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Abstract

Hybrid human-ML systems increasingly make consequential
decisions in a wide range of domains. These systems are of-
ten introduced with the expectation that the combined human-
ML system will achieve complementary performance, that is,
the combined decision-making system will be an improve-
ment compared with either decision-making agent in isola-
tion. However, empirical results have been mixed, and exist-
ing research rarely articulates the sources and mechanisms by
which complementary performance is expected to arise. Our
goal in this work is to provide conceptual tools to advance
the way researchers reason and communicate about human-
ML complementarity. Drawing upon prior literature in human
psychology, machine learning, and human-computer interac-
tion, we propose a taxonomy characterizing distinct ways
in which human and ML-based decision-making can differ.
In doing so, we conceptually map potential mechanisms by
which combining human and ML decision-making may yield
complementary performance, developing a language for the
research community to reason about design of hybrid systems
in any decision-making domain. To illustrate how our taxon-
omy can be used to investigate complementarity, we provide
a mathematical aggregation framework to examine enabling
conditions for complementarity. Through synthetic simula-
tions, we demonstrate how this framework can be used to ex-
plore specific aspects of our taxonomy and shed light on the
optimal mechanisms for combining human-ML judgments.

1 Introduction

In recent years, we have witnessed a rapid growth in the
deployment of machine learning (ML) models in decision-
making systems across a wide range of domains, including
healthcare (Patel et al. 2019; Rajpurkar et al. 2020; Tschandl
et al. 2020; Bien et al. 2018), credit lending (Bussmann
et al. 2021; Kruppa et al. 2013), criminal justice (Angwin
et al. 2016; Kleinberg et al. 2018), and employment (Ragha-
van et al. 2020; Hoffman, Kahn, and Li 2017). For ex-
ample, in the criminal justice system, algorithmic recidi-
vism risk scores inform pre-trial bail decisions for defen-
dants (Angwin et al. 2016). In credit lending, lenders rou-
tinely use credit-scoring models to assess the risk of default
by applicants (Kruppa et al. 2013). The excitement around

“Both authors contributed equally to this work.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

127

modern ML systems facilitating high-stakes decisions is fu-
eled by the promise of these technologies to tap into large
datasets, mine the relevant statistical patterns within them,
and utilize those patterns to make more accurate predictions
at a lower cost and without suffering from the same cognitive
biases and limitations as human decision-makers. Growing
evidence, however, suggests that ML models are vulnerable
to various biases (Angwin et al. 2016) and instability (Fin-
layson et al. 2018). Furthermore, they often produce harmful
outcomes in practice, given that they lack humans strengths
such as commonsense reasoning abilities, cognitive flexibil-
ity, and social and contextual knowledge (Alkhatib 2021;
Holstein and Aleven 2021; Lake et al. 2017; Miller 2019).
These observations have led to calls for both human and
ML involvement in high-stakes decision-making systems—
with the hope of combining and amplifying the respective
strengths of human thinking and ML models through care-
fully designed hybrid decision-making systems. Such sys-
tems are common in practice, including in the domains men-
tioned above.

Researchers have proposed and tested various hybrid
human-ML designs, ranging from human-in-the-loop (Rus-
sakovsky, Li, and Li 2015) to algorithm-in-the-loop (De-
Arteaga, Fogliato, and Chouldechova 2020; Saxena et al.
2020; Brown et al. 2019; Green and Chen 2019) arrange-
ments. However, empirical findings regarding the success
and effectiveness of these proposals are mixed (Holstein and
Aleven 2021; Lai et al. 2021). Simultaneously, a growing
body of theoretical work has attempted to conceptualize and
formalize these hybrid designs (Gao et al. 2021; Bordt and
von Luxburg 2020) and study optimal ways of aggregating
human and ML judgments within them (Madras, Pitassi, and
Zemel 2018; Mozannar and Sontag 2020; Wilder, Horvitz,
and Kamar 2020; Keswani, Lease, and Kenthapadi 2021;
Raghu et al. 2019; Okati, De, and Gomez-Rodriguez 2021;
Donahue, Chouldechova, and Kenthapadi 2022; Steyvers
et al. 2022).

Much prior work has studied settings where the ML
model outperforms the human decision-maker. These stud-
ies are frequently focused on tasks where there are no rea-
sons to expect upfront that the human and the ML model will
have complementary strengths (Bansal et al. 2021; Guerdan
et al. 2023; Holstein and Aleven 2021; Lurie and Mulli-
gan 2020). For example, some experimental studies employ



untrained crowdworkers on tasks that require extensive do-
main expertise, without which there is no reason to expect
that novices would have complementary strengths (Fogliato,
Chouldechova, and Lipton 2021; Lurie and Mulligan 2020;
Rastogi et al. 2022). Other experimental studies are designed
in ways that artificially constrain human performance—for
instance, by eliminating the possibility that humans and ML
systems have access to complementary information (Guer-
dan et al. 2023). Meanwhile studies on human-ML decision-
making in real-world settings such as healthcare (Tschandl
et al. 2020; Patel et al. 2019) sometimes demonstrate better
human-ML team performance than either agent alone. How-
ever, the reasons for complementary team performance are
often left unexplained, where we define human-ML comple-
mentarity as the condition in which a combination of hu-
man and ML decision-making outperforms' both human-
and ML-based decision-making in isolation.

We argue, therefore, that there is a clear need to form a
deeper, more fine-grained understanding of what types of
human-ML systems exhibit complementarity in combined
decision-making. To respond to this gap in the literature, we
build a novel taxonomy of relative strengths and weaknesses
of humans and ML models in decision-making, presented
in Figure 1. This taxonomy aims to provide a shared under-
standing of the causes and conditions of complementarity so
that researchers and practitioners can design more effective
hybrid systems and focus empirical evaluations on promis-
ing designs—by investigating and enumerating the distin-
guishing characteristics of human vs. ML decision-making
upfront. Our taxonomy covers application domains wherein
the decision at stake is solely based on predicting some out-
come of interest (Mitchell et al. 2018). Henceforth, we use
the terms ‘prediction’ and ‘decision’ interchangeably. Some
examples of predictive decisions are diagnosis of diabetic
retinopathy (Gulshan et al. 2016), predicting recidivism for
pretrial decisions (Dressel and Farid 2018), and consumer
credit risk prediction (Bussmann et al. 2021).

To build our taxonomy of human-ML complementarity,
we surveyed the literature on human behavior, cognitive and
behavioral sciences, as well as psychology to understand
the essential factors across which human and ML decision-
making processes differ. Following traditions in cognitive
science and computational social science (Lake et al. 2017;
Marr and Poggio 1977), we understand human and ML
decision-making through a computational lens. Our taxon-
omy maps distinct ways in which human and ML decision-
making can differ (Section 3).

To illustrate how our taxonomy can be used to investi-
gate when we can expect complementarity in a given set-
ting and what modes of human-ML combination will help
achieve it, we present a mathematical framework that cap-
tures each factor in the taxonomy. In particular, we formalize
an optimization problem for convex combination of human
and ML decisions. This problem setup establishes a path-
way to help researchers explore which characteristics of hu-
mans and ML models have the potential to foster comple-

!Complementary performance may present along any perfor-
mance metric, and does not necessarily refer to accuracy.
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mentary performance. To categorize different types of com-
plementarity, we propose quantitative measures of comple-
mentarity, designed to capture two salient modes of human-
ML collaboration in the literature: routing (or deferral) and
communication-based collaboration. To demonstrate the use
of our taxonomy, the optimization problem setup, and the
associated metrics of complementarity, we simulate optimal
human-ML combinations under two distinct conditions: (1)
human and ML models have access to different feature sets,
(2) human and ML models have different objective func-
tions. By comparing optimal aggregation strategies under
these conditions, we gain critical insights regarding the con-
tribution of each decision-making agent towards the opti-
mal combined decision. This informs the effective design
of human-ML partnerships under these settings for future
research and practice. Taken together, this work highlights
that combining human-ML judgments should leverage the
unique strengths and weaknesses of each entity, as different
sources of complementarity impact the extent and nature of
performance improvement achievable through human-ML
collaboration.

In summary, this paper contributes a unifying taxon-
omy and formalization for human-ML complementarity.
Our taxonomy characterizes major differences between hu-
man and ML predictions, and our optimization-based frame-
work formally characterizes optimal aggregation of human
and machine decisions under various conditions and the type
of complementarity that produces optimal decisions. With
these contributions, we hope to provide a common language
and an organizational structure to inform future research in
this increasingly important space for human-ML combined
decision-making.

2 Methodology for Designing the Taxonomy

To investigate the potential for complementarity in human-
ML combined decision-making, we need to understand the
respective strengths and drawbacks of the human decision-
maker and the ML model in the context of the applica-
tion. For instance, it has been observed that while ML mod-
els draw inferences based on much larger bodies of data
than humans could efficiently process (Jarrahi 2018), hu-
man decision-makers bring rich contextual knowledge and
common sense reasoning capabilities (Holstein and Aleven
2021; Miller 2019; Lake et al. 2017) to the decision-making
process, which ML models may be unable to replicate. Thus,
we develop a taxonomy for human-ML decision-making
that accounts for broad differences between human decision-
makers and machine learning, encompassing applications
with predictive decision-making.

To inform this taxonomy, we draw from existing synthe-
ses in human psychology, machine learning, Al, and human-
computer interaction to understand distinguishing charac-
teristics that have been observed between human decision-
makers and ML in the context of predictive decision-
making. In cognitive science, Lake et al. (2017) review
major gaps between human and ML capabilities by syn-
thesizing existing scientific knowledge about human abil-
ities that have thus far defied automation. In management
science, Shrestha, Ben-Menahem, and Von Krogh (2019)
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Figure 1: Proposed taxonomy of human and ML strengths & weaknesses in decision-making.

identify characteristics of human and ML decision-making
along four key axes: decision space, process and outcome
interpretability, speed, and replicability, and discuss their
combination for organizational decision-making. In human-
computer interaction, Holstein, Aleven, and Rummel (2020)
conceptually map distinct ways in which humans and Al
can augment each others’ abilities in real-world teaching and
learning contexts. More recently, Lai et al. (2021) surveyed
empirical studies on human-Al decision-making to docu-
ment trends in study design choices (e.g., decision tasks and
evaluation metrics) and empirical findings. We draw upon
this prior literature to summarize key differences in human
and ML-based predictive decision-making across multiple
domains, with an eye towards understanding opportunities
to combine their strengths.

Computational lens. Our taxonomy takes a compu-
tational perspective towards analysing human and ML
decision-making. As with any modeling approach or ana-
Iytic lens, computational-level explanations are inherently
reductive, yet are often useful in making sense of complex
phenomena for this very reason. Computational-level expla-
nations often provide an account of a fask an agent performs,
the inputs that the agent takes in, the ways in which the agent
perceives and processes these inputs, and the kinds of out-
puts that the agent produces. Accordingly, our taxonomy is
organized into four elements: (1) task definition, (2) input,
(3) internal processing, and (4) output.

We now provide mathematical notation to clearly express
the computational perspective of decision-making in our
taxonomy. Formally, the agent’s decision-making setting is
specified by a feature space X, an action space .4, and the
space of observed outcomes, O. At a high-level, the agent
perceives an instance X € X, chooses to take an action
a € A based on its relevant prior knowledge and expe-
riences, and observes an outcome O € O as a result. To
emphasize that the outcome O is influenced by X and «,
we slightly abuse the notation to denote the outcome of ac-
tion @ on instance X as O(X,a). We consider the agent’s
perception of an instance X to be denoted by s(X), where
s : X = X. Next, the agent’s prior knowledge and rele-
vant experiences are assumed to be encompassed in a set D.
The goal of the decision-making agent is to choose a policy,
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m: X — A, in the space of feasible policies IT, such that ©
leads to favorable overall outcome quality, measured by an
evaluation function F'. Here F' takes in a policy and outputs a
real number. For instance, the expected outcome of a policy
is a common choice for F'. Finally, the agent chooses their
optimal policy 7 using their optimization process OPT for
choosing among feasible policies that lead to favorable F'
values. Using the categorization and mathematical formal-
ization above, and drawing upon relevant background litera-
ture as presented in this section, we now provide our taxon-
omy for relative human and ML strengths.

3 A Taxonomy of Human and ML Strengths
& Weaknesses in Decision-Making

In this work, we consider two decision-making agents, the
human and the ML model denoted respectively by H and
M. Building upon the notation in Section 2, we denote the
feature space available to each agent by Ay, Ay correspond-
ingly, where Xy, Ay C X. Similarly, for each variable intro-
duced for our decision-making setting in the previous sec-
tion, we consider a human version and a ML version, de-
noted by subscript H and M respectively. We now present
our taxonomy, visually represented in Figure 1.

3.1 Task Definition

We now describe the distinguishing characteristics that have
been observed in the definition of the decision-making task
used by the human and the ML model.

* Objective. Most machine learning models aim to only op-
timize the expected performance, e.g., minimize the ex-
pected loss for supervised learning models and maximize
the expected cumulative rewards for reinforcement learn-
ing models. While recent research has explored ways to
build models with respect to a more diverse set of ob-
jectives, including different risk measures (Leqi, Prasad,
and Ravikumar 2019a; Khim et al. 2020), fairness defi-
nitions (Chouldechova and Roth 2020) and interpretabil-
ity notions (Lipton 2018; Miller 2019), it is commonly
difficult or impractical to encode all aspects of the ob-
jectives that a human decision-maker would aim to opti-
mize (Kleinberg et al. 2018). Using our notation, this is ex-
pressed as Fy # Fy;. For example, when making a lending



decision, in addition to considering various risk factors,
bankers may also care about aspects such as maintaining
their relationships with clients and specific lending prac-
tices in their organization (Tronnberg and Hemlin 2014).

» Misaligned construct of interest. ML models deployed
in social contexts often involve theoretical constructs that
are not directly observable in the data, such as socioeco-
nomic status, teacher effectiveness, and risk of recidivism,
which cannot be measured directly. Instead they are in-
ferred indirectly via proxies: measurements of properties
that are observed in the data available to a model. The pro-
cess of defining proxy variables for a construct of interest
necessarily involves making simplifying assumptions, and
there is often a considerable conceptual distance between
ML proxies and the ways human decision-makers think
about the targeted construct (Green and Chen 2021; Guer-
dan et al. 2023; Jacobs and Wallach 2021; Kawakami et al.
2022). In other words, Ox (X, a) # Om(X, a). Jacobs and
Wallach (2021) argue that several harms studied in the lit-
erature on fairness of sociotechnical systems are direct re-
sults of the mismatch between the construct of interests
and the inferred measurements. For example, Obermeyer
et al. (2019) examined racial biases in an ML-based tool
used in hospitals. They found that the use of an indirect
proxy (healthcare costs incurred by a patient) to predict
patients’ need for healthcare contributed to worse health-
care provision decisions for black versus white patients.
In this example, although the proxy used (the monetary
cost of care) was conveniently captured in available data,
it differs significantly from the way healthcare profession-
als conceptualize patients’ actual need for care.

3.2 Input

We now describe the distinguishing characteristics observed
in the inputs used by humans and ML models.

* Access to different information. From the input perspec-
tive, in many settings such as healthcare, criminal justice,
humans and machines have access to both shared and non-
overlapping information: Xy # Xj. This is because real-
world decision-making contexts often contain features of
importance that cannot be codified for ML. For example,
a doctor can see the physical presentation of a patient and
understand their symptoms better, since this information
is hard to codify and provide to the machine. Similarly,
a judge learns about the predisposition of the defendant
through interaction (Kleinberg et al. 2018). This phenom-
ena is also referred to as unobservables (Holstein et al.
2023) and information asymmetry (Hemmer et al. 2022)
in the literature on human-ML complementarity.

» Nature of past experiences. The nature of embodied hu-
man experience over the course of a lifetime differs sub-
stantially from the training datasets used by modern ML
systems: Dy # Dy. For example, ML models are of-
ten trained using a large number of prior instances of a
specific decision-making task, but for each instance, the
training data contains a fixed and limited set of informa-
tion. This often does not reflect the richness of human ex-
perience. Humans make their decisions with reference to a
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lifetime of experiences across a range of domains, and it is
difficult to explicitly specify the information they take into
account. By contrast, ML models may learn from training
data that comprise narrow slices from a vast number of
human decision-makers’ decisions, whereas humans typ-
ically learn only from their own experiences or from a
small handful of other decision-makers.

3.3 Internal Processing

We now describe the distinguishing characteristics of the in-
ternal processes used by humans and ML systems.

* Models of the world. As is comprehensively overviewed
in Lake et al. (2017), humans rely upon rich mental
models and “theories” that encode complex beliefs about
causal mechanisms in the world, not just statistical rela-
tionships. This results in humans having a different set of
models of the world than those embodied by ML models:
IIy # IIy. For example, starting from an early age, hu-
mans develop sophisticated systems of beliefs about the
physical and social worlds (intuitive physics and intuitive
psychology), which strongly guide how they perceive and
make decisions in the world. In contrast to modern ML
systems, humans’ mental models tend to be compositional
and causal. In turn, these strong prior beliefs about the
world can enable humans to learn rapidly in comparison to
modern ML systems, and to make inferential leaps based
on very limited data (e.g., one-shot and few-shot learn-
ing) (Gopnik and Wellman 2012; Lake et al. 2017; Tenen-
baum et al. 2011). On the other hand, the model class of
the machine decision-maker has a more mathematically
tractable form—whether it is a class of parametric or non-
parametric models (Friedman 2017). Although when de-
signing these models such as neural networks, researchers
commonly encode domain knowledge through the data
and the model architecture, most machine learning mod-
els still suffer from distribution shift (Quifionero-Candela
et al. 2009) and lack of interpretability (Gilpin et al. 2018),
and require large sample sizes.

* Input processing and perception. The ways decision-
makers perceive inputs is informed by their models of
the world (Gentner and Stevens 2014; Holstein, Aleven,
and Rummel 2020). Following research in human cogni-
tion and ML, we highlight three sources of variation in
input perception: (1) differences in mental/computational
capacity, (2) differences in human versus machine biases,
and (3) tendencies towards causal versus statistical per-
ception. Here the first implies sy # sy and the remaining
two indicate my # my. For instance, compared with ML
systems, humans demonstrate less capacity to perceive
small differences in numerical values (Amitay et al. 2013;
Findling and Wyart 2021). Furthermore, both humans and
ML systems can bring in both adaptive and maladap-
tive biases, based on their experiences and models of the
world, which in turn shape the ways they process and per-
ceive new situations (Fitzgerald and Hurst 2017; Wistrich
and Rachlinski 2017; Kleinberg et al. 2018; Gentner and
Stevens 2014). However, in some cases humans and ML
systems may have complementary biases, opening room



for each to help mitigate or compensate for the other’s lim-
itations (Holstein, Aleven, and Rummel 2020; Tan et al.
2018). Finally, research on human cognition demonstrates
that humans are predisposed to perceiving causal connec-
tions in the world, and drawing causal inferences based on
their observations and interactions in the world (Gopnik
and Wellman 2012; Lake et al. 2017). While these abili-
ties can sometimes be understood by analogy to the kinds
of statistical learning that most modern ML systems are
based upon (Tenenbaum et al. 2011), other aspects of hu-
man causal cognition appear to be fundamentally differ-
ent in nature (Lake et al. 2017). As with bias, these abili-
ties can be a double-edged sword. In some scenarios, hu-
man causal perception may lead to faulty inferences based
on limited data. By contrast, ML systems will sometimes
have an advantage in drawing more reliable inferences
based on statistical patterns in large datasets. In other set-
tings, human causal perception can help to overcome lim-
itations of ML systems. For example, in many instances,
human decision-makers have been observed to be bet-
ter than ML systems at adapting to out-of-distribution in-
stances, through the identification and selection of causal
features for decision-making (Lake et al. 2017).

* Choosing among models of the world. Given the task
definition, models of the world, and data, ML models dif-
fer from humans in searching for the model that optimizes
their objective: OPTy # OPTy;. Modern ML models (e.g.,
neural networks) are commonly learned using first-order
methods and may require a huge amount of computational
resource due to the size of the models (Bottou 2010). On
the other hand, humans may employ heuristics that can
be executed in a relatively short amount of time (Simon
1979). These simple strategies may have advantages over
more complex models when the inherent uncertainty in the
task is high. For a more comprehensive review on when
and how such heuristics may be more preferable, we refer
readers to Kozyreva and Hertwig (2021).

3.4 Output

We now describe the distinguishing characteristics of the
outputs generated by humans and ML systems.

* Available actions. In real-world deployment settings, the
set of possible decisions or actions available to ML mod-
els versus humans can be different: Ay # Ay;. For exam-
ple, in the context of K-12 education, ML-based tutoring
software may be able to provide just-in-time hints to stu-
dents, to help struggling students them with math content.
Meanwhile, although a human teacher working alongside
this software in the classroom has limited time to spend
with each student, they can take a wider range of actions
to support students, such as providing emotional support
or helping students with prerequisite content that lies out-
side of the software’s instructional repertoire (Holstein,
Aleven, and Rummel 2020). Similarly, in the context of
ML-assisted child maltreatment screening, a model may
only be able to recommend that a case be investigated or
not investigated, based on the information that is currently
available. By contrast, Kawakami et al. (2022) report that
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human call screeners may take actions to gather additional
information as needed, e.g. by making phone calls to other
stakeholders relevant to a case.

Explaining the decision. Humans and ML have differing
abilities in communicating the reasoning behind their de-
cisions. There has been extensive research in explainabil-
ity (XAI) and interpretability for ML (Adadi and Berrada
2018). Research in cognitive and social psychology ob-
serves that humans are generally better than ML algo-
rithms at generating coherent explanations that are mean-
ingful to other humans. Furthermore, Miller (2019) argues
that XAl research should move away from imprecise, sub-
jective notions of “good” explanations and instead focus
on reasons and thought processes that people apply for ex-
planation selection. They find that human explanations are
contrastive, selected in a biased manner, and most impor-
tantly they are social and contextual. On the other hand,
humans’ explanations may not have a correspondence to
their actual underlying decision processes (Nisbett and
Wilson 1977), whereas with ML models we can always
trace the precise computational steps that led to the output
prediction (Hu, Rudin, and Seltzer 2019).

Uncertainty communication. With increasing research
in uncertainty quantification for machine learning, new
methods have been devised for calibrating a ML model’s
uncertainty in its prediction (Abdar et al. 2021). More-
over, methods have been developed to decompose the
model uncertainty into aleatoric uncertainty and epistemic
uncertainty (Hiillermeier and Waegeman 2021), where
aleatoric uncertainty signifies the inherent randomness in
an application domain and cannot be reduced, and epis-
temic uncertainty, also known as systematic uncertainty,
signifies the uncertainty due to lack of information or
knowledge, and can be reduced. However, these uncer-
tainty quantification methods may not necessarily be well-
calibrated (Abdar et al. 2021), and are an active research
direction. Meanwhile, human decision-makers also find it
difficult to calibrate their uncertainty or their confidence
in their decisions (Brenner, Griffin, and Koehler 2005),
and tend to output discrete decisions instead of uncertainty
scores. Moreover, different people have different scales
for uncertainty calibration (Zhang and Maloney 2012).

Output consistency. We define a given decision-maker to
have a consistent output when they always produce the
same output for the same input. Therefore, we consider
the inconsistency in decisions that are based on factors in-
dependent of the input, we call them extraneous factors.
Some examples of extraneous factors are the time of the
day, the weather, etc. Research in human behavior and
psychology has shown that human judgments show incon-
sistency (Kahneman et al. 2016). More specifically, there
is a positive likelihood of change in outcome by a given
human decision-maker given the exact same problem de-
scription at two different instances. Within-person incon-
sistency in human judgments has been observed across
many domains, including medicine (Koran 1975; Kirwan
et al. 1983), clinical psychology (Little 1961), finance and
management (Kahneman et al. 2016). This form of incon-



sistency is not exhibited by standard ML algorithms.?

* Time efficiency. In many settings, ML models can gen-
erate larger volumes of decisions in less time than hu-
man decision-makers. In addition to potentially taking
more time per decision, humans often have comparatively
scarce time for decision-making overall.

4 Investigating the Potential for Human-ML
Complementarity

To understand how the differences in human and machine
decision-making result in complementary performance, we
formulate an optimization problem to aggregate the human
and the ML model outcomes. The key motivation here is
to use information available about human and ML decision-
making (in the form of historical data or decision-making
models) to understand the potential for complementarity in
human-ML joint performance. Specifically, this optimiza-
tion problem outputs the optimal convex combination of
the two decision-makers’ outputs wherein the aggregation
mechanism represents the best that the human-ML joint
decision-making can achieve in our setting.

In our decision-making setting, as mentioned in Section 2,
we consider a feature space X, an action space A and an out-
come space O. Given a problem domain, the goal is to com-
bine the two decision-makers policies to find a joint policy
denoted by 7 : X — A that maximizes the overall quality
of the decisions based on evaluation function, £,

T € argmax F(m).
mell

ey

We note that the overall evaluation function F' for the joint
policy m may be different from that used by the human Fy or
the ML model Fy. We assume the joint policy is obtained
by combing human and machine policies 7y and my; over
n number of instances through an aggregation function. We
consider the outcome space to be scalar O C R. Given 7y €
Iy, mv € Il for an instance X; where i € [n], the joint
policy 7 € Il is given by

(@)

m(Xo) = i (X)) + oy ma(Xs). @)
for some weights wg’),wﬁ’) € [0,1] and wg) + wIE;I?) -1

for all ¢ € [n]. Here note that we assume that the joint deci-
sion 7(X;) is a convex combination of the individual deci-
sions 7y (X;) and my(X;). This assumption arises naturally
to ensure that the joint decision lies between the human’s
and machine’s decision. For a decision-maker (say human),
the weight assigned for instance 1, wg ) indicates the amount
of contribution from them towards the final decision: when
wHZ = 0, the joint decision does not follow human’s de-

cision at all on instance X;, while wl(; ) = 1 indicates that
their decision is followed entirely. For the optimal policy 7™
defined in (1), its corresponding optimal weights are denoted
by EI(_; ) and @I(\Z).

There exists the special case of randomized models, we con-
sider these outside the scope of our work and, further note that
these models can be directly mapped to deterministic models with
decision-based thresholds.
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Several existing works on human-ML combination for
decision-making, such as Donahue, Chouldechova, and
Kenthapadi (2022); Raghu et al. (2019); Mozannar and Son-
tag (2020); Gao et al. (2021) are subsumed by our convex
combination optimization setup. Particularly, our aggrega-
tion mechanism captures two salient modes: (1) The mode
where an instance is routed to either the human or the ML
decision maker, also known as deferral. This is represented
by wl(;), w](vzl) € {0,1} for all ¢ € [n]. (2) The mode where
a joint decision lying between the human and the ML de-
cision is applied to each instance. This is represented by

wi w? € (0,1) forall i € [n].

4.1 Metrics for Complementarity

The proposed aggregation framework is a way to inspect
the extent of complementarity in human-ML joint decision-
making. Recall that, based on our definition, The joint policy
7 defined in (2) exhibits complementarity if and only if

F(r) > max{F(my), F(mm)}

Although this criterion provides a binary judgment on
whether complementarity exists in a particular joint
decision-making setting, it cannot be used to compare the
amount of potential for complementarity in different set-
tings. For instance, between two settings where machine can
improve the performance of the human decision-maker on
one instance versus on all instances, one may say that there is
more complementarity exhibited in the second setting. Fur-
ther, it does not distinguish between the two salient modes of
combination defined above, where the second mode may re-
quire more interaction between the human and the machine
decision-maker. So, to investigate the potential for comple-
mentarity in different settings more thoroughly, we intro-
duce metrics for quantifying the complementarity between
the human and ML decision-maker.

Specifically, we introduce the notion of within- and
across-instance complementarity to represent the two modes
of combination where for an instance X;, we either have
only one of human or ML contributing to the final decision
(wls,}’) = 10rwl({z) =
ing to the final decision partially (wl(v? > 0 and wl(; ) > 0).
These two types of combinations represent two ways of
achieving complementarity. In the first one, there is no com-
plementarity within a single task instance, since only the hu-
man or the ML model decision gets used. In this scenario,
if the human and ML model provide the final decision for
different instances of the task, we call this across-instance
complementarity. In the second one, if both human and
ML model contribute to the same instance X;, we call this
within-instance complementarity. These two metrics help
distinguish between different instance allocation strategies
in human-ML teams described in (Roth et al. 2019). For-
mally, given the weights assigned to the two agents in the
final decision, we define the two metrics as follows:

1), or both decision-makers contribut-

* Across-instance complementarity quantifies the vari-
ability of the human (or the machine) decision-maker’s
contribution to the final decision across all task instances.



Therefore, we define it as the variance of the weights as-
signed, written as
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The equality follows directly using the constraint wl(\,i) +
wl(_f ) = 1. In case of no variability across instances, that
is if for both decision-makers, we have wﬁ) (or wg ) to
be a constant for all ¢ € [n], then cueross(wm, wy) = 0.
The notion of across-instance complementarity is shown
by works on decision deferral or routing including Mozan-

nar and Sontag (2020); Madras, Pitassi, and Zemel (2018).

* Within-instance complementarity quantifies the extent
of collaboration between the two decision-makers on each
individual task instance. Formally, we define
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Importantly, the definition of within-instance complemen-
tarity satisfies some key properties: Cyipin(Wh, Wnm) is

maximized at wg) = wl(v? =

wg ) e {0,1} for all ¢ € [n]. Thus, it is maximized when
each decision-maker contributes equally and maximally to
a problem instance and minimized when there is no con-
tribution from one of the decision-makers. Further, it in-

creases monotonically as wl(; ) and wﬁfl) get closer to each
other in value, that is the two decision-makers’ contribu-
tions to the final decision get closer to half. This notion of
complementarity is demonstrated in several works includ-

ing Patel et al. (2019); Tschandl et al. (2020).

To have a better grasp on the above two metrics, and to
understand the importance of each metric in measuring
complementarity, we provide some demonstrative examples.
Consider a simple setting with X = {x, X2, X3, X4} where
each instance is equally likely, that is, P(X = x;) = 1/4
for all ¢ € [4]. The values of the two metrics under different
aggregation weights are given below:

0.5 and minimized at

1. If w](ql) = wg) = w,(_,S) = wﬁl) = 0, then cyimin = 0,
and Caeross = 0.

2. If wl(_ll) = wl(f) = O,wl(f) = wl(f) = 1, then cyimin = 0,
and Cyeross = 0.25.

3. If wg) = w](f) = wég) = wgl) = 0.3, then cyithin =

0.84, and cyeross = 0.

We note that although the second example has cyimin = 0
and cCacross > 0, which is the opposite of the third ex-
ample, both the examples demonstrate complementarity.
This shows that each metric introduced captures aspects
of human-ML complementarity that is not captured by the
other metric.
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5 Synthetic Experiments to Illustrate
Complementarity

In this section, we illustrate how our proposed framework
can be used to investigate the extent and nature of comple-
mentarity via simulations. These simulations utilize human
and ML models learned from data, where the two decision-
makers have different access of information or they pur-
sue different objectives. By quantifying the extent of dif-
ferent types of complementarity (i.e., within-instance and
across-instance), we show how the proposed taxonomy and
complementarity metrics can guide the research and prac-
tice of hypothesizing about and testing for complementarity
with different types of human and ML decision-makers. To
conduct these simulations, we choose specific aspects from
our taxonomy in Section 3 and measure complementarity in
the presence of corresponding differences between the hu-
man and the ML model. We note that these simulations are
meant to be an illustrative and not exhaustive exploration
of human-ML complementarity conditions that can be ex-
plored using the taxonomy.

Synthetic simulation setup. We consider a linear model
for the data generating process: the features X € R are
distributed as X ~ N(0,I4xq4); the target is given by
Y =XTB+ewhere 3= (1---1) € R?and ¢ ~ N(0,1).
For any given instance X € R<, both the ML and human
decision-maker make a prediction using their respective lin-
ear model, which serves as a decision. We assume that the
outcome for a given instance is determined by the squared
loss incurred by the decision. For example, for the machine,
given the true target Y and the prediction my(X), the out-
come is given by O = (my(X) — Y)2. The dimension of the
features is chosen to be d = 10 for all simulations.

In Section 5.1, we study how human-ML complementar-
ity varies when the human and the ML model have different
feature information available to them; and in Section 5.2,
the difference between the human and the machine arises
via difference in objective functions for learning their re-
spective policies. In the following simulations, we first use a
training set of sample size 8, 000 to learn the respective op-
timal linear model for the human and the ML policy. Once
the decision-makers’ policies are learned, a separate testing
set of size 2, 000 is used to compute and analyse the optimal
aggregation weights. On this set, we measure and report the
metrics of complementarity defined in Section 4.1.

5.1 Access to Different Feature Sets

First, we consider the setting where the human and the ma-
chine decision-maker have different information available
to them. This is a potential source of complementarity in
human-ML joint decision-making as mentioned in our tax-
onomy in Section 3 based on the input. To analyze the im-
pact of information asymmetry on human-ML complemen-
tarity, we conduct synthetic experiments based on the gen-
eral setup described at the beginning of Section 5. Addition-
ally, we assume that the features available to the human and
the ML model are denoted by Xy € R% and Xy € R re-
spectively, where dy and dy indicate the number of features
available to the human and the machine respectively, with
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Figure 2: We plot the outcomes of Experiment I described in Section 5.1. The x-axis indicates the number of features that both
the human and the ML model have access to. In each of the three figures, we plot an outcome metric for the optimal joint
policy, namely across-instance complementarity (3), within-instance complementarity (4) and mean squared loss of the policy
compared to the target outcome Y. The markers show the mean value and the error bars indicate the standard deviation, based
on 200 iterations. On the z-axis, we skip z = 10, as it is a straightforward setting where both the agents have access to all
the features, so there is no complementarity, Cyithin = Cacross = 0. Note that all three plots have different ranges on the y-axis,
with cyeross € [0,0.25], cwimin € [0, 1]. To read these plots, we focus on relative values within plots, and not on absolute values
across plots. We observe that cyoss increases while cyinin decreases as the number of overlapping features increases. When
the agents have no overlapping features (z = 0) the two agents have more likely to be equally benefitial for each decision
leading to a higher within-instance complementarity. Meanwhile, when both have largely overlapping information (z = 8),
the combination is more likely to show across-instance complementarity, the gains of going with the better decision-maker
outweighing the possible gains from combination on each instance.

dy,dv < d = 10. Given the input information available to achieved by the combined decision indicated by difference
them, the human and the machine learn a policy using lin- between the loss achieved by the individual agents and that
ear regression on the training data, given by 7 : R — R by the combination is reducing as the number of overlap-
and my : R™ — R respectively. Using the optimization ping features decreases. This suggests that depending upon
problem setup in (1) and (2), we conduct simulations to anal- the number of overlapping features and the resulting gain in
yse the amount and type of complementarity achieved by the accuracy, one may decide to forego joint human-ML deci-
combination of human and ML agents with different infor- sions. We discuss this in more detail in Section 6.

mation. Consequently, we conduct two sets of experiments. . . .
c ! Y, p Experiment II. Next, we consider a setting where the hu-

Experiment I. We consider the setting where the human man has access to nine of the features Xy € R? and the
and ML have access to some common features and some machine has access to the remaining tenth feature Xy € R.
non-common features as is typical of many real-world set- Within this setting, we simulate the types of information
tings, as described in Section 3. Specifically, out of d = 10 asymmetry identified in Holstein et al. (2023). In this work
features in our setting, the human and the ML both have ac- on human-ML complementarity, the authors distinguish be-
cess to z common features, and each has access to an ad- tween non-overlapping features based on their “predictive
ditional 12-= features that only they can observe, where power” which they define for any feature as the increase
z € [d]. We plot the outcomes of this experiment in Fig- in training accuracy of a model as a result of including the
ure 2, where the z-axis of each plot indicates z (the degree feature. To simulate this, we vary the predictive power of
of overlap between human and ML feature sets). Interest- the feature available to the ML model by introducing mul-
ingly, we observe that while across-instance complementar- tiplicative random noise. Recall that Y = X" + e where
ity increases non-linearly with the number of overlapping B=(1 o 1) € R?. Now, we define a variable v and let the
features, within-instance complementarity decreases non- data available to the ML model Xy € R be based on « as:
linearly. This suggests that when the two agents have access X0 if Binomial(a) = 1,
to many non-overlapping features, it would be important to XM = {0 . (%)
- . . otherwise.
use both the agents’ decisions to come to a final decision
on a given instance. On the other hand, in a setting with In this manner, by varying « over the range [0, 1], we vary
few overlapping features, the importance of collaboration the predictive power of Xy. For @« = 0 we have Xy = 0
on each instance reduces and it may be prudent to consider constantly, implying zero predictive power, and for a = 1
routing tasks to either the human or the machine for making we have X1 = X, implying the highest predictive power
the final decision. Furthermore, in the third plot, we observe under the setting assumed. We show the outcomes of dif-
that the combined decision has a strictly lower loss than ei- ferent complementarity measures under this setting in Fig-
ther the human or the ML in isolation. Importantly, the gains ure 3. Observe that in the first plot, the across-instance com-
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Figure 4: Examples of the probability weighting function
used as the human’s objective based on CPT. The z-axis
specifies the actual probability and the y-axis indicates the
perceived probability. Parameter a controls the fixed point
and parameter b controls the curvature of the function. When
b < 1, the probability weighting function has an inverted S-
shape; when b > 1, the function has an S-shape.

plementarity does not change significantly with change in
«. The reasoning behind this is the human has a large ma-
jority of the features, thus having a high contribution in the
final decision for all settings of . On the other hand, within-
instance complementarity increases linearly with «, as in-
crease in a implies that collaborating with the ML model on
each instance will increase the predictive power of the over-
all policy. We also see that, as expected, the loss of the joint
decision-maker improves as the predictive power increases.

5.2 Different Objective Functions

In this setting, the human and ML decision-makers have dif-
ferent objectives, which is a common source of complemen-
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tarity in human and ML decision-making as noted in our
taxonomy (Section 3). This may arise from the fact that
ML models evaluate risks differently from humans. How
agents evaluate the risks of an uncertain event is closely
connected to how they perceive probabilities associated with
this event. While ML models treat all probabilities according
to their measured value, captured in their objective function
as expected risk, humans tend to overweight small probabil-
ities and underweight high ones, as suggested in Cumula-
tive Prospect Theory (CPT) (Tversky and Kahneman 1992).
To capture this in our simulation, we model the human’s
objective function incorporating CPT as described in Leqi,
Prasad, and Ravikumar (2019b).

More specifically, while the ML model’s objective is to
minimize the expected value of the squared error, Fy(my) =
LS (mu(X;) — Y;)?%, the human’s objective is to mini-
mize Fy(my) = Y1 % (mu(X;) — Y;)? where v; reflects
how humans overweigh and downweigh certain probabili-
ties. As illustrated in Figure 4, v; is parameterized by two pa-
rameters a € [0, 1] and b € R for specifying the fixed point
and curvature of human’s probability weighting function.?
Notably, when b = 1, the probability weighting function be-
comes the identity function and v; becomes 1 for all i € [n],
suggesting that Fy = Fy. For a more detailed explanation
on the relation among the parameters a, b, the probability
weighting function, and the factor v; in the objective func-
tion Fy, we refer the readers to Leqi, Prasad, and Ravikumar
(2019b)[Section 3]. Lastly, we consider that the objective
for the final decision balances between the human and the
ML objective, defined as F'(w) = 0 Fv(w) + (1 — 0) Fu(n)
where 6 € [0, 1] is a parameter controlling the overall objec-
tive function. By varying parameters 6, a and b, we inspect
how the difference in objective functions of the two agents

3The exact form of v; is defined using the derivative of the prob-
ability weighting function shown in Figure 4. More specifically,
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Figure 5: We plot the outcomes of the experiment where the ML and human have different objectives. For all plots, we set the
probability weighting function parameter a = 0.5. The x-axis gives the b values, which specify the curvature of the probability
weighting function; the y-axis gives the 6 value, which specifies the overall objective function. In the first two plots, the z-axis
shows the across-instance complementarity cyeross and within-instance complementarity cyimin, respectively. When b = 1 (i.e.,
Fy = Fu), both ¢Cyeross and cyithin Te€ach their lowest values. We observe that c,eross 1S high while cyihin 1S low, indicating that the

final decision of each task instance is more likely to rely on a single agent. In the last two plots, the z-axis shows F'(7) —

and F'(7)

F(7n)

— F(7m), respectively. In both plots, the differences are below 0, suggesting that the joint policy performs better

compared to 7y and my under the overall objective function F'. All values are averaged across 5 seeds.

and the joint decision affects the amount and type of com-
plementarity that can be achieved in this setting.

As observed in Figure 5 (c) and (d), the objective function
differences F'(7) — F'(7n) and F'(7) — F'(7mm) remain below
0, suggesting that the learned joint policy outperforms both
7y and 7y under the overall objective function F'. For both
across-instance complementarity c,ross and within-instance
complementarity cyinin, We find that when b = 1, i.e., when
the human and machine objectives are the same, their val-
ues are the lowest and are around O (Figure 5 (a) and (b)).
This is to be expected because when the overall objective
is the same as that of the human and the machine, there is
no complementarity. When b # 1, 55 18 relatively high
while cyimin 1S rather low, suggesting that the optimal joint
decision-maker does not need to rely on both agents for
making a decision on most instances. Instead, a better form
of collaboration between the human and the ML model is
to defer each instance to one of the decision-makers. This
is a somewhat unintuitive result since the overall objective
function is a convex combination of the human’s and the
machine’s, yet the final optimal decision is not. Importantly,
this analysis shows evidence that we need to understand the
mechanism of human-ML complementarity to inform how
to design the best aggregation mechanism.

6 Discussion

Our work contributes a deeper understanding of possible
mechanisms for complementary performance in human-ML
decision-making. Synthesizing insights across multiple re-
search areas, we present a taxonomy characterizing potential
complementary strengths of human and ML-based decision-
making. Our taxonomy provides a pathway for reflection
among researchers and practitioners working on human-ML
collaboration to understand the potential reasons for expect-
ing complementary team performance in their correspond-
ing application domains. Our hope is that the research com-
munity will use this taxonomy to clearly communicate their
hypotheses about the settings where they expect human-ML
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complementarity in decision-making.

Drawing upon our taxonomy, we propose a problem setup
for optimal convex combination of the human and ML deci-
sions and associated metrics for complementarity. Our pro-
posed framework unifies several previously proposed ap-
proaches to combining human-ML decisions. Critically, an
analysis of our framework suggests that the optimal mech-
anism by which human and ML-based judgments should
be combined depends upon the specific relative strengths
each exhibits in the decision-making application domain at
hand. Our optimization setup can be used to generate hy-
potheses about optimal ways of combining human and ML-
based judgments in particular settings, as demonstrated by
the simulations in Section 5. For this, one may use his-
torical decision-making data or models of decision-making
for the human and the machine agent. These simulations
also help researchers and practitioners understand the trade-
offs involved in implementing human-ML collaboration in
a decision-making setting by comparing the potential gains
in accuracy against the cost of implementation. It is worth
noting here that while the joint decision-maker is a theo-
retical idealized version, in reality the accuracy of the joint
decision-maker may be lower due to inefficiencies of real-
world decision-making by a human. Thus, it would be use-
ful to quantify the potential benefits of joint decision-making
before implementation. Further, empirically testing the hy-
potheses and trade-offs presented by our simulations is of
great theoretical and practical interest.

Finally, we invite extensions and modifications to our tax-
onomy, and hope that it serves as a stepping stone toward
a theoretical understanding of the broader conditions under
which we can and cannot expect human-ML complementar-
ity. For example, we invite future research to explore exten-
sions of our proposed optimization problem setup to con-
texts where predictions do not straightforwardly translate to
decisions (Kleinberg et al. 2018), as well as to settings where
the optimal combination of human and ML-based judgment
cannot be captured through a convex aggregation function.
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