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Failed power domination in grids, cylinders, and tori
Isabel T. Byrne, Gretchen L. Matthews, Nikita M. Patel,

Anuradha G. Trivedi and Margaret A. Winslow
(Communicated by Glenn Hurlbert)

The power domination number of a graph is the minimum number of vertices
required to monitor the graph. Here, the notion of monitoring is given by a set
of rules for power system monitoring where vertices model phasor management
units (PMU) in a power network. We consider the failed power domination
number of a graph G, �fp(G), a recently introduced graph parameter. Any set of
vertices of G whose cardinality is greater than �fp(G) will dominate the graph.
The failed power domination number also allows one to consider PMU (or node)
failure. Indeed, any set of �fp(G)+ i +1 vertices will monitor the network even in
the presence of i node failures. We establish the failed power domination number
for products of paths and cycles including square grids, tori, and hypercubes and
provide bounds for the failed power domination number of square cylinders.

1. Introduction

The power domination number �p(G) of a graph G is the smallest number of vertices
that can monitor the graph. Introduced by Haynes, Hedetniemi, Hedetniemi, and
Henning [Haynes et al. 2002], power domination is now a well-studied concept and
one of many vertex domination problems. Here, vertices in a power dominating set
correspond to phasor management units (PMUs) in a power network. The power
domination number is motivated by applications where PMUs are expensive, so
minimizing the number needed is important for cost savings. In general, placement
of the PMUs is crucial, meaning that not every collection of �p(G) vertices will be
power dominating. Thus, clever placement of �p(G) the PMUs may be required
to monitor the network. While the setting described here is in terms of power
networks, the concept applies more broadly to any system in which nodes are
selected to monitor the network in such a way that their neighbors are monitored
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and a propagation rule allows for each of these nodes to monitor a neighbor precisely
when it has exactly one presently unmonitored neighbor.

This notion is formalized as follows. Let G be a simple graph with vertex
set V (G) and edge set E(G). The closed neighborhood of a set of vertices S ✓ V,
N [S], is the set S together with all vertices adjacent to vertices in S. Given S ✓V (G),
the set of monitored vertices at the i-th step of propagation, P

i (S), is defined as
follows for i � 0:

(1) P
0(S) = N [S].

(2) P
i+1(S) = P

i (S) [ {w : {w} = N [v]\P
i (S) for some v 2 P

i (S)}.
Let P

1(S) := S1
i=0 P

i (S). The set S is said to be a power dominating set if and
only if P

1(S) = V (G), and the power domination number of G is

�p(G) := min{|S| : S is a power dominating set of G}.
In this paper, we consider how large a set of vertices can be that still fails to

monitor the network. The failed power domination number �fp(G) of a graph G was
introduced by Glasser, Jacob, Lederman, and Radziszowski to capture this quantity.
In [Glasser et al. 2020], they prove that the computation of �fp(G) is NP-hard,
consider graphs which realize the extreme values of �fp(G), and determine �fp(G)

for complete bipartite graphs G = Km,n , ladder graphs G = Km⇤P2, and products
G = Km⇤Pn .

Understanding the failed power domination number of a family of graphs is impor-
tant, because any set of vertices whose cardinality is greater than �fp will dominate
the graph regardless of which vertices are selected. The failed power domination
number also allows a shift of focus from minimizing cost to preventing network
failure. It allows the guarantee of network monitoring even in situations where nodes
may go offline, so to speak, and are no longer able to provide monitoring. The failed
power domination number of a graph is relevant to PMU placement because this
number determines the minimum number of PMUs that are needed to monitor the
network regardless of placement, as well as the minimum number required to guar-
antee that the network is monitored even if some nodes fail to provide monitoring.

This paper is organized as follows. Section 2 provides the necessary background
and notation to be used throughout this work. Section 3 contains results on the failed
power domination number of grids, cylinders, and tori, and those for hypercubes
are found in Section 4. The paper concludes with a summary and open problems in
Section 5.

2. Preliminaries

This section includes background material on failed domination as well as notation
that will be used in the paper.
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Figure 1. A graph G with �fp(G) = 3 in which {a, c, d} is a failed
power dominating set, while {a, bc} is not.

Definition 1. A set S ✓ V (G) is a failed power dominating set of a graph G

if P
1(S) 6= V (G). The failed power domination number of G, �fp(G), is the

maximum cardinality achieved by a set of vertices which is not a power dominating
set of G, meaning

�fp(G) := max{|S| : S is not a power dominating set of G}.

We say that a vertex v 2 V (G) is power dominated by S if and only if v 2 P
1(S);

if S is clear from the context, we simply say that v is power dominated. A set is said
to be stalled if P

0(S) = P
1(S). We use the terms monitor and power dominate

interchangeably. These ideas are illustrated in the next example.

Example 2. Let G be the graph in Figure 1. Consider S = {a}. Then P
0(S) =

{a, b, c}, being the closed neighborhood of a. Then d is power dominated by {c},
and P

1(S) = {a, b, c, d} = P
1(S) = V (G) \ {e, f, g}. Thus, S is a failed power

dominating set since P
1(S) 6= V (G). On the other hand, T = {b} is a power

dominating set as P
0(T )={a, b, c, e, f } and P

1(T )= V (G) as N [c]\P
0(T )={d}

and N [ f ] \ P
0(T ) = {g}.

We claim that �fp(G)=3. Notice that W := {a, c, d} is a failed power dominating
set of G. Indeed, P

0(W ) = {a, b, c, d} = P
1(W ) 6= V (G) as |N [b] \ P

0(W )| = 2.
Thus, �fp(G) � 3.

To verify that �fp(G)  3, consider U ✓ V (G) that is a failed power dominating
set. Notice that b /2 U ; otherwise, {b} being a power dominating set would force
U to also be power dominating. If b /2 N [U ], then |U |  2. It remains to consider
the situation in which b 2 N [U ], meaning at least one of the vertices a, c, e, f is
in U. If a 2 U, then e, f, g /2 U, as otherwise U is a power dominating set. Thus,
U ✓ {a, c, d}. Suppose that a /2 U. If c 2 U, then g /2 U (otherwise U is a power
dominating set); we may also rule out the case where e, f 2 U, as then U would
be a power dominating set. Hence, U ✓ {c, d, e} or U ✓ {c, d, f }. Suppose now
that a, c /2 U. If e 2 U, then either U ✓ {d, e} or U ✓ {e, f, g}, as it is not possible
that d 2 U along with f 2 U or g 2 U. In the remaining case, U ✓ {d, f, g}. We
conclude that |U |  3, proving that �fp(G) = 3.
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Not every set of vertices with cardinality 3 is a failed power dominating set, as
{a, b, c} illustrates. However, every set of four vertices is power dominating.

Because the failed power domination number is the maximum number of vertices
that fail to form a power dominating set, any set of �fp(G)+ 1 vertices is a power
dominating set of G, meaning any set of �fp(G)+1 vertices can monitor G. Hence:

• Any set of �fp(G) + 1 PMUs can monitor the network.
• Any set of �fp(G) + 2 PMUs can monitor the network even in the event of a

single PMU failure.
• Any set of �fp(G)+ i + 1 PMUs can monitor the network even in the event of

i node failures.

This can be seen in Example 2. Any set of four vertices of G can monitor the
network, and the largest failed power dominating set has size 3. Moreover, given any
collection of five vertices of G, omitting any one of them leaves four vertices which
are guaranteed to be a power dominating set as �fp(G) = 3. This allows for a single
vertex to fail to provide monitoring and yet the entire network is still monitored.

Notation. The set of nonnegative integers is denoted by N, and the set of positive
integers is written as Z+. Given n 2 Z+, [n] := {1, 2, . . . , n}. All graphs considered
in this paper are simple graphs. Given a graph G and vertices u, v 2 V (G), uv

denotes the edge incident with u and v. For n 2 Z+, the path on n vertices is denoted
by Pn , and the cycle on n vertices is denoted by Cn . Given two graphs G and H ,
G⇤H denotes their Cartesian (or box) product, meaning V (G⇤H)= V (G)⇥V (H)

and (u, v)(u0, v0) 2 E(G⇤H) if and only if u = u
0 and vv0 2 E(H) or uu

0 2 E(G)

and v = v0.

3. Grids, cylinders, and tori

In this section, we consider the failed power domination numbers of grids, cylinders,
and tori. These graphs have a common vertex set

Vmn = [m] ⇥ [n],
where m, n 2 Z+, and we will see that they share a key property with respect to
failed power domination.

Recall that the m ⇥ n grid Gm⇥n , cylinder Cm⇥n , and torus Tm⇥n have vertex
set Vmn with edge sets as follows:

E(Gm⇥n) = {(i, j)(i, j + 1) : i 2 [m], j 2 [n � 1]}
[ {(i, j)(i + 1, j) : i 2 [m � 1], j 2 [n]},

E(Cm⇥n) = E(Gm⇥n) [ {(1, j)(m, j) : j 2 [n]},
E(Tm⇥n) = E(Cm⇥n) [ {(i, 1)(i, n) : i 2 [m]}.
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Alternatively, we may consider these graphs as products: Gm⇥n = Pm⇤Pn , Cm⇥n =
Cm⇤Pn , and Tm⇥n = Cm⇤Cn . In such a graph G we set the notation

Rowr (G) := {r} ⇥ [n],
Colc(G) := [m] ⇥ {c}

for r 2 [m] and c 2 [n] and refer to these sets of vertices as a row and column respec-
tively. For convenience, we set Rowr (Gm⇥n)= Colc(Gm⇥n)= Colc(Cm⇥n)=? for
r /2 [m] and c /2 [n]. Moreover, for Rowr (Cm⇥n) and Rowr (Tm⇥n), we consider the
indices as r (mod m); similarly, we take the index to be c (mod n) in Colc(Cm⇥n).
In addition, we use the adjective square to refer to grids, cylinders, and tori where
m = n.

Lemma 3. Consider a graph G which is a grid, cylinder, or torus. If S is a

failed power dominating set of G, then for all i 2 [m] and all j 2 [n] we have

Rowi (G), Colj (G) * S. Moreover, for all t 2 N there exists i 2 [m � 1] such that

Rowi (G), Rowi+1(G) * P
t(S). Similarly, for all t 2 N there exists j 2 [n � 1]

such that Colj (G), Colj+1(G) * P
t(S).

Proof. Let G be any m ⇥ n grid, cylinder, or torus with vertex set Vmn = [m] ⇥ [n]
and failed power dominating set S.

Suppose there exists r 2 [m] such that Rowr (G) ✓ P
t(S). Consider the smallest

such t . If t = 0, then Rowr�1(G) [ Rowr+1(G) ✓ P
1(S). Then Rowr+2(G) [

Rowr�2(G) ✓ P
2(S). This pattern continues until P

1(S) = P
k(S) = V (G) for

some k 2 Z+. Hence, t > 0, demonstrating that Rowr (G) ✓ P
0(S). A similar

argument applies in the situation where Colc(G)✓ P
t(S) for some c 2 [n] and t 2 N.

Suppose Rowr (G), Rowr+1(G) ✓ P
t(S) for some t 2 N and r 2 [m � 1]. Then

in P
t�1(S), there is a vertex whose only neighbor outside of P

t�1(S) is (r, j) for
some j 2 [n]. Moreover, every vertex in Rowr (G) has at most one neighbor outside
of P

t(S). Thus, Rowr�1(G) [ Rowr+1(G) ✓ P
t+1(S). This will continue so that

there exists k 2 N such that P
k(S) = P

1(S) = V (G). A similar argument applies
in the situation where Colc(G), Colc+1(G) ✓ P

t(S) for some c 2 [n] and t 2 N. ⇤
According to Lemma 3, a failed power dominating set of a grid, cylinder, or

torus cannot contain a set that power dominates two consecutive rows or columns
of vertices of G. This will be useful in determining the failed power domination
number for these families of graphs.

Theorem 4. The failed power domination number of the square grid Gn⇥n with

n � 2 is

�fp(Gn⇥n) = (n � 1)(n � 2).

Proof. We begin by showing that �fp � (n � 1)(n � 2). Let

S = {(i, j) : i � j + 2 or j � i + 2},
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so that S includes all vertices except those on the main diagonal and the two
diagonals next to it. Then |S| = n

2 � n � 2(n � 1) = n
2 � 3n + 2 = (n � 1)(n � 2).

We claim that S is not a power dominating set.
Suppose that (i, j) 2 S. Then the neighbors of (i, j) are {(i + 1, j), (i � 1, j),

(i, j + 1), (i, j � 1)}, and either i � j + 2 or j � i + 2. In the case i � j + 2, we
have (i + 1, j) 2 S and (i, i � 1) 2 S. Additionally, (i, j + 1), (i � 1, j) 2 S if and
only if i 6= j + 2. In the case j � i + 2, we have (i � 1, j) 2 S and (i, j + 1) 2 S.
Additionally, (i, j � 1), (i + 1, j) 2 S if and only if j 6= i + 2. This indicates that
there exist neighbors of (i, j) that are not in S only if i = j + 2 or j = i + 2. This
leads to the conclusion that

P
0(S) = S [ {(i, j) : i = j + 1 or j = i + 1}.

For an arbitrary (i, j) 2 P
0(S)\S, either i = j + 1 or j = i + 1. It follows that

if (i, j) 2 P
0(S)\S, then (i, j) has exactly two neighbors in V \P

0(S), namely
(i, i) and ( j, j). This implies that no additional vertices in V (Gn) can be power
dominated, so P

1(S) = P
0(S), which means that this is a stalled set. Note that

(1, 1) 2 P
1(S), which confirms that S is a failed power dominating set. Hence,

�fp(Gn) � (n � 1)(n � 2).
Next, we will show that �fp < (n � 1)(n � 2) + 1. Consider S ✓ V (Gn) such

that |S| � n
2 � 3n + 3. Note that |V (Gn) \ S|  3n � 3, so there are at least three

rows and columns with more than n � 3 vertices in S. According to Lemma 3, if
|Rowr (G)\ S|  n � 1 or |Colc(G)\ S|  n � 1 for some r 2 [m] or c 2 [n], then
S is a power dominating set.

Suppose each row and column of G has no more than n � 2 vertices in S. Then
there must be three rows and three columns with n � 2 vertices in S while the
rest have at least n � 3 vertices in S. If |Rowr (G) \ S| = n � 2, then Rowr (G) \
(V (G) \ S) = {(r, 1), (r, 2)} or Rowr (G) \ (V (G) \ S) = {(r, n � 1), (r, n)}, as
otherwise Rowr (G) ✓ P

0(S) as each vertex in Rowr (G) \ S would have a neigh-
bor on that same row which is an element of S. Therefore, the vertices (1, 2),
(2, 1), (2, 2) are in P

0(S), which means that Col2(G) ✓ P
0(S). It follows that the

vertex (1, 1) is in P
1(S). Consequently, Col1(G) ✓ P

1(S) and Col2(G) ✓ P
1(S).

By Lemma 3, S is a power dominating set. Thus, �fp(G) < n
2 � 3n + 3. It follows

that �fp(G) = (n � 1)(n � 2). ⇤

Example 5. Consider the 10 ⇥ 10 grid G10⇥10 as in Figure 2. Elements of S =
{(i, j) 2 [10] ⇥ [10] : i � j + 2 or j � i + 2} are the gray vertices, and the black
vertices are the neighbors of S. Hence, the set of the gray and black vertices is
precisely P

0(S). Notice that, for all v 2 P
0(S), we have |N [v] \ P

0(S)| 2 {0, 2}.
As a consequence, P

0(S) = P
1(S) = [10] ⇥ [10] \ {(i, i) : i 2 [10]} and the white

vertices are never power dominated.
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Figure 2. The 10 ⇥ 10 grid G10⇥10 along with a maximal failed
power dominating set S ={(i, j)2 [10]⇥[10] : i � j +2 or j � i +2}.

One might wish to compare the power domination and failed power domination
number for square grids. According to [Dorfling and Henning 2006],

�p(Gn⇥n) =
⇢d(n + 1)/4e if n ⌘ 4 (mod 8),

dn/4e otherwise.

While smart choice of d(n + 1)/4e vertices yields a power dominating set of Gn⇥n ,
there are subsets of vertices of cardinalities up to (n � 1)(n � 2) which fail to be
power dominating sets. Taking n = 10 as in Example 2 reveals �p(G10⇥n) = 3,
whereas �fp(G10⇥n) = 72, indicating that a clever choice of three vertices provides
monitoring of the network, but choosing vertices at random, up to 72 of them, may
result in a set of vertices which fail to monitor the network.

Next, we consider failed power domination for cylinders.

Proposition 6. The failed power domination number of the square cylinder Cn⇥n

with n � 3 satisfies

�fp(Cn⇥n) � n
2 � 6n + 10.

Proof. We consider the two cases depending on the parity of n and provide a failed
power dominating set in each case.

First, consider the case where n � 4 is an even integer. Let

S
0 =

8
<

:(i, j) :
n

2
� i + 3  j  n

2
+ i � 1 if 2  i  n

2
,

i � n

2
+ 1  j  3n

2
� i � 1 if n

2
+ 1  i  n � 1

9
=

; ,

C =

8
><

>:
(i, j) :

j  n�2�2i

2
or j � n+6+2i

2
if 1  i  n�4

2
,

j  �n�6+2i

2
or j � 3n+6�2i

2
if n+6

2
 i  n

9
>=

>;
.

For n = 4, let S = S
0; when n � 6, let S = S

0 [ C . Clearly, S ✓ V (Cn⇥n). Notice
that |S| = n

2 � 6n + 10.
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We claim that S is a failed power dominating set. To see this, note that the
neighbors of C that are not elements of S are elements of

C1 =

8
><

>:
(i, j) :

j = n�2i

2
or j = n+4+2i

2
if 1  i  n�4

2
,

j = �n�4+2i

2
or j = 3n+4�2i

2
if n+6

2
 i  n

9
>=

>;
,

and the neighbors of S
0 that are not elements of S are elements of

S
0
1 =

8
><

>:
(i, j) :

j = n�2i +4
2

or j = n+2i

2
if 1  i  n�4

2
,

j = �n+2i

2
or j = 3n�2i

2
if n+6

2
 i  n

9
>=

>;
.

Hence, P
0(S) = S [C1 [ S

0
1. It follows that for (i, j) 2 P

0(S)\S, either (i, j) 2 C1
or (i, j) 2 S

0
1. In either case, every such vertex will have two neighbors that are not

elements of P
0(S). Therefore, P

1(S) = P
0(S).

One may see that (1, n/2) 2 V (Cn⇥n)\ P
1(S), as its neighbors are (1, n/2�1),

(1, n/2 + 1), (2, n/2), none of which are elements of S. Indeed, the elements
of S on Row1(Cn⇥n) are (1, j) with j  n/2 � 2 or j � n/2 + 4, and those on
Row1(Cn⇥n) are (2, j) with j  n/2 � 3 or j � n/2 + 5. This confirms that S is a
failed power dominating set, so �fp(Cn⇥n) � n

2 � 6n + 10 for even n � 4.
Next, consider the case where n � 3 is an odd integer. Let

S
0 =

n
(i, j) : for i = n+1

2
± k, 2 + k  j  n � 1 � k for k 2 {0} [

h
n�3

2

io
,

C =

8
><

>:
(i, j) :

j  n�3�2i

2
or j � n+5+2i

2
if 1  i  n�5

2
,

j  �n�5+2i

2
or j � 3n+7�2i

2
if n+7

2
 i  n

9
>=

>;
.

For n  5, let S = S
0; when n � 7, let S = S

0 [ C . Notice that |S| = n
2 � 6n + 10.

The neighbors of C that are not elements of S are elements of

C1 =

8
><

>:
(i, j) :

j = n�1�2i

2
or j = n+7+2i

2
if 1  i  n�5

2
,

j = �n�7+2i

2
or j = 3n+7�2i

2
if n+5

2
 i  n

9
>=

>;
,

and the neighbors of S
0 that are not elements of S are elements of

S
0
1 =

8
><

>:
(i, j) :

j = n+1±2i

2
if 1  i  n+1

2
,

j = (n+1)±(2n�2i)
2

if n+1
2

 i  n

9
>=

>;
.

Hence, P
0(S) = S [C1 [ S

0
1. It follows that for (i, j) 2 P

0(S)\S, either (i, j) 2 C1
or (i, j) 2 S

0
1. In either case, every such vertex will have two neighbors that are not

in P
0(S). Therefore P

1(S) = P
0(S).
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Figure 3. The 6⇥6 cylinder C6⇥6 on the left and the 7⇥7 cylinder
C7⇥7 on the right with maximal failed power dominating sets
highlighted in gray.

One may see that (1, (n � 1)/2) 2 V (Cn⇥n) \ P
1(S), as its neighbors are

(1, (n�1)/2�1), (1, (n�1)/2+1), and (2, (n�1)/2), none of which are elements
of S. It follows that S is a failed power dominating set, so �fp(Cn) � n

2 � 6n + 10
for odd n � 3. ⇤

Example 7. Consider the 6 ⇥ 6 cylinder C6⇥6 as in the left-hand side of Figure 3.
Elements of S = S

0[C are the gray vertices, and the black vertices are the neighbors
of elements of S. Hence, the set of gray and black vertices is precisely P

0(S). It is
easy to see that P

1(S)= P
0(S). Indeed, for v 2 P

0(S), we have |N [v]\P
0(S)| 6= 1.

We can also confirm that (1, 3) /2 P
1(S). Similarly, the odd case is illustrated by

the 7 ⇥ 7 cylinder C7⇥7 in the right-hand side of Figure 3.

While one can verify that �fp(Cn)  n(n � 3), it remains an open question to
determine a tight upper bound for the failed domination number of a cylinder.

It is interesting to compare the power domination number and the given bound
on the failed power domination number for cylinders. According to [Koh and Soh
2019] (see also [Barrera and Ferrero 2011]), the power domination number of the
n ⇥ n cylinder Cn⇥n with n � 3 is

�p(Cn⇥n) =
⇢d(n + 1)/4e if n ⌘ 4 (mod 8),

dn/2e otherwise,

whereas Proposition 6 shows �fp(Cn⇥n) � n
2 �6n +10. Taking n = 6 (resp. n = 7)

as in Example 7 yields �p(C6⇥6) = 3 (resp. �p(C7⇥7) = 4), while �fp(C6⇥6) � 10
(resp. �fp(C7⇥7) � 17).

Next, we consider failed power domination for tori.

Theorem 8. The failed power dominating number of the square torus Tn⇥n with

n � 4 is

�fp(Tn⇥n) = n(n � 3).
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Proof. We begin by showing that �fp(Tn⇥n) � n(n � 3). Let

S = {(i, j) 2 [n]⇥ [n] : j 6= i �1 (mod n), j 6= i �2 (mod n), j 6= i �3 (mod n)}.

Note that in each row of Tn⇥n , there are three consecutive vertices, meaning they
form a P3, which are not elements of S, and |S| = n(n � 3).

One can verify that

P
0(S)\S = {(i, j) : j = i � 3 (mod n) or j = i � 1 (mod n)}

and P
0(S) = {(i, j) : j 6= i � 2 (mod n)}; therefore,

V (Tn⇥n)\P
0(S) = {(i, j) : j = i � 2 (mod n)}.

Let (i, j) 2 P
0(S)\S. Notice that (i, j) has exactly two neighbors in the set

V (Tn⇥n)\P
0(S), namely (i, ( j+1) (mod n)) and ((i�1) (mod n), j). This implies

that P
1(S) = P

0(S), which means that this is a stalled set. Note that (1, n � 1) 2
V (Tn⇥n) \ P

1(S). Thus, S is a failed power dominating set, and �fp(Tn⇥n) �
n(n � 3).

Next, we will show that �fp < n(n � 3) + 1. Consider S ✓ V (Tn⇥n) such that
|S| = n

2 � 3n + 1 = n(n � 3) + 1. Suppose that S is not a power dominating set.
According to Lemma 3, for all i 2 [n] we have Rowi (Tn⇥n)* S and for all t 2 N and
i 2 [n�1] we have Rowi (Tn⇥n), Rowi+1(Tn⇥n)* P

t(S). Thus, there exists at least
one row Rowi Tn⇥n such that S contains at least n � 2 of its vertices. Since every
vertex in the row is adjacent to two other vertices in that row, it follows that every
vertex in the row is adjacent to a vertex in S; that is, Rowi Tn⇥n ✓ P

0(S). In addition,
for all r 2 [n]\{i}, we have |Rowr (Tn⇥n)\ P

0(S)|  1. Suppose (i �1, j) /2 P
0(S)

for some j 2 [n]. Then Rowi�1 Tn⇥n \ S = {i � 1} ⇥ [n] \ { j � 1, j, j + 1},
since |Rowi�1 Tn⇥n \ S| = n � 3. Thus, (i � 1, j � 1), (i � 1, j + 1) 2 P

0(S).
If (i � 1, j) 2 P

0(S), then S is a power dominating set by Lemma 3. Similarly,
(i+1, j)2 P

0(S). Note that (i±2, n�1) /2 P
0(S). Continuing in this fashion, we see

that V (Tn⇥n) \ P
0(S) ✓ Colj�1(Tn⇥n) [ Colj (Tn⇥n). An application of Lemma 3

yields P
1(S) = V (Tn⇥n), which is a contradiction. As a result, �fp(Tn⇥n) <

n(n � 3) + 1. We conclude that �fp(Tn⇥n) = n(n � 3). ⇤

Example 9. Figure 4 shows a 6 ⇥ 6 torus in which the gray vertices are precisely
the elements of

S = {(i, j) : j 6= i � 1 (mod n), j 6= i � 2 (mod n), and j 6= i � 3 (mod n)},

and the set of gray and black vertices is precisely P
0(S). The white vertices are

never power dominated. Here, we see that up to half of the vertices of T6⇥6 may fail
to power dominate the network. However, any choice of 19 vertices will provide
monitoring of the network.
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Figure 4. The 6 ⇥ 6 torus T6⇥6 along with the maximal failed
dominating set S = {(i, j) : j 6= i � 1 (mod 6), j 6= i � 2 (mod 6),

and j 6= i � 3 (mod 6)}.

It is interesting to compare the power domination and failed power domination
numbers for tori. According to [Koh and Soh 2019] (see also [Barrera and Ferrero
2011]), the power domination number of the n ⇥ n cylinder Tn⇥n with n � 3 is

�p(Tn⇥n) =
⇢d(n + 1)/2e if n ⌘ 2 (mod 4),

dn/2e otherwise,

whereas Theorem 8 shows �fp(Tn⇥n) = n(n � 3). Considering the 6 ⇥ 6 torus as
in Example 9, we see that �p(Tn⇥n) = 4, whereas �fp(Tn⇥n) = 18. This indicates
that a smart choice of vertices allows the network to be monitored with only four
vertices, yet there are configurations of up to 18 vertices that fail to do so.

4. Hypercubes

In this section, we turn our attention to failed power domination for hypercubes.
Fix n 2 Z+. The n-dimensional hypercube is

Qn := P
n

2 = P2⇤ · · ·⇤P2| {z }
n

.

It is convenient to set up some notation to describe Qn in terms of its vertex set and
edge set. Let F2 := {0, 1}. Consider Fn

2 := {(u1, . . . , un) : ui 2 F2 for all i 2 [n]}.
Given u, v 2 Fn

2, the distance between them is

d(u, v) := |{i 2 [n] : ui 6= vi }|,
and the weight of u is

wt(u) := |{i 2 [n] : ui 6= 0}|,
meaning the number of nonzero coordinates of u. The vertices of weight 1 are
represented by the standard basis vector expressions ei := (0, . . . , 0, 1, 0, . . . , 0),
which have a single nonzero entry in the i-th component. Then Qn has vertex set

V (Qn) = Fn

2
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and edge set
E(Qn) = {uv : d(u, v) = 1},

meaning u, v 2 V (Qn) are adjacent if and only if there exists = i 2 [n] such that
ui 6= vi and uj = vj for all j 2 [n] \ {i}.
Proposition 10. For n � 3, we have �fp(Qn) = 2n �

�
n

2

�
� n � 1.

Proof. First, we will show that �fp(Qn) � 2n �
�

n

2

�
� n � 1. Let

S := {v 2 Fn

2 : wt(v) � 3}.
We claim that S is not a power dominating set for Qn . To see this, note that

P
0(S) = {v 2 F2 : wt(v) � 2}.

For any v 2 P
0(S), we have v = ei + ej for some distinct i, j 2 [n]. Then N [v] \

P
1(S) = {ei , ej }, which implies that P

2(S) = P
1(S). Thus,

P
1(S) = {v 2 Fn

2 : wt(v) � 2} $ V (Qn),

and S is not a power dominating set for Qn . Consequently,

�fp(Qn) � |S| = 2n �
⇣

n

2

⌘
� n � 1.

Next, we will prove that �fp(Qn) < 2n �
�

n

2

�
� n. To this end, consider S ✓ Fn

2
such that |S| � 2n �

�
n

2

�
� n. Suppose that S is a failed power dominating set.

Without loss of generality, we may assume that 0 is not power dominated. Then
none of its neighbors are elements of S; that is, ei /2 S for all i 2 [n]. The weight-0
and weight-1 vertices of Qn account for n + 1 vertices of Qn \ S. As a result, there
are

�
n

2

�
�1 vertices of weight at least 2 which are elements of Qn \S. Let v 2 S such

that wt(v) = 2. Note that v will power dominate two vertices of weight 1, say ei

and ej , each of which must have a weight-2 neighbor which is not power dominated.
Let e

0
i

and e
0
j

denote such a neighbor. Then e
0
i
, e

0
j

/2 S and e
0
i
6= e

0
j
. Note that the

weight-3 neighbors of e
0
i

are not elements of S, and the same is true for e
0
j
, and

there are n � 2 such vertices. Because there can be at most one vertex in common,
there will be a total of either 2n � 3 or 2n � 4 vertices of weight 3 that are not in S.
However, 2n � 3 � 2n � 4 > 1, because n � 3. Therefore, it must be that there is
not a single element of S of weight 2. Notice that the maximum number of vertices
of weight 2 that are elements of S is bn/2c, because each weight-1 vertex has a
neighbor that is not power dominated and each weight-2 vertex only has 2 weight-1
neighbors that it can “protect”. Therefore, if S contains k weight-2 vertices, we
know that 1 < k  bn/2c. We also know that there are k � 1 vertices that are of
weight at least 3 that are not elements of S. However, we also know that the number
of weight-3 vertices that are not elements S must be at least 2n �3. This means that
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2n �3  k �1, which implies that 2n �2  k. This implies that 2n �2  k  bn/2c,
which leads to a contradiction because 2n � 2 > bn/2c for all n � 3. ⇤

In [Dean et al. 2011], it is shown that 2n�1/n  �p(Qn)  2n�blog2 nc�1 and if
n = 2k then �p(Qn)= 2n�k�1. Determining the exact value of the power domination
number of the n-dimensional hypercube when n is not a power of 2 remains open.

5. Conclusion

In this paper, we considered the failed power domination number for certain families
of graphs. A closed form expression is provided for the failed power domination
number of n ⇥ n grids, tori, and hypercubes, as well as bounds for n ⇥ n cylinders.
Determining this exact value remains an open question. It also may be interesting
to consider failed power domination for grids, cylinders, and tori which are not
square, as well as that of other graph products.
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