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Abstract. We study the paraxial wave equation with a randomly perturbed index of refraction,
which can model the propagation of a wave beam in a turbulent medium. The random perturbation
is a stationary and isotropic process with a general form of the covariance that may or may not be
integrable. We focus attention mostly on the nonintegrable case, which corresponds to a random
perturbation with long-range correlations, that is, relevant for propagation through a cloudy turbu-
lent atmosphere. The analysis is carried out in a high-frequency regime where the forward scattering
approximation holds. It reveals that the randomization of the wave field is multiscale: The travel
time of the wave front is randomized at short distances of propagation, and it can be described by
a fractional Brownian motion. The wave field observed in the random travel time frame is affected
by the random perturbations at long distances, and it is described by a Schrédinger-type equation
driven by a standard Brownian field. We use these results to quantify how scattering leads to decor-
relation of the spatial and spectral components of the wave field and to a deformation of the pulse
emitted by the source. These are important questions for applications, such as imaging and free
space communications with pulsed laser beams through a turbulent atmosphere. We also compare
the results with those used in the optics literature, which are based on the Kolmogorov model of
turbulence. We show explicitly that the commonly used approximations for the decorrelation of
spatial and spectral components are appropriate for the Kolmogorov model but fail for models with
long-range correlations.
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1. Introduction. The paraxial wave equation describes wave propagation along
a privileged axis, as a narrow angle beam, in a homogeneous or heterogeneous medium
[3]. It is a parabolic approximation of the wave equation, which neglects backscat-
tering and thus facilitates the analysis and computation of waves at a large distance
of propagation, also known as range. The parabolic approximation theory was in-
troduced by Leontovich and Fock [27] and has been used and developed further in
applied fields, such as seismology [12, 13], underwater acoustics [34], optics [23], and
laser optics [1, 24, 35, 36].

Motivated by laser optics applications to imaging and free space communications
through a turbulent atmosphere, we consider the paraxial wave equation with a ran-
domly perturbed wave speed ¢(&). The model of the perturbation is
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2
(1.1) 02(%) =1+ p(Z),

where ¢, is the constant reference speed and p is a zero-mean, stationary, and isotropic
random process, with power spectral density (Fourier transform of the covariance) of
the form

(12)  S®)= / AEE (@ (@ + @) e = ol g o) (R)IRI

Here x,, is a constant (expressed in unit of length to the power 1 —«), a € (0,1)U(1,2),
and 1 ;-1 ;-1 s the indicator function equal to one when its argument is in (L', ;!
and to zero otherwise.

Definition (1.2) is a generalization of the commonly used Kolmogorov power spec-
trum, where o = 5/3, and the “outer scale” L, and the “inner scale” [, define the
“inertial range” of turbulence [1]. There is a growing number of studies in the op-
tics literature concerned with quantifying the effect of non-Kolmogorov turbulence on
beam propagation [11, 25, 37]. All of them consider o > 1, which corresponds to an
integrable covariance of u. This case is well understood from the mathematical point
of view and has been analyzed in detail in the high-frequency, paraxial regime in [14,
16]. The wave field is described asymptotically by the solution of an It6—Schrodinger
equation driven by a Brownian field with covariance defined in terms of S(K). There-
fore, the second order—and even fourth order—statistical moments of the wave field
can be calculated using It6 calculus [17]. The study of such moments is an essential
part of both the analysis and the development of new methodologies for imaging [5,
9, 18], time reversal [4, 15, 19, 32], and optical communications applications [7].

The case « € (0, 1) has not been explored in the optics literature and is interesting
mathematically because, depending on the outer scale L,, it may give a nonintegrable
covariance of the fluctuations, meaning that p has long-range correlations. Moreover,
a < 1 is relevant for propagation through a cloudy atmosphere, as seen from the
experimental studies [10] and [28, Table 3]. The conclusion of these studies is that
the value of o depends on the interval (L;1,i;1), with a < 1 at length scales that
are larger than the outer scale of Kolmogorov turbulence. Thus, one could consider
an even more general model of the power spectrum, with < 1 at longer scales and
a > 1 at smaller scales. For brevity, we work with the model (1.2), which is sufficient
for displaying the effects of long-range medium fluctuations on the statistics of the
wave beam.

Most of our analysis concerns « € (0,1) and a beam with initial radius of order rq,
satisfying [, <7y < Ly, so we can take L, — oo while keeping [, finite. The covariance
of p is nonintegrable in this case, which means that the classic paraxial theory in
[14, 16] does not apply. We refer the reader to [21] for the derivation of the paraxial
approximation in a random anisotropic medium with long-range correlation proper-
ties. There, the wave is described asymptotically by the solution of a Schrodinger
equation with fractional white noise potential. A special regime in randomly layered
media with long-range correlations is also addressed in [20]. In this paper we show
that for our isotropic random medium modeled by p, a transformation involving the
central axis travel time (i.e., the travel time measured at the center of the beam) can
convert the problem into one where the classic analytic framework applies. We prove
that there are two distinguished range scales that describe the net scattering effects
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on the beam: The central axis travel time randomizes on a small range scale and is
described by a fractional Brownian motion. This behavior was also shown in [2, 33].
The shape of the wave, observed in the random travel time frame, is not affected by
scattering at this short range. However, this, too, randomizes at a larger range, and
it is described by the solution of an It6—Schrédinger equation driven by a standard
Brownian field, as in [14, 16]. We use these asymptotic results to analyze explicitly
the space-frequency covariance of the wave field. This allows us to quantify how the
wave components decorrelate and how the pulse emitted by the source deforms due
to scattering in the random medium.

To relate our results with the existing optics literature, we also consider briefly
the case o € (0,1) U (1,2) with a finite L,. These cases correspond to an integrable
covariance of the process p, where the theory in [14, 16] applies. We study the co-
variance of the wave field, which depends on « and the scales [, and L,, and quantify
explicitly the accuracy of the approximations used in the optics literature [1]. In
particular, we compare the profiles of the mean intensity and field covariance func-
tion with the commonly used Gaussian approximations [1]. The comparison shows
that the Gaussian approximations are accurate in the Kolmogorov case o =5/3, up
to slight discrepancies for the radii (effective spotsize, i.e., the radius of the support
of the mean intensity, and correlation radius, i.e., the radius of the support of the
field covariance function). We also show that the Gaussian approximations are very
wrong in the case a € (0,1), where the profiles of the mean intensity and field covari-
ance function exhibit heavy tails, and the field covariance function has a cusp at the
origin.

The paper is organized as follows: We begin in section 2 with the mathematical
formulation of the problem. We state the paraxial wave equation, identify the asymp-
totic regime, and give more details on the random process p. The asymptotic analysis
for the case o € (0,1), with L, — oo and finite ,, is given in section 3. We use it in
section 4 to quantify the decorrelation of the wave components and the deformation
of the pulse due to scattering. Comparison with the formulas in the optics literature
is given in section 5. We end with a summary in section 6.

2. Mathematical formulation. Let us introduce the orthogonal system of co-
ordinates & = (x, z), with range axis z along the direction of propagation and with
x € R? in the cross-range plane. The wave field u satisfies the wave equation

@21) |82 Ay |t 2) =02 cos(wot)f(Bt)]s(f)a(z),

2(z, 2) s

for (t,x,z) € R x R? x R, where A, denotes the Laplacian with respect to . The
source is localized at the origin of range and has a cross-range profile with radius
rs, modeled by the function S of dimensionless argument, with support centered at
0. The source signal is a pulse with bandwidth B, modulated at the carrier (center)
frequency w, and with envelope modeled by the function f of dimensionless argument.
Prior to the source excitation there is no wave: u(t,x,z) =0 for t < —1/B.

Since the analysis of wave propagation requires the decomposition of the wave
field over frequencies, we work henceforth in the Fourier domain,

(2.2) u(w,x, 2) :/ dt e™tu(t, x, z).

— 00
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This time-harmonic wave satisfies the Helmholtz equation,

w? ~
(2.3) [02(332) + AL+ 33] t(w,x,2) =iwF (w,x)d(z),

for (w,x,z2) € R x R? x R, with

o =) ()

and outgoing boundary conditions at |(x,z)| — co. These conditions can be justified
mathematically by truncating the random medium outside a ball of large enough
radius, so that in the time domain, the truncation does not affect the wave over the
duration of interest.

We state next in section 2.1 the paraxial approximation of (2.3) and the asymp-
totic regime where it is valid. Details on the random process p are given in section 2.2.

2.1. Scaling and the paraxial equation. The paraxial approximation holds
in a high-frequency regime, where the wavelength is much smaller than the radius of
the beam and the correlation radius of the medium, which are, in turn, much smaller
than the range scale (distance of propagation).

We introduce the small dimensionless parameter € > 0 that encapsulates this
regime and assume that, compared to the typical range, the typical wavelength is of
order £* and that the beam radius and the correlation radius are of order £2:

B Wo

(2.5) B° we

20
S s |

ré=e?ry, 15=¢%l,, Li=6Ly, X5 =Xae®™
As we will see, the scaling of x& is the one that gives a nontrivial limit as ¢ — 0.
It is also possible to consider a larger range scale LS = ePL,, with p < 2, and/or
a smaller I = €9],, with ¢ > 2 [14]. In this paper we consider the scaling (2.5).
We focus attention on the case when « € (0,1) and L, = oo, but we also consider
a€(0,1)U(1,2) and a finite L,.

We denote by u® a random process with the power spectral density of the form
(1.2) with the constant x& and scales IS, LS. Then, (2.5) gives the representation

. z
(2:6) W@ ="n(5),
where p is a random process with the power spectral density of the form (1.2) with

the constant y, and scales l,, L,. The wave field in the scaling (2.5) is denoted by
u® and satisfies the Helmholtz equation derived from (2.3),

(2.7) [i; [1+ pf (@, 2)] + Ay + ag} W (w, @, 2) = iwF* (w,)8(2),
with

=~ 1 | yw—wj ~fW+ Wi AN~ T
(28) F (w,a}) - ? |:f(BE> + f( BE ):| S(E) —€4F(€4w, 572)7

and outgoing boundary conditions at |(x, z)| — oc.
Observe that if we had S=1 and =0 in (2.7)—(2.8), the solution would be the
plane wave

04 11+ tw— o ~ret o
i (wnz) = o (1222) 3 | (25 2) + F(Z52) |.
(%
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This observation motivates the introduction of the “slowly varying envelope field” ¢=,
which defines the solution of (2.7)—(2.8) as follows:
4

o0 o) e (12 (. 515)
(e}

Substituting (2.9) into (2.7), using the chain rule, and denoting k(§2) = 2/c¢,, we find
that for 2 =c*w € R and X = /e € R?, we have

2
(2.10) 2ik(2)0, + Ax + i (gmu(x,;)} O (02,X,2)=0, 2>0,
(2.11) O (2,X,2=0)=F(2,X).

In (2.10) we have neglected the e*92¢° term, which is responsible for backscattering.
Thus, we use the forward scattering approximation, which can be justified when € — 0.
The proof of the forward scattering approximation was carried out in [16] for the case
of a mixing medium and in [21] for a medium with special long-range correlation
properties. One would need to extend the latter proof to the medium considered
here. This technical proof is beyond the scope of this paper, but it could certainly be
carried out.

2.2. Statistics of the random fluctuations. The most convenient choice for
the analysis would be having a Gaussian y. However, since Gaussian processes are
unbounded, this choice is inconsistent with (1.1), whose right-hand side must be
positive. We assume instead that p is defined by an odd, smooth, and bounded
function. An example is the arctan function of a zero-mean Gaussian process with
long-range correlation properties, which has mean zero and power spectral density
of the form (1.2). This hypothesis is necessary for the proof of Proposition 3.1.
It gives a consistent random perturbation model while keeping the analysis simple
enough.

Note that in view of the scaling in (2.5), one can also model p in terms of a
Gaussian field with spectrum (1.2), that is smoothly cut off at large amplitudes, so
that the statistics remain essentially unchanged. In practice, sampling such a Gaussian
field involves taking the fast Fourier transform of Gaussian noise, and modulating the
Fourier transform by the square root of the spectrum.

Note also that while in the spectrum (1.2) we have introduced hard cutoffs at the
outer and inner scales, one can also use smooth tapering at these scales, as in the
modified von Kérmén spectrum [1].

The covariance of y is the inverse Fourier transform of the power spectrum (1.2),

Cov, (X, 2) =E[u( X",z )u( X'+ X,z +2)] = (2717)3/]1@ di cos [R- (X,2)]|S(R)

it 27 T
_ Xo ° 2 . Cow
= (277)3/ ) dk K /0 dgo-/o d¥sind k cos[k|(X, z)|cos 9]

Lo
Xe [
= ﬁ . dk k™ %sinc[k|(X, 2)|]
X ) |e—1 X2/l
(2.12) = M/ ds s~ %sinc(s).
2m |(X.2)]/Lo
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Here we introduced the spherical coordinates & — (k,¢,d), with k = |K| and angles
v € (0,27) and ¥ € (0, 7). We also changed the variable of integration to s = k|(X, z)|.
The variance of y is obtained from (2.12) evaluated at the origin,

it a—1 a—1
_ 2 ~ Xa ¢ —a_ Xa LO 710
(213) Var# —E[‘LL (X,Z)} = 271_2/L;1 dr K = ﬁ (04—1> .

We distinguish the following two cases in this paper. The first is used in the
analysis in sections 3 and 4, while the other is used for comparison with the optics
literature in section 5.

e o €(0,1) and infinite outer scale: When the initial radius r5 of the beam
satisfies the order relation [, < ry < L,, we can carry out the analysis in the limit

~

L, — oo while keeping [, finite. The variance (2.13) is finite in this limit,

Xa

2.14 Var, = —~*
(2.14) T (Il

a€(0,1), L,— oo,

but the covariance (2.12) is not integrable. In particular, we obtain from (2.12) that

Xalz[*7t [V . Ca 1
(2.15) Cov,(0,2) = T/o ds s~ “sinc(s) ~ ﬁMo‘* , as|z| — oo,
where the symbol “~” denotes an asymptotic expansion and, according to [22, For-
mula 3.761.4],

B ™a
- 2cos(ar/2)L(1+a)

(2.16) Co :Xa/ ds s~ %sinc(s)
0

The slow decay at |z| — oo in (2.15) implies that Cov,, is nonintegrable and we say
that the process u has long-range correlations.

e a€(0,1)U(1,2) and a finite outer scale: When the beam has a larger
radius, meaning that I, <rs < L, it experiences the random fluctuations in a different
way than that above, even for aw < 1. Indeed, integration by parts gives the estimate

[ee} —a—1 oo
/ ds s~ “sinc(s) Izl cos Iz _ (14 «) / ds s~ 2 cos(s)
| Lo Lo |21/ Lo

Z|/Lo
<(E) " harw [T assemrea(H)
~\Lo 121/ L Lo ’

and substituting into (2.12) evaluated at (X, z) =(0,z2), we get

Xa Lot
71—2

(2.17) Cov,(0,2) < -2

|z] as |z| — oc.
The decay at |z| — oo is now fast enough to make the covariance integrable, and we
say that the process p is mixing.

Note from (2.13) that when « € (1,2), the variance of p is finite only for a finite
outer scale L,, while the inner scale can either be finite or tend to 0. For the case

a € (0,1) the variance blows up in the limit I, — 0, but it is finite for L, — oo.

3. Asymptotic analysis for the long-range correlation case. We now de-
scribe the solution ¢° of the paraxial equation (2.10)—(2.11) in the limit ¢ — 0 for
a € (0,1) and an infinite outer scale. This case is interesting because the process u
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has long-range correlations, and there are two range scales that describe the random-
ization of ¢°. We show in section 3.1 that ¢° develops a significant random phase at
a short, e-dependent range scale. Thus, in order to analyze it at a longer range, we
need to remove this random phase, i.e., observe ¢° in a random travel time frame, as
explained in section 3.2.

3.1. Random central axis travel time analysis. We obtain from (1.1) and
(2.6) that the random velocity along the axis of the beam is given by

Co g3 z
(3.1) :\/14-,[15(0,2)'\/14-5#(0,?) ase—0,

(0, 2)

so the central axis travel time is

= dY z 4 Z%(2) 1 [ 2!
32 —_— - 7 ZE . d ! 0 ol
(3.2) /o cc(0,2") ¢ + co (2) 25/0 * M( ’52) ’

and has random fluctuations modeled by Z¢. Due to the high frequency w = E%, these
fluctuations have a significant effect on the phase of the wave field

(3.3) 694/ cfg)Z/z/) N k(g)z FR(2)25(2),

and the next proposition describes the asymptotics of Z¢ as € — 0.

PROPOSITION 3.1. The random process Z¢ defined in (3.2) satisfies
(3.4) z° (520‘/(1+0‘)z) — CgWH(2) ase—0,

where the convergence is in distribution, W (2) is a fractional Brownian motion with
Hurst index H = (1+ «)/2, and Cyg = %,/ﬁ7 with Cy, given as in (2.16). At
O(1) range the process Z¢ satisfies

(3.5) €¥Z2%(2) » CyuWH(2) ase—0,

where the convergence is in distribution and the limit is as in (3.4).

Proof. The convergence is proved in [30] for a Gaussian g. The result extends to
a process p given by a smooth and bounded function of a Gaussian process as shown
in [31], where the precise conditions on the function are given. |

We recall from [29] that the fractional Brownian motion W is a Gaussian process,
with stationary increments, satisfying

(3.6) EWH(z)] =0, E[WH"E)WH" (] =2 [+ () + |2 —2/)*1].

N | =

The proposition says the following:

1. The process Z¢(z), and therefore the phase (3.3), is randomized, i.e., has
significant random fluctuations, on a short O(e2®/(1+®)) range scale. In the
physical variables (2.5), this corresponds to a propagation distance such that
k(ws)?E[(e*25(2))?] ~ 1, that is, 2z ~ [k(ws)?x5] Y/ (Fe),

2. Even though u is not a Gaussian process, the phase fluctuations are Gaussian.

3. The random fluctuations of the phase are huge, i.e., O(e~%) at an O(1) range,

and must be removed in order to characterize the € — 0 limit of (°.
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3.2. Wave in the random travel time frame. After removing the random
phase, which is equivalent to observing the wave in the central axis random time
frame Z¢/c,, we get that

(37) wE(QaXaZ):QOE(‘(LXaZ)eXp [7’”{(9)25(2)}

satisfies the paraxial equation

2
(3.8) 2Zk(0)5z+Ax+k(€mV<X,;):| YE(02,X,2)=0, z>0,
(3.9) (02, X,2=0)=F(2,X),

with the random potential

(3.10) V(X,2) = u(X,2) - (0, 2).

The process v is stationary in z but not in X, and we explain next that its
covariance is integrable in z. Indeed,

Cov, (X, X',z —2)=E[v(X,2)v(X",2")] = Cov, (X — X',z — 2/)
(3.11) + Cov, (0,2 — 2') — Cov, (X', 2 — 2') — Cov, (X, 2z — 2'),
and using (2.12), we get for X = X’ that
‘(x—l

[z]/lo
Cov,(X,X,z)= X2 l/ duu™%sinc(u)
0

T2

( X2 (@=1)/2 |z|/1,4/14+]|X |2/ 22
ey
0

22

(3.12) duu‘“sine(u)} .

We are interested in the decay of this expression at |z| — 0o, which can be seen from
the asymptotic expansion

(a—1)/2
Ca | a1 X2
COV,,(X,X,Z)NP‘Z| l1<1+£
Ca(l—a)|X[? o5
~ 52 =]

with constant C, given by (2.16). Since a € (0,1), the decay in |z| is fast enough to
make the covariance integrable, and we say that the process v is mixing.

(3.13) as |z| = oo,

PROPOSITION 3.2. The solution ¥° of (3.8)—(3.9) converges in distribution, in
the space C(]0,+00), L>(R x R C)) of continuous functions of z € [0,00) that are
square integrable in (£2,X), to the solution of the It6—Schrédinger equation

B10)  d6(2.X,2) = g A2, X s+ RO X, ) 0 dIW (X, ),
with initial condition
(3.15) W2, X,2=0)=F(2,X).

The symbol “o” denotes the Stratonovich integral, and W (X, z) is a centered Brownian
field. It satisfies E[W (X, 2)W (X', 2')] =~v(X,X’) min(z,2’), with

Iyt
(3.16) 7(X7X’):)2<—7‘:‘_/0 dre [Jo(k|X — X7) +1— Jo(s|X]) — Jo(r| X710,

where Jy is the Bessel function of the first kind and of order 0.
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Proof. This theorem was proved for a fixed frequency in [14]. For any {2 # 0,
the solution (z,X) — 9°(§2,X,z) of (3.8) converges in distribution, in the space
D([0, +00), L*(R?,C)), to the solution (z, X) + (2, X, z) of (3.14). Here D is the
space of cadlag functions. The proof in [14] can be extended to the multifrequency
case because the driving process v does not depend on frequency. We then obtain
the following result: For any set of nonzero frequencies (Qj)?:p the random process
(2,X) = (¥°(£2;, X, 2))7_, converges in distribution in D([0, +00), L*(R?,C")) to the
process (2, X) — (¥(£2;, X, 2))}_;.

The tightness of = in D([0, +-00), L2 (RxR?,C)) (with L2 equipped with the weak
topology) can be established as in [14], section 3.1] by using the tightness criterion
[26], Chap. 3, Theorem 4]. The derivation uses the following three facts: The driving
process v does not depend on frequency, (3.8) depends smoothly on the parameter €,
and the support in € of F' is away from the origin and from infinity. The tightness
and the convergence of the finite-dimensional distributions give the convergence of ¢
to v in the space D([0,+00), L2 (R x R? C)). Moreover, the original and limit pro-
cesses preserve the L?-norm of the initial data. Indeed, this can be established in a
straightforward manner for the original process. For the limit process, it follows from
the application of It6’s formula (here it is important to note that the stochastic inte-
gral that appears in (3.14) and is obtained from the limit theorem is the Stratonovich
integral). As a result, the process converges in D([0,400), L?(R x R? C)). Further-
more, since both the original and limit processes are continuous in z, the convergence
actually holds in C([0, +00), L?(R x R?,C)). O

4. Application of the asymptotic analysis. We now use the asymptotic re-
sults stated in Propositions 3.1 and 3.2 to analyze the coherent wave (section 4.1)
and the space-frequency covariance of ¢° (sections 4.2-4.3) in the limit ¢ — 0. We
also characterize in section 4.4 the deformation of the pulse emitted by the source,
induced by scattering in the random medium.

4.1. The coherent wave. Scattering causes a loss of coherence of the wave
field, which manifests as an exponential decay of the mean wave (also known as the
coherent wave) E[p°] with respect to the range z. The length scale of decay, called
the scattering mean free path, gives the range limit at which conventional methods?!
used for imaging and free space communication are useful in random media.

The leading factor in the loss of coherence of ° is the random phase kZ¢, which
becomes significant at an 0(52‘” (1+°‘)) range. Indeed, Propositions 3.1 and 3.2 give
that

2 1.2 2H
(41) E[exp(ik(12) 27 (e (+)2))] P exp [CHM;Z)Z}
and
~ 2 1.2 2H
(4.2) E[pf (2, X620/ (159 2)] = F(02, X) exp {CHk(am] ,

so the scattering mean free path has the asymptotic expansion
(4.3) T e (02) ~ 2/ I Oy k(2)) 7V H.

1Conventional methods are based on the assumption that the medium through which the waves
propagate is homogeneous or, more generally, known and nonscattering.
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However, the wave ¢° defined in (3.7) by removing the large random phase kZ¢
from ¢° maintains its coherence up to a much longer O(1) range. Proposition 3.2
gives that

e—0

(44) E[wE(Q,X7Z)] —>M1('(27X7Z)a
where M; solves the evolution equation
i k2(02)
(45) 3ZM1(Q,X,Z) = WAXMl(Q,X,Z) — T@(X)M1(07X,Z),

which is obtained by taking the expectation in (3.14), with the initial condition derived
from (3.15),

(4.6) Mi(02,X,2=0)=F(,X),

and with the damping coefficient

15t
O(X)= LXQ’X) = ’QL:/O dr [1— Jo(k| X )] w1
o X1/l
(4.7) = Xa;f'/o ds[1—Jo(s)]s™'

The damping models the loss of coherence of ¥°. It is weaker at the axis of the beam
and increases away from it. In fact, at | X|/l, — 0o we get the asymptotic expansion
:Xoc o _ Xa F(l*O&/?)

a Aa o —l-a _
(48) O(X)~dalX|*, da=3% | ds[1=To(s)]s Tirer a5 o2

4.2. Spatial covariance. Although the wave loses its coherence (the mean wave
decays with the propagation distance), wave energy is not lost but converted into
incoherent, zero-mean fluctuations. These incoherent waves can be characterized by
the second order moments of the wave field that we analyze in this subsection and
the next ones. For imaging purposes, it is possible to extract information from the
observation of the incoherent waves and their correlation properties in space and
frequency. An example of exploiting such knowledge is the coherent interferometric
(CINT) methodology for robust imaging in random media [5, 6, 8.

There are two intrinsic scales that capture the decorrelation properties of the wave
field: the “decoherence length,” which is the length scale of decay of the covariance of
° over cross-range offsets, and the “decoherence frequency,” which is the frequency
scale of decay of the covariance over frequency offsets. In this subsection we study the
spatial covariance, i.e., fix the frequency at 2 and estimate the decoherence length. We
note from definition (3.7) that the phase kZ¢ plays no role in the spatial covariance,

e—0

]E[cpE(Q,Xl,z)cpE(.Q,XQ,z)] :E[¢E(Q,X1,Z)¢E(Q,X2,Z)] HC_Q(Xl,X27Z).

Here the bar stands for the complex conjugate, the notation C; emphasizes that the
frequency is fixed at (2, and the £ — 0 limit,

(4.9) Ca(X1, Xo,2) =E[Y(12, X 1,2)9(2, X2, 2)],

is obtained from the It6—Schrodinger equation in Proposition 3.2. Using the identity

(X1, X2) —O(X1) - O(X2) = -0(X1 — X2),
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deduced from definitions (3.16) and (4.7), we get the evolution equation

(4.10)
' k*(£2)
0.Co(X1,X9,2)= %( ] (Ax, —Ax,) — 7] O(X1 — X2)| Ca(X1,X2,2),
for z > 0, with initial condition
(4.11) Co(X1,X0,2=0)=F(2,X1)F(2,X,).

We can solve (4.10) explicitly by changing coordinates
1
(412) (;Xl,)(g)l—>()(,Y)7 Xzi(Xl—‘ng), Y:Xl—XQ,

and then taking the Fourier transform with respect to the offset vector Y, which
defines the mean Wigner transform,

Y Y ,

(4.13) Wa(X K, 2) :/ dY Cq (XJr —, X - ,z> e Y
RZ 2 2

This transform is important by itself, as it tells us how the energy at X is distributed

over the directions, i.e., along . It plays a key role in the analysis of imaging and

time reversal methods in random media [6, 9, 32]. The calculation of Wy, is given in

Appendix A, and the result is stated in the following proposition.

PROPOSITION 4.1. The mean Wigner transform is given by

Wao(X kK, 2z)= /Rqu/deYexp[lq (X k(Q))—m-Y} WQ’()((],Y)
q7
4.14
1y ”Xp{ e (rit)]
with
(4.15) Wa.o(q,Y) :/ dX F (Q,X + }2[) F (Q,X - §>e—i¢x.
R2

The spatial covariance is obtained from the expression (4.14) using the inverse
Fourier transform,

Y Y
— _ — =
CQ(X+2,X 2,2:)

X iKY
@2 oo deWn (X, Kk, 2)e

(416) <o [ [Care (v - 22,

and we study it next using the asymptotic expansion (4.8) of ©, which holds when
its argument is much larger than [,. Note that the coefficient d, in this expansion
quantifies the strength of the fluctuations in the random medium.

We have already assumed a large outer scale L,. We now consider, in addition, a
strong fluctuation and small inner scale regime, in the sense that

(4.17) lo K < rs < R(2),

b
Q(2)
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where we recall that rg is the initial radius of the beam. There are two new scales in
(4.17): the range-dependent beam radius

dakQ—a(Q)Z(x-{-l 1/
a+1 ’

(4.18) R(z) = [

which quantifies the spatial support of the mean intensity (section 4.2.1), and the
range-dependent wave vector radius

1/«

(4.19) Q(z) = [dak?®(2)2] "7,
which quantifies the wave vector support of the mean spectrum (section 4.2.2).

4.2.1. The mean intensity. The mean intensity E[|¢(£2,X,2)|?] is equal to
Cn(X,X,z). From Proposition 4.1 we obtain the following result.

PROPOSITION 4.2. In the regime (4.17), the mean intensity has the form

(4.20) E [[¥(2, X, 2)] ~ W(JZ%SES)’ . (R)((Z)) ’

with 17\/\9,0 given by (4.15) and

[n|® &

1 e Im™ 1 ° e
N / dneme = / dnndo(€lme"

Proof. Setting Y = 0 in (4.16) and using the asymptotic expansion (4.8), we
obtain the expression of the mean intensity,

B (62X, = oz [ daWao (-1 ) exp fig-x - G

- W / AWy (RZ) . km??ae<z>) P {’Zzé —"H

where we let ¢ = n/R, with R defined as in (4.18). Due to the exponential, only
|n| = O(1) contributes to the integral, so the arguments of Wy, o satisty

0|z

e =° (ke ) <

Here we used the assumption (4.17), and the second inequality holds because by
definitions (4.18-4.19) we have

(4.22) ;(72') =0 (R '(2) <rit,

2z (a1 _(oz+1)1/0‘<<r
k(2R(z)  [dok?(2)2]V> — Q(2) .

We infer from definition (4.15) of )7\/\970 that its support in the first argument is at
wave vectors with the O(r;!)-norm and the support in the second argument is at
cross-range vectors of the O(rg)-norm. Thus, due to the inequalities (4.22), we can
approximate the mean intensity by (4.20). O

We plot the function ¥, in section 5. It peaks at the origin and is negligible
outside a disk of O(1) radius. It is smooth at 0 and can be expanded as

(4.23) Uo(€) =Ta(0)[1—qal€l® +o(IE)],
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where

_ 2@/ _oifa—2T(3/a)
I ) o F(2/a) .

Therefore, the scale R(z) quantifies the support of the mean intensity, and we call it
the “beam radius” at range z. If there were no random medium, beam broadening
would be entirely due to diffraction. Here the broadening is caused by scattering in
the random medium and is significant, because R(z) is much larger than the initial
radius 74 of the beam, per equation (4.17), and has a growth rate in z that is higher
than that in the homogeneous medium.

(4.24) 0, (0)

4.2.2. The mean spectrum. Using the Fourier transform

~

(2, Kk,2)= /R2 AX (02, X, 2)e X

the change of coordinates (4.12), and the definition (4.13) of the Wigner transform,
we can calculate the mean spectrum as

E[|¢(2,k,2)?] = / dX, / AXoE[1p(02, X1, 2)9(02, X5, z)| e (X27X0)
R2 R2
Y Y .
:/ dX | dY Cq <X+,X—,z) eTieY
RZ RZ 2 2
:/ dXW.Q(X’K7Z)a
]R2

with the right-hand side given as in Proposition 4.1. We then obtain the following
result.
PROPOSITION 4.3. In the regime (4.17), the mean spectrum is of the form

(4.25) B[1p(2.m )] = & chV;(zS(O’O)% (Q?@) ’

with U, defined as in (4.21).

Proof. Using the asymptotic expansion (4.8) of © and integrating over X and ¢,
we get

dakQ(Q)z|Y|a}

B9(2,k. )] = [ :

dY WQ,O(O, Y)exp [—in Y —
]RZ

ZQ%(Z)/W d?’]WQ,O(O=$) exp {—zg(g — |Z|a} ;

with @ defined as in (4.19). Arguing as before, we see that since only |n| = O(1)
contributes to the integral, due to the exponential the argument of Wy, ¢ satisfies

| _ ~1¢, r
Q(z)_O(Q () < s,

and we can approximate the mean spectrum by (4.25). 0

This result shows that the scale () quantifies the support of the spectrum, so we
call it the “spectral radius” at range z. The initial spectral radius is O(r; 1), but due
to scattering in the random medium it becomes significantly larger at the O(1) range
per (4.17). This goes hand in hand with the broadening of the beam described by
(4.20).
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4.2.3. The spatial covariance function. In the strong fluctuation regime
(4.17) it is possible to express the covariance in terms of the beam radius R and
wave vector radius () as follows.

PROPOSITION 4.4. In the regime (4.17), the covariance has the form

Y Y N WQ,O(O’ 0) X
(4.26) Ca (X + E’X - 2’Z> R%(z) “ (R(Z)

,YQ(Z)) |

with the function

1 _ (1+a) (! ¢
(4_27) (I)a(ﬁ’C)_W/RQdT]eXp |:zn-€— 1 /Ods‘(l—i—a)l/a_ns

Proof. Starting from (4.16), using the asymptotic expansion (4.8), changing vari-
ables as s = (z — 2’)/z and m = Rq, and using definitions (4.18) and (4.19), we get

Co (X X g) = <2w>21R2<z> [P (R?)Y - k(rg;(z))
.n‘X_(lJroz)/ldS’(YQ(z) ST_
0

X exp |1 —

P [ R(z) 4 1+ a)l/e
Again, we conclude that only |n| = O(1) contributes to the integral, due to the
decaying exponential, so under the strong fluctuations assumption (4.17) we can make
the approximation

— 17 —
W ——, | ®Wgq(0,).
oo (i) = Paol0:)
We also get from definitions (4.18)—(4.19) and the assumption (4.17) the estimates

Inlz

W:O(Q_ () <rs,  |[Y]=0(Q7'(2) <7s.

Here we used the fact that |[Y'|Q = O(1) in order for the exponential to be large.
Therefore, the covariance can be approximated by (4.26). d

Note that ®,(&,0) =¥, (&), with ¥, given by (4.21), and we also have

(4.28) /RQ d¢ /RQ d¢ Do (€,¢)e ™ ¢ = (2m)2 W4 (k).

Contrary to the function & — ®,(&,0) that is smooth at 0 by (4.23), the function
¢ D,(0,¢) has a cusp at 0 (see Appendix B),

(4.29) Da(0,¢) = @4(0,0) (1= ral¢*! +o(I¢|*) )
where r, is given by

B a T(1/a)0(1/2 — a/2)T(1 + a/2)
T 224270 (1 1 a)/e+2 T(2/a)T(1/2 + a/2)T(1 — a/2)

(4.30) T

This implies that the covariance (4.26) has a cusp at Y =0.
We plot the marginals & — ®,(£€,0) and ¢ — ®,(0,¢) in section 5. They peak at
the origin and are negligible outside a disk with O(1) radius. We conclude therefore,
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from (4.26), that Q~! quantifies the length scale of decorrelation over the spatial
offsets Y at range z, so we can refer to it as the “decoherence length,”

(4.31) X(z)=Q '(2)=0 ((daz)_l/ak_z/”‘(ﬂ)) .

This is proportional to the wavelength raised to the power 2/«, and it decreases with
the range z and with the random medium strength d,.

4.3. The frequency covariance function. The leading factor in the frequency
decorrelation of ¢® at the O(1) range is the random phase k(§2)Z°. Indeed, we
obtain from Propositions 3.1-3.2 that this phase gives a significant contribution to
the covariance for O(e®) frequency offsets,

(4.32)
0] Y caf) Y 0 f)QCIQJzQH
E ¢5<Q+2,X—|—2,z>g@5<(2—2,X—2,z> —>exp{—2cg
Y Y
X+ —X-— .
ch( + 27 27Z>

This contribution is described by the Gaussian in fZ, whose standard deviation defines
the decoherence frequency

Ccoe®

(433) ;QLPE (Z) = %77

which decreases with the range z and with the random medium strength d, (see
Proposition 3.1 for the definitions of H and Cp).

If the random phase is removed from ¢® (which means we observe the field around
the central axis random arrival time), then the decoherence frequency is larger and is
described in the limit € — 0 by the decay in |£2y — 23] of the covariance

(4.34) C(1, 22, X1, X2,2) = E (21, X1, 2)0(%, X2,7)|

The evolution equation for this covariance is obtained from the It6—Schrodinger equa-
tion in Proposition 3.2 and the definitions (3.16) and (4.7),

i i kik
0.C(§1,025, X1, X0,2) = {%Axl - %AXQ - { 142@(X1 - X>)
ki(k1 — k ko(k1 — k
(135) Sl =g ) - B0 =By | e, 00 X0 X0,
for z > 0, with initial condition
(436) C(Ql,QQ,Xl,X27Z:0):F\(Ql,Xl)ﬁ(Qg,Xz).

Here we used the notation k; = k(£2;) for j=1,2.

The next proposition, proved in Appendix C, gives the approximation of C in
the strong fluctuation regime (4.17). Since we have already described the spatial
decorrelation of the wave field in the previous section, we give the approximation at
the axis of the beam.
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PROPOSITION 4.5. In the regime (4.17), the decoherence frequency

202
Q(z)R(z)
s the scale of wvariation of the covariance of 1 with respect to the frequency offset
21 — 25 around the frequency 2. More precisely, the covariance evaluated at X1 =
X2 =0 and at two positive frequencies 21, 25 such that |21 — (2] S 2y(z; 2) with
Q= (214 29)/2 is of the form

(4.37) Ry(z;,02)=

~

F((2,82) _ 2, —
4. 2,82 ~ =
39 c(n. 0009 = "= (55,
with
(4.39) ﬁ(nl,%):/ dX F (2, X)F(£2, X),
]RZ

and 2, s a function that depends only on «; it is defined in (4.41) below for dimen-
sionless, O(1) arguments.

The decoherence frequency 2y (z; £2) given by (4.37) is proportional to the central
frequency 2, but it is much smaller because QR > 1 by (4.17). To define Z,, we
introduce the dimensionless and O(1) variables

~ X ~ K
=—, K= ———
R(z) Q(z2)’
where we anticipate the range dependent radii of spatial and wave vector support
of the covariance, using the results in section 4.2 and definitions (4.18)—(4.19). The

range z is fixed here, and we introduce the dimensionless z € [0, 1], so that zZ € [0, z].
With this notation we have

(4.40)

(4.41) 2o (k) :/ - W (k, X =0,R,7=1)
for dimensionless and O(1) variable k, where W, satisfies

~ =~ = 2%al'(1 + «/2) SR
95+ (1 Vog 7 (kX — —/ d a—2
+( +O[) K VX:|W ( ) 7’{7%/) 871'1—‘(1*0[/2) R2 q|q|
(442) X [Wa(zvgﬂz _’q’z{)efikﬁ-X - Wa(’k/;k/:E:z)]a
at z > 0, with initial condition

(4.43) Walk, X, R, 7=0)=6(X)5(R).

By scaling out the range z, the beam radius R and the wave vector radius Q, we
made W, and thus Z,, depend only on a. Note that when k£ =0, which corresponds
to taking (4 = {2, = 2 in (4.38), we recover the result in Proposition 4.4. Indeed,
(4.39) becomes Wy, ¢(0,0), per definition (4.15), and by explicitly solving (4.42) with
a calculation similar to that in Appendix A, we get

Wa(%:(),}\(/,%,zz 1) = ﬁ /RQ dcq;(l(’j(” C)e—i(qE

and

Ea(%zo):/ dRW,(0,0,5,1) = d%%/ d¢ Do (0,¢)e R = 3,(0,0).
R2 R2 (27'(') R2

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/27/23 to 169.234.35.13 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BEAMS IN RANDOM MEDIA WITH LONG-RANGE CORRELATION 41

4.4. Pulse deformation. The wave field evaluated at the center of the beam
and observed around the central axis random travel time z/c, +&*Z¢(z)/c, is

ZE
Us(T,z) =u® (t: z —&-54& +54T,w=0,z)
Co Co
(4.44) = o [ 40ye(02,0,2)e T
47 R

In the limit € — 0 it converges in distribution to

Co

(4.45) U(T.2)= 1=

/ df2¢(0,0, z)e‘mT,
R

where 1) is the solution of the It6—-Schrodinger equation (3.14) with the initial condition
(3.15).
If the source has the Gaussian spectrum

F(02,X)= % {exp (—W) T exp (_Wﬂ 5 (i() 7

then the time-dependent wave field has the form
(4.46) U(T, z) =e~“TU(T, z) + c.c.

Here “c.c.” is short notation for the complex conjugate of the first term,

(4.47) U(T,2) =<2 / e~ U Q2=w)T (2,0, 2)d12,
™ JR

and the field 1; solves (3.14) as 1 but has the initial condition

V(02,X,2=0)= %exp (—(Q;Bﬁ‘))z) S (f) .

To characterize the pulse profile, let us introduce the mean time-dependent in-
tensity envelope

I(T,2) =E[|U(T, 2)|]
C2 : ~ —_—
—__ 0o —i(21—922)T
= (471')2/Rd91/Rd926 E[¢(91,07z)¢((22,072)].

In view of Proposition 4.5, if condition (4.17) holds and the bandwidth satisfies B <
2y4(z;w,), then we get

2 [pdX|S(X/rg)? e )
4.4 I(T,z)=—20 IR dQe apz 10z (2 ),
(4.48) (T2) 1673/2 BR?(z) /R € (Qw(z;wo)>

This result shows that the pulse profile is affected by the random medium via the
function Z,. For a narrowband pulse, with B < 2, (z,w,), the profile is preserved,
and we have

2 fe dX[S(X /)
2 R?%(2)

I(T,z) ®,(0,0) exp(—B>T?).

It is only when B is of the same order as 24(z,w,) that the random medium induces
pulse deformation.
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5. Comparison with the results in optics. In this section we compare the
expression of the mean intensity and spectrum of the wave emerging from the asymp-
totic paraxial theory in random media and compare it with the results used in the
optics literature [1]. Because this literature considers time-harmonic waves, we limit
the comparison to a fixed frequency 2.

We analyzed the spatial covariance Cg; in section 4.2 for a € (0,1) and L, — oo,
where the process p has long-range correlations. We showed there that the central
phase k(£2)Z¢, which is influenced by such correlations, plays no role, i.e., Cg, is the
covariance of ¢, the € — 0 limit (in distribution) of the wave field ¢¢ observed in the
random travel time frame. Since ¢ experiences the random medium via the mixing
process (3.10), the results in section 4.2 extend verbatim to the case a € (0,1)U(1,2)
and a finite L, (recall section 2.2). In particular, the results (4.20), (4.25), and (4.26)
remain valid as long as

(5.1) R(z) < Lo, Qz) <1t

The formulas in [1] are for the Kolmogorov spectrum of turbulence, corresponding
to @ =>5/3. The radius R of the beam and the spectral radius Q for this « are, from
definitions (4.18)—(4.19),

3/5
(5.2) R(z) = (:%/3) 28/5]91/5(9), Q(z)= (d5/3)3/523/5k6/5(0)>

and ds;3 can be written in terms of the normalization constant xs/3 of the random
process p using (4.8),

31(1/6)

(5.3) 5/3 = 528/3T(11/6) X5/

3~ 0178X5/3

To compare these results with the formulas in [1], we note that in [1, section 3.3.1]
the power spectrum of the fluctuations ji of the index of refraction is?

(5.4) S (k) = 0.033Ca k|31 o oy ().

Since our process p models the fluctuations of the squared index of refraction, we
have p ~ 2p. We also have a different convention of the Fourier transform, which
can be reconciled by dividing the formulas in [1] by (27)3. Then, we obtain from
definition (1.2) that our power spectrum S corresponds to (5.4) at o = 5/3, for the
normalization constant xs,3 = 4(2m)30.033C2, which gives, from (5.3),

(5.5) ds 3~ 5.828C%.

We begin the comparison with the mean intensity, which is proportional to
U,(X/R)=®,(X/R,0) per equations (4.20) and (4.26). This is approximated in [1,
section 7.3.3] by a Gaussian function, which is close to the true profile for oo = 5/3,
as illustrated in the top left plot of Figure 5.1. In this figure, the standard deviation

of the Gaussian is (2q5/3)*1/2, and ¢5/3 can determined from the expansion (4.23)

of W53 about the origin: ¢5/3 = % ~ 1.785. The radius of the support of

2The power spectrum is called ®,, in [1], but to avoid confusion with the function (4.27) we
rename it SAF.
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formula (5.7), except for the multiplicative constant that is slightly underestimated.
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Finally, we note that the Gaussian approximations of the mean intensity and
spectrum are inadequate for the case a < 1, as illustrated in the bottom plots of
Figure 5.1. The theoretically derived formulas (4.20) and (4.25) display heavier tails
than the best fit Gaussian profiles.

6. Summary. Kolmogorov’s theory for optical turbulence predicts a power law
form for the spectrum of the fluctuations of the index of refraction. In recent years,
there has been a shift of the focus on non-Kolmogorov turbulence. This is motivated
in part by the analysis of atmospheric temperature recordings which show deviations
from the Kolmogorov power spectrum. However, these studies deal mostly with the
case of light tails of the two-point statistics for the medium fluctuations, which corre-
spond to an integrable covariance function. Here we consider beam wave propagation
in random media with long-range correlations, where the tails of the covariance func-
tion decay at a slower rate, and the medium contains more features of low spatial
frequency. We explicitly discuss the roles of the inner and outer scales delineating the
power law, and we contrast the results with those for the Kolmogorov turbulence.

A main result in the long-range case is that the randomization of the wave field
is multiscale: First, we show that as the beam wave propagates through the medium,
a strong random travel time perturbation builds up. We present a precise character-
ization of the travel time perturbation, which corresponds to a fractional Brownian
motion, with Hurst index and amplitude determined by the statistics of the medium.
Second, we show that if we observe the beam wave at large propagation distances
where the travel time correction is large relative to the pulse width, then the beam
wave pulse shape itself is deformed and becomes random due to scattering.

Another important result is a detailed characterization of the decorrelation of the
random beam wave in both space and frequency. This is carried out in the random
travel time centered frame because otherwise the frequency decorrelation would be
masked by the very large random phase associated with the travel time fluctuations.
The analysis reveals a cusp-like behavior for the spatial correlations of the wave field
in the transverse coordinates, with the cusp shape depending on the rate of decay
of the covariance of the medium fluctuations. The scale of frequency decorrelation is
also quantified and is used to analyze the deformation of the probing pulse induced
by scattering.

The results of our analysis are important for applications, such as imaging and
communication through the atmosphere, and also for propagation through the earth’s
crust or through the oceans. In the case of communication applications, a character-
ization of the statistics of fading or strong pulse deformation is important in order
to evaluate the efficiency of various communication protocols. In imaging through
complex media, one needs to take into account not only the geometric wavefront dis-
tortion that is caused by the random travel time but also the deformation or blurring
of the beam pulse shape. Quantitative insights about these effects are useful when
designing schemes for clutter and turbulence compensations.

Appendix A. Proof of Proposition 4.1. Equation (4.10) written in the
coordinates (4.12) is

(A1) 0.Co <X + %,X - §z>

_ [k:(iQ)VX Yy - "/’29@(1/)} Co (X 4 g,X - Y,z) ,
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and, using the Fourier transform

(A2) WQ(anaZ) :/ dX Cq (X + %MX — 1;,2) e—iq~X’
R2
we get
q =5 k2(02) —

for z > 0, with initial condition We(q,Y,0) = Wa.0(q,Y), defined in (4.15).
We can solve (A.3) by integration along the characteristic Y =Y + qz/k(2),
starting from Yo, using the fact that
5 q q q
z Y TN = 2T 77N Y TN
o0Wao (q oJrk(Q)Z Z> (a +k(9) Vy>W_Q(q oJrk(Q)Z Z)
k()

_ q
=—— @(Y)W9<q,Yo+k(Q)z,z), 2> 0.

The result is

¥ q YY) _k2(9) /Z ’ q ’
Wa (q,Yo + k(9)2,2> =Wa,0(q,Yo)exp { i, dz'O | Yo+ T(Q)Z ,

or, equivalently, in terms of Y,

We (g,Y,2) = Wa (q,Y - k(qQ) z) exp [— kzim /Ozdz’G (Y - k(qQ) (2 — z')ﬂ .

The result stated in Proposition 4.1 follows from this expression and the definition
(4.13) of the Wigner transform,

WQ(X»R»Z):/

Y Y
dy C (X + 5 X - z) exp(—ik - Y)
R2

2
—[ay [ 2 ' '
= 5 0(q,Y,z)exp (ig- X —ik-Y)
R2 R2 (27T)
1 — q . .
(27‘()2 /]R2 dq R2dY WQ,O <an—k(mZ) exp (Z(]'X—ZK/-Y)
kz(Q) - / q ,
Xexp{ - /(sz@(Yk(Q)(zz))}

In (4.14) we used the change of variable Y' =Y — ﬁz. O

Appendix B. Proof of the expansion (4.29). We first remark that
i~ el = [ dala] (e~ i),
RZ
with constant €, defined by

¢t = 27r/ (1= Jo(s))s™ ' ds.
0
Next, we compute from (4.27)

(B'l) (I)a(()vC) _(I)a(Ovo):_(Doc,l(C)(l""O(l))a
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ot
®,1(¢) = 2r)? /Rane_Zl”l /Ods(\(—(l—&—a)l/“ns\a—|(1+a)1/o‘ns|a)

¢ Lo [ ) e )
_ @ —1nl —a—2 _i(1+a)/“n-qs —i¢-q
QPTOISE /R2dne 1 /0 ds/deq\q| e (1—6 )

4
o [™ e [ | 1/a
:Z/ dnne 1" / dS/ dqq Jo((1+ a)'/?ngs) (1 — Jo(/¢lq))
0 0 0
Q: o 1, « o0
- e dne— 17 dga—92 1 /e 1—
4(1—|—0¢)1/0‘/0 ne * /O aq jo(( +O‘) 77(])( JO(|C|Q))a

where 7,(s) = f; Jo(s')ds’ is the antiderivative of the Bessel function Jy. It is a
bounded function that converges to one as s — 4o00. By the change of variable
s =|¢lq, we get

_ Caldl* T e [T g gma g () s
(PQ,I(C) = 4(]_-’—04)1/01/0‘ dT]C 1 /O dss 2j0 <|C|) (1 — JO(S))

Using the dominated convergence theorem, we find

D, 1(C) I¢I—=0 Ca /oo — 1y« /OO —a—2
: 4 1-— .
Clot = 0T a)i ), dne ; dss (1= Jo(s))

Therefore, (B.1) gives the expansion

@a(O,C) = (Pa(070) (]_ — Ta|c|a+1 + 0(|C‘a+1)),
with

_ I~ dn em1n” Jo dss™ (1= Jo(s))ds
8m(1+ ) /@@, (0,0) [~ s~ (1= Jo(s))

Ta

The desired result follows once we use

1 e a
q)a(070) = %/ dnne_%n
0

and the identities
- 2T/
/0 dss™* 71 (1= Jo(s)) = — T(1+a/2)
gt 22— 0/2)
/0 dss (1—J0(3))_ a+1T(3/2+a/2)’

o0 o« 2% /9
/ dine™ 1" = —T ()
0 « Q
oo e 22/ /1
/ dne” 1" = r () .
0 « Q

Appendix C. Proof of Proposition 4.5. Let us introduce the reference
wavenumber k and use it to change coordinates in the cross-range plane as follows:

k Y k Y
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Writing the evolution equation (4.35) in these coordinates and then taking the Fourier
transform in Y, which defines the Wigner transform

W(Qh(zQaX?K’?Z):/ dy C 017027\l£ X+X ’ ﬁ X_Z )% e_iR.Ya
R2 kl 2 kz 2

we obtain
1 1 ~
—K- 21,029, X
(Bz—i—klc Vx) W(,02:, X K, z) = 4(27r) /deq@(q)
X {klkZW <917927X f‘i’z_q( kﬁ—i_ :>32> €iX.q(\/g_ %)
1 2

+ ki (k1 — ko)W (Ql,QQ,X K — q,/:,z> X/
1
(02) - kQ(kl )W (Ql,QQ,X K+ g“ : ,Z) eiX'q kkz}
2

for z > 0, where the net effect of the random medium is in the Fourier transform 5)
of the function © defined in (4.7).

Although we are interested in an infinite outer scale, let us consider a modification
of (4.7), corresponding to a finite L,,

2 o

o [l o X2 oo
@LO(X):X—/LA d [1—J0(m|X|)]m_1‘“:6(X)+O(XLL_| )LQ o(X).

The Fourier transform of this function is

~

@Lo ((I) :/ 5.4 ®Lo (X)e—iq~X = 27TX0¢
R2

(a_a
(2]

Lo —13) 2
T‘S(Q)_XQ‘G” ? al(Lgl,lgl)(|Q|)7

and we explain next that (C.2) makes sense for L, — co. Using the observation

—eTa = —1l-«a QW(Lg_lg)
/ dg1-1 -1 (q))lg|™? :27r/ dql 11y (g)g ™70 = TR o2,
R2 0 a

we can rewrite (C.2), with 5) replaced by 5) ., and therefore W replaced by W, = as
follows:

(C.3)

1 a —a
(aﬁkﬁ.vx)w (@2 X k2= s [ dat o (laDlal

x{kleleo (Ql,Qg,X,n—g< kﬁ \/;> ).;’X'QWZ@)

_WLD(915925X7K'7Z>

+ ki (k1 — ko)

k i
W, <Q17027X,I<L—(21 k,z)exq -W, (91,927X7R72)1
1

— ko(k1—ko) lWLO <!21,!22,X,;¢+(21, / :,z> eiX.‘I\/g_WLO(Ql’QQ’X7KI7Z)] }
2
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At |g| ~ L7 — 0 the square brackets in this expression are O(|q|), and after writing
the q integral in polar coordinates, we conclude that the integrand is O(|g|~®). Thus,
after the integration in |g| the right-hand side depends on the outer scale as L, (1=a)
This vanishes as L, — 0o, so we can take the limit in (C.3) and replace W, by W.
Since the integrand in (C.3) has a fast decay at |g| — oo like |g|~'~%, and we are
interested in a small inner scale (recall section 4.2), we can approximate W by taking

the limit [, — 0. We obtain the equation
(C.4)
1 o
(az—i-kK'VX) W($21,82, X K, 2) = X dglq| >~

(2m)? Jp
o e B B
1 2

7W(~01;Q2;X3K'vz)

S

=7

+ ki (k1 — ko) "

|k iX- ko
W(Ql,QQ,X,IQ+(21 k,Z)exq kk2W(Ql,QQ,X,H,Z)]}
2

for z > 0, with the initial condition

k iX-q. )k
W<QI7QZ7X7K'(21 7Z>6Xq\/zw(917927X7K/7z)‘|

—ka(k1 — k2)

(05) W(917QQ7X,I£,O)

=/]Rz dy F (Ql,\/Z(X—kg)) F (QQ,\/Z<X— §)>em'Y.

Let us consider a range Z in the strong fluctuation medium (4.17) so that we have
QzRz > 1 with

dak27aza+1 1/
a+1 >

(C6)  Qu=QZ)=(dak?2)", RZ_R<Z>—(

We now show that the decoherence frequency, i.e., the scale of decay of W with respect
to |.Ql — .Qz|, is COKz, where

2k
C.7 Ky = < k.
() Z 7 QzRz
Indeed, suppose that
(C.8) ki =k(92)=k+ Kzk;,  j=1,2,

where Ej are dimensionless O(1) scaled wavenumber offsets with respect to k. Then,

280 1 110 )

2 QzRz

and

kq —k‘gsz(El —EQ):O(KZ)<<I§.
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Introduce also the dimensionless variables
~ X - q _ K -z

C.9 X=— =—, K=—, Z=—.
(G.9) Rz 17 Qs Qz Z
Then, the Wigner transform can be approximated by
(271')2./—"(917 Qg)

(RzQz)?
with F defined as in (4.39) and the function W of dimensionless O(1) arguments
satisfying (4.42), with initial condition (4.43).

To derive (4.42) we used definitions (C.6) and (4.8), which give

(C.11) az+%n-vx Z(a~ %?Z~-V)~():%<8g+(1+a)1/°‘%-v5()

(Clo) W(Ql7927XaK'az)% W(kl E27/X/a'~<'?g)7

and

_ 20t ol (1 + /2)
12 Ixak2Q;0 = X —
(C.12) Xak“Qy d, I‘(l—a/?)

We also used (C.7)—(C.8) and neglected the small, O((ky — ko) Kz /k) residual.
To justify the initial condition (4.43), we note first that in the regime defined by
(C.7)—(C.8) we have

W, 22, X, 5,0) SW (jf%z 1/(75@2)) [f<918 )”(Qlwo)]

N — Wo N 02+w0
(C.13) [f( 5 > +f <B> ,
where
(C.14) WL (X, 7) = / S (35+ g) s (35 . g)s

is the dimensionless Wigner transform of the source function S. Since rs/Rz < 1 and
1/(rsQz) < 1 by (4.17) and (C.6), we conclude from (C.13)—(C.14) that the initial
condition is supported at X ~ 0 and k = 0. This is why we use the Dirac delta in
(4.43). The normalization in (C.10) comes from the identity

(2)?

mﬁ(gh 92)7

(C.15) / dX [ dRW(82, 2, Rz X ,Q4F,0) =
R2 R2
derived from (C.13)—(C.14), with F defined as in (4.39).
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