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Abstract. We study the paraxial wave equation with a randomly perturbed index of refraction,
which can model the propagation of a wave beam in a turbulent medium. The random perturbation
is a stationary and isotropic process with a general form of the covariance that may or may not be
integrable. We focus attention mostly on the nonintegrable case, which corresponds to a random
perturbation with long-range correlations, that is, relevant for propagation through a cloudy turbu-
lent atmosphere. The analysis is carried out in a high-frequency regime where the forward scattering
approximation holds. It reveals that the randomization of the wave field is multiscale: The travel
time of the wave front is randomized at short distances of propagation, and it can be described by
a fractional Brownian motion. The wave field observed in the random travel time frame is affected
by the random perturbations at long distances, and it is described by a Schr\"odinger-type equation
driven by a standard Brownian field. We use these results to quantify how scattering leads to decor-
relation of the spatial and spectral components of the wave field and to a deformation of the pulse
emitted by the source. These are important questions for applications, such as imaging and free
space communications with pulsed laser beams through a turbulent atmosphere. We also compare
the results with those used in the optics literature, which are based on the Kolmogorov model of
turbulence. We show explicitly that the commonly used approximations for the decorrelation of
spatial and spectral components are appropriate for the Kolmogorov model but fail for models with
long-range correlations.

Key words. paraxial wave equation, turbulent atmosphere, asymptotic analysis, long-range
correlations
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1. Introduction. The paraxial wave equation describes wave propagation along
a privileged axis, as a narrow angle beam, in a homogeneous or heterogeneous medium
[3]. It is a parabolic approximation of the wave equation, which neglects backscat-
tering and thus facilitates the analysis and computation of waves at a large distance
of propagation, also known as range. The parabolic approximation theory was in-
troduced by Leontovich and Fock [27] and has been used and developed further in
applied fields, such as seismology [12, 13], underwater acoustics [34], optics [23], and
laser optics [1, 24, 35, 36].

Motivated by laser optics applications to imaging and free space communications
through a turbulent atmosphere, we consider the paraxial wave equation with a ran-
domly perturbed wave speed c(\vec{}\bfitx ). The model of the perturbation is
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26 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

c2o
c2(\vec{}\bfitx )

= 1+ \mu (\vec{}\bfitx ),(1.1)

where co is the constant reference speed and \mu is a zero-mean, stationary, and isotropic
random process, with power spectral density (Fourier transform of the covariance) of
the form

(1.2) S(\vec{}\bfitkappa ) =
\int 
R3

d\vec{}\bfitx E [\mu (\vec{}\bfitx \prime )\mu (\vec{}\bfitx \prime + \vec{}\bfitx )] e - i\vec{}\bfitkappa \cdot \vec{}\bfitx = \chi \alpha 1(L - 1
o ,l - 1

o )(| \vec{}\bfitkappa | )| \vec{}\bfitkappa | 
 - 2 - \alpha .

Here \chi \alpha is a constant (expressed in unit of length to the power 1 - \alpha ), \alpha \in (0,1)\cup (1,2),
and 1(L - 1

o ,l - 1
o ) is the indicator function equal to one when its argument is in (L - 1

o , l - 1
o )

and to zero otherwise.
Definition (1.2) is a generalization of the commonly used Kolmogorov power spec-

trum, where \alpha = 5/3, and the ``outer scale"" Lo and the ``inner scale"" lo define the
``inertial range"" of turbulence [1]. There is a growing number of studies in the op-
tics literature concerned with quantifying the effect of non-Kolmogorov turbulence on
beam propagation [11, 25, 37]. All of them consider \alpha > 1, which corresponds to an
integrable covariance of \mu . This case is well understood from the mathematical point
of view and has been analyzed in detail in the high-frequency, paraxial regime in [14,
16]. The wave field is described asymptotically by the solution of an It\^o--Schr\"odinger
equation driven by a Brownian field with covariance defined in terms of S(\vec{}\bfitkappa ). There-
fore, the second order---and even fourth order---statistical moments of the wave field
can be calculated using It\^o calculus [17]. The study of such moments is an essential
part of both the analysis and the development of new methodologies for imaging [5,
9, 18], time reversal [4, 15, 19, 32], and optical communications applications [7].

The case \alpha \in (0,1) has not been explored in the optics literature and is interesting
mathematically because, depending on the outer scale Lo, it may give a nonintegrable
covariance of the fluctuations, meaning that \mu has long-range correlations. Moreover,
\alpha < 1 is relevant for propagation through a cloudy atmosphere, as seen from the
experimental studies [10] and [28, Table 3]. The conclusion of these studies is that
the value of \alpha depends on the interval (L - 1

o , l - 1
o ), with \alpha < 1 at length scales that

are larger than the outer scale of Kolmogorov turbulence. Thus, one could consider
an even more general model of the power spectrum, with \alpha < 1 at longer scales and
\alpha > 1 at smaller scales. For brevity, we work with the model (1.2), which is sufficient
for displaying the effects of long-range medium fluctuations on the statistics of the
wave beam.

Most of our analysis concerns \alpha \in (0,1) and a beam with initial radius of order rs,
satisfying lo \lesssim rs \ll Lo, so we can take Lo\rightarrow \infty while keeping lo finite. The covariance
of \mu is nonintegrable in this case, which means that the classic paraxial theory in
[14, 16] does not apply. We refer the reader to [21] for the derivation of the paraxial
approximation in a random anisotropic medium with long-range correlation proper-
ties. There, the wave is described asymptotically by the solution of a Schr\"odinger
equation with fractional white noise potential. A special regime in randomly layered
media with long-range correlations is also addressed in [20]. In this paper we show
that for our isotropic random medium modeled by \mu , a transformation involving the
central axis travel time (i.e., the travel time measured at the center of the beam) can
convert the problem into one where the classic analytic framework applies. We prove
that there are two distinguished range scales that describe the net scattering effects
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 27

on the beam: The central axis travel time randomizes on a small range scale and is
described by a fractional Brownian motion. This behavior was also shown in [2, 33].
The shape of the wave, observed in the random travel time frame, is not affected by
scattering at this short range. However, this, too, randomizes at a larger range, and
it is described by the solution of an It\^o--Schr\"odinger equation driven by a standard
Brownian field, as in [14, 16]. We use these asymptotic results to analyze explicitly
the space-frequency covariance of the wave field. This allows us to quantify how the
wave components decorrelate and how the pulse emitted by the source deforms due
to scattering in the random medium.

To relate our results with the existing optics literature, we also consider briefly
the case \alpha \in (0,1) \cup (1,2) with a finite Lo. These cases correspond to an integrable
covariance of the process \mu , where the theory in [14, 16] applies. We study the co-
variance of the wave field, which depends on \alpha and the scales lo and Lo, and quantify
explicitly the accuracy of the approximations used in the optics literature [1]. In
particular, we compare the profiles of the mean intensity and field covariance func-
tion with the commonly used Gaussian approximations [1]. The comparison shows
that the Gaussian approximations are accurate in the Kolmogorov case \alpha = 5/3, up
to slight discrepancies for the radii (effective spotsize, i.e., the radius of the support
of the mean intensity, and correlation radius, i.e., the radius of the support of the
field covariance function). We also show that the Gaussian approximations are very
wrong in the case \alpha \in (0,1), where the profiles of the mean intensity and field covari-
ance function exhibit heavy tails, and the field covariance function has a cusp at the
origin.

The paper is organized as follows: We begin in section 2 with the mathematical
formulation of the problem. We state the paraxial wave equation, identify the asymp-
totic regime, and give more details on the random process \mu . The asymptotic analysis
for the case \alpha \in (0,1), with Lo \rightarrow \infty and finite lo, is given in section 3. We use it in
section 4 to quantify the decorrelation of the wave components and the deformation
of the pulse due to scattering. Comparison with the formulas in the optics literature
is given in section 5. We end with a summary in section 6.

2. Mathematical formulation. Let us introduce the orthogonal system of co-
ordinates \vec{}\bfitx = (\bfitx , z), with range axis z along the direction of propagation and with
\bfitx \in R2 in the cross-range plane. The wave field u satisfies the wave equation

\biggl[ 
1

c2(\bfitx , z)
\partial 2t  - \Delta \bfitx  - \partial 2z

\biggr] 
u(t,\bfitx , z) = \partial t

\bigl[ 
2cos(\omega ot)f(Bt)

\bigr] 
S
\Bigl( \bfitx 
rs

\Bigr) 
\delta (z),(2.1)

for (t,\bfitx , z) \in R \times R2 \times R, where \Delta \bfitx denotes the Laplacian with respect to \bfitx . The
source is localized at the origin of range and has a cross-range profile with radius
rs, modeled by the function S of dimensionless argument, with support centered at
0. The source signal is a pulse with bandwidth B, modulated at the carrier (center)
frequency \omega o and with envelope modeled by the function f of dimensionless argument.
Prior to the source excitation there is no wave: u(t,\bfitx , z)\equiv 0 for t\ll  - 1/B.

Since the analysis of wave propagation requires the decomposition of the wave
field over frequencies, we work henceforth in the Fourier domain,

(2.2) \widehat u(\omega ,\bfitx , z) = \int \infty 

 - \infty 
dt ei\omega tu(t,\bfitx , z).
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28 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

This time-harmonic wave satisfies the Helmholtz equation,\biggl[ 
\omega 2

c2(\bfitx , z)
+\Delta \bfitx + \partial 2z

\biggr] \widehat u(\omega ,\bfitx , z) = i\omega \widehat F (\omega ,\bfitx )\delta (z),(2.3)

for (\omega ,\bfitx , z)\in R\times R2 \times R, with

\widehat F (\omega ,\bfitx ) = 1

B

\biggl[ \widehat f \biggl( \omega  - \omega o
B

\biggr) 
+ \widehat f \biggl( \omega + \omega o

B

\biggr) \biggr] 
S

\biggl( 
\bfitx 

rs

\biggr) 
(2.4)

and outgoing boundary conditions at | (\bfitx , z)| \rightarrow \infty . These conditions can be justified
mathematically by truncating the random medium outside a ball of large enough
radius, so that in the time domain, the truncation does not affect the wave over the
duration of interest.

We state next in section 2.1 the paraxial approximation of (2.3) and the asymp-
totic regime where it is valid. Details on the random process \mu are given in section 2.2.

2.1. Scaling and the paraxial equation. The paraxial approximation holds
in a high-frequency regime, where the wavelength is much smaller than the radius of
the beam and the correlation radius of the medium, which are, in turn, much smaller
than the range scale (distance of propagation).

We introduce the small dimensionless parameter \varepsilon > 0 that encapsulates this
regime and assume that, compared to the typical range, the typical wavelength is of
order \varepsilon 4 and that the beam radius and the correlation radius are of order \varepsilon 2:

(2.5) B\varepsilon =
B

\varepsilon 4
, \omega \varepsilon o =

\omega o
\varepsilon 4
, r\varepsilon s = \varepsilon 2rs, l\varepsilon o = \varepsilon 2lo, L\varepsilon o = \varepsilon 2Lo, \chi \varepsilon \alpha = \chi \alpha \varepsilon 

8 - 2\alpha .

As we will see, the scaling of \chi \varepsilon \alpha is the one that gives a nontrivial limit as \varepsilon \rightarrow 0.
It is also possible to consider a larger range scale L\varepsilon o = \varepsilon pLo, with p < 2, and/or
a smaller l\varepsilon o = \varepsilon qlo, with q > 2 [14]. In this paper we consider the scaling (2.5).
We focus attention on the case when \alpha \in (0,1) and Lo = \infty , but we also consider
\alpha \in (0,1)\cup (1,2) and a finite Lo.

We denote by \mu \varepsilon a random process with the power spectral density of the form
(1.2) with the constant \chi \varepsilon \alpha and scales l\varepsilon o, L

\varepsilon 
o. Then, (2.5) gives the representation

(2.6) \mu \varepsilon (\vec{}\bfitx ) = \varepsilon 3\mu 
\Bigl( \vec{}\bfitx 
\varepsilon 2

\Bigr) 
,

where \mu is a random process with the power spectral density of the form (1.2) with
the constant \chi \alpha and scales lo, Lo. The wave field in the scaling (2.5) is denoted by\widehat u\varepsilon and satisfies the Helmholtz equation derived from (2.3),\biggl[ 

\omega 2

c2o
[1 + \mu \varepsilon (\bfitx , z)] +\Delta \bfitx + \partial 2z

\biggr] \widehat u\varepsilon (\omega ,\bfitx , z) = i\omega \widehat F \varepsilon (\omega ,\bfitx )\delta (z),(2.7)

with

\widehat F \varepsilon (\omega ,\bfitx ) = 1

B\varepsilon 

\biggl[ \widehat f\Bigl( \omega  - \omega \varepsilon o
B\varepsilon 

\Bigr) 
+ \widehat f\Bigl( \omega + \omega \varepsilon o

B\varepsilon 

\Bigr) \biggr] 
S
\Bigl( \bfitx 

r\varepsilon s

\Bigr) 
= \varepsilon 4 \widehat F\Bigl( \varepsilon 4\omega , \bfitx 

\varepsilon 2

\Bigr) 
,(2.8)

and outgoing boundary conditions at | (\bfitx , z)| \rightarrow \infty .
Observe that if we had S \equiv 1 and \mu \equiv 0 in (2.7)--(2.8), the solution would be the

plane wave

\widehat u\varepsilon \bigl( \omega ,\bfitx , z\bigr) = co\varepsilon 
4

2
exp

\Bigl( 
i
\omega 

co
z
\Bigr) 1

B

\biggl[ \widehat f\Bigl( \varepsilon 4\omega  - \omega o
B

\Bigr) 
+ \widehat f\Bigl( \varepsilon 4\omega + \omega o

B

\Bigr) \biggr] 
.
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 29

This observation motivates the introduction of the ``slowly varying envelope field"" \varphi \varepsilon ,
which defines the solution of (2.7)--(2.8) as follows:

(2.9) \widehat u\varepsilon \bigl( \omega ,\bfitx , z\bigr) = co\varepsilon 
4

2
exp

\Bigl( 
i
\omega 

co
z
\Bigr) 
\varphi \varepsilon 
\Bigl( 
\varepsilon 4\omega ,

\bfitx 

\varepsilon 2
, z
\Bigr) 
.

Substituting (2.9) into (2.7), using the chain rule, and denoting k(\Omega ) =\Omega /co, we find
that for \Omega = \varepsilon 4\omega \in R and \bfitX =\bfitx /\varepsilon 2 \in R2, we have\biggl[ 

2ik(\Omega )\partial z +\Delta \bfitX +
k2(\Omega )

\varepsilon 
\mu 
\Bigl( 
\bfitX ,

z

\varepsilon 2

\Bigr) \biggr] 
\varphi \varepsilon (\Omega ,\bfitX , z) = 0, z > 0,(2.10)

\varphi \varepsilon (\Omega ,\bfitX , z = 0) = \widehat F (\Omega ,\bfitX ).(2.11)

In (2.10) we have neglected the \varepsilon 4\partial 2z\varphi 
\varepsilon term, which is responsible for backscattering.

Thus, we use the forward scattering approximation, which can be justified when \varepsilon \rightarrow 0.
The proof of the forward scattering approximation was carried out in [16] for the case
of a mixing medium and in [21] for a medium with special long-range correlation
properties. One would need to extend the latter proof to the medium considered
here. This technical proof is beyond the scope of this paper, but it could certainly be
carried out.

2.2. Statistics of the random fluctuations. The most convenient choice for
the analysis would be having a Gaussian \mu . However, since Gaussian processes are
unbounded, this choice is inconsistent with (1.1), whose right-hand side must be
positive. We assume instead that \mu is defined by an odd, smooth, and bounded
function. An example is the arctan function of a zero-mean Gaussian process with
long-range correlation properties, which has mean zero and power spectral density
of the form (1.2). This hypothesis is necessary for the proof of Proposition 3.1.
It gives a consistent random perturbation model while keeping the analysis simple
enough.

Note that in view of the scaling in (2.5), one can also model \mu in terms of a
Gaussian field with spectrum (1.2), that is smoothly cut off at large amplitudes, so
that the statistics remain essentially unchanged. In practice, sampling such a Gaussian
field involves taking the fast Fourier transform of Gaussian noise, and modulating the
Fourier transform by the square root of the spectrum.

Note also that while in the spectrum (1.2) we have introduced hard cutoffs at the
outer and inner scales, one can also use smooth tapering at these scales, as in the
modified von K\'arm\'an spectrum [1].

The covariance of \mu is the inverse Fourier transform of the power spectrum (1.2),

Cov\mu (\bfitX , z) =E
\bigl[ 
\mu (\bfitX \prime , z\prime )\mu (\bfitX \prime +\bfitX , z\prime + z)

\bigr] 
=

1

(2\pi )3

\int 
R3

d\vec{}\bfitkappa cos
\bigl[ 
\vec{}\bfitkappa \cdot (\bfitX , z)

\bigr] 
S(\vec{}\bfitkappa )

=
\chi \alpha 

(2\pi )3

\int l - 1
o

L - 1
o

d\kappa \kappa 2
\int 2\pi 

0

d\varphi 

\int \pi 

0

d\vargamma sin\vargamma \kappa  - 2 - \alpha cos[\kappa | (\bfitX , z)| cos\vargamma ]

=
\chi \alpha 
2\pi 2

\int l - 1
o

L - 1
o

d\kappa \kappa  - \alpha sinc[\kappa | (\bfitX , z)| ]

=
\chi \alpha | (\bfitX , z)| \alpha  - 1

2\pi 2

\int | (\bfitX ,z)| /lo

| (\bfitX ,z)| /Lo

dss - \alpha sinc(s).(2.12)
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30 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

Here we introduced the spherical coordinates \vec{}\bfitkappa \mapsto \rightarrow (\kappa ,\varphi ,\vargamma ), with \kappa = | \vec{}\bfitkappa | and angles
\varphi \in (0,2\pi ) and \vargamma \in (0, \pi ). We also changed the variable of integration to s= \kappa | (\bfitX , z)| .
The variance of \mu is obtained from (2.12) evaluated at the origin,

Var\mu =E
\bigl[ 
\mu 2(\bfitX , z)

\bigr] 
=
\chi \alpha 
2\pi 2

\int l - 1
o

L - 1
o

d\kappa \kappa  - \alpha =
\chi \alpha 
2\pi 2

\biggl( 
L\alpha  - 1
o  - l\alpha  - 1

o

\alpha  - 1

\biggr) 
.(2.13)

We distinguish the following two cases in this paper. The first is used in the
analysis in sections 3 and 4, while the other is used for comparison with the optics
literature in section 5.

\bullet \bfitalpha \in (0,1) and infinite outer scale: When the initial radius rs of the beam
satisfies the order relation lo \lesssim rs \ll Lo, we can carry out the analysis in the limit
Lo\rightarrow \infty while keeping lo finite. The variance (2.13) is finite in this limit,

(2.14) Var\mu =
\chi \alpha 

2\pi 2(1 - \alpha )l1 - \alpha o

, \alpha \in (0,1), Lo\rightarrow \infty ,

but the covariance (2.12) is not integrable. In particular, we obtain from (2.12) that

Cov\mu (0, z) =
\chi \alpha | z| \alpha  - 1

2\pi 2

\int | z| /lo

0

dss - \alpha sinc(s)\sim C\alpha 
2\pi 2

| z| \alpha  - 1, as | z| \rightarrow \infty ,(2.15)

where the symbol ``\sim "" denotes an asymptotic expansion and, according to [22, For-
mula 3.761.4],

(2.16) C\alpha = \chi \alpha 

\int \infty 

0

dss - \alpha sinc(s) =
\pi \chi \alpha 

2cos(\alpha \pi /2)\Gamma (1 + \alpha )
.

The slow decay at | z| \rightarrow \infty in (2.15) implies that Cov\mu is nonintegrable and we say
that the process \mu has long-range correlations.

\bullet \bfitalpha \in (0,1)\cup (1,2) and a finite outer scale: When the beam has a larger
radius, meaning that lo \lesssim rs \lesssim Lo, it experiences the random fluctuations in a different
way than that above, even for \alpha < 1. Indeed, integration by parts gives the estimate\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \infty 

| z| /Lo

dss - \alpha sinc(s)

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 
\biggl( 
| z| 
Lo

\biggr)  - \alpha  - 1

cos

\biggl( 
| z| 
Lo

\biggr) 
 - (1 + \alpha )

\int \infty 

| z| /Lo

dss - \alpha  - 2 cos(s)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\biggl( 
| z| 
Lo

\biggr)  - \alpha  - 1

+ (1+ \alpha )

\int \infty 

| z| /Lo

dss - \alpha  - 2 = 2

\biggl( 
| z| 
Lo

\biggr)  - \alpha  - 1

,

and substituting into (2.12) evaluated at (\bfitX , z) = (0, z), we get

Cov\mu (0, z)\leq 
\chi \alpha L

\alpha +1
o

\pi 2
| z|  - 2 as | z| \rightarrow \infty .(2.17)

The decay at | z| \rightarrow \infty is now fast enough to make the covariance integrable, and we
say that the process \mu is mixing.

Note from (2.13) that when \alpha \in (1,2), the variance of \mu is finite only for a finite
outer scale Lo, while the inner scale can either be finite or tend to 0. For the case
\alpha \in (0,1) the variance blows up in the limit lo\rightarrow 0, but it is finite for Lo\rightarrow \infty .

3. Asymptotic analysis for the long-range correlation case. We now de-
scribe the solution \varphi \varepsilon of the paraxial equation (2.10)--(2.11) in the limit \varepsilon \rightarrow 0 for
\alpha \in (0,1) and an infinite outer scale. This case is interesting because the process \mu 
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 31

has long-range correlations, and there are two range scales that describe the random-
ization of \varphi \varepsilon . We show in section 3.1 that \varphi \varepsilon develops a significant random phase at
a short, \varepsilon -dependent range scale. Thus, in order to analyze it at a longer range, we
need to remove this random phase, i.e., observe \varphi \varepsilon in a random travel time frame, as
explained in section 3.2.

3.1. Random central axis travel time analysis. We obtain from (1.1) and
(2.6) that the random velocity along the axis of the beam is given by

(3.1)
co

c\varepsilon (0, z)
=
\sqrt{} 
1 + \mu \varepsilon (0, z)\sim 1 +

\varepsilon 3

2
\mu 
\Bigl( 
0,

z

\varepsilon 2

\Bigr) 
as \varepsilon \rightarrow 0,

so the central axis travel time is

(3.2)

\int z

0

dz\prime 

c\varepsilon (0, z\prime )
\sim z

co
+
\varepsilon 4\scrZ \varepsilon (z)

co
, \scrZ \varepsilon (z) =

1

2\varepsilon 

\int z

0

dz\prime \mu 

\biggl( 
0,
z\prime 

\varepsilon 2

\biggr) 
,

and has random fluctuations modeled by \scrZ \varepsilon . Due to the high frequency \omega = \Omega 
\varepsilon 4 , these

fluctuations have a significant effect on the phase of the wave field

(3.3)
\Omega 

\varepsilon 4

\int z

0

dz\prime 

c\varepsilon (0, z\prime )
\sim k(\Omega )z

\varepsilon 4
+ k(\Omega )\scrZ \varepsilon (z),

and the next proposition describes the asymptotics of \scrZ \varepsilon as \varepsilon \rightarrow 0.

Proposition 3.1. The random process \scrZ \varepsilon defined in (3.2) satisfies

(3.4) \scrZ \varepsilon 
\Bigl( 
\varepsilon 2\alpha /(1+\alpha )z

\Bigr) 
\rightarrow CHW

H(z) as \varepsilon \rightarrow 0,

where the convergence is in distribution, WH(z) is a fractional Brownian motion with

Hurst index H = (1 + \alpha )/2, and CH = 1
2\pi 

\sqrt{} 
C\alpha 

\alpha (\alpha +1) , with C\alpha given as in (2.16). At

O(1) range the process \scrZ \varepsilon satisfies

(3.5) \varepsilon \alpha \scrZ \varepsilon (z)\rightarrow CHW
H(z) as \varepsilon \rightarrow 0,

where the convergence is in distribution and the limit is as in (3.4).

Proof. The convergence is proved in [30] for a Gaussian \mu . The result extends to
a process \mu given by a smooth and bounded function of a Gaussian process as shown
in [31], where the precise conditions on the function are given.

We recall from [29] that the fractional Brownian motionWH is a Gaussian process,
with stationary increments, satisfying

(3.6) E
\bigl[ 
WH(z)

\bigr] 
= 0, E

\bigl[ 
WH(z)WH(z\prime )

\bigr] 
=

1

2

\bigl[ 
z2H + (z\prime )2H + | z  - z\prime | 2H

\bigr] 
.

The proposition says the following:
1. The process \scrZ \varepsilon (z), and therefore the phase (3.3), is randomized, i.e., has

significant random fluctuations, on a short O(\varepsilon 2\alpha /(1+\alpha )) range scale. In the
physical variables (2.5), this corresponds to a propagation distance such that
k(\omega \varepsilon o)

2E[(\varepsilon 4\scrZ \varepsilon (z))2]\sim 1, that is, z \sim [k(\omega \varepsilon o)
2\chi \varepsilon \alpha ]

 - 1/(1+\alpha ).
2. Even though \mu is not a Gaussian process, the phase fluctuations are Gaussian.
3. The random fluctuations of the phase are huge, i.e., O(\varepsilon  - \alpha ) at an O(1) range,

and must be removed in order to characterize the \varepsilon \rightarrow 0 limit of \varphi \varepsilon .
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32 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

3.2. Wave in the random travel time frame. After removing the random
phase, which is equivalent to observing the wave in the central axis random time
frame \scrZ \varepsilon /co, we get that

(3.7) \psi \varepsilon (\Omega ,\bfitX , z) = \varphi \varepsilon (\Omega ,\bfitX , z) exp
\bigl[ 
 - ik(\Omega )\scrZ \varepsilon (z)

\bigr] 
satisfies the paraxial equation\biggl[ 

2ik(\Omega )\partial z +\Delta \bfitX +
k2(\Omega )

\varepsilon 
\nu 
\Bigl( 
\bfitX ,

z

\varepsilon 2

\Bigr) \biggr] 
\psi \varepsilon (\Omega ,\bfitX , z) = 0, z > 0,(3.8)

\psi \varepsilon (\Omega ,\bfitX , z = 0) = \widehat F (\Omega ,\bfitX ),(3.9)

with the random potential

(3.10) \nu (\bfitX , z) = \mu (\bfitX , z) - \mu (0, z).

The process \nu is stationary in z but not in \bfitX , and we explain next that its
covariance is integrable in z. Indeed,

Cov\nu (\bfitX ,\bfitX \prime , z  - z\prime ) =E
\bigl[ 
\nu (\bfitX , z)\nu (\bfitX \prime , z\prime )

\bigr] 
=Cov\mu (\bfitX  - \bfitX \prime , z  - z\prime )

+Cov\mu (0, z  - z\prime ) - Cov\mu (\bfitX 
\prime , z  - z\prime ) - Cov\mu (\bfitX , z  - z\prime ),(3.11)

and using (2.12), we get for \bfitX =\bfitX \prime that

Cov\nu (\bfitX ,\bfitX , z) =
\chi \alpha | z| \alpha  - 1

\pi 2

\Biggl[ \int | z| /lo

0

duu - \alpha sinc(u)

 - 
\biggl( 
1 +

| \bfitX | 2

z2

\biggr) (\alpha  - 1)/2 \int | z| /lo
\surd 

1+| \bfitX | 2/z2

0

duu - \alpha sinc(u)

\Biggr] 
.(3.12)

We are interested in the decay of this expression at | z| \rightarrow \infty , which can be seen from
the asymptotic expansion

Cov\nu (\bfitX ,\bfitX , z)\sim C\alpha 
\pi 2

| z| \alpha  - 1

\Biggl[ 
1 - 

\biggl( 
1 +

| \bfitX | 2

z2

\biggr) (\alpha  - 1)/2
\Biggr] 

\sim C\alpha (1 - \alpha )| \bfitX | 2

2\pi 2
| z| \alpha  - 3 as | z| \rightarrow \infty ,(3.13)

with constant C\alpha given by (2.16). Since \alpha \in (0,1), the decay in | z| is fast enough to
make the covariance integrable, and we say that the process \nu is mixing.

Proposition 3.2. The solution \psi \varepsilon of (3.8)--(3.9) converges in distribution, in
the space C([0,+\infty ),L2(R \times R2,C)) of continuous functions of z \in [0,\infty ) that are
square integrable in (\Omega ,\bfitX ), to the solution of the It\^o--Schr\"odinger equation

(3.14) d\psi (\Omega ,\bfitX , z) =
i

2k(\Omega )
\Delta \bfitX \psi (\Omega ,\bfitX , z)dz +

ik(\Omega )

2
\psi (\Omega ,\bfitX , z) \circ dW (\bfitX , z),

with initial condition

(3.15) \psi (\Omega ,\bfitX , z = 0) = \widehat F (\Omega ,\bfitX ).

The symbol ``\circ "" denotes the Stratonovich integral, andW (\bfitX , z) is a centered Brownian
field. It satisfies E[W (\bfitX , z)W (\bfitX \prime , z\prime )] = \gamma (\bfitX ,\bfitX \prime ) min(z, z\prime ), with

(3.16) \gamma (\bfitX ,\bfitX \prime ) =
\chi \alpha 
2\pi 

\int l - 1
0

0

d\kappa 
\bigl[ 
J0(\kappa | \bfitX  - \bfitX \prime | ) + 1 - J0(\kappa | \bfitX | ) - J0(\kappa | \bfitX \prime | )

\bigr] 
\kappa  - 1 - \alpha ,

where J0 is the Bessel function of the first kind and of order 0.
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 33

Proof. This theorem was proved for a fixed frequency in [14]. For any \Omega \not = 0,
the solution (z,\bfitX ) \mapsto \rightarrow \psi \varepsilon (\Omega ,\bfitX , z) of (3.8) converges in distribution, in the space
D([0,+\infty ),L2(R2,C)), to the solution (z,\bfitX ) \mapsto \rightarrow \psi (\Omega ,\bfitX , z) of (3.14). Here D is the
space of c\`adl\`ag functions. The proof in [14] can be extended to the multifrequency
case because the driving process \nu does not depend on frequency. We then obtain
the following result: For any set of nonzero frequencies (\Omega j)

n
j=1, the random process

(z,\bfitX ) \mapsto \rightarrow (\psi \varepsilon (\Omega j ,\bfitX , z))nj=1 converges in distribution in D([0,+\infty ),L2(R2,Cn)) to the
process (z,\bfitX ) \mapsto \rightarrow (\psi (\Omega j ,\bfitX , z))nj=1.

The tightness of \psi \varepsilon inD([0,+\infty ),L2
w(R\times R2,C)) (with L2

w equipped with the weak
topology) can be established as in [14], section 3.1] by using the tightness criterion
[26], Chap. 3, Theorem 4]. The derivation uses the following three facts: The driving
process \nu does not depend on frequency, (3.8) depends smoothly on the parameter \Omega ,
and the support in \Omega of \widehat F is away from the origin and from infinity. The tightness
and the convergence of the finite-dimensional distributions give the convergence of \psi \varepsilon 

to \psi in the space D([0,+\infty ),L2
w(R\times R2,C)). Moreover, the original and limit pro-

cesses preserve the L2-norm of the initial data. Indeed, this can be established in a
straightforward manner for the original process. For the limit process, it follows from
the application of It\^o's formula (here it is important to note that the stochastic inte-
gral that appears in (3.14) and is obtained from the limit theorem is the Stratonovich
integral). As a result, the process converges in D([0,+\infty ),L2(R\times R2,C)). Further-
more, since both the original and limit processes are continuous in z, the convergence
actually holds in C([0,+\infty ),L2(R\times R2,C)).

4. Application of the asymptotic analysis. We now use the asymptotic re-
sults stated in Propositions 3.1 and 3.2 to analyze the coherent wave (section 4.1)
and the space-frequency covariance of \varphi \varepsilon (sections 4.2--4.3) in the limit \varepsilon \rightarrow 0. We
also characterize in section 4.4 the deformation of the pulse emitted by the source,
induced by scattering in the random medium.

4.1. The coherent wave. Scattering causes a loss of coherence of the wave
field, which manifests as an exponential decay of the mean wave (also known as the
coherent wave) E[\varphi \varepsilon ] with respect to the range z. The length scale of decay, called
the scattering mean free path, gives the range limit at which conventional methods1

used for imaging and free space communication are useful in random media.
The leading factor in the loss of coherence of \varphi \varepsilon is the random phase k\scrZ \varepsilon , which

becomes significant at an O(\varepsilon 2\alpha /(1+\alpha )) range. Indeed, Propositions 3.1 and 3.2 give
that

(4.1) E
\bigl[ 
exp(ik(\Omega )\scrZ \varepsilon (\varepsilon 2\alpha /(1+\alpha )z))

\bigr] \varepsilon \rightarrow 0 - \rightarrow exp

\biggl[ 
 - C

2
Hk

2(\Omega )z2H

2

\biggr] 
and

(4.2) E
\bigl[ 
\varphi \varepsilon (\Omega ,\bfitX , \varepsilon 2\alpha /(1+\alpha )z)

\bigr] \varepsilon \rightarrow 0 - \rightarrow \widehat F (\Omega ,\bfitX ) exp

\biggl[ 
 - C

2
Hk

2(\Omega )z2H

2

\biggr] 
,

so the scattering mean free path has the asymptotic expansion

(4.3) S\varphi \varepsilon (\Omega )\sim \varepsilon 2\alpha /(1+\alpha )[CHk(\Omega )] - 1/H .

1Conventional methods are based on the assumption that the medium through which the waves
propagate is homogeneous or, more generally, known and nonscattering.
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34 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

However, the wave \psi \varepsilon defined in (3.7) by removing the large random phase k\scrZ \varepsilon 

from \varphi \varepsilon maintains its coherence up to a much longer O(1) range. Proposition 3.2
gives that

(4.4) E[\psi \varepsilon (\Omega ,\bfitX , z)]
\varepsilon \rightarrow 0 - \rightarrow M1(\Omega ,\bfitX , z),

where M1 solves the evolution equation

(4.5) \partial zM1(\Omega ,\bfitX , z) =
i

2k(\Omega )
\Delta \bfitX M1(\Omega ,\bfitX , z) - k2(\Omega )

4
\Theta (\bfitX )M1(\Omega ,\bfitX , z),

which is obtained by taking the expectation in (3.14), with the initial condition derived
from (3.15),

(4.6) M1(\Omega ,\bfitX , z = 0) = \widehat F (\Omega ,\bfitX ),

and with the damping coefficient

\Theta (\bfitX ) =
\gamma (\bfitX ,\bfitX )

2
=
\chi \alpha 
2\pi 

\int l - 1
0

0

d\kappa 
\bigl[ 
1 - J0(\kappa | \bfitX | )

\bigr] 
\kappa  - 1 - \alpha 

=
\chi \alpha | \bfitX | \alpha 

2\pi 

\int | \bfitX | /lo

0

ds
\bigl[ 
1 - J0(s)

\bigr] 
s - 1 - \alpha .(4.7)

The damping models the loss of coherence of \psi \varepsilon . It is weaker at the axis of the beam
and increases away from it. In fact, at | \bfitX | /lo\rightarrow \infty we get the asymptotic expansion

\Theta (\bfitX )\sim d\alpha | \bfitX | \alpha , d\alpha =
\chi \alpha 
2\pi 

\int \infty 

0

ds
\bigl[ 
1 - J0(s)

\bigr] 
s - 1 - \alpha =

\chi \alpha 
21+\alpha \pi 

\Gamma (1 - \alpha /2)

\alpha \Gamma (1 + \alpha /2)
.(4.8)

4.2. Spatial covariance. Although the wave loses its coherence (the mean wave
decays with the propagation distance), wave energy is not lost but converted into
incoherent, zero-mean fluctuations. These incoherent waves can be characterized by
the second order moments of the wave field that we analyze in this subsection and
the next ones. For imaging purposes, it is possible to extract information from the
observation of the incoherent waves and their correlation properties in space and
frequency. An example of exploiting such knowledge is the coherent interferometric
(CINT) methodology for robust imaging in random media [5, 6, 8].

There are two intrinsic scales that capture the decorrelation properties of the wave
field: the ``decoherence length,"" which is the length scale of decay of the covariance of
\varphi \varepsilon over cross-range offsets, and the ``decoherence frequency,"" which is the frequency
scale of decay of the covariance over frequency offsets. In this subsection we study the
spatial covariance, i.e., fix the frequency at \Omega and estimate the decoherence length. We
note from definition (3.7) that the phase k\scrZ \varepsilon plays no role in the spatial covariance,

E
\bigl[ 
\varphi \varepsilon (\Omega ,\bfitX 1, z)\varphi \varepsilon (\Omega ,\bfitX 2, z)

\bigr] 
=E

\bigl[ 
\psi \varepsilon (\Omega ,\bfitX 1, z)\psi \varepsilon (\Omega ,\bfitX 2, z)

\bigr] \varepsilon \rightarrow 0 - \rightarrow \scrC \Omega (\bfitX 1,\bfitX 2, z).

Here the bar stands for the complex conjugate, the notation \scrC \Omega emphasizes that the
frequency is fixed at \Omega , and the \varepsilon \rightarrow 0 limit,

(4.9) \scrC \Omega (\bfitX 1,\bfitX 2, z) =E
\bigl[ 
\psi (\Omega ,\bfitX 1, z)\psi (\Omega ,\bfitX 2, z)

\bigr] 
,

is obtained from the It\^o--Schr\"odinger equation in Proposition 3.2. Using the identity

\gamma (\bfitX 1,\bfitX 2) - \Theta (\bfitX 1) - \Theta (\bfitX 2) = - \Theta (\bfitX 1  - \bfitX 2),
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 35

deduced from definitions (3.16) and (4.7), we get the evolution equation

\partial z\scrC \Omega (\bfitX 1,\bfitX 2, z) =

\biggl[ 
i

2k(\Omega )

\bigl( 
\Delta \bfitX 1

 - \Delta \bfitX 2

\bigr) 
 - k2(\Omega )

4
\Theta (\bfitX 1  - \bfitX 2)

\biggr] 
\scrC \Omega (\bfitX 1,\bfitX 2, z),

(4.10)

for z > 0, with initial condition

(4.11) \scrC \Omega (\bfitX 1,\bfitX 2, z = 0) = \widehat F (\Omega ,\bfitX 1) \widehat F (\Omega ,\bfitX 2).

We can solve (4.10) explicitly by changing coordinates

(4.12) (\bfitX 1,\bfitX 2) \mapsto \rightarrow (\bfitX ,\bfitY ), \bfitX =
1

2
(\bfitX 1 +\bfitX 2), \bfitY =\bfitX 1  - \bfitX 2,

and then taking the Fourier transform with respect to the offset vector \bfitY , which
defines the mean Wigner transform,

(4.13) \scrW \Omega (\bfitX ,\bfitkappa , z) =

\int 
R2

d\bfitY \scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
e - i\bfitkappa \cdot \bfitY .

This transform is important by itself, as it tells us how the energy at \bfitX is distributed
over the directions, i.e., along \bfitkappa . It plays a key role in the analysis of imaging and
time reversal methods in random media [6, 9, 32]. The calculation of \scrW \Omega is given in
Appendix A, and the result is stated in the following proposition.

Proposition 4.1. The mean Wigner transform is given by

\scrW \Omega (\bfitX ,\bfitkappa , z) =
1

(2\pi )2

\int 
R2

d\bfitq 

\int 
R2

d\bfitY exp

\biggl[ 
i\bfitq \cdot 

\biggl( 
\bfitX  - \bfitkappa 

z

k(\Omega )

\biggr) 
 - i\bfitkappa \cdot \bfitY 

\biggr] \widehat \scrW \Omega ,0(\bfitq ,\bfitY )

\times exp

\biggl[ 
 - k

2(\Omega )

4

\int z

0

dz\prime \Theta 

\biggl( 
\bfitY +

\bfitq z\prime 

k(\Omega )

\biggr) \biggr] 
,(4.14)

with

(4.15) \widehat \scrW \Omega ,0(\bfitq ,\bfitY ) =

\int 
R2

d\bfitX \widehat F \biggl( \Omega ,\bfitX +
\bfitY 

2

\biggr) \widehat F \biggl( \Omega ,\bfitX  - \bfitY 

2

\biggr) 
e - i\bfitq \cdot \bfitX .

The spatial covariance is obtained from the expression (4.14) using the inverse
Fourier transform,

\scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
=

1

(2\pi )2

\int 
R2

d\bfitkappa \scrW \Omega (\bfitX ,\bfitkappa , z)ei\bfitkappa \cdot \bfitY 

=
1

(2\pi )2

\int 
R2

d\bfitq \widehat \scrW \Omega ,0

\biggl( 
\bfitq ,\bfitY  - \bfitq z

k(\Omega )

\biggr) 
ei\bfitq \cdot \bfitX 

\times exp

\biggl[ 
 - k

2(\Omega )

4

\int z

0

dz\prime \Theta 

\biggl( 
\bfitY  - \bfitq (z  - z\prime )

k(\Omega )

\biggr) \biggr] 
,(4.16)

and we study it next using the asymptotic expansion (4.8) of \Theta , which holds when
its argument is much larger than lo. Note that the coefficient d\alpha in this expansion
quantifies the strength of the fluctuations in the random medium.

We have already assumed a large outer scale Lo. We now consider, in addition, a
strong fluctuation and small inner scale regime, in the sense that

(4.17) lo\ll 
1

Q(z)
\ll rs \ll R(z),
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36 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

where we recall that rs is the initial radius of the beam. There are two new scales in
(4.17): the range-dependent beam radius

(4.18) R(z) =

\biggl[ 
d\alpha k

2 - \alpha (\Omega )z\alpha +1

\alpha + 1

\biggr] 1/\alpha 
,

which quantifies the spatial support of the mean intensity (section 4.2.1), and the
range-dependent wave vector radius

(4.19) Q(z) =
\bigl[ 
d\alpha k

2(\Omega )z
\bigr] 1/\alpha 

,

which quantifies the wave vector support of the mean spectrum (section 4.2.2).

4.2.1. The mean intensity. The mean intensity E[| \psi (\Omega ,\bfitX , z)| 2] is equal to
\scrC \Omega (\bfitX ,\bfitX , z). From Proposition 4.1 we obtain the following result.

Proposition 4.2. In the regime (4.17), the mean intensity has the form

E
\bigl[ 
| \psi (\Omega ,\bfitX , z)| 2

\bigr] 
\simeq 
\widehat \scrW \Omega ,0(0,0)

R2(z)
\Psi \alpha 

\biggl( 
\bfitX 

R(z)

\biggr) 
,(4.20)

with \widehat \scrW \Omega ,0 given by (4.15) and

\Psi \alpha (\bfitxi ) =
1

(2\pi )2

\int 
R2

d\bfiteta ei\bfiteta \cdot \bfitxi  - 
| \bfiteta | \alpha 

4 =
1

2\pi 

\int \infty 

0

d\eta \eta J0(| \bfitxi | \eta )e - 
\eta \alpha 

4 .(4.21)

Proof. Setting \bfitY = 0 in (4.16) and using the asymptotic expansion (4.8), we
obtain the expression of the mean intensity,

E
\bigl[ 
| \psi (\Omega ,\bfitX , z)| 2

\bigr] 
=

1

(2\pi )2

\int 
R2

d\bfitq \widehat \scrW \Omega ,0

\biggl( 
\bfitq , - \bfitq z

k(\Omega )

\biggr) 
exp

\biggl[ 
i\bfitq \cdot \bfitX  - R\alpha (z)| \bfitq | \alpha 

4

\biggr] 
=

1

(2\pi )2R2(z)

\int 
R2

d\bfiteta \widehat \scrW \Omega ,0

\biggl( 
\bfiteta 

R(z)
, - \bfiteta z

k(\Omega )R(z)

\biggr) 
exp

\biggl[ 
i
\bfiteta \cdot \bfitX 
R(z)

 - | \bfiteta | \alpha 

4

\biggr] 
,

where we let \bfitq = \bfiteta /R, with R defined as in (4.18). Due to the exponential, only

| \bfiteta | =O(1) contributes to the integral, so the arguments of \widehat \scrW \Omega ,0 satisfy

(4.22)
| \bfiteta | 
R(z)

=O
\bigl( 
R - 1(z)

\bigr) 
\ll r - 1

s ,
| \bfiteta | z

k(\Omega )R(z)
=O

\biggl( 
z

k(\Omega )R(z)

\biggr) 
\ll rs.

Here we used the assumption (4.17), and the second inequality holds because by
definitions (4.18--4.19) we have

z

k(\Omega )R(z)
=

(\alpha + 1)1/\alpha 

[d\alpha k2(\Omega )z]1/\alpha 
=

(\alpha + 1)1/\alpha 

Q(z)
\ll rs.

We infer from definition (4.15) of \widehat \scrW \Omega ,0 that its support in the first argument is at
wave vectors with the O(r - 1

s )-norm and the support in the second argument is at
cross-range vectors of the O(rs)-norm. Thus, due to the inequalities (4.22), we can
approximate the mean intensity by (4.20).

We plot the function \Psi \alpha in section 5. It peaks at the origin and is negligible
outside a disk of O(1) radius. It is smooth at 0 and can be expanded as

(4.23) \Psi \alpha (\bfitxi ) =\Psi \alpha (0)
\bigl[ 
1 - q\alpha | \bfitxi | 2 + o(| \bfitxi | 2)

\bigr] 
,
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 37

where

\Psi \alpha (0) =
24/\alpha \Gamma (2/\alpha )

2\pi \alpha 
, q\alpha = 24/\alpha  - 2\Gamma (4/\alpha )

\Gamma (2/\alpha )
.(4.24)

Therefore, the scale R(z) quantifies the support of the mean intensity, and we call it
the ``beam radius"" at range z. If there were no random medium, beam broadening
would be entirely due to diffraction. Here the broadening is caused by scattering in
the random medium and is significant, because R(z) is much larger than the initial
radius rs of the beam, per equation (4.17), and has a growth rate in z that is higher
than that in the homogeneous medium.

4.2.2. The mean spectrum. Using the Fourier transform

\widehat \psi (\Omega ,\bfitkappa , z) = \int 
R2

d\bfitX \psi (\Omega ,\bfitX , z)e - i\bfitkappa \cdot \bfitX ,

the change of coordinates (4.12), and the definition (4.13) of the Wigner transform,
we can calculate the mean spectrum as

E
\bigl[ 
| \widehat \psi (\Omega ,\bfitkappa , z)| 2\bigr] = \int 

R2

d\bfitX 1

\int 
R2

d\bfitX 2E
\bigl[ 
\psi (\Omega ,\bfitX 1, z)\psi (\Omega ,\bfitX 2, z)

\bigr] 
ei\bfitkappa \cdot (\bfitX 2 - \bfitX 1)

=

\int 
R2

d\bfitX 

\int 
R2

d\bfitY \scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
e - i\bfitkappa \cdot \bfitY 

=

\int 
R2

d\bfitX \scrW \Omega (\bfitX ,\bfitkappa , z),

with the right-hand side given as in Proposition 4.1. We then obtain the following
result.

Proposition 4.3. In the regime (4.17), the mean spectrum is of the form

E
\bigl[ 
| \widehat \psi (\Omega ,\bfitkappa , z)| 2\bigr] \simeq (2\pi )2\widehat \scrW \Omega ,0(0,0)

Q2(z)
\Psi \alpha 

\biggl( 
\bfitkappa 

Q(z)

\biggr) 
,(4.25)

with \Psi \alpha defined as in (4.21).

Proof. Using the asymptotic expansion (4.8) of \Theta and integrating over \bfitX and \bfitq ,
we get

E
\bigl[ 
| \widehat \psi (\Omega ,\bfitkappa , z)| 2\bigr] = \int 

R2

d\bfitY \widehat \scrW \Omega ,0(0,\bfitY ) exp

\biggl[ 
 - i\bfitkappa \cdot \bfitY  - d\alpha k

2(\Omega )z| \bfitY | \alpha 

4

\biggr] 
=

1

Q2(z)

\int 
R2

d\bfiteta \widehat \scrW \Omega ,0

\Bigl( 
0,

\bfiteta 

Q(z)

\Bigr) 
exp

\biggl[ 
 - i\bfitkappa \cdot \bfiteta 
Q(z)

 - | \bfiteta | \alpha 

4

\biggr] 
,

with Q defined as in (4.19). Arguing as before, we see that since only | \bfiteta | = O(1)

contributes to the integral, due to the exponential the argument of \widehat \scrW \Omega ,0 satisfies

| \bfiteta | 
Q(z)

=O
\bigl( 
Q - 1(z)

\bigr) 
\ll rs,

and we can approximate the mean spectrum by (4.25).

This result shows that the scale Q quantifies the support of the spectrum, so we
call it the ``spectral radius"" at range z. The initial spectral radius is O(r - 1

s ), but due
to scattering in the random medium it becomes significantly larger at the O(1) range
per (4.17). This goes hand in hand with the broadening of the beam described by
(4.20).
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38 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

4.2.3. The spatial covariance function. In the strong fluctuation regime
(4.17) it is possible to express the covariance in terms of the beam radius R and
wave vector radius Q as follows.

Proposition 4.4. In the regime (4.17), the covariance has the form

\scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
\simeq 
\widehat \scrW \Omega ,0(0,0)

R2(z)
\Phi \alpha 

\biggl( 
\bfitX 

R(z)
,\bfitY Q(z)

\biggr) 
,(4.26)

with the function

\Phi \alpha (\bfitxi ,\bfitzeta ) =
1

(2\pi )2

\int 
R2

d\bfiteta exp

\biggl[ 
i\bfiteta \cdot \bfitxi  - (1 + \alpha )

4

\int 1

0

ds
\bigm| \bigm| \bigm| \bfitzeta 

(1 + \alpha )1/\alpha 
 - \bfiteta s

\bigm| \bigm| \bigm| \alpha \biggr] .(4.27)

Proof. Starting from (4.16), using the asymptotic expansion (4.8), changing vari-
ables as s = (z  - z\prime )/z and \bfiteta = R\bfitq , and using definitions (4.18) and (4.19), we get

\scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
=

1

(2\pi )2R2(z)

\int 
R2

d\bfiteta \widehat \scrW \Omega ,0

\biggl( 
\bfiteta 

R(z)
,\bfitY  - \bfiteta z

k(\Omega )R(z)

\biggr) 
\times exp

\biggl[ 
i
\bfiteta \cdot \bfitX 
R(z)

 - (1 + \alpha )

4

\int 1

0

ds

\bigm| \bigm| \bigm| \bigm| \bfitY Q(z)

(1 + \alpha )1/\alpha 
 - \bfiteta s

\bigm| \bigm| \bigm| \bigm| \alpha \biggr] .
Again, we conclude that only | \bfiteta | = O(1) contributes to the integral, due to the
decaying exponential, so under the strong fluctuations assumption (4.17) we can make
the approximation

\widehat \scrW \Omega ,0

\biggl( 
\bfiteta 

R(z)
, \cdot 
\biggr) 
\approx \widehat \scrW \Omega ,0(0, \cdot ).

We also get from definitions (4.18)--(4.19) and the assumption (4.17) the estimates

| \bfiteta | z
k(\Omega )R(z)

=O
\bigl( 
Q - 1(z)

\bigr) 
\ll rs, | \bfitY | =O

\bigl( 
Q - 1(z)

\bigr) 
\ll rs.

Here we used the fact that | \bfitY | Q = O(1) in order for the exponential to be large.
Therefore, the covariance can be approximated by (4.26).

Note that \Phi \alpha (\bfitxi ,0) =\Psi \alpha (\bfitxi ), with \Psi \alpha given by (4.21), and we also have

(4.28)

\int 
R2

d\bfitxi 

\int 
R2

d\bfitzeta \Phi \alpha (\bfitxi ,\bfitzeta )e
 - i\bfitkappa \cdot \bfitzeta = (2\pi )2\Psi \alpha (\bfitkappa ).

Contrary to the function \bfitxi \mapsto \rightarrow \Phi \alpha (\bfitxi ,0) that is smooth at 0 by (4.23), the function
\bfitzeta \mapsto \rightarrow \Phi \alpha (0,\bfitzeta ) has a cusp at 0 (see Appendix B),

(4.29) \Phi \alpha (0,\bfitzeta ) =\Phi \alpha (0,0)
\Bigl( 
1 - r\alpha | \bfitzeta | \alpha +1 + o(| \bfitzeta | \alpha +1)

\Bigr) 
,

where r\alpha is given by

(4.30) r\alpha =
\alpha 

22+2/\alpha (1 + \alpha )1/\alpha +2

\Gamma (1/\alpha )\Gamma (1/2 - \alpha /2)\Gamma (1 + \alpha /2)

\Gamma (2/\alpha )\Gamma (1/2 + \alpha /2)\Gamma (1 - \alpha /2)
.

This implies that the covariance (4.26) has a cusp at Y= 0.
We plot the marginals \bfitxi \mapsto \rightarrow \Phi \alpha (\bfitxi ,0) and \bfitzeta \mapsto \rightarrow \Phi \alpha (0,\bfitzeta ) in section 5. They peak at

the origin and are negligible outside a disk with O(1) radius. We conclude therefore,
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 39

from (4.26), that Q - 1 quantifies the length scale of decorrelation over the spatial
offsets \bfitY at range z, so we can refer to it as the ``decoherence length,""

(4.31) X(z) =Q - 1(z) =O
\Bigl( 
(d\alpha z)

 - 1/\alpha k - 2/\alpha (\Omega )
\Bigr) 
.

This is proportional to the wavelength raised to the power 2/\alpha , and it decreases with
the range z and with the random medium strength d\alpha .

4.3. The frequency covariance function. The leading factor in the frequency
decorrelation of \varphi \varepsilon at the O(1) range is the random phase k(\Omega )\scrZ \varepsilon . Indeed, we
obtain from Propositions 3.1--3.2 that this phase gives a significant contribution to
the covariance for O(\varepsilon \alpha ) frequency offsets,

E

\left[  \varphi \varepsilon \Biggl( \Omega +
\varepsilon \alpha \widetilde \Omega 
2
,\bfitX +

\bfitY 

2
, z

\Biggr) 
\varphi \varepsilon 

\Biggl( 
\Omega  - \varepsilon \alpha \widetilde \Omega 

2
,\bfitX  - \bfitY 

2
, z

\Biggr) \right]  \varepsilon \rightarrow 0 - \rightarrow exp

\biggl[ 
 - 
\widetilde \Omega 2C2

Hz
2H

2c2o

\biggr] (4.32)

\times \scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
.

This contribution is described by the Gaussian in \widetilde \Omega , whose standard deviation defines
the decoherence frequency

(4.33) \Omega \varphi \varepsilon (z) =
co\varepsilon 

\alpha 

CHzH
,

which decreases with the range z and with the random medium strength d\alpha (see
Proposition 3.1 for the definitions of H and CH).

If the random phase is removed from \varphi \varepsilon (which means we observe the field around
the central axis random arrival time), then the decoherence frequency is larger and is
described in the limit \varepsilon \rightarrow 0 by the decay in | \Omega 1  - \Omega 2| of the covariance

(4.34) \scrC (\Omega 1,\Omega 2,\bfitX 1,\bfitX 2, z) =E
\Bigl[ 
\psi (\Omega 1,\bfitX 1, z)\psi (\Omega 2,\bfitX 2, z)

\Bigr] 
.

The evolution equation for this covariance is obtained from the It\^o--Schr\"odinger equa-
tion in Proposition 3.2 and the definitions (3.16) and (4.7),

\partial z\scrC (\Omega 1,\Omega 2,\bfitX 1,\bfitX 2, z) =

\biggl\{ 
i

2k1
\Delta \bfitX 1

 - i

2k2
\Delta \bfitX 2

 - 
\biggl[ 
k1k2
4

\Theta (\bfitX 1  - \bfitX 2)

+
k1(k1  - k2)

4
\Theta (\bfitX 1) - 

k2(k1  - k2)

4
\Theta (\bfitX 2)

\biggr] \biggr\} 
\scrC (\Omega 1,\Omega 2,\bfitX 1,\bfitX 2, z),(4.35)

for z > 0, with initial condition

(4.36) \scrC (\Omega 1,\Omega 2,\bfitX 1,\bfitX 2, z = 0) = \widehat F (\Omega 1,\bfitX 1) \widehat F (\Omega 2,\bfitX 2).

Here we used the notation kj = k(\Omega j) for j = 1,2.
The next proposition, proved in Appendix C, gives the approximation of \scrC in

the strong fluctuation regime (4.17). Since we have already described the spatial
decorrelation of the wave field in the previous section, we give the approximation at
the axis of the beam.
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40 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

Proposition 4.5. In the regime (4.17), the decoherence frequency

(4.37) \Omega \psi (z;\Omega ) =
2\Omega 

Q(z)R(z)

is the scale of variation of the covariance of \psi with respect to the frequency offset
\Omega 1  - \Omega 2 around the frequency \Omega . More precisely, the covariance evaluated at \bfitX 1 =
\bfitX 2 = 0 and at two positive frequencies \Omega 1, \Omega 2 such that | \Omega 1  - \Omega 2| \lesssim \Omega \psi (z;\Omega ) with
\Omega = (\Omega 1 +\Omega 2)/2 is of the form

\scrC (\Omega 1,\Omega 2,0,0, z)\simeq 
\widehat \scrF (\Omega 1,\Omega 2)

R2(z)
\Xi \alpha 

\biggl( 
\Omega 1  - \Omega 2

\Omega \psi (z;\Omega )

\biggr) 
,(4.38)

with

(4.39) \widehat \scrF (\Omega 1,\Omega 2) =

\int 
R2

d\bfitX \widehat F (\Omega 1,\bfitX ) \widehat F (\Omega 2,\bfitX ),

and \Xi \alpha is a function that depends only on \alpha ; it is defined in (4.41) below for dimen-
sionless, O(1) arguments.

The decoherence frequency \Omega \psi (z;\Omega ) given by (4.37) is proportional to the central
frequency \Omega , but it is much smaller because QR \gg 1 by (4.17). To define \Xi \alpha , we
introduce the dimensionless and O(1) variables

(4.40) \widetilde \bfitX =
\bfitX 

R(z)
, \widetilde \bfitkappa =

\bfitkappa 

Q(z)
,

where we anticipate the range dependent radii of spatial and wave vector support
of the covariance, using the results in section 4.2 and definitions (4.18)--(4.19). The
range z is fixed here, and we introduce the dimensionless \widetilde z \in [0,1], so that z\widetilde z \in [0, z].
With this notation we have

\Xi \alpha (\widetilde k) = \int 
R2

d\widetilde \bfitkappa \widetilde \scrW \alpha (\widetilde k,\widetilde \bfitX = 0, \widetilde \bfitkappa , \widetilde z = 1)(4.41)

for dimensionless and O(1) variable \widetilde k, where \widetilde \scrW \alpha satisfies\biggl[ 
\partial \widetilde z + (1+ \alpha )1/\alpha \widetilde \bfitkappa \cdot \nabla \widetilde \bfitX 

\biggr] \widetilde \scrW \alpha (\widetilde k,\widetilde \bfitX , \widetilde \bfitkappa , \widetilde z) = 2\alpha \alpha \Gamma (1 + \alpha /2)

8\pi \Gamma (1 - \alpha /2)

\int 
R2

d\widetilde \bfitq | \widetilde \bfitq |  - \alpha  - 2

\times 
\bigl[ \widetilde \scrW \alpha (\widetilde k,\widetilde \bfitX , \widetilde \bfitkappa  - \widetilde \bfitq , \widetilde z)e - i\widetilde k\widetilde \bfitq \cdot \widetilde \bfitX  - \widetilde \scrW \alpha (\widetilde k,\widetilde \bfitX , \widetilde \bfitkappa , \widetilde z)\bigr] ,(4.42)

at \widetilde z > 0, with initial condition

(4.43) \widetilde \scrW \alpha (\widetilde k,\widetilde \bfitX , \widetilde \bfitkappa , \widetilde z = 0) = \delta (\widetilde \bfitX )\delta (\widetilde \bfitkappa ).
By scaling out the range z, the beam radius R and the wave vector radius Q, we

made \widetilde \scrW \alpha , and thus \Xi \alpha , depend only on \alpha . Note that when \widetilde k= 0, which corresponds
to taking \Omega 1 = \Omega 2 = \Omega in (4.38), we recover the result in Proposition 4.4. Indeed,

(4.39) becomes \widehat \scrW \Omega ,0(0,0), per definition (4.15), and by explicitly solving (4.42) with
a calculation similar to that in Appendix A, we get

\widetilde \scrW \alpha (\widetilde k= 0,\widetilde \bfitX , \widetilde \bfitkappa , \widetilde z = 1) =
1

(2\pi )2

\int 
R2

d\bfitzeta \Phi \alpha (\widetilde \bfitX ,\bfitzeta )e - i\bfitzeta \cdot \widetilde \bfitkappa 
and

\Xi \alpha (\widetilde k= 0) =

\int 
R2

d\widetilde \bfitkappa \widetilde \scrW \alpha (0,0, \widetilde \bfitkappa ,1) = \int 
R2

d\widetilde \bfitkappa 1

(2\pi )2

\int 
R2

d\bfitzeta \Phi \alpha (0,\bfitzeta )e
 - i\bfitzeta \cdot \widetilde \bfitkappa =\Phi \alpha (0,0).
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 41

4.4. Pulse deformation. The wave field evaluated at the center of the beam
and observed around the central axis random travel time z/co + \varepsilon 4\scrZ \varepsilon (z)/co is

U\varepsilon (T, z) = u\varepsilon 
\biggl( 
t=

z

co
+ \varepsilon 4

\scrZ \varepsilon (z)

co
+ \varepsilon 4T,\bfitx = 0, z

\biggr) 
=
co
4\pi 

\int 
R
d\Omega \psi \varepsilon (\Omega ,0, z)e - i\Omega T .(4.44)

In the limit \varepsilon \rightarrow 0 it converges in distribution to

(4.45) U(T, z) =
co
4\pi 

\int 
R
d\Omega \psi (\Omega ,0, z)e - i\Omega T ,

where \psi is the solution of the It\^o--Schr\"odinger equation (3.14) with the initial condition
(3.15).

If the source has the Gaussian spectrum

\widehat F (\Omega ,\bfitX ) =
1

B

\biggl[ 
exp

\biggl( 
 - (\Omega  - \omega o)

2

2B2

\biggr) 
+ exp

\biggl( 
 - (\Omega + \omega o)

2

2B2

\biggr) \biggr] 
S

\biggl( 
\bfitX 

rs

\biggr) 
,

then the time-dependent wave field has the form

U(T, z) =e - i\omega oT \widetilde U(T, z) + c.c.(4.46)

Here ``c.c."" is short notation for the complex conjugate of the first term,

\widetilde U(T, z) =
co
4\pi 

\int 
R
e - i(\Omega  - \omega o)T \widetilde \psi (\Omega ,0, z)d\Omega ,(4.47)

and the field \widetilde \psi solves (3.14) as \psi but has the initial condition

\widetilde \psi (\Omega ,\bfitX , z = 0) =
1

B
exp

\biggl( 
 - (\Omega  - \omega o)

2

2B2

\biggr) 
S

\biggl( 
\bfitX 

rs

\biggr) 
.

To characterize the pulse profile, let us introduce the mean time-dependent in-
tensity envelope

I(T, z) =E[| \widetilde U(T, z)| 2]

=
c2o

(4\pi )2

\int 
R
d\Omega 1

\int 
R
d\Omega 2 e

 - i(\Omega 1 - \Omega 2)TE
\bigl[ \widetilde \psi (\Omega 1,0, z) \widetilde \psi (\Omega 2,0, z)

\bigr] 
.

In view of Proposition 4.5, if condition (4.17) holds and the bandwidth satisfies B \lesssim 
\Omega \psi (z;\omega o), then we get

I(T, z) =
c2o

16\pi 3/2

\int 
R2 d\bfitX | S(\bfitX /rs)| 2

BR2(z)

\int 
R
d\Omega e - 

\Omega 2

4B2  - iT\Omega \Xi \alpha 

\biggl( 
\Omega 

\Omega \psi (z;\omega o)

\biggr) 
.(4.48)

This result shows that the pulse profile is affected by the random medium via the
function \Xi \alpha . For a narrowband pulse, with B \ll \Omega \psi (z,\omega o), the profile is preserved,
and we have

I(T, z) =
c2o
2\pi 

\int 
R2 d\bfitX | S(\bfitX /rs)| 2

R2(z)
\Phi \alpha (0,0) exp( - B2T 2).

It is only when B is of the same order as \Omega \psi (z,\omega o) that the random medium induces
pulse deformation.
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42 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

5. Comparison with the results in optics. In this section we compare the
expression of the mean intensity and spectrum of the wave emerging from the asymp-
totic paraxial theory in random media and compare it with the results used in the
optics literature [1]. Because this literature considers time-harmonic waves, we limit
the comparison to a fixed frequency \Omega .

We analyzed the spatial covariance \scrC \Omega in section 4.2 for \alpha \in (0,1) and Lo \rightarrow \infty ,
where the process \mu has long-range correlations. We showed there that the central
phase k(\Omega )\scrZ \varepsilon , which is influenced by such correlations, plays no role, i.e., \scrC \Omega is the
covariance of \psi , the \varepsilon \rightarrow 0 limit (in distribution) of the wave field \psi \varepsilon observed in the
random travel time frame. Since \psi \varepsilon experiences the random medium via the mixing
process (3.10), the results in section 4.2 extend verbatim to the case \alpha \in (0,1)\cup (1,2)
and a finite Lo (recall section 2.2). In particular, the results (4.20), (4.25), and (4.26)
remain valid as long as

(5.1) R(z)<Lo, Q(z)< l - 1
o .

The formulas in [1] are for the Kolmogorov spectrum of turbulence, corresponding
to \alpha = 5/3. The radius R of the beam and the spectral radius Q for this \alpha are, from
definitions (4.18)--(4.19),

(5.2) R(z) =

\biggl( 
3

8
d5/3

\biggr) 3/5

z8/5k1/5(\Omega ), Q(z) = (d5/3)
3/5z3/5k6/5(\Omega ),

and d5/3 can be written in terms of the normalization constant \chi 5/3 of the random
process \mu using (4.8),

(5.3) d5/3 =
3\Gamma (1/6)

5\pi 28/3\Gamma (11/6)
\chi 5/3 \approx 0.178\chi 5/3.

To compare these results with the formulas in [1], we note that in [1, section 3.3.1]
the power spectrum of the fluctuations \widetilde \mu of the index of refraction is2

(5.4) SA-P(\bfitkappa ) = 0.033C2
n| \bfitkappa |  - 11/31(L - 1

o ,l - 1
o )(| \bfitkappa | ).

Since our process \mu models the fluctuations of the squared index of refraction, we
have \mu \approx 2\widetilde \mu . We also have a different convention of the Fourier transform, which
can be reconciled by dividing the formulas in [1] by (2\pi )3. Then, we obtain from
definition (1.2) that our power spectrum S corresponds to (5.4) at \alpha = 5/3, for the
normalization constant \chi 5/3 = 4(2\pi )30.033C2

n, which gives, from (5.3),

(5.5) d5/3 \approx 5.828C2
n.

We begin the comparison with the mean intensity, which is proportional to
\Psi \alpha (\bfitX /R) =\Phi \alpha (\bfitX /R,0) per equations (4.20) and (4.26). This is approximated in [1,
section 7.3.3] by a Gaussian function, which is close to the true profile for \alpha = 5/3,
as illustrated in the top left plot of Figure 5.1. In this figure, the standard deviation
of the Gaussian is (2q5/3)

 - 1/2, and q5/3 can determined from the expansion (4.23)

of \Psi 5/3 about the origin: q5/3 = 22/5\Gamma (12/5)
\Gamma (6/5) \approx 1.785. The radius of the support of

2The power spectrum is called \Phi n in [1], but to avoid confusion with the function (4.27) we
rename it S\mathrm{A}-\mathrm{P}.
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Fig. 5.1. Left: Function ξ ÞÑ Φαpξ,0q (solid line) and the Gaussian fit ξ ÞÑ
Φαp0,0q expp´qα|ξ|2q (dashed line; remember by (4.23) that Φαpξ,0q “ Φαp0,0q“

1 ´ qα|ξ|2 `
op|ξ|2q‰

). Right: Function ζ ÞÑ Φαp0, ζq (solid line) with the Gaussian fit ζ ÞÑ
Φαp0,0q expp´|ζ|2{ζ2αq (dashed line, with ζ2{3 “ 86 and ζ5{3 “ 5.2 determined by least-square fit).
Top plots: α “ 5{3. Here the Gaussian fits are close to the true profiles. Bottom plots: α “ 2{3.
Here the Gaussian fits are far from the true profiles, which have heavy tails.

intensity defined in [1, section 7.3.3], aka the “effective spotsize”, corresponds to

Rpzq?
q5{3

«
`
3
85.828C

2
n

˘3{5
?
1.785

z8{5k1{5pΩq « 1.2C6{5
n z8{5k1{5pΩq,(5.6)

where we used equations (5.2-5.3). The effective spotsize is called WLT in [1] and
its estimate follows from equations (35) and (45) in section 7.3.3 and the “Rytov

variance” given in section 7.1. It is given by 1.45C
6{5
n z8{5k1{5, which looks like the

theoretically derived formula (5.6), except for the multiplicative constant. Thus, the
effective spotsize seems to be slightly over-estimated in [1].

Similarly, we can quantify the “correlation radius”, which is defined in [1] as
the radius of support of the mean spectrum, which is according to equations (4.25-
4.26) proportional to Ψ5{3pκ{Qq “ Φ5{3p0,κ{Qq. This is also modeled as Gaussian

in [1], which is close to the true profile for the standard deviation ζ5{3{?
2, ζ5{3 « 5.2

(determined by least-square fit), as illustrated in the top right plot of Fig. 5.1. The
correlation radius is

(5.7)
ζ5{3
Qpzq « ζ5{3

p5.828C2
nq3{5 z

´3{5k´6{5pΩq « 1.81C´6{5
n z´3{5k´6{5pΩq,

where we used equations (5.2-5.3). This is called ρpl in [1, section 7.3.4] and it is

estimated by 1.6C
´6{5
n z´3{5k´6{5pΩq. Again, we see the similarity with the theo-

Fig. 5.1. Left column: Function \bfitxi \mapsto \rightarrow \Phi \alpha (\bfitxi ,0) (solid line) and the Gaussian fit \bfitxi \mapsto \rightarrow 
\Phi \alpha (0,0)exp( - q\alpha | \bfitxi | 2) (dashed line; recall that by (4.23), \Phi \alpha (\bfitxi ,0) = \Phi \alpha (0,0)[1 - q\alpha | \bfitxi | 2 + o(| \bfitxi | 2)]).
Right column: Function \bfitzeta \mapsto \rightarrow \Phi \alpha (0,\bfitzeta ) (solid line) with the Gaussian fit \bfitzeta \mapsto \rightarrow \Phi \alpha (0,0)exp( - | \bfitzeta | 2/\zeta 2\alpha )
(dashed line, with \zeta 2/3 = 86 and \zeta 5/3 = 5.2 determined by least-square fit). Top plots: \alpha = 5/3. Here
the Gaussian fits are close to the true profiles. Bottom plots: \alpha = 2/3. Here the Gaussian fits are
far from the true profiles, which have heavy tails.

the mean intensity defined in [1, section 7.3.3], also called the ``effective spotsize,""
corresponds to

R(z)
\surd 
q5/3

\approx 
\bigl( 
3
85.828C

2
n

\bigr) 3/5
\surd 
1.785

z8/5k1/5(\Omega )\approx 1.2C6/5
n z8/5k1/5(\Omega ),(5.6)

where we used (5.2)--(5.3). The effective spotsize is called WLT in [1], and its estimate
follows from [1, eqs. (35) and (45), section 7.3.3] and the ``Rytov variance"" given in

section 7.1 of [1]. It is given by 1.45C
6/5
n z8/5k1/5, which looks like the theoretically

derived formula (5.6), except for the multiplicative constant. Thus, the effective
spotsize seems to be slightly overestimated in [1].

Similarly, we can quantify the ``correlation radius,"" which is defined in [1] as
the radius of support of the mean spectrum, which is, according to (4.25)--(4.26),
proportional to \Psi 5/3(\bfitkappa /Q) = \Phi 5/3(0,\bfitkappa /Q). This is also modeled as Gaussian in

[1], which is close to the true profile for the standard deviation \zeta 5/3/
\surd 
2, \zeta 5/3 \approx 5.2

(determined by least-square fit), as illustrated in the top right plot of Figure 5.1. The
correlation radius is

(5.7)
\zeta 5/3

Q(z)
\approx 

\zeta 5/3

(5.828C2
n)

3/5
z - 3/5k - 6/5(\Omega )\approx 1.81C - 6/5

n z - 3/5k - 6/5(\Omega ),

where we used (5.2)--(5.3). This is called \rho pl in [1, section 7.3.4] and is estimated by

1.6C
 - 6/5
n z - 3/5k - 6/5(\Omega ). Again, we see the similarity with the theoretically derived

formula (5.7), except for the multiplicative constant that is slightly underestimated.
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44 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

Finally, we note that the Gaussian approximations of the mean intensity and
spectrum are inadequate for the case \alpha < 1, as illustrated in the bottom plots of
Figure 5.1. The theoretically derived formulas (4.20) and (4.25) display heavier tails
than the best fit Gaussian profiles.

6. Summary. Kolmogorov's theory for optical turbulence predicts a power law
form for the spectrum of the fluctuations of the index of refraction. In recent years,
there has been a shift of the focus on non-Kolmogorov turbulence. This is motivated
in part by the analysis of atmospheric temperature recordings which show deviations
from the Kolmogorov power spectrum. However, these studies deal mostly with the
case of light tails of the two-point statistics for the medium fluctuations, which corre-
spond to an integrable covariance function. Here we consider beam wave propagation
in random media with long-range correlations, where the tails of the covariance func-
tion decay at a slower rate, and the medium contains more features of low spatial
frequency. We explicitly discuss the roles of the inner and outer scales delineating the
power law, and we contrast the results with those for the Kolmogorov turbulence.

A main result in the long-range case is that the randomization of the wave field
is multiscale: First, we show that as the beam wave propagates through the medium,
a strong random travel time perturbation builds up. We present a precise character-
ization of the travel time perturbation, which corresponds to a fractional Brownian
motion, with Hurst index and amplitude determined by the statistics of the medium.
Second, we show that if we observe the beam wave at large propagation distances
where the travel time correction is large relative to the pulse width, then the beam
wave pulse shape itself is deformed and becomes random due to scattering.

Another important result is a detailed characterization of the decorrelation of the
random beam wave in both space and frequency. This is carried out in the random
travel time centered frame because otherwise the frequency decorrelation would be
masked by the very large random phase associated with the travel time fluctuations.
The analysis reveals a cusp-like behavior for the spatial correlations of the wave field
in the transverse coordinates, with the cusp shape depending on the rate of decay
of the covariance of the medium fluctuations. The scale of frequency decorrelation is
also quantified and is used to analyze the deformation of the probing pulse induced
by scattering.

The results of our analysis are important for applications, such as imaging and
communication through the atmosphere, and also for propagation through the earth's
crust or through the oceans. In the case of communication applications, a character-
ization of the statistics of fading or strong pulse deformation is important in order
to evaluate the efficiency of various communication protocols. In imaging through
complex media, one needs to take into account not only the geometric wavefront dis-
tortion that is caused by the random travel time but also the deformation or blurring
of the beam pulse shape. Quantitative insights about these effects are useful when
designing schemes for clutter and turbulence compensations.

Appendix A. Proof of Proposition 4.1. Equation (4.10) written in the
coordinates (4.12) is

\partial z\scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
(A.1)

=

\biggl[ 
i

k(\Omega )
\nabla \bfitX \cdot \nabla \bfitY  - k2(\Omega )

4
\Theta (\bfitY )

\biggr] 
\scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
,
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BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 45

and, using the Fourier transform

(A.2) \widehat \scrW \Omega (\bfitq ,\bfitY , z) =

\int 
R2

d\bfitX \scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
e - i\bfitq \cdot \bfitX ,

we get \biggl( 
\partial z +

\bfitq 

k(\Omega )
\cdot \nabla \bfitY 

\biggr) \widehat \scrW \Omega (\bfitq ,\bfitY , z) = - k
2(\Omega )

4
\Theta (\bfitY )\widehat \scrW \Omega (\bfitq ,\bfitY , z)(A.3)

for z > 0, with initial condition \widehat \scrW \Omega (\bfitq ,\bfitY ,0) = \widehat \scrW \Omega ,0(\bfitq ,\bfitY ), defined in (4.15).
We can solve (A.3) by integration along the characteristic \bfitY = \bfitY 0 + \bfitq z/k(\Omega ),

starting from \bfitY 0, using the fact that

\partial z\widehat \scrW \Omega 

\biggl( 
\bfitq ,\bfitY 0 +

\bfitq 

k(\Omega )
z, z

\biggr) 
=

\biggl( 
\partial z +

\bfitq 

k(\Omega )
\cdot \nabla \bfitY 

\biggr) 
\scrW \Omega 

\Bigl( 
\bfitq ,\bfitY 0 +

\bfitq 

k(\Omega )
z, z
\Bigr) 

= - k
2(\Omega )

4
\Theta (\bfitY )\scrW \Omega 

\biggl( 
\bfitq ,\bfitY 0 +

\bfitq 

k(\Omega )
z, z

\biggr) 
, z > 0.

The result is

\widehat \scrW \Omega 

\biggl( 
\bfitq ,\bfitY 0 +

\bfitq 

k(\Omega )
z, z

\biggr) 
= \widehat \scrW \Omega ,0(\bfitq ,\bfitY 0) exp

\biggl[ 
 - k

2(\Omega )

4

\int z

0

dz\prime \Theta 

\biggl( 
\bfitY 0 +

\bfitq 

k(\Omega )
z\prime 
\biggr) \biggr] 

,

or, equivalently, in terms of \bfitY ,

\widehat \scrW \Omega (\bfitq ,\bfitY , z) = \widehat \scrW \Omega ,0

\biggl( 
\bfitq ,\bfitY  - \bfitq 

k(\Omega )
z

\biggr) 
exp

\biggl[ 
 - k

2(\Omega )

4

\int z

0

dz\prime \Theta 

\biggl( 
\bfitY  - \bfitq 

k(\Omega )
(z  - z\prime )

\biggr) \biggr] 
.

The result stated in Proposition 4.1 follows from this expression and the definition
(4.13) of the Wigner transform,

\scrW \Omega (\bfitX ,\bfitkappa , z) =

\int 
R2

d\bfitY \scrC \Omega 
\biggl( 
\bfitX +

\bfitY 

2
,\bfitX  - \bfitY 

2
, z

\biggr) 
exp( - i\bfitkappa \cdot \bfitY )

=

\int 
R2

d\bfitY 

\int 
R2

d\bfitq 

(2\pi )2
\widehat \scrW \Omega 

\bigl( 
\bfitq ,\bfitY , z

\bigr) 
exp

\bigl( 
i\bfitq \cdot \bfitX  - i\bfitkappa \cdot \bfitY 

\bigr) 
=

1

(2\pi )2

\int 
R2

d\bfitq 

\int 
R2

d\bfitY \widehat \scrW \Omega ,0

\biggl( 
\bfitq ,\bfitY  - \bfitq 

k(\Omega )
z

\biggr) 
exp

\bigl( 
i\bfitq \cdot \bfitX  - i\bfitkappa \cdot \bfitY 

\bigr) 
\times exp

\biggl[ 
 - k

2(\Omega )

4

\int z

0

dz\prime \Theta 
\Bigl( 
\bfitY  - \bfitq 

k(\Omega )
(z  - z\prime )

\Bigr) \biggr] 
.

In (4.14) we used the change of variable \bfitY \prime =\bfitY  - \bfitq 
k(\Omega )z.

Appendix B. Proof of the expansion (4.29). We first remark that

| \bfity | \alpha  - | \bfitx | \alpha = C\alpha 

\int 
R2

d\bfitq | \bfitq |  - \alpha  - 2
\bigl( 
ei\bfitq \cdot \bfitx  - ei\bfitq \cdot \bfity 

\bigr) 
,

with constant C\alpha defined by

C - 1
\alpha = 2\pi 

\int \infty 

0

\bigl( 
1 - J0(s)

\bigr) 
s - 1 - \alpha ds.

Next, we compute from (4.27)

\Phi \alpha (0,\bfitzeta ) - \Phi \alpha (0,0) = - \Phi \alpha ,1(\bfitzeta )(1 + o(1)),(B.1)
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with

\Phi \alpha ,1(\bfitzeta ) =
1

4(2\pi )2

\int 
R2

d\bfiteta e - 
1
4 | \bfiteta | 

\alpha 

\int 1

0

ds
\bigl( 
| \bfitzeta  - (1 + \alpha )1/\alpha \bfiteta s| \alpha  - | (1 + \alpha )1/\alpha \bfiteta s| \alpha 

\bigr) 
=

C\alpha 
4(2\pi )2

\int 
R2

d\bfiteta e - 
1
4 | \bfiteta | 

\alpha 

\int 1

0

ds

\int 
R2

d\bfitq | \bfitq |  - \alpha  - 2ei(1+\alpha )
1/\alpha \bfiteta \cdot \bfitq s\bigl( 1 - e - i\bfitzeta \cdot \bfitq 

\bigr) 
=

C\alpha 
4

\int \infty 

0

d\eta \eta e - 
1
4\eta 

\alpha 

\int 1

0

ds

\int \infty 

0

dq q - \alpha  - 1J0
\bigl( 
(1 + \alpha )1/\alpha \eta qs

\bigr) \bigl( 
1 - J0(| \bfitzeta | q)

\bigr) 
=

C\alpha 
4(1 + \alpha )1/\alpha 

\int \infty 

0

d\eta e - 
1
4\eta 

\alpha 

\int \infty 

0

dq q - \alpha  - 2\scrJ 0

\bigl( 
(1 + \alpha )1/\alpha \eta q

\bigr) \bigl( 
1 - J0(| \bfitzeta | q)

\bigr) 
,

where \scrJ o(s) =
\int s
0
J0(s

\prime )ds\prime is the antiderivative of the Bessel function J0. It is a
bounded function that converges to one as s \rightarrow +\infty . By the change of variable
s= | \bfitzeta | q, we get

\Phi \alpha ,1(\bfitzeta ) =
C\alpha | \bfitzeta | \alpha +1

4(1 + \alpha )1/\alpha 

\int \infty 

0

d\eta e - 
1
4\eta 

\alpha 

\int \infty 

0

dss - \alpha  - 2\scrJ 0

\biggl( 
(1 + \alpha )1/\alpha \eta s

| \bfitzeta | 

\biggr) \bigl( 
1 - J0(s)

\bigr) 
.

Using the dominated convergence theorem, we find

\Phi \alpha ,1(\bfitzeta )

| \bfitzeta | \alpha +1

| \bfitzeta | \rightarrow 0 - \rightarrow C\alpha 
4(1 + \alpha )1/\alpha 

\int \infty 

0

d\eta e - 
1
4\eta 

\alpha 

\int \infty 

0

dss - \alpha  - 2
\bigl( 
1 - J0(s)

\bigr) 
.

Therefore, (B.1) gives the expansion

\Phi \alpha (0,\bfitzeta ) =\Phi \alpha (0,0)
\bigl( 
1 - r\alpha | \bfitzeta | \alpha +1 + o(| \bfitzeta | \alpha +1)

\bigr) 
,

with

r\alpha =

\int \infty 
0
d\eta e - 

1
4\eta 

\alpha \int \infty 
0
dss - \alpha  - 2

\bigl( 
1 - J0(s)

\bigr) 
ds

8\pi (1 + \alpha )1/\alpha \Phi \alpha (0,0)
\int \infty 
0
s - \alpha  - 1

\bigl( 
1 - J0(s)

\bigr) .
The desired result follows once we use

\Phi \alpha (0,0) =
1

2\pi 

\int \infty 

0

d\eta \eta e - 
1
4\eta 

\alpha 

and the identities \int \infty 

0

dss - \alpha  - 1
\bigl( 
1 - J0(s)

\bigr) 
=

2 - \alpha 

\alpha 

\Gamma (1 - \alpha /2)

\Gamma (1 + \alpha /2)
,\int \infty 

0

dss - \alpha  - 2
\bigl( 
1 - J0(s)

\bigr) 
=

2 - \alpha  - 1

\alpha + 1

\Gamma (1/2 - \alpha /2)

\Gamma (3/2 + \alpha /2)
,\int \infty 

0

d\eta \eta e - 
1
4\eta 

\alpha 

=
24/\alpha 

\alpha 
\Gamma 

\biggl( 
2

\alpha 

\biggr) 
,\int \infty 

0

d\eta e - 
1
4\eta 

\alpha 

=
22/\alpha 

\alpha 
\Gamma 

\biggl( 
1

\alpha 

\biggr) 
.

Appendix C. Proof of Proposition 4.5. Let us introduce the reference
wavenumber k and use it to change coordinates in the cross-range plane as follows:

(C.1) \bfitX 1 =

\sqrt{} 
k

k1

\biggl( 
\bfitX +

\bfitY 

2

\biggr) 
, \bfitX 2 =

\sqrt{} 
k

k2

\biggl( 
\bfitX  - \bfitY 

2

\biggr) 
.
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Writing the evolution equation (4.35) in these coordinates and then taking the Fourier
transform in \bfitY , which defines the Wigner transform

\scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z) =

\int 
R2

d\bfitY \scrC 

\Biggl( 
\Omega 1,\Omega 2,

\sqrt{} 
k

k1

\biggl( 
\bfitX +

\bfitY 

2

\biggr) 
,

\sqrt{} 
k

k2

\biggl( 
\bfitX  - \bfitY 

2

\biggr) 
, z

\Biggr) 
e - i\bfitkappa \cdot \bfitY ,

we obtain\biggl( 
\partial z +

1

k
\bfitkappa \cdot \nabla \bfitX 

\biggr) 
\scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z) = - 1

4(2\pi )2

\int 
R2

d\bfitq \widehat \Theta (\bfitq )

\times 

\Biggl\{ 
k1k2\scrW 

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa  - \bfitq 

2

\biggl( \sqrt{} 
k

k1
+

\sqrt{} 
k

k2

\biggr) 
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\Bigl( \sqrt{} 
k
k1

 - 
\sqrt{} 

k
k2

\Bigr) 

+ k1(k1  - k2)\scrW 

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa  - \bfitq 

2

\sqrt{} 
k

k1
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\sqrt{} 
k
k1

 - k2(k1  - k2)\scrW 

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa +

\bfitq 

2

\sqrt{} 
k

k2
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\sqrt{} 
k
k2

\Biggr\} 
(C.2)

for z > 0, where the net effect of the random medium is in the Fourier transform \widehat \Theta 
of the function \Theta defined in (4.7).

Although we are interested in an infinite outer scale, let us consider a modification
of (4.7), corresponding to a finite Lo,

\Theta 
Lo
(\bfitX ) =

\chi \alpha 
2\pi 

\int l - 1
o

L - 1
o

d\kappa [1 - J0(\kappa | \bfitX | )]\kappa  - 1 - \alpha =\Theta (\bfitX ) +O

\biggl( 
\chi \alpha | \bfitX | 2

L2 - \alpha 
o

\biggr) 
Lo\rightarrow \infty  - \rightarrow \Theta (\bfitX ).

The Fourier transform of this function is\widehat \Theta 
Lo
(\bfitq ) =

\int 
R2

d\bfitX \Theta 
Lo
(\bfitX )e - i\bfitq \cdot \bfitX = 2\pi \chi \alpha 

(L\alpha o  - l\alpha o )

\alpha 
\delta (\bfitq ) - \chi \alpha | \bfitq |  - 2 - \alpha 1(L - 1

o ,l - 1
o )(| \bfitq | ),

and we explain next that (C.2) makes sense for Lo\rightarrow \infty . Using the observation\int 
R2

d\bfitq 1(L - 1
o ,l - 1

o )(| \bfitq | )| \bfitq | 
 - 2 - \alpha = 2\pi 

\int \infty 

0

dq 1(L - 1
o ,l - 1

o )(q)q
 - 1 - \alpha =

2\pi (L\alpha o  - l\alpha o )

\alpha 
,

we can rewrite (C.2), with \widehat \Theta replaced by \widehat \Theta 
Lo

and therefore \scrW replaced by \scrW 
Lo

as
follows:

\biggl( 
\partial z +

1

k
\bfitkappa \cdot \nabla \bfitX 

\biggr) 
\scrW 

Lo
(\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z) =

\chi \alpha 
4(2\pi )2

\int 
R2

d\bfitq 1(L - 1
o ,l - 1

o )(| \bfitq | )| \bfitq | 
 - 2 - \alpha 

\times 

\Biggl\{ 
k1k2

\Biggl[ 
\scrW 

Lo

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa  - \bfitq 

2

\Biggl( \sqrt{} 
k

k1
+

\sqrt{} 
k

k2

\Biggr) 
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\Bigl( \sqrt{} 
k
k1

 - 
\sqrt{} 

k
k2

\Bigr) 

 - \scrW 
Lo
(\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z)

\Biggr] 

+ k1(k1  - k2)

\Biggl[ 
\scrW 

Lo

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa  - \bfitq 

2

\sqrt{} 
k

k1
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\sqrt{} 
k
k1  - \scrW 

Lo
(\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z)

\Biggr] 

 - k2(k1 - k2)

\Biggl[ 
\scrW 

Lo

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa +

\bfitq 

2

\sqrt{} 
k

k2
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\sqrt{} 
k
k2  - \scrW 

Lo
(\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z)

\Biggr] \Biggr\} 
.

(C.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

7/
23

 to
 1

69
.2

34
.3

5.
13

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



48 LILIANA BORCEA, JOSSELIN GARNIER, AND KNUT S{\O}LNA

At | \bfitq | \sim L - 1
o \rightarrow 0 the square brackets in this expression are O(| \bfitq | ), and after writing

the \bfitq integral in polar coordinates, we conclude that the integrand is O(| \bfitq |  - \alpha ). Thus,
after the integration in | \bfitq | the right-hand side depends on the outer scale as L

 - (1 - \alpha )
o .

This vanishes as Lo\rightarrow \infty , so we can take the limit in (C.3) and replace \scrW 
Lo

by \scrW .
Since the integrand in (C.3) has a fast decay at | \bfitq | \rightarrow \infty like | \bfitq |  - 1 - \alpha , and we are

interested in a small inner scale (recall section 4.2), we can approximate \scrW by taking
the limit lo\rightarrow 0. We obtain the equation

\biggl( 
\partial z +

1

k
\bfitkappa \cdot \nabla \bfitX 

\biggr) 
\scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z) =

\chi \alpha 
4(2\pi )2

\int 
R2

d\bfitq | \bfitq |  - 2 - \alpha 

\times 

\Biggl\{ 
k1k2

\Biggl[ 
\scrW 

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa  - \bfitq 

2

\Biggl( \sqrt{} 
k

k1
+

\sqrt{} 
k

k2

\Biggr) 
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\Bigl( \sqrt{} 
k
k1

 - 
\sqrt{} 

k
k2

\Bigr) 

 - \scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z)

\Biggr] 

+ k1(k1  - k2)

\Biggl[ 
\scrW 

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa  - \bfitq 

2

\sqrt{} 
k

k1
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\sqrt{} 
k
k1  - \scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z)

\Biggr] 

 - k2(k1  - k2)

\Biggl[ 
\scrW 

\Biggl( 
\Omega 1,\Omega 2,\bfitX ,\bfitkappa +

\bfitq 

2

\sqrt{} 
k

k2
, z

\Biggr) 
e
i\bfitX \cdot \bfitq 

\sqrt{} 
k
k2  - \scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z)

\Biggr] \Biggr\} 

(C.4)

for z > 0, with the initial condition

\scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa ,0)(C.5)

=

\int 
R2

d\bfitY \widehat F \Biggl( \Omega 1,

\sqrt{} 
k

k1

\biggl( 
\bfitX +

\bfitY 

2

\biggr) \Biggr) \widehat F \Biggl( \Omega 2,

\sqrt{} 
k

k2

\biggl( 
\bfitX  - \bfitY 

2

\biggr) \Biggr) 
e - i\bfitkappa \cdot \bfitY .

Let us consider a range Z in the strong fluctuation medium (4.17) so that we have
QZRZ \gg 1 with

(C.6) QZ =Q(Z) = (d\alpha k
2Z)1/\alpha , RZ =R(Z) =

\biggl( 
d\alpha k

2 - \alpha Z\alpha +1

\alpha + 1

\biggr) 1/\alpha 

.

We now show that the decoherence frequency, i.e., the scale of decay of \scrW with respect
to | \Omega 1  - \Omega 2| , is coKZ , where

(C.7) KZ =
2k

QZRZ
\ll k.

Indeed, suppose that

(C.8) kj = k(\Omega j) = k+KZ
\widetilde kj , j = 1,2,

where \widetilde kj are dimensionless O(1) scaled wavenumber offsets with respect to k. Then,

(k1 + k2)

2
\simeq k

\biggl[ 
1 +O

\biggl( 
1

QZRZ

\biggr) \biggr] 
,

and

k1  - k2 =KZ(\widetilde k1  - \widetilde k2) =O(KZ)\ll k.
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Introduce also the dimensionless variables

(C.9) \widetilde \bfitX =
\bfitX 

RZ
, \widetilde \bfitq =

\bfitq 

QZ
, \widetilde \bfitkappa =

\bfitkappa 

QZ
, \widetilde z = z

Z
.

Then, the Wigner transform can be approximated by

(C.10) \scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa , z)\approx (2\pi )2 \widehat \scrF (\Omega 1,\Omega 2)

(RZQZ)2
\widetilde \scrW (\widetilde k1  - \widetilde k2,\widetilde \bfitX , \widetilde \bfitkappa , \widetilde z),

with \widehat \scrF defined as in (4.39) and the function \widetilde \scrW of dimensionless O(1) arguments
satisfying (4.42), with initial condition (4.43).

To derive (4.42) we used definitions (C.6) and (4.8), which give

(C.11) \partial z +
1

k
\bfitkappa \cdot \nabla \bfitX =

1

Z

\Bigl( 
\partial \widetilde z + ZQZ

kRZ
\widetilde \bfitkappa \cdot \nabla \widetilde \bfitX 

\Bigr) 
=

1

Z

\Bigl( 
\partial \widetilde z + (1+ \alpha )1/\alpha \widetilde \bfitkappa \cdot \nabla \widetilde \bfitX 

\Bigr) 
and

(C.12) Z\chi \alpha k
2Q - \alpha 

Z =
\chi \alpha 
d\alpha 

=
2\alpha +1\pi \alpha \Gamma (1 + \alpha /2)

\Gamma (1 - \alpha /2)
.

We also used (C.7)--(C.8) and neglected the small, O((\widetilde k1  - \widetilde k2)KZ/k) residual.
To justify the initial condition (4.43), we note first that in the regime defined by

(C.7)--(C.8) we have

\scrW (\Omega 1,\Omega 2,\bfitX ,\bfitkappa ,0)\approx r2s
B2
\widetilde \scrW s

\Biggl( \widetilde \bfitX 
rs/RZ

,
\widetilde \bfitkappa 

1/(rsQZ)

\Biggr) \biggl[ \widehat f \biggl( \Omega 1  - \omega o
B

\biggr) 
+ \widehat f \biggl( \Omega 1 + \omega o

B

\biggr) \biggr] 

\times 

\Biggl[ \widehat f \biggl( \Omega 2  - \omega o
B

\biggr) 
+ \widehat f \biggl( \Omega 2 + \omega o

B

\biggr) \Biggr] 
,(C.13)

where

\widetilde \scrW s(\widetilde \bfitX , \widetilde \bfitkappa ) = \int 
R2

d\bfitxi S

\biggl( \widetilde \bfitX +
\bfitxi 

2

\biggr) 
S

\biggl( \widetilde \bfitX  - \bfitxi 

2

\biggr) 
e - i\widetilde \bfitkappa \cdot \bfitxi (C.14)

is the dimensionless Wigner transform of the source function S. Since rs/RZ \ll 1 and
1/(rsQZ) \ll 1 by (4.17) and (C.6), we conclude from (C.13)--(C.14) that the initial

condition is supported at \widetilde \bfitX \approx 0 and \widetilde \bfitkappa \approx 0. This is why we use the Dirac delta in
(4.43). The normalization in (C.10) comes from the identity\int 

R2

d\widetilde \bfitX \int 
R2

d\widetilde \bfitkappa \scrW (\Omega 1,\Omega 2,RZ\widetilde \bfitX ,QZ\widetilde \bfitkappa ,0) = (2\pi )2

(RZQZ)2
\widehat \scrF (\Omega 1,\Omega 2),(C.15)

derived from (C.13)--(C.14), with \widehat \scrF defined as in (4.39).
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