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Abstract

Principled accountability for autonomous decision-
making in uncertain environments requires distin-
guishing intentional outcomes from negligent de-
signs from actual accidents. We propose analyzing
the behavior of autonomous agents through a quan-
titative measure of the evidence of intentional be-
havior. We model an uncertain environment as a
Markov Decision Process (MDP). For a given sce-
nario, we rely on probabilistic model checking to
compute the ability of the agent to influence reach-
ing a certain event. We call this the scope of agency.
We say that there is evidence of intentional behav-
ior if the scope of agency is high and the decisions
of the agent are close to being optimal for reaching
the event. Our method applies counterfactual rea-
soning to automatically generate relevant scenarios
that can be analyzed to increase the confidence of
our assessment. In a case study, we show how our
method can distinguish between ‘intentional’ and
‘accidental’ traffic collisions.

1 Introduction

Artificial intelligence (Al)-based autonomous agents play a
significant role in diverse facets of society, such as transporta-
tion, robotics, medical devices, manufacturing, and more.
Ideally, engineers would verify their correctness before de-
ploying them in the real world. However, for various theo-
retical and practical reasons, formal verification of software
for autonomous agents is not often feasible. As a result, au-
tonomous agents might not behave as planned initially and
they might cause harm. As we cannot predict when harm will
happen, we need to examine the software of the harming au-
tonomous agent ex post — after the harm — to assess questions
of accountability. While the liability scheme for autonomous
agents has yet to be developed, it is plausible to assume that
manufacturers of autonomous agents that intentionally harm
should be held to a higher standard of accountability than
ones that create agents that harm negligently or purely ac-
cidentally. Therefore, defining and understanding intention is

Find code and experimental details in the accompanying repos-
itory https://github.com/filipcano/intentional-autonomous-agents.

of paramount significance for establishing accountability. In
this paper, we propose a new way of determining whether an
autonomous agent has, in fact, acted in a way consistent with
the intention to harm.

Historically, symbolic Al produced a large body of work to
formally specify and design autonomous agents that were ‘ra-
tional’. Such agents would explicitly derive decisions based
on their beliefs, desires, and intentions (BDI) [Bratman,
1987; Rao and Georgeff, 1995]. Determining whether an au-
tonomous agent has acted with the intention to harm is easy
in the case of BDI agents. One just needs to read off the inten-
tions from where they are written in the code. The statistical
nature of modern machine-learning-based agents leaves the
interpretation of their decision-making in probabilistic set-
tings a far greater challenge, since intentions are not explicitly
present in such models.

The traditional view of intention establishes a connection
to planning through either cognitive or computational reason-
ing. Intention is a nuanced legal and philosophical term of
art. Here, we use it in the restricted sense of the ‘state of the
world’ the agent plans towards. Whether human or machine,
arational agent with bounded resources must necessarily plan
towards a goal to succeed in achieving it [Bratman, 1987,
Cohen and Levesque, 1990]. Modern machine-learned agents
plan implicitly through techniques like reinforcement learn-
ing (RL) [Sutton and Barto, 2018].

This paper considers an autonomous agent operating with
other agents within an environment. During the agent’s op-
eration, a certain event happened. In the context of holding
the agent accountable for such an event, we want to analyze
whether the agent acted towards making that event happen.

Problem statement. We concretely model the interactions
between the agent and its environment as a Markov Decision
Process (MDP). The event under analysis is formalized as a
set of states S7 in the MDP. Our goal is to analyze whether
the decision-making policy of the agent shows evidence of
intentional behavior towards reaching St.

If we assume that the agent has perfect knowledge about
the entire world as captured in an MDP, we could simply say:
“There is evidence of intentional behavior towards reaching a
state in Sz, if the agent implements a policy that maximizes
the probability of reaching Sz’. However, for any agent acting
within a complex environment, this assumption is implausi-
ble. For example, the current state information might not be
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precise due to imprecisions in sensor measurements, bounded
resources in computing the policy, imprecisions due to ab-
stractions, partial observability, or usage of inaccurate mod-
els of other agents. Therefore, we need to consider a certain
degree of uncertainty in our assessments.

Method for analyzing intentional behavior. In this paper,
we propose a methodology to analyze whether there is evi-
dence that an agent acted intentionally to reach a state in Sz.
For a given scenario, we use probabilistic model checking to
automatically compute the policies that maximize and min-
imize the probability to reach Sz. We use these policies to
compute the influence that the agent had to bring about Sz.
We call this the scope of agency. We say that there is evidence
of intentional behavior if the scope of agency is high and the
decisions of the agent are close to optimal for reaching S7.

To strengthen our evaluation, we make use of a widespread
technique in accountability analysis [Wachter et al., 2017],
which is analysing a diverse set of relevant counterfactual
scenarios, and aggregating the evaluation results.

Main Contributions.
are the following:

The main contributions of this paper

To the best of our knowledge, we present the first method
that analyzes intentional behavior directly from the poli-
cies in MDPs.

We give definitions for evidence of intentional behavior
in MDPs.

We propose a method to analyze evidence of intentional
behavior of agents in MDPs. Our method uses model
checking to automatically relate the agent’s policy to any
other possible policy. Furthermore, our method applies
counterfactual reasoning to increase the reliability of the
assessment.

We provide a case study in which we analyze potential
intentional behavior in the same scenario for different
implementations of driving agents.

2 Preliminaries

Markov Decision Processes. A Markov Decision Process
(MDP) is a tuple M = (S, A, P), where S is the set of states,
A is the set of actions and P : S x A x § — [0,1] is the
transition function. A state represents ‘one way the world can
exist’, so any information available to the agent for deciding
what to do is included in the state of the MDP. The set A
contains every possible action that can be taken by the agent.
The function P represents the transition to a new environment
state that is produced as the result of the agent executing a
particular action in a given state.

A trace is a finite or infinite sequence of states 7 =
(s1,82,...). A trace 7 is valid if for each i, there exists at
least one a; € A such that P(s;,a;, s;+1) > 0.

The agent is modeled by a memoryless and deterministic
policy m: § — A over M that assigns an action to each state.
In Section 7 we discuss how our method can be extended to
consider strategies with non-determinism and memory.

Probabilistic Model Checking. Using probabilistic model
checking [Clarke et al., 2018], we can compute the exact
probability P, (¢, s) of 7 satisfying a property ¢ for each
state s of the MDP [Kwiatkowska et al., 2011; Hensel et al.,
2022]. This property ¢ will typically be defined in a proba-
bilistic variant of a modal temporal logic, like probabilistic
linear temporal logic (PLTL) [Pnueli, 1977].

LetII C {m: § — A} be a set of policies. We denote the
maximum probability of satisfying ¢ restricted to a policy in
IT as Prax (@, s) = maxqen Px(ep,s). Similarly, we de-
note the minimum probability as Py (¢, 5). In this paper
¢ := Reach(S) encodes the property of reaching any state
sin a set of states S C S.

3 Definition of Intentional Behavior in MDPs

In this paper, we assume that we have given a scenario where
a certain event happened, like the agent visited a certain loca-
tion or the agent had a collision with another agent. Our goal
is to analyze whether there is evidence the agent intentionally
acted towards reaching this event.

In this section, we give the definitions for evidence of inten-
tional behavior of policies in the presence of uncertainty. We
use an MDP M = (S, A, P) to model the interaction of the
agent and the environment. In the following sections, we will
then propose and implement a method to analyze intentional
behavior according to the definitions of this section.

3.1 Intentions of Agents with Perfect Information

According to [Rao and Georgeff, 1995], an intention of an
agent is a set of states Sz C S the agent committed to reach.
Therefore, the agent acts towards reaching Sz to the best of
its knowledge.

Let us assume that the agent has perfect knowledge about
the environment. For a set of states Sz C S to be an inten-
tion of an agent, the agent has to implement a policy 7 that
maximizes the probability of reaching Sz. Formally, if S C
S is an intention of an agent, then P,(Reach(Sz),s) =
Pmax m(Reach(Sz), s), for any state s € S.

The policies considered to compute Pp,,x can be restricted
to a set of policies II, if there are policies that should be ex-
cluded for comparison. For example, we may only be inter-
ested in policies for comparison that satisfy certain properties
like fairness or progress properties.

Definition 1 (Evidence of intentional and non-intentional be-
havior). An agent w shows evidence of intentional behavior in
a state s towards St if T maximizes the probability of reach-
ing Sz, i.e., Pr(Reach(Sz1),5) = Pax|n(Reach(Sz1), s).
Otherwise, we say that the agent has evidence of non-
intentional behavior in state s towards St.

3.2 Intentions of Agents Under Uncertainty

The definition of intention given above assumes perfect
knowledge about the environment and the agent implement-
ing a policy that is optimal for reaching S7. However, if we
want to fully analyze intentional behavior we have to take im-
precision and uncertainties into account. Any agent operating
in a complex environment needs to make abstractions about



the environmental state and, most likely, only has partial ob-
servability. Furthermore, the agent has to make assumptions
about the other agents that act within the environment, which
may be incorrect. Therefore, we need to relax the definition
of intention to take uncertainties into account.

In order to analyze an agent 7 under uncertainty, we first
define the intention-quotient p,(s) for a state s which rep-
resents how close 7 is to the policy optimal for reaching Sz
from state s € S.

Definition 2 (Intention-quotient at a state). For an agent 7 at
a state s € S, the intention-quotient is defined as follows:

_ Px(Reach(S7),s)
prls) = Pax |n(Reach(Sz), s)
In contrast to the case of perfect information, the uncer-

tainty in the agent’s knowledge and resources implies uncer-
tainty in the assessment of intentional behavior.

— Prin [n(Reach(Sz), s)

Definition 3 (Evidence of intentional and non-intentional be-
havior in states). Given lower and upper thresholds 0 <
55 < 65 < 1, we say that there is evidence of intentional be-

havior rowards the intention St in the state s, if p;(8) > (55.
Analogously, we say there is evidence of non-intentional be-
havior towards the intention St in the state s, if p;(s) < 5PL.

In case that 5§} < pr(s) < 05, we say that we have not
enough evidence for intentional behavior.

By adjusting the thresholds 65 and 6%, we can control how
much discrepancy from the optimal policy under perfect in-
formation is allowed in order for 7 to be still considered as
intentional or non-intentional behavior for Sz. In general, the
higher the value of the intention-quotient p,(s), the more ev-
idence the policy 7 shows of intentionally trying to reach Sz.
The lower the value of p(s), the more evidence the policy 7
shows on acting without the intention to reach Sz.

An additional source of uncertainty is introduced by the
scope of agency of a state. In situations where the agent’s ac-
tions have little effect on reaching Sz, there is not enough
evidence to support a claim of intentional behavior. For this
reason, we take the scope of agency into account for our def-
inition of intentional behavior.

Definition 4 (Scope of agency). The scope of agency o(s) at
a state s for intention St is defined as the gap between the
best and the worst policy in terms of reaching St. Formally,
it is given by

0(8) = Pmax |mm(Reach(Sz), s) — Puin n(Reach(Sz), s).

The scope of agency of a trace 7 is given by
1
o(r) = T Z o(s).

If the scope of agency o(7) of a trace 7 is very low, any
assessment about intentional behavior will be very weak.

The above definitions of intentional and non-intentional
behavior apply to a single state in the MDP. In order to ex-
tend these definitions to traces in the MDP, we aggregate the
intention-quotients of the individual states using the scope of
agency as the weighting factor.

— Prinr(Reach(Sz), s)”

Definition 5 (Intention-quotient for traces). For an agent m
operating along a trace T, the intention-quotient p,(S) is
given as the weighted average

1

pr(T) = m ; o(8)px(s)-

Definition 6 (Evidence of intentional and non-intentional be-
havior in traces). Given lower and upper thresholds 0 <
55 < 5[)U < 1, and an agency threshold 0 < 6, < 1, we say
that there is evidence of intentional behavior towards reach-
ing St along a trace 7, if o(7) > 65 and p (1) > (52].

We say that there is evidence of non-intentional behavior
towards reaching St if o(1) > 6, and p (1) < 6%

In case that 0 < pr (1) < 65 or o(7) < 05, we say that
we have not enough evidence for intentional behavior.

4 Setting and Problem Statement

In this section, we describe the setting in which we want to
analyze intentional behavior and give the problem statement.

Setting. We have a model of the environment in the form
of an MDP M = (S, A, P) that captures all relevant dy-
namics and possible interactions for an agent. We also have
a concrete scenario to analyze in the form of a trace 7,y =
(s1,.-.,8n). The trace 7, is a sequence of visited states in
M that leads to a state in Sz, i.e., s, € S7. The implementa-
tion of the agent is given in the form of a policy 7: S — A.
The underlying intentions of the agent are unknown.

Problem statement. Given this setting, we want to analyze
whether there is evidence of the agent acting intentionally,
with uncertainty thresholds 62, 65, and §, for the intention-
quotient and scope of agency, respectively. Hence, we want
to analyze whether there is evidence of intentional behavior
of the agent 7 towards intention Sz in the scenario 7.

Example 1. Ler us consider a scenario in which an au-
tonomous car collides with a pedestrian crossing the road.
To analyze to which degree the car is accountable for the ac-
cident, we are interested in whether causing harm was the
intention of the car. In such an example, M captures all rele-
vant information necessary to analyze the accident, like posi-
tions and velocities of car and pedestrian, car dynamics, road
conditions, etc. The scenario Ty, = (81, . . ., Sy ) is defined via
the sequence of states prior to the collision. The set of states
St represents collisions. We want to analyze whether the pol-
icy m shows evidence of intentional behavior towards Sz. To
avoid unfair comparison with unrealistic policies, we define
a set of policies 11 that excludes unreasonably slow-moving
cars (e.g., cars that stop even though there is no other road
user close by).

S Methodology

In this section, we propose a concrete methodology to ana-
lyze whether there is evidence an agent acted intentionally to
reach S7. Our method is illustrated in Figure 1. As depicted in
the figure, we start the analysis of the given trace T,,r by com-
puting the intention-quotient p (7.r) and the scope of agency
0 (Trep). If 0(Trer) > 0., We can draw conclusions about inten-
tional behavior:
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Figure 1: Overview of our approach to analyzing intentional behavior.

o If pr (Tref) > 55, then we conclude that there is evidence
of intentional behavior towards St.

o If pr(Trep) < 55, then we conclude that there is evidence
of non-intentional behavior towards S7.

In cases without enough agency, i.e., where o (7)) < o,
or where the intention-quotient falls between the lower and
upper thresholds, i.e., §pL < pa(Trer) < 55, we say that we
do have not enough evidence to reach a conclusion. In such
cases, we propose to generate more evidence by analyzing
counterfactual scenarios.

A counterfactual scenario 7 is a scenario close to 7, ac-
cording to some distance notion. Our method generates a set
of counterfactual scenarios Ty and computes whether there is
evidence for intentional or non-intentional behavior for each
trace 7 € T' = Tip U {7,r}. We fix beforehand the number of
counterfactual scenarios to some parameter V.

As before, we draw conclusions about intentional behav-
ior based on the aggregated results of the scope of agency
o(T) and intention-quotient p. (7). If o(T) < d, or 55 <
p=(T) < 5pU, there is still not enough evidence for inten-
tional or non-intentional behavior, with o (7") being the scope
of agency averaged over all traces in T', and p, (T') being the
average intention-quotient for the set of traces in 7T'.

In such cases, our algorithm iterates back and extends
the set T;r by generating /N more counterfactual scenarios
to be analyzed. The algorithm stops when enough evidence
has been generated to draw a conclusion or when the num-
ber of generated counterfactual scenarios exceeds some user-
defined limit. In the following, we discuss the generation of
counterfactual scenarios in detail.

5.1 Counterfactual Generation

In order to find enough evidence for our assessment of in-
tentional behavior, we generate scenarios that are counterfac-

tuals for 7,,r. There are many ways to generate counterfac-
tual traces. We describe here three alternatives, ordered by
decreasing the requirement of expert knowledge and involve-
ment.

Counterfactual generation via a human expert. Asking
and analyzing counterfactual questions is a standard proce-
dure in accountability processes [Menzies and Beebee, 2020].
Usually, such counterfactual questions are proposed by a do-
main expert. We transfer this concept to analyzing intentional
behavior on MDPs. The counterfactual questions posed by
the expert translate to counterfactual traces T in M.

Example 2. Recall Example 1. Some counterfactual ques-
tions posed by an expert in the traffic scenario could be: (Q1)
What if the car had driven slower? (Q2) What if the pedes-
trian had been visible earlier? (Q3) What if the road condi-
tions were different? Each of Q1-Q3 translates to a counter-
factual trace, which we can analyze in our framework.

The method of generating counterfactuals using a human
expert imposes a heavy burden of work on the expert. Next,
we propose two methods to automatically generate counter-
factuals to mitigate the need for human effort.

Counterfactual generation using factored MDP. Since
M models the interactions of the agent with its environment,
M is typically given in form of a factored MDP. In factored
MDPs, the state space of M is defined in terms of state vari-
ables S = X X -+ X Xpp.

In this approach for counterfactual generation, we assume
domain knowledge about which variations of state variables
generate interesting counterfactual scenarios. In particular,
we assume to know which state variables are integral state
variables that we want to use in the analysis of intentional
behavior, and which variables are peripheral. To generate in-
formative counterfactuals, we are interested in changing the



values of the integral state variables.

Example 3. In Example 1, integral state variables might rep-
resent the position and velocity of the car, the position of the
pedestrian, the road condition, etc., are integral variables.
However, state variables that represent, for example, posi-
tions of other pedestrians located behind the car, are most
likely labeled as peripheral by a human expert. A counterfac-
tual trace generated from changes in the pedestrians’ posi-
tions that are not involved in the collision will give no new
insights into the assessment of intentional behavior. On the
contrary, changing the speed of the car might have a consid-
erable effect on the collision probabilities and may provide
an informative counterfactual scenario.

We automatically generate counterfactual traces by explor-
ing variations of the integral variables. Let the state space be
factored as S = X x - - - X X}, where variables X7, ..., X
are peripheral and Xy, ..., X, are integral. For any state

s = (21,...,%m), we write its factorization into periph-
eral and integral variables as s = (s"'[[s"). Let sy =
(Tk+1,- -, Zm) be the value of the integral variables at any

state of 7,,r. We define the set of counterfactual values as:

Cfe(syef) ={(Ynt1, - --
Vi, | — yi| < e},

s Ym) € X1 X -+ X Xy

where € = (€x41, . - ., €, ) contains for each integral variable
the range of variation that is still considered valid. For a given
trace T,,r = (1, ..., Sn), the counterfactual traces are

T (ng) ={(5h,-.50) + 3l € Ch(s3),

Vi=1...n:s;=(s{"]|sk),
!

(sh,...,s0)is valid, s, € Sz}.

Note that the search for counterfactual traces is limited to
those integral variables &; for which €; > 0, thus by setting
some of the ¢; to zero, we can fix their value in the counter-
factual generation process.

From T, we sample NV traces to be used for the counter-

factual analysis. For the trace selection, emphasis can be put
on traces with higher scopes of agency.
Counterfactual generation using distances on MDPs.
This method for generating counterfactual scenarios requires
to have given a distance d: S x § — R>( defined over states
in the MDP. Given such a distance metric d over the states,
the set of counterfactual traces is given as

TC(Tref) :{(8/1, .
(s},...,s,)is valid,

,sn) 2 Vi=1...n, d(s;,s;) <mn,
Sn, ESI},

where 7 > 0 is a distance that represents states being ‘close
enough’ to be compared as counterfactuals.

In case there is no distance defined in the MDP, there
are bisimulation distances that are well defined in any
MDP [Song et al., 2016]. They depend on the intrinsic struc-
ture of the MDP, defined mainly by similarities in terms of the
transition function. The main caveat of this approach is that
distances are expensive to compute, and the explanation of
why two states are assigned a given distance becomes more
obscure to the user.

Figure 2: Case-study environment, with scenario 7. highlighted.

6 Experimental Results

In this section, we showcase our method on a traffic-related
scenario related to Examples 1-2, and that is illustrated in
Figure 2. In this scenario, a car was driving on a road with
a crosswalk. A pedestrian at the crosswalk decided to cross.
Close to the crosswalk, there was a parked truck that blocked
the visibility of the car. Furthermore, the cold weather condi-
tions made the road slippery, so that braking was less effective
than normal. While crossing, the pedestrian was hit by the car.
We want to study the behavior of the car for signs of the hit
being intentional.

All experiments were executed on an Intel Core i5 CPU
with 16GB of RAM running Ubuntu 20.04. We use TEM-
PEST [Pranger et al., 2021] as our model checking engine.

6.1 Model of Environment

The environment is modeled as an MDP M = (S, A, P).
The set of states is a triple S = S x Sped 5 §emv \where S
models the position and velocity of the car, SP* models the
position of the pedestrian, and S models other properties
that do not change during a scenario. These properties include
the slipperiness factor of the road and the existence of the
truck blocking the car’s view of the pedestrian.

The car’s position is defined via the integers . and y. with
0 <z, <60mand3 <y, <13 m. The velocity of the car
isin {0,1,...,5} m/s. The position of the car is updated at
each step, assuming a uniform motion at the current velocity.
The car has the following set of actions A: hitting the brakes,
pressing down on the accelerator, and coasting. If the car is
on a non-slippery part of the road, accelerating stochastically
increases the velocity (by 1 or 2 m/s), braking stochastically
decreases the velocity (by 1 or 2 m/s) and coasting maintains
or decreases the velocity (by 1 m/s). If the car is on a slip-
pery part of the road, the consequences of the selected action
on the velocity change, and include the possibility of no mod-
ification to the current velocity for both the actions of braking
and accelerating.

The pedestrian’s position is given via the integers x,, and
yp With 0 < 2, <60 m and 0 < y, < 15 m. The pedestrian
can move 1m in any direction, or not move at all. The prob-
abilities of moving in each direction are given by a stochas-
tic model of the pedestrian, designed in such a way that the
pedestrian favors crossing the street through the crosswalk
while avoiding being hit by the car. The probabilities in the
pedestrian’s position update can be influenced by a hesitance
factor, which captures how likely it is that the pedestrian puts
themselves at a hitting distance from the car. The resulting
MDP consists of about 120k states and 400k transitions.
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Figure 3: Intention-quotient and scope of agency of 7.

6.2 Analysis of a Trace

In the described environment, we are given a scenario T, as
illustrated in Figure 2, and an agent 7: S — A. As thresh-
olds to evaluate evidence of intention, we use 55 = 0.25,

55 = 0.75 and 0, = 0.5. We restrict the set of policies 11
to policies that do not stop the car if no pedestrian is within
a range of 15m of the car. The collision states are given by
St={seS : |zp —x| <5V |y, — yc| <5} Given
this setting, we analyze 7, for evidence of intentional be-
havior towards reaching Sz. Therefore, we first compute the
intention-quotient p (7yr) and the scope of agency o (7).

Results of analysing 7,,s. In Figure 3, we give the results
of the model checking calls for reaching Sz for states in 7,
The lower line (—%-) represents Py, the upper (-A-) repre-
sents Pax and the line in the middle (-@-) represents P, for
every state in 7,,.. The shaded area, between Py, and Prax,
represents the scope of agency at each state. The figure shows
the agent is close to the line of Pp,,x, but the scope of agency
is very low, with p,(7,s) = 0.73 and o(7.s) = 0.18. Since
0(Trer) < 0o, our method concludes that there is not enough
evidence for intentional behavior yet and moves on to the step
of generating counterfactual scenarios.

Counterfactual analysis. We generate counterfactual sce-
narios by exploiting domain knowledge about integral vari-
ables of the MDP. We change the following variables:

o Slipperiness range. The street is considered to be slip-
pery between the positions sl;,;; and sl,,4.

e Slipperiness factor. The strength of the slippery effect
is measured by the slippery factor slg,;, which is analo-
gous to the inverse of the friction coefficient in classical
dynamics. The effect of slipperiness is to make the ac-
celeration and brake less effective, increasing the proba-
bility that both acceleration and brake have no effect on
the speed of the car. The larger the value of slg,, the
more effect, with sl; = 1 being the minimum value,
where the road is considered to be ‘not slippery at all’.

* Hesitancy factor. The pedestrian, in general, tends to
cross the street through the crosswalk. The hesitancy
factor modifies the probabilistic model of the pedestrian,
to make them more or less prone to put themselves at a
hitting distance from the car. A pedestrian with hesitancy
factor hye, = 0 is a completely cautious pedestrian. On
the contrary, a pedestrian with hesitancy factor hp, = 1
completely disregards the state of the car.

Slinit Slena Slfacl hfarl vis

Value 7 20 45 2.5 0.5 1
Range [10,30] [35,55] [1,4] [0.1,0.9] {0,1}

Table 1: Ranges to use in counterfactual generation.

7| 6 11 16 21
px(T)  0.78(0.03) 0.81(0.02) 0.83(0.02) 0.84 (0.01)
o=(T) 033(0.02) 0.44(0.03) 048(0.01) 0.50(0.01)
time (s) 53 (16) 147 (42) 227 (32) 318 (64)

Table 2: Results of the counterfactual evaluation.

* Visibility. In the given scenario, there is a truck blocking
the visibility of the car, corresponding to vis = 1. In
case vis = 0, the visibility block is eliminated.

The variables and the ranges considered for generating coun-
terfactuals are summarized in Table 1.

Results of analyzing counterfactual scenarios. We build
the counterfactuals in batches of N = 5, by sampling uni-
formly on the ranges described in Table 1. We show the re-
sults in terms of intention-quotient and scope of agency in Ta-
ble 2. We report the averaged values and standard deviations
over 5 runs. As we can see from the table, with 21 traces in 7'
we have pr(T) > 65 = 0.75 and 0 (T) > &, = 0.5. Thus,
our method concludes that the agent under study does present
evidence of intentional behavior to hit the pedestrian.

6.3 Comparative Analysis of Several Agents

In this section, we illustrate how our method can be used to
compare different agents in terms of intentional behavior. We
compare three different agents 71, 7o, 73 in the same scenario
Trer- The agent 1 corresponds to the policy 7 in Section 6.2.

In Figure 4 we give the probabilities for reaching Sz for the
policies 1, o, w3 for two different traces: left for 7., right
for a counterfactual trace 7 € T" with a high scope of agency.
The figure illustrates how even a single counterfactual trace
can be a powerful tool for distinguishing between policies
that seem impossible to differentiate with any confidence in
the originally given trace 7.

A second insight is illustrated in Table 3. In this table, for
each agent 7y, mo, 73, we show the number of counterfactuals
needed to generate enough evidence of intentional behavior,
together with the final values of the intention-quotient and
the scope of agency. Both 71 and 73 are clear-cut, but for o
our algorithm reaches the limit of |T'| = 100 without finding
enough evidence. In this case, the intention-quotient of the
agent seems to converge to a value of about 0.53, sitting in
the middle of the lower and upper threshold.

™1 T2 T3

|7 21 100 26
p=(T) 086 053 0.14
o-(T) 052 064 050

Table 3: Final values of p(T") and o (T') for different strategies.
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Figure 4: Comparison of 7, (left) with a high-agency counterfactual
scenario (right).

Finally, in Figure 5, we show the values of intention-
quotient against the scope of agency for 100 counterfactual
traces sampled from the ranges in Table 1. This serves as a
visual representation of the same facts presented in Table 3,
concluding that 7m; (-@-) is clearly showing evidence of inten-
tionally hitting the pedestrian, m (-#-) is showing evidence
of intentionally hitting the pedestrian in a lower magnitude,
which would be considered enough or not depending on the
thresholds, and 73 (—#¢-) is showing clear evidence of acting
without the intention of hitting the pedestrian.

7 Discussion

To the best of our knowledge, we present the first method
that analyzes intentional behavior directly from the policies
given in an MDPs. We believe that our approach has great po-
tential. However, there are aspects that need to be addressed
to make the method applicable in challenging scenarios:

¢ Our method requires having a correct model of the en-
vironment that captures everything relevant to analyze a
scenario. In many cases, such models are not available.
Recent work on digital twin technologies [Jones et al.,
2020] and the existence of realistic simulators [Dosovit-
skiy et al., 2017] provides optimism for more and more
accurate models of agents and their environment.

* Our method requires the agent be given as a policy in
an MDP. In case we are given a different implementa-
tion, e.g., as a neural network, we would need a sample-
efficient method to translate the implementation into a
policy in the MDP, at least for the relevant parts of the
state space.

e While current probabilistic model checking engines
achieve impressive performance [Budde er al., 2021],
computing exact probabilities is costly (polynomial
complexity). An alternative would be to use statisti-
cal model checking [Agha and Palmskog, 2018], which
is less demanding, albeit also less precise. Statistical
model checking has been successfully used to validate
autonomous driving modules [Barbier et al., 2019].

General policies. We briefly discuss how to treat policies
with memory and non-determinism. Our definitions naturally
extend to non-deterministic policies with memory, although
it is not evident whether the probabilities required to mea-
sure intention-quotients (Definition 2) are easy to compute.
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Figure 5: Scatter plot of intention-quotient vs scope of agency for
different agents.

Computing extreme probabilities is equally hard for gen-
eral policies. If the policy has a finite amount p of mem-
ory, Pr(Reach(Sz),s) can be computed using probabilis-
tic model checking, with a cost of p times that of the
memoryless case [Baier and Katoen, 2008]. In case the non-
determinism is unknown to us, to compute P, (Reach(S7), s)
we need to sample the decisions of the agent often enough to
get an accurate approximation of its decision-making proba-
bilities, making it more costly, although recent heuristics for
determinization may help [Ashok et al., 2020].

Knowledge of the agent’s beliefs. An intrinsic limitation
of studying policies in MDPs is the lack of knowledge of
the agent’s beliefs about the world. Belief plays a funda-
mental role in the study of intentions: an agent that intends
Sz must act believing that their acts are a good strategy to
reach Sz [Bratman, 1987]. Belief is also central to the def-
initions of responsibility and blameworthiness in structural
causal models [Chockler and Halpern, 2004; Halpern and
Kleiman-Weiner, 2018]. In part for this reason, together with
the uncertainties derived from a probabilistic setting, we can
only claim incomplete evidence of intentional behavior.

Single-agent setting. In our framework, all relevant parts
of the environment are modeled by an MDP, and all the
agency in the model is attributed to the agent, i.e., the only
actor choosing actions in the MDP is the agent. We argue that
this decision is reasonable to study the behavior of an indi-
vidual agent: from the perspective of an agent, it makes no
difference whether the decisions of other actors are governed
by a sophisticated policy or by random events in the envi-
ronment, as long as the MDP model contains accurate transi-
tion probabilities. The emergence of intrinsically multi-agent
phenomena, like shared intentions in cooperative settings,
would require a multi-agent extension of our framework
and is left as future work. In particular, we do not explore
how to assign moral responsibility to large groups of agents
(the so-called “problem of many hands” [Thompson, 1980;
Van de Poel, 2015]). Another problem we do not explore is
the existence of responsibility voids [Braham and van Hees,
20111, i.e., situations in which a group of agents should be
held accountable for an outcome, while at the same time, no
individual agent intended that outcome.
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Intention in artificial intelligence. We borrow the concept
of intention as a set of states to reach from standard BDI lit-
erature [Rao and Georgeff, 1991; Rao and Georgeff, 1995].
Closest related to our work is [Simari and Parsons, 2011],
where the authors develop a mapping from the BDI formal-
ism to the MDP formalism. The mapping they propose on in-
tentions to policies in MDPs yields a definition of intentions
in MDP similar to our Definition 1 of intentional behavior
under perfect knowledge. In contrast to our work, Simari and
Parsons focus on optimal policies in MDPs and their corre-
spondence to plans following a certain intention in the BDI
model. Therefore, their mapping holds only for optimal poli-
cies and cannot be applied to agents with suboptimal policies.

A central element in the definition of intention is commit-
ment: an agent should not reconsider its intentions too of-
ten [Cohen and Levesque, 1990]. Although we do not model
reconsideration as it relates to time, the intention quotient p,-
can be interpreted as a quantitative measure of the agent’s
commitment to reach a certain state.

Responsibility and accountability. The concept of inten-
tion of rational agents, both humans and non-humans, has
been the subject of extensive study in the context of philoso-
phy of action [Anscombe, 1957; Mele, 1992; Bratman, 1999]
as well as in its relation to moral responsibility [Braham and
van Hees, 2012; Scanlon, 2010]. The concept of agency is
a necessary element in assigning responsibility, leading to
issues when the agency is diluted among many individu-
als [Shapiro, 2014; Braham and van Hees, 2011]. There is an
ongoing debate in the philosophy of mind, between those that
consider that an agent’s reasoning is sufficient to explain their
actions [Quine, 19691, and those who maintain that extrinsic
information must be imported through a “Principle of Char-
ity” [Davidson, 1963]. By building a model of the agent’s
knowledge (the MDP) to inquire about their behavior, we are
assuming the latter position. Recent work attempts to answer
similar questions from the former [Judson er al., 2023].

Causality and blame attribution. A basic element for
a complete accountability process is the study of causal-
ity [Halpern and Pearl, 2005a; Halpern and Pearl, 2005b].
The foundational work of [Chockler and Halpern, 2004] in-
troduced a quantitative notion of causality, by studying de-
grees of responsibility and blame. Responsibility and blame
allocation has been extensively developed in the context of
non-probabilistic structures (see, e.g., [Aleksandrowicz et al.,
2017] for the characterization of complexity or [Yazdanpanah
and Dastani, 2016] for a multi-agent framework). More re-
cent and more closely related to our approach is the work
of [Baier et al., 20211, studying responsibility and blame in
Markov models. The study of harm from a causality per-
spective is also gaining attention recently, with [Beckers et
al., 2022] studying harm from an actual causality perspec-
tive, and [Richens er al., 2022] studying harm from a proba-
bilistic perspective, heavily relying on counterfactuals. Coun-
terfactual analysis [Lewis, 2013] is a key concept in causal-
ity [Pearl, 2009], used in an analogous way as our generation
of counterfactual scenarios. We go one step further by relat-
ing the implementation of the agent to the best and worst im-

plementation for reaching an intended event. Another recent
approach to blame attribution is [Triantafyllou er al., 2021],
which studies multi-agent Markov decision processes from a
game-theoretic perspective.

Policy-discovery methods. Since the popularization of re-
inforcement learning, there exist several methods for obtain-
ing representations of a black-box agent, by studying traces of
such agents. In inverse reinforcement learning [Ng and Rus-
sell, 2000; Agha and Palmskog, 2018], the agent is assumed
to be maximizing an unknown reward function, and the objec-
tive is to find the reward function that best explains the agent’s
performance over a set of traces. These methods could poten-
tially be used as a pre-processing step to apply our framework
to black box agents. In any case, the obtained representations
must be accurate enough before using them for any account-
ability process.

Explainability. One of the most influential works in ex-
plainability of Al is [Miller, 2019], which studies how ex-
plainability should rely on concepts from social sciences.
More recently [Winikoff et al., 2021] uses the built-in no-
tions of desire, beliefs and intentions to study explainability
of BDI models, relying on concepts from the sociology lit-
erature. While the main paradigm in explainable reinforce-
ment learning is applying techniques from explainable ma-
chine learning [Puiutta and Veith, 2020], our analysis of in-
tentional behavior can be used as a method to aid the inter-
pretability of agents operating in MDPs, using concepts from
the philosophy of action [Bratman, 1987].

9 Conclusion & Future Work

In this paper, we analyzed policies in MDPs with respect to
intentional behavior taking uncertainties into account. Our
method uses probabilistic model checking to automatically
compute the best and worst possible policy for reaching a set
of intended states. We assess evidence of intentional behavior
in a policy by relating it to the best and worst policies, and use
counterfactual analysis to generate more evidence if needed.

In future work, we want to extend our current analysis by
considering a multitude of possibly conflicting intentions of
the agent. Another interesting line of work is to extend the
study of intentional behavior to multi-agent systems, in which
cooperative or competitive intentions may arise. We also want
to study long executions, where the agent has time for recon-
sideration. Furthermore, we want to implement our frame-
work to study reinforcement learning agents in challenging
application areas.
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