation.
This equation was analyzed in [11] and derived from the Helmholtz equation in [16].
Despite the long history of the theory of waves in random media a rigorous and explicit
description of the fourth-order moment was only obtained in [20] in the scintillation
regime (when the correlation radius of the source is of the same order as the correlation
radius of the medium, but the beam radius is much larger). Here we generalize this
fourth-order moment theory to the case of polarized waves. This is a deep and quite
surprising result in the theory of waves in random media. It states that even though
the polarized wave has only partially lost its coherence due to scattering it behaves
from the point of view of the fourth-order moment as if it was a Gaussian field. In
some sense this quasi-Gaussian property explains some of the success or robustness of
the theory of waves in random media since the second-order characterization, which
in general is relatively easy to obtain, also explains the behavior of fourth-order wave
functionals.

Understanding beam propagation through complex media is important because of
applications in connection with free-space optical communications, remote sensing, and
optical imaging. The second-order moments of light beams are analyzed via a Wigner
function approach in [43, 42] in order to understand beam resilience to turbulence for
certain source beams. The main focus in this paper is on a theory for fourth-order mo-
ments which also play an important role in the analysis of applications in imaging and
communication. In recent years there has for instance been a lot of interest in speckle
imaging approaches exploiting the speckle memory effect [28, 23]. In speckle imag-
ing one exploits the statistical structure of the speckle and that the speckle pattern
may change slowly with illumination in order to carry out imaging through complex
media. The speckle pattern corresponds to the structure of the intensity fluctuations
and with the intensity being a quadratic wave field quantity one then needs to under-
stand fourth-order wave moments to analyze the stability (variance) of the speckle.
In [32] a speckle imaging technique was set forth in a multifrequency context based
on an effective spectral decomposition approach with promising experimental results.
The analysis of this case then requires results on multifrequency fourth-order wave
moments [24]. While the approach in [32] uses a learned dictionary for computational
decomposition of wave intensity an interesting imaging approach is presented in [33]
where a set of diffractive layers is learned by a deep learning approach for source
imaging through a complex section, thus giving an all-optical image reconstruction
method.

An important aspect of our modeling in this paper is that we also consider the source
as being random. Modeling with a random source may be motivated by the complexity
of the source as when one considers emission from a star. A second motivation for
understanding and analyzing beam wave propagation from a random source is that
such sources have been promoted as being desirable for scintillation reduction when
beaming through a complex medium, see [25, 3, 2, 31, 40, 41] and references therein.
Scintillation here refers to the situation that the transmitted beam intensity fluctuates
rapidly due to scattering over the propagation path. One intuition is that by using
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a complex source one gets a better mixing over wave ray paths and a scintillation
reduction. Our objective here is to develop an analytic framework where in particular
such questions can be analyzed. We consider the Gaussian-Schell model for the source
when the source coherence statistics is defined in terms of Gaussian envelopes. This
gives rather simple and convenient forms for the wave statistics, but the theory can
easily be modified to more general forms for the source statistics. The situation with
a partially coherent source, but a homogeneous medium was considered in [14], while
we here consider the case when also the medium is random. Note that we focus on the
fourth-order moments, while in [13] moments of all orders were considered under some
simplifying assumptions. The assumption that allows us to get explicit expressions for
the fourth-order moments is to assume the scintillation regime, when the correlation
radius of the source is of the same order as the correlation radius of the medium, but
the beam radius is much larger. Fluctuations of scalar wave intensity was considered
in [29, 26] for a beam type propagation when the random medium fluctuations are
Gaussian, while we assume Gaussianity for the source, but not for the medium. In
[5] a characterization of intensity fluctuation and how it depends on the regularity of
deterministic initial data is presented. Here we consider the case with random initial
data with smooth Gaussian statistics.

We remark that there are a number of approaches to model high-order moments
of the wave field that are based on perturbative approaches. Indeed, the derivation
of such approximations is based on the premise that the waves is only perturbed or
affected by the scattering to lower order [1, 4, 10]. In this paper we describe an analytic
framework that gives a rigorous scaling limit identification of the fourth-order moment
in the saturated regime when the incoherent or scattered part of the wave field is as
large as or larger than the coherent component. In fact this description also captures
the situation when the wave is fully incoherent and the coherent part of the wave energy
is essentially fully scattered. The range of validity of this description is discussed in
Appendix C.

We describe next a main result in the paper. We consider the situation when the
time-harmonic electric field in the source plane z = 0 correspond to a partially coherent
beam and has the form

E⃗(z = 0,x) =

2∑
j=1

fj(x)êj , (1)

where ê1 and ê2 are two orthogonal unit vectors in the transverse plane, z is the beam
propagation direction and x the lateral spatial coordinates. The functions f1, f2 are
zero-mean Gaussian processes with covariance

E
[
fj
(
r +

q

2

)
fl
(
r − q

2

)]
=

 A2
j exp

(
− |r|2

r2o
− |q|2

4ρ2
o

)
if j = l,

AjAlχ exp
(
− |r|2

r2o
− |q|2

4ρ2
1

)
if j ̸= l,

(2)

where the polarization degree χ ∈ [−1, 1], ro is the beam radius of the source, ρo is
the correlation radius of the source and we have ρ1 ≤ ρo. We refer to [9] for further
background on modeling with polarized waves. Consider first the second-order field
moment in the form of the mutual coherence function in the white-noise paraxial
regime (with the wavelength smaller than the correlation radii of the medium and the
beam which are moreover on the scale of the the beam radius, which in turn is smaller
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than the propagation distance, see Appendix A). As discussed in Section 2 the mutual
coherence function of the wave field is in this regime given by

µ2,jl(z, r, q) = E
[
uj
(
z, r +

q

2

)
ul
(
z, r − q

2

)]
=

{
A2

jHρo
(z, r, q) if j = l,

AjAlχHρ1
(z, r, q) if j ̸= l,

(3)

where the fundamental second-order lateral scattering function is defined by

Hρo
(z, r, q) =

r2o
4π

∫
R2

exp
(
iζ · r − r2o |ζ|2

4
−

|ζ z
ko

− q|2

4ρ2o

)
× exp

(k2o
4

∫ z

0
C
(ζz′
ko

− q
)
− C(0)dz′

)
dζ, (4)

with ko the central wavenumber and C the covariance function of the medium fluc-
tuations when integrated in the z-dimension (see Eq. (18)). The intensity is defined
by

I(z, r) =

2∑
j=1

|uj(z, r)|2, (5)

and the mean intensity is then

E
[
I(z, r)

]
= (A2

1 +A2
2)Hρo

(z, r,0). (6)

Consider next the fourth-order field moment in form of the covariance of the intensity.
As discussed in Section 3, in the scintillation regime where the wavelength is smaller
than the correlation radii of the medium and the beam, which are smaller than the
beam radius, which is smaller than the propagation distance, the intensity covariance
has the form

Cov
(
I
(
z, r +

q

2

)
, I
(
z, r − q

2

))
=
(
A4

1 +A4
2

)
|Hρo

(z, r, q)|2 + 2A2
1A

2
2χ

2|Hρ1
(z, r, q)|2.

(7)

This representation proves the quasi-Gaussian property, that the fourth-order moment
(intensity covariance) derives from the second-order moment (the mutual coherence
function), as is the case in general for Gaussian random fields. From this description
we can identify the intensity decoherence scale and spreading scale and we discuss
this explicitly in the strongly scattering case in Section 4. Figure 1 shows the forms
of the mean intensity and intensity covariance in this regime and reflects an enhanced
spreading and decorrelation due to the random medium. Note that more generally
the quasi-Gaussian property provides the basis for analysis of a number of wave prop-
agation challenges and we discuss one such application in Section 4. We remark also
that fourth-order moments of the wave fields that are more general than the intensity
covariance can be obtained via Proposition D.1 in Appendix D and that the quasi-
Gaussian property holds for such general moments.

The outline of the paper is as follows. In Section 2 we describe modeling of the
partially coherent source in the polarized case and we present the Itô-Schrödinger
equation describing wave propagation in the white-noise paraxial regime. In Section
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Figure 1. The mean intensity (left) and the intensity covariance (right) when the source is such that ρo =

10λo, ro = 100λo (with λo the wavelength), A1 = A2 = A0, and χ = 0. We compare the profiles of the
source (dotted lines) and the profiles of the beam after propagation distance z = zo/2 in the homogeneous

medium (dashed lines) and in the random medium with scattering strength γ̄2 = 510−7λ−1
o (solid lines). Here

zo = koρoro is the Rayleigh length of the partially coherent source and γ̄2 is defined by Eq. (30) and is a
measure of the strength of the random fluctuations in the medium.

3 we present the fourth-order moment result for the polarized waves. The main result
that allows us to do this is that the Itô-Schrödinger equations for the polarization
modes are dynamically uncoupled, however, statistically coupled. In Section 4 we dis-
cuss an application of the theory that we have developed to source imaging (using the
intensity covariance function instead of the mutual coherence function as in [6]). The
details of the derivation and also a discussion of the second-order moment or mutual
coherence function can be found in the appendices.

2. Electromagnetic Waves in the White-Noise Paraxial Regime

We consider propagation of a partially coherent electromagnetic beam waves through
a three-dimensional random medium. Maxwell’s equations for the three-dimensional
electric field E⃗ and the three-dimensional magnetic field strength H⃗ are in the time-
harmonic case (with frequency ωo):

∇× E⃗ = −iωoµ(z,x)H⃗, (8)

∇ · (ϵ(z,x)E⃗) = ρ(z,x), (9)

∇× H⃗ = J⃗ (s)(z,x) + iωoϵ(z,x)E⃗, (10)

∇ · (µ(z,x)H⃗) = 0. (11)

The term J⃗ (s) is a current source term, ϵ is the dielectric permittivity of the medium,
and µ is the magnetic permeability of the medium. Note that the equation of continuity
of charge iωoρ+∇ · J⃗ (s) = 0 is automatically satisfied.

We assume that

• The medium is randomly heterogeneous:

ϵ(z,x) = ϵo
[
1 +mϵ(z,x)

]
, (12)

µ(z,x) = µo

[
1 +mµ(z,x)

]
. (13)

The random processes mϵ(z,x) and mµ(z,x) are bounded, stationary, and zero-
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mean and they satisfy ergodic (mixing) conditions in z.

• We consider a partially coherent source f⃗(x), which is a field with Gaussian
statistics and mean zero that is localized in the plane z = 0. We address the
case of a Gauss-Schell model for the source. The source is then J⃗ (s)(z,x) =

2µ
−1/2
o ϵ

1/2
0 f⃗(x)δ(z), where f3 = 0 and f1, f2 are zero-mean Gaussian processes

with covariance

E
[
fj
(
r +

q

2

)
fl
(
r − q

2

)]
=

 A2
j exp

(
− |r|2

r2o
− |q|2

4ρ2
o

)
if j = l,

AjAlχ exp
(
− |r|2

r2o
− |q|2

4ρ2
1

)
if j ̸= l.

(14)

All parameters are real and positive, with χ ∈ [−1, 1]. The parameters have to
satisfy several constraints to ensure that we deal with a well-defined covariance
function:

ρo ≤ ro, χ2ρ−2
o + (1− χ2)r−2

o ≤ ρ−2
1 ≤ ρ−2

o .

Here ro is the radius of the beam and ρo is the correlation radius. The special
case ρo = ro, χ = 0 corresponds to a coherent source with components fj(x) =
fo,j exp(−|x|2/(2r2o)) where fo,j , j = 1, 2 are two independent complex-valued zero-
mean Gaussian random variables with variance A2

j . In the general case with ρo < ro
the field is partially coherent and the field components have the form of correlated
speckle patterns with speckle spots with typical radius ρo and with an overall inten-
sity envelope that is exp(−|r|2/r2o).

In the white-noise paraxial regime (which holds when the wavelength is much smaller
than the correlation radius of the source, the correlation radius of the medium, and
the beam radius, which are themselves much smaller than the propagation distance)
the electric field modulo a range-dependent phase (see Appendix A) has the form

E⃗(z,x) =

2∑
j=1

uj(z,x)êj , (15)

where ê1 and ê2 are the unit vectors in the transverse plane pointing in the x and
y directions and the complex amplitude fields uj are the solution of the following
statistically coupled Itô-Schrödinger equations [16, 18, 19]:

duj(z,x) =
i

2ko
∆xuj(z,x)dz +

iko
2

uj(z,x) ◦ dB(z,x), j = 1, 2, (16)

with the initial condition in the plane z = 0:

uj(z = 0,x) = fj(x).

Here the random process B(z,x) is a real-valued Brownian field with a covariance that
derives from two-point statistics in the model for the medium fluctuations in (12-13)

E[B(z,x)B(z′,x′)] = min{z, z′}C(x− x′), (17)
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where

C(x) =

∫
R
E[(mϵ +mµ)(x

′ + x, z′ + z)(mϵ +mµ)(x
′, z′)]dz. (18)

Note therefore that the evolution equations for the lateral components of the elec-
tromagnetic field is driven by the same Brownian field. We remark that C(0) can be
interpreted as the product of the variance of the fluctuations of the random medium
times its longitudinal correlation radius:

C(0) = σ2ℓz,

for σ the standard deviation of the medium fluctuations: σ2 = E[(mϵ +mµ)
2(x′, z′)].

The derivation of (16) from the random three-dimensional scalar wave equation
is presented in [16]. Its derivation for the Maxwell’s equations (8-11) is presented in
[18, 19]. In Eq. (16) the symbol ◦ stands for the Stratonovich stochastic integral [16].
The first- and second-order moments of the wave field solution of (16) have been
studied in [16, 18] and recover results derived in [27]. In view of the centered partial
coherent source we find that the first-order moment of the wave field is zero. The
governing equations for the higher order moments can be identified via Itô calculus for
Hilbert space valued processes. We find in particular that the second-order moment
of the wave field (mutual coherence function) defined by

µ2,jl(z, r, q) = E
[
uj
(
z, r +

q

2

)
ul
(
z, r − q

2

)]
(19)

satisfies [21]

∂µ2,jl

∂z
=

i

ko
∇r · ∇qµ2,jl +

k2o
4
U2

(
q
)
µ2,jl, (20)

with the potential U2(q) = C(q)−C(0) and the initial condition determined by (14).
As shown in Appendix B, it then follows that the mutual coherence function is given
by

µ2,jl(z, r, q) =

{
A2

jHρo
(z, r, q) if j = l,

AjAlχHρ1
(z, r, q) if j ̸= l,

(21)

where Hρo
(z, r, q) is defined by (4).

We next show how our main quantity of interest - the intensity covariance - can be
expressed in terms of the mutual coherence function.

3. The Intensity Covariance for Polarized Waves

The intensity is defined by (5) and by (3), its mean is given by (6). The second-order
moment of the intensity is

E
[
I
(
z,x1

)
I
(
z,x2

)]
=

2∑
j,l=1

µ4,jl(z,x1,x2,x1,x2), (22)



Partially Coherent Electromagnetic Beam Propagation in Random Media 8

where the µ4,jl’s are defined by

µ4,jl(z,x1,x2,y1,y2) = E
[
uj(z,x1)uj(z,y1)ul(z,x2)ul(z,y2)

]
.

These moments satisfy the equation (D3) and have the initial conditions:

µ4,jj(z = 0,x1,x2,y1,y2)

= A4
j exp

(
− |x1 + y1|2

4r2o
− |x1 − y1|2

4ρ2o
− |x2 + y2|2

4r2o
− |x2 − y2|2

4ρ2o

)
+A4

j exp
(
− |x1 + y2|2

4r2o
− |x1 − y2|2

4ρ2o
− |x2 + y1|2

4r2o
− |x2 − y1|2

4ρ2o

)
, (23)

for j = 1, 2 and

µ4,jl(z = 0,x1,x2,y1,y2)

= A2
jA

2
l exp

(
− |x1 + y1|2

4r2o
− |x1 − y1|2

4ρ2o
− |x2 + y2|2

4r2o
− |x2 − y2|2

4ρ2o

)
+A2

jA
2
l χ

2 exp
(
− |x1 + y2|2

4r2o
− |x1 − y2|2

4ρ21
− |x2 + y1|2

4r2o
− |x2 − y1|2

4ρ21

)
, (24)

for j ̸= l.
Consequently, as shown in Appendix D, in the scintillation regime (which holds in

the white-noise paraxial regime when additionally the correlation radius of the source
is of the same order as the correlation radius of the medium, but the beam radius is
much larger), the second-order moment of the intensity has the form

E
[
I
(
z, r +

q

2

)
I
(
z, r − q

2

)]
=
(
A4

1 +A4
2

)[
Iρo

(2r,0) + Jρo
(2r, q)

]
+ 2A2

1A
2
2

[
Iρo

(2r,0) + χ2Jρ1
(2r, q)

]
, (25)

where Iρo
and Jρo

are defined by (D22) and (D23). This can also be written as

E
[
I
(
z, r +

q

2

)
I
(
z, r − q

2

)]
=
(
A4

1 +A4
2

)[
Hρo

(z, r,0)2 + |Hρo
(z, r, q)|2

]
+ 2A2

1A
2
2

[
Hρo

(z, r,0)2 + χ2|Hρ1
(z, r, q)|2

]
, (26)

or equivalently (7). This shows that the field satisfies the Gaussian rule for the fourth-
order moment in the scintillation regime:

E
[
I
(
z, r +

q

2

)
I
(
z, r − q

2

)]
=

2∑
j,l=1

E
[
uj
(
z, r +

q

2

)
uj
(
z, r +

q

2

)]
E
[
ul
(
z, r − q

2

)
ul
(
z, r − q

2

)]
+

2∑
j,l=1

E
[
uj
(
z, r +

q

2

)
ul
(
z, r − q

2

)]
E
[
ul
(
z, r − q

2

)
uj
(
z, r +

q

2

)]
. (27)

The quasi-Gaussianity property and intensity covariance expression that we have
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just identified are useful in various applications. For instance in applications to imaging
based on wave field coherence the signal-to-noise ratio will in general depend on fourth-
order wave field moments [7, 15]. These moments can then be related to the mutual
coherence function for the wave field via the theory presented in this paper. We discuss
next an application to the inverse source problem for partially coherent beam sources
in complex media using information that can be extracted from the mean intensity
covariance.

4. Estimation of Partially Coherent Electromagnetic Sources

We consider the problem of characterizing a partially coherent source. The goal is
to determine the parameters of a Gauss-Schell source from the measurements of the
intensity after a propagation distance z. Note that here we base the estimate on
measurements of intensity only while in for instance in [6] the estimate is based on
coherence of the measurements of the field itself. In [35] the authors use a cross phase
in the source for stable transmission of the coherence pattern in the source field. This
then allows for transmission of information. In order to relate the field coherence to
coherence in the intensity the authors use a Gaussian approximation for the field. It
follows from the analysis in our paper that such an approximations is valid in the
scintillation regime. We remark that in the case with active multifrequency imaging
one can obtain partial phase information from an appropriate illumination strategy and
use of a polarization identity [34]. Here we consider passive single-frequency intensity
based imaging and no phase information is available.

In the source estimation context considered here we assume the scintillation regime,
moreover, we use the strongly scattering approximation studied in Appendix C (which
holds when k2oC(0)z ≫ 1 and C is smooth). We then find

E
[
I(z, r)

]
= (A2

1 +A2
2)

r2o
R2(z; ρo)

exp
(
− |r|2

R2(z; ρo)

)
, (28)

where the beam radius is

R2(z; ρo) = r2o

(
1 +

γ̄2z
3

3r2o
+

z2

k2or
2
oρ

2
o

)
, (29)

with

γ̄2 = −1

4
∆xC(0) (30)

being a parameter that governs the strength of random lateral scattering. In the ex-
pression (29) the original beam radius is ro, the third term in the right-hand side gives
the spreading due to diffraction O(z) in the homogeneous medium case. The second
term gives the anomalous spreading O(z3/2) due to random scattering.
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Figure 2. The correlation radius ρ(z) (left) and beam radius R(z) (right) when the source is such that

ρo = 10λo, ro = 100λo (with λo the wavelength), A1 = A2 = A0, and χ = 0 as in Figure 1. We compare the
functions in the homogeneous medium and in the random medium with scattering strength γ̄2 = 510−7λ−1

o .

Here zo = koroρo is the Rayleigh length of the partially coherent source and γ̄2 is defined by Eq. (30).

The covariance intensity function is

Cov
(
I
(
z, r +

q

2

)
, I
(
z, r − q

2

))
=
(
A4

1 +A4
2

) r4o
R(z; ρo)4

exp
(
− 2|r|2

R2(z; ρo)
− |q|2

2ρ2(z; ρo)

)
+ 2A2

1A
2
2χ

2 r4o
R(z; ρ1)4

exp
(
− 2|r|2

R2(z; ρ1)
− |q|2

2ρ2(z; ρ1)

)
,

(31)

where the correlation radius of the beam is

ρ2(z; ρo) = ρ2o
1 + γ̄2z3

3r2o
+ z2

k2
oρ

2
or

2
o

1 + k2oρ
2
oγ̄2z

(
1 + γ̄2z3

12r2o
+ z2

3k2
oρ

2
or

2
o

) . (32)

In the homogeneous medium case we have ρ(z; ρo)/R(z; ρo) = ρo/ro and the lateral
correlation radius increases with the propagation distance while in the random case
ρ(z; ρo) = O(z−1/2) and the lateral correlation radius decreases with the propagation
distance due to random scattering. The correlation radius ρ(z; ρo) and beam radius
R(z, ρo) are plotted in Figure 2. Note that the beam exhibits an anomalous spreading
in the random medium, moreover, that the correlation radius is decreasing with depth
rather than increasing as in the homogeneous medium. Note also that ρ ≈ λo for deep
probing with z ≈ 1/γ̄2 and that the paraxial approximation is not valid beyond this
‘paraxial propagation distance’ (also called transport mean free path in the physics
literature [36], that is to say, the typical distance after which the direction of light gets
lost).

The structure of the intensity covariance in lateral and range coordinates can be
used for imaging of the partially coherent source. Here we consider measurements at
one range z only. Note that the expressions in (28) and (31) are computed based on
averaging with respect to the statistics of both the source and of the medium. We
assume that these means can be identified with a high signal-to-noise ratio. This is
the case if both the partially coherent source and the medium fluctuate in time and we
average the measurements over a time interval that is long compared to the turnover
times of the medium and of the source. In cases when the averaging is not efficient or
the medium is stationary (time-independent) it may be necessary with some form of
filtering to enhance statistical stability [8].
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In the statistically stable case with long time averaging at the detector the obser-
vation of the mean intensity and the intensity covariance function makes it possible
to extract the beam radii R(z; ρo), R(z; ρ1), correlation radii ρ(z; ρo), ρ(z; ρ1) and the
intensity amplitude (A2

1+A2
2)r

2
o . If ρo ̸= ρ1, then we can also extract (A4

1+A4
2)r

4
o and

2A2
1A

2
2χ

2r4o . If ρo = ρ1, then we can only extract the sum (A4
1 +A4

2 + 2A2
1A

2
2χ

2)r4o .
Given the values of z and γ̄2, we can then estimate the beam radius ro of the source,

the correlation radii ρo and ρ1, the total intensity A2
1 + A2

2. If ρo ̸= ρ1 we can also
extract the polarization degree χ and the ellipticity e2 = (A2

2 − A2
1)

2/(A2
1 + A2

2)
2.

Indeed, if we introduce the three following quantities that can be extracted from data
Y1 = (a21 + a22) and Y2 = a41 + a42, Y3 = 2a21a

2
2χ

2 with aj = Ajro, we have

e2 =
(a21 − a22)

2

(a21 + a22)
2
= 2

Y2
Y 2
1

− 1, χ2 =
Y3

Y 2
1 − Y2

. (33)

Then, with an estimate of ro we can identify A1 and A2.
The estimation is possible and reliable provided the propagation distance is not too

large, i.e., z should not be much larger than max
(
(r2o/γ̄2)

1/3, 1/(γ̄2k
2
oρ

2
o)
)
, because the

statistics of the beam (beam radius and correlation radius) then becomes essentially
independent of the initial values ro and ρo as shown in Appendix C.

5. Conclusions

We have considered time-harmonic electromagnetic wave propagation from partially
coherent sources in random media. In many applications of waves it is of interest to
evaluate the fourth-order moment of the wave field. Here we present a theory that al-
lows us to describe such moments and we focus on the specific fourth-order moments
corresponding to the intensity covariance. We present here such a description for po-
larized waves. The results follow from the Itô-Schrödinger equation for the wave field
valid in the white-noise paraxial regime. An important aspect of these Itô-Schrödinger
equations is that the equations describing the evolutions of the transversely polarized
modes are driven by the same Brownian motion, however, such that they are dynam-
ically uncoupled. The explicit expressions for the fourth-order moments are derived
in a subsequent scaling regime that we denote the scintillation regime. An important
aspect of the fourth-order moment analysis is the proof of the quasi-Gaussian property
which means that the fourth-order moments can be obtained from the second-order
moments as if the field had Gaussian statistics. We note that this property holds true
even if the wave field is partially coherent. We also describe an application to the
inverse source problem using information extracted from the observed intensity co-
variance. We moreover give explicit expressions for the decorrelation and spreading
scales deriving from the mutual coherence function for probing through strong clut-
ter, these scales characterize the statistical structure of the wave field in view of the
quasi-Gaussian property (up to fourth order).

Appendix A. The Scintillation Regime for the Electromagnetic Waves

We discuss here the white-noise paraxial scaling regime that leads to the Itô-
Schrödinger equation in (16). We refer to [18] for the full derivation. The electromag-
netic wave equations have the form (8-11) with the dielectric permittivity ϵ and the
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magnetic permeability µ of the medium modeled by (12-13). We denote E⃗ = (Ej)j=1,2,3

and H⃗ = (Hj)j=1,2,3. The four-dimensional vector (E1, H2, E2, H1) then satisfies a

closed system as shown in [18]. Let co = µ
−1/2
o ϵ

−1/2
o and ζo = µ

1/2
o ϵ

−1/2
o be the homo-

geneous propagation speed and impedance, then we introduce the decomposition

E1(z,x) = ζ
1

2
o

(
a1(z,x)e

iωz

co + b1(z,x)e
−iωz

co

)
,

H2(z,x) = ζ
− 1

2
o

(
a1(z,x)e

iωz

co − b1(z,x)e
−iωz

co

)
,

E2(z,x) = ζ
1

2
o

(
a2(z,x)e

iωz

co + b2(z,x)e
−iωz

co

)
,

H1(z,x) = ζ
− 1

2
o

(
− a2(z,x)e

iωz

co + b2(z,x)e
−iωz

co

)
.

Here, aj , bj , j = 1, 2 are coefficients of locally forward and backward (in z) propagating
plane waves. In the case of a homogeneous medium with mϵ ≡ 0,mµ ≡ 0 this gives an
exact decomposition into forward and backward plane waves with constant coefficients,
while with random medium fluctuations the coefficients aj and bj satisfy coupled
equations.

Let σ be the standard deviation of the fluctuations of the medium. Moreover, assume
that the random fluctuations in the index of refraction are isotropic and denote by ℓc
the correlation length of the fluctuations, λo the carrier wavelength (equal to 2π/ko,
ko = ωo/co), L the typical propagation distance, ρo the correlation radius of the source,
and ro the radius of the initial transverse beam-source. In this framework the variance
C(0) of the Brownian field in the Itô-Schrödinger equation (16) is of order σ2ℓc and
the transverse scale of variation of the covariance function C(x) in (18) is of order ℓc.

We next discuss the scintillation regime in more detail. First, we consider the pri-
mary scaling (white-noise paraxial regime) that leads to the Itô-Schrödinger equation
(16), when the propagation distance is much larger than the correlation length of the
medium, the correlation radius of the source and the beam radius, which are them-
selves much larger than the wavelength, moreover, the medium fluctuations are small.
Explicitly, we assume the primary scaling when

ρo
ℓc

∼ 1 ,
ro
ℓc

∼ 1 ,
L

ℓc
∼ α−1 ,

λo

ℓc
∼ α , σ2 ∼ α3 ,

where α is a small dimensionless parameter. We introduce dimensionless coordinates
by:

x = ℓcx
′, z = Lz′, ko =

k′o
ℓcα

,

mε(Lz
′, ℓcx

′) = α3/2m′
ε

(
z′,x′) , mµ(Lz

′, ℓcx
′) = α3/2m′

µ

(
z′,x′) .

We look for the behavior of the coefficient uj(z
′,x′) = aj

(
z′L,x′ℓc

)
for long propaga-

tion distances of the order of α−1. We obtain a Schrödinger-type equation in which
the potential fluctuates in z′ on the scale α and is of amplitude α−1/2. This diffusion
approximation scaling gives the Brownian field and the model (16). As follows from
our analysis in [18], the backward propagating wave components bj , j = 1, 2 are small
compared to the forward propagating wave components aj , j = 1, 2 in this forward
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beam propagation regime, We remark also that the local propagation speed is

c =
1√
µ′ϵ′

= co
[
1− α3/2

m′
µ +m′

ϵ

2
+O(α3)

]
,

and the local impedance

ζ =
√

µ′/ϵ′ = ζo
[
1 + α3/2

m′
µ −m′

ϵ

2
+O(α3)

]
.

In view of (18) it then follows that the effective Brownian field is determined by the
fluctuations of the local propagation speed, but not by the fluctuations of the local
impedance.

In Appendix D we address the subsequent scaling regime in which the correlation
length of the medium ℓc and the correlation radius ρo of the source are much smaller
than the beam radius ro of the source, moreover, the medium fluctuations are weak
and the beam propagates deep into the medium. We then get the modified scaling
picture

ρo
ℓc

∼ 1 ,
ro
ℓc

∼ ε−1 ,
L

ℓc
∼ α−1ε−1 ,

λo

ℓc
∼ α , σ2 ∼ α3ε , (A1)

and we assume α ≪ ε ≪ 1. This means that the paraxial white-noise limit α → 0 is
taken first, and we find

2ikodu
ε
j +∆xu

ε
j dz + k2ou

ε
j ◦ dBε(z,x) = 0,

where the Brownian field Bε has covariance Cε. Then the limit ε → 0 is applied,
corresponding to the scintillation regime. In the scintillation regime (A1) the effective
strength k2oC

ε(0)L of the Brownian field is of order one since σ2ℓcL/λ
2
o ∼ 1. We also

have that Lλo/r
2
o is of order ε. That is, the typical propagation distance is smaller than

the Rayleigh length associated to a coherent beam with radius ro. Here the Rayleigh
length corresponds to the distance when the transverse radius of a coherent beam with
radius ro has roughly doubled by diffraction in the homogeneous medium case and it
is given by r2o/λo. The typical propagation distance is, however, of the same order
as the Rayleigh length associated to a partially coherent beam with beam radius ro
and correlation radius ρo, which is given by roρo/λo [14]. The scintillation regime is,
therefore, a regime where diffractive and random effects are both effective and their
combination results in non-trivial effects. In this regime we are also able to derive
explicit expressions for the fourth-order moment, see Appendix D.

Appendix B. The Mean Polarized-Wigner Transform for a Partially
Coherent Beam

We discuss here the Wigner transform which is convenient in order to describe second-
order field moments. Let j, l ∈ {1, 2}. The mean Wigner transform is defined by

Wm(z, r, ξ) :=

∫
R2

exp
(
− iξ · q

)
E
[
uj
(
z, r +

q

2

)
ul
(
z, r − q

2

)]
dq. (B1)



Partially Coherent Electromagnetic Beam Propagation in Random Media 14

In view of Eq. (20) it satisfies the closed system

∂Wm

∂z
+

1

ko
ξ · ∇rWm =

k2o
4(2π)2

∫
R2

Ĉ(k)
[
Wm(ξ − k)−Wm(ξ)

]
dk, (B2)

starting from Wm(z = 0, r, ξ) = Wm0(r, ξ), which is the mean Wigner transform of
the source (fj , fl):

Wm0(r, ξ) :=

∫
R2

exp
(
− iξ · q

)
E
[
fj
(
r +

q

2

)
f l

(
r − q

2

)]
dq.

The transport equation (B2) can be solved and we find

Wm(z, r, ξ) =
1

(2π)2

∫∫
R2×R2

exp
(
iζ ·

(
r − ξ

z

ko

)
− iξ · q

)
Ŵm0

(
ζ, q

)
× exp

(k2o
4

∫ z

0
C
(
q + ζ

z′

ko

)
− C(0)dz′

)
dζdq, (B3)

where Ŵm0 is defined in terms of the source (fj , fl) as:

Ŵm0(ζ, q) =

∫
R2

exp
(
− iζ · r

)
E
[
fj
(
r +

q

2

)
f l

(
r − q

2

)]
dr. (B4)

The mean Wigner transform gives an equation for the mutual coherence function and
we next discuss this in a situation with strong scattering.

Appendix C. The Mutual Coherence Function in the Strongly Scattering
Regime

We consider a Gauss-Schell model for the source, which is a field with Gaussian statis-
tics, mean zero, and covariance function (14). By taking the inverse Fourier transform
of the mean Wigner transform, we find that the covariance function of the transmitted
field has the form (3). We discuss next this mutual coherence function in more detail
and to find explicit expressions we assume in the rest of this section that scattering is
strong and smooth, in the sense that

k2oC(0)z ≫ 1, (C1)

C(x) = C(0)− γ̄2|x|2 + o(|x|2). (C2)

From (16) written in Itô form [39] it follows that the scattering mean free path ℓmfp

(that is the typical propagation distance over which a coherent wave becomes incoher-
ent) is

ℓ−1
mfp =

k2oC(0)

8
=

k2oσ
2ℓz
8

. (C3)
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Thus, in the regime (C1) the propagation distance is large compared to the scattering
mean free path. Note moreover that γ̄2 can be interpreted as

γ̄2 =
σ2ℓz
ℓ2⊥

(C4)

where σ2 is the variance of medium fluctuations as above, ℓz is the longitudinal correla-
tion length of the medium (such that C(0) = σ2ℓz), and ℓ⊥ is its transverse correlation
radius of the medium defined by:

ℓ−2
⊥ = −∆C(0)

4C(0)
. (C5)

If the medium is isotropic (as assumed in Appendix A), for instance such that E[(mϵ+
mµ)(x

′+z,x′+z)(mϵ+mµ)(x
′, z′)] = σ2 exp(−|x|2/ℓ2c−z2/ℓ2c), then we have ℓz =

√
πℓc

and ℓ⊥ = ℓc.
If (C1-C2) hold, then the mean intensity is given by (28). This is found via a

Gaussian calculation after inserting (C1) in (4). In this expression we can identify the

original beam radius r2o , the spreading due to diffraction z2

k2
oρ

2
o
, and the spreading due

to random scattering γ̄2z3

3 . The covariance function of the field (or mutual coherence
function) is given by

E
[
uj
(
z, r +

q

2

)
uj
(
z, r − q

2

)]
= A2

j

r2o
R(z; ρo)2

exp
(
− |r|2

R2(z; ρo)
− |q|2

4ρ2(z; ρo)
+iθ(z; ρo)r·q

)
,

(C6)
where the correlation radius of the beam, ρ(z; ρo), is given by (32), the beam radius,
R(z; ρo), by (29) and

θ(z; ρo) =

z
koρ2

o
+ koγ̄2z2

2

r2o +
γ̄2z3

3 + z2

k2
oρ

2
o

. (C7)

If the source is coherent ρo = ro, then we recover the classical result obtained in [17],
while if the medium is homogeneous and the source is partially coherent ρo < ro, then
we recover the result obtained in [14]. Note that if the medium is homogeneous then

1/
√

θ(z; ρo) ≪ ρ(z; ρo) ≤ R(z; ρo), as z → ∞, while in the random case ρ(z; ρo) ≪
1/
√

θ(z; ρo) ≪ R(z; ρo), as z → ∞. In fact in both cases we have 1/
√
θ ∼

√
λoz,

up to a constant. Thus, the coherent phase modulation is slow relative to the field
decorrelation scale for deep probing in the random medium.

For large propagation distance so that the spreading due to the random medium
dominates, z ≫ max

(
(r2o/γ̄2)

1/3, 1/(γ̄2k
2
oρ

2
o)
)
, we have:

R(z; ρo) ∼ Atr(z) :=

√
γ̄2z3

3
, (C8)

ρ(z; ρo) ∼ ρtr(z) :=
1

ko
√
γ̄2z

, (C9)

θ(z; ρo) ∼
3ko
2z

. (C10)



Partially Coherent Electromagnetic Beam Propagation in Random Media 16

Note that these parameters are independent of the parameters ro and ρo of the partially
coherent source, so that information about the source is “forgotten” in the case of
deep probing. We refer to the parameters Atr, ρtr as the time reversal aperture and
resolution respectively. We note that we have the Rayleigh resolution relation

ρtr(L) =
λoL

Atr(L)
. (C11)

where ρtr corresponds to the refocusing resolution one obtains when a point source
emits a wave which is captured on a time reversal mirror at distance L and reemitted
(after time reversal) toward the source. Then it will refocus at the original source
location with a resolution of the order of the lateral correlation range ρtr(L) essentially
independently of the actual physical aperture [22]. This can be understood in that
the propagator of the transmitted wave decorrelates (laterally) on this scale and the
refocused wave is essentially the convolution of the propagator with itself.

We remark that the field correlation radius ρ(z; ρo) is important in determining
statistical stability. If we average a field quantity over an aperture then the signal-to-
noise ratio will in general depend on the ratio of the aperture to the field correlation
radius. We remark finally that we have ρtr ≈ λo when z ≈ 1/γ̄2, which means that the
paraxial approximation is not valid beyond this paraxial propagation distance (also
called transport mean free path [36]).

Appendix D. The Intensity Covariance Function

In this appendix we derive the expression for the intensity covariance function in the
scintillation regime. We start by introducing

µ4,j1l1j2l2(z,x1,x2,y1,y2) = E
[
uj1(z,x1)ul1(z,y1)uj2(z,x2)ul2(z,y2)

]
. (D1)

We are interested in the second-order moment of the intensity:

E
[
I(z,x1)I(z,x2)

]
=

2∑
j1,j2=1

µ4,j1j1j2j2(z,x1,x2,x1,x2). (D2)

We find using Eq. (16) that the general fourth-order moment µ4,j1l1j2l2 satisfies the
equation

∂µ4,j1l1j2l2

∂z
=

i

2ko

(
∆x1

+∆x2
−∆y1

−∆y2

)
µ4,j1l1j2l2 +

k2o
4
U4

(
x1,x2,y1,y2

)
µ4,j1l1j2l2 ,

(D3)
with the generalized potential

U4

(
x1,x2,y1,y2

)
= C(x1 − y1) + C(x2 − y2) + C(x1 − y2) + C(x2 − y1)

−C(x1 − x2)− C(y1 − y2)− 2C(0), (D4)

and the initial condition:

µ4,j1l1j2l2(z = 0,x1,x2,y1,y2) = E
[
fj1(x1)fl1(y1)fj2(x2)fl2(y2)

]
.



Partially Coherent Electromagnetic Beam Propagation in Random Media 17

Using the Gaussian property of the source, the initial condition for the fourth-order
moment is:

µ4,j1l1j2l2(z = 0,x1,x2,y1,y2)

= E
[
fj1(x1)fl1(y1)

]
E
[
fj2(x2)fl2(y2)

]
+ E

[
fj1(x1)fl2(y2)

]
E
[
fj2(x2)fl1(y1)

]
,

where the covariance function of the source is given by (2).
We parameterize the four points x1,x2,y1,y2 in (D1) in the special way:

x1 =
r1 + r2 + q1 + q2

2
, y1 =

r1 + r2 − q1 − q2
2

, (D5)

x2 =
r1 − r2 + q1 − q2

2
, y2 =

r1 − r2 − q1 + q2
2

. (D6)

In particular r1/2 is the barycenter of the four points x1,x2,y1,y2:

r1 =
x1 + x2 + y1 + y2

2
, q1 =

x1 + x2 − y1 − y2

2
,

r2 =
x1 − x2 + y1 − y2

2
, q2 =

x1 − x2 − y1 + y2

2
.

We denote by µ the fourth-order moment in these new variables (without writing the
dependence on j1, j2, l1, l2):

µ(z, q1, q2, r1, r2) = µ4,j1l1j2l2(z,x1,x2,y1,y2) (D7)

with x1,x2,y1,y2 given by (D5-D6) in terms of q1, q2, r1, r2.
In the variables (q1, q2, r1, r2) the function µ satisfies the system:

∂µ

∂z
=

i

ko

(
∇r1

· ∇q1
+∇r2

· ∇q2

)
µ+

k2o
4
U(q1, q2, r1, r2)µ, (D8)

with the generalized potential

U(q1, q2, r1, r2) = C(q2 + q1) + C(q2 − q1) + C(r2 + q1) + C(r2 − q1)

−C(q2 + r2)− C(q2 − r2)− 2C(0). (D9)

Note in particular that the generalized potential does not depend on the barycenter
r1, and this comes from the fact that the medium is statistically homogeneous. The
Fourier transform (in q1, q2, r1, and r2) of the fourth-order moment is defined by:

µ̂(z, ξ1, ξ2, ζ1, ζ2) =

∫∫
R2×R2

µ(z, q1, q2, r1, r2)

× exp
(
− iq1 · ξ1 − iq2 · ξ2 − ir1 · ζ1 − ir2 · ζ2

)
dq1dq2dr1dr2. (D10)
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It satisfies

∂µ̂

∂z
+

i

ko

(
ξ1 · ζ1 + ξ2 · ζ2

)
µ̂ =

k2o
4(2π)2

∫
R2

Ĉ(k)

[
µ̂(ξ1 − k, ξ2 − k, ζ1, ζ2)

+µ̂(ξ1 + k, ξ2 − k, ζ1, ζ2)− 2µ̂(ξ1, ξ2, ζ1, ζ2)

+µ̂(ξ1 + k, ξ2, ζ1, ζ2 − k) + µ̂(ξ1 − k, ξ2, ζ1, ζ2 − k)

−µ̂(ξ1, ξ2 − k, ζ1, ζ2 − k)− µ̂(ξ1, ξ2 + k, ζ1, ζ2 − k)

]
dk. (D11)

If j1 = j2 = l2 = l2 ≡ j ∈ {1, 2}, then the initial condition is

µ̂(z = 0, ξ1, ξ2, ζ1, ζ2) = (2π)4A4
jϕ

1
ρo
(ξ1)ϕ

1
ρo
(ξ2)ϕ

1
ro(ζ1)ϕ

1
ro(ζ2)

+(2π)4A4
jϕ

1
ρo
(ξ1)ϕ

1
ρo
(ζ2)ϕ

1
ro(ζ1)ϕ

1
ro(ξ2), (D12)

with

ϕ1
ρ(ξ) =

ρ2

2π
exp

(
− ρ2|ξ|2

2

)
. (D13)

Similar Gaussian expressions hold for the initial condition in the other cases for
(j1, j2, l1, l2), we only address the case j1 = j2 = l2 = l2 ≡ j in the following.

We cannot solve the problem for the fourth-order moment µ explicitly and consider
next a secondary scaling limit where we can identify an explicit solution. We consider
the scintillation regime, discussed in more detail in Appendix A, where the correlation
radius of the source is of the same order as the correlation radius of the medium, but
the beam radius of the source is much larger:

ρo → ρo, C(x) → εC(x), ro →
ro
ε
, z → z

ε
. (D14)

We introduce the rescaled function

µ̃ε(z, ξ1, ξ2, ζ1, ζ2) = µ
(z
ε
, ξ1, ξ2, ζ1, ζ2

)
exp

(
i
z

koε
(ξ1 · ζ1 + ξ2 · ζ2)

)
. (D15)

Then the limit ε → 0 is applied, corresponding to the scintillation regime.
In the scintillation regime the rescaled function µ̃ε satisfies the equation with fast

phases

∂µ̃ε

∂z
=

k2o
4(2π)2

∫
R2

Ĉ(k)

[
− 2µ̃ε(ξ1, ξ2, ζ1, ζ2)

+µ̃ε(ξ1 − k, ξ2 − k, ζ1, ζ2)e
i coz

εωo
k·(ζ2+ζ1)

+µ̃ε(ξ1 − k, ξ2, ζ1, ζ2 − k)ei
coz

εωo
k·(ξ2+ζ1)

+µ̃ε(ξ1 + k, ξ2 − k, ζ1, ζ2)e
i coz

εωo
k·(ζ2−ζ1)

+µ̃ε(ξ1 + k, ξ2, ζ1, ζ2 − k)ei
coz

εωo
k·(ξ2−ζ1)

−µ̃ε(ξ1, ξ2 − k, ζ1, ζ2 − k)ei
coz

εωo
(k·(ζ2+ξ2)−|k|2)

−µ̃ε(ξ1, ξ2 − k, ζ1, ζ2 + k)ei
coz

εωo
(k·(ζ2−ξ2)+|k|2)

]
dk, (D16)
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starting from

µ̃ε(z = 0, ξ1, ξ2, ζ1, ζ2) = (2π)8A4
jϕ

1
ρo
(ξ1)ϕ

1
ρo
(ξ2)ϕ

ε
ro(ζ1)ϕ

ε
ro(ζ2)

+(2π)8A4
jϕ

1
ρo
(ξ1)ϕ

1
ρo
(ζ2)ϕ

ε
ro(ζ1)ϕ

ε
ro(ξ2), (D17)

where ϕε
ρ is defined by:

ϕε
ρ(ξ) =

ρ2

2πε2
exp

(
− ρ2

2ε2
|ξ|2

)
. (D18)

The following result shows that µ̃ε exhibits a multi-scale behavior as ε → 0, with some
components evolving at the scale ε and some components evolving on the order one
scale [20].

Proposition D.1. The function µ̃ε(z, ξ1, ξ2, ζ1, ζ2) can be expanded as

µ̃ε
(
z, ξ1, ξ2, ζ1, ζ2

)
= (2π)8A4

jϕ
ε
ro(ζ1)ϕ

ε
ro(ζ2)B

(
z, ξ1, ξ2,

ζ1
ε
,
ζ2
ε

)
+(2π)8A4

jϕ
ε
ro(ζ1)ϕ

ε
ro(ξ2)B

(
z, ξ1, ζ2,

ζ1
ε
,
ξ2
ε

)
+Rε(z, ξ1, ξ2, ζ1, ζ2), (D19)

where

B(z, ξ1, ξ2, ζ1, ζ2) =
1

(2π)4

∫∫
R2×R2

dxdy exp
(
− |x|2 + |y|2

2ρ2o
− iξ1 · x− iξ2 · y

+
k2o
4

∫ z

0
C
(
x+ y +

z′

ko
(ζ1 + ζ2)

)
+ C

(
x− y +

z′

ko
(ζ1 − ζ2)

)
− 2C(0)dz′

)
,(D20)

and the function Rε goes to 0 as ε → 0.

As a consequence, the second-order moment of the intensity is

E
[∣∣u(z

ε
,
r

ε
+

q

2

)∣∣2∣∣u(z
ε
,
r

ε
− q

2

)∣∣2] = A4
jIρo

(z, 2r,0) +A4
jJρo

(z, 2r, q), (D21)

with

Iρo
(z, r1, r2)

=

∫∫
R2×R2

dξ1dξ2dζ1dζ2ϕ
1
ro(ζ1)ϕ

1
ro(ζ2)B(z, ξ1, ξ2, ζ1, ζ2)

× exp
(
− i

z

ko
(ξ1 · ζ1 + ξ2 · ζ2) + iζ1 · r1 + iζ2 · r2

)
=

(∫
R2

ϕ1
ro√
2
(ζ) exp

(
iζ · r1 + r2

2
+

k2o
4

∫ z

0
C(

ζz′

ko
)− C(0)dz′ − |ζ|2z2

4k2oρ
2
o

)
dζ

)
×
(∫

R2

ϕ1
ro√
2
(ζ) exp

(
iζ · r1 − r2

2
+

k2o
4

∫ z

0
C(

ζz′

ko
)− C(0)dz′ − |ζ|2z2

4k2oρ
2
o

)
dζ

)
= Hρo

(z,
r1 + r2

2
,0)Hρo

(z,
r1 − r2

2
,0) (D22)
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and

Jρo
(z, r1, r2)

=

∫∫
R2×R2

dξ1dξ2dζ1dζ2ϕ
1
ro(ζ1)ϕ

1
ro(ξ2)B(z, ξ1, ζ2, ζ1, ξ2)

× exp
(
− i

z

ko
(ξ1 · ζ1 + ξ2 · ζ2) + iζ1 · r1 + iζ2 · r2

)
=

∣∣∣ ∫
R2

ϕ1
ro√
2
(ζ) exp

(
iζ · r1

2
+

k2o
4

∫ z

0
C(

ζz′

ko
− r2)− C(0)dz′ −

|ζzko
− r2|2

4ρ2o

)
dζ

∣∣∣2
=

∣∣Hρo
(z,

r1
2
, r2)

∣∣2, (D23)

whereHρo
is defined by (4). We finally remark that for far away points the second-order

moment of the intensity is

E
[∣∣u(z

ε
,
r

ε
+

q

2ε

)∣∣2∣∣u(z
ε
,
r

ε
− q

2ε

)∣∣2] =
(
A2

1 +A2
2

)2Iρo
(z, 2r, q)

=
(
A2

1 +A2
2

)2Hρo
(z, r +

q

2
,0)Hρo

(z, r − q

2
,0)

= E
[∣∣u(z

ε
,
r

ε
+

q

2ε

)∣∣2]E [∣∣u(z
ε
,
r

ε
− q

2ε

)∣∣2] ,
so that the intensities then indeed are uncorrelated.
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