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A B S T R A C T 

We present posterior sample redshift distributions for the Hyper Suprime-Cam Subaru Strategic Program Weak Lensing three- 
year (HSC Y3) analysis. Using the galaxies’ photometry and spatial cross-correlations, we conduct a combined Bayesian 

Hierarchical Inference of the sample redshift distributions. The spatial cross-correlations are derived using a subsample of 
Luminous Red Galaxies (LRGs) with accurate redshift information available up to a photometric redshift of z < 1.2. We derive 
the photometry-based constraints using a combination of two empirical techniques calibrated on spectroscopic and multiband 

photometric data that co v er a spatial subset of the shear catalogue. The limited spatial co v erage induces a cosmic variance error 
budget that we include in the inference. Our cross-correlation analysis models the photometric redshift error of the LRGs to 

correct for systematic biases and statistical uncertainties. We demonstrate consistency between the sample redshift distributions 
derived using the spatial cross-correlations, the photometry, and the posterior of the combined analysis. Based on this assessment, 
we recommend conserv ati ve priors for sample redshift distributions of tomographic bins used in the three-year cosmological 
Weak Lensing analyses. 

Key words: methods: data analysis – methods: numerical – methods: statistical – techniques: photometric – galaxies: distances 
and redshifts – cosmology: observations. 
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 INTRODUCTION  

osmological weak lensing (WL) and structure growth analyses for 
he current and next generation of large area photometric surv e ys
ike the Dark Energy Surv e y (DES; e.g. Abbott et al. 2018 ),
he Kilo-Degree Survey (KiDS; e.g. Hildebrandt et al. 2017 ), the 
yper Suprime-Cam (HSC; e.g. Aihara et al. 2018 ), the Rubin
bservatory Le gac y Surv e y of Space and Time (LSST; e.g. Ivezi ́c

t al. 2019 ), the Roman Space Telescope (e.g. Spergel et al. 2015 ), and
uclid (e.g. Laureijs et al. 2011 ) depend on accurately accounting 

or sources of systematic bias and uncertainty (e.g. Mandelbaum 

018 ). The primary cosmological probes in these campaigns are 
easurements of the growth of structure based on two-point statistics 

f galaxy and gravitational shear fields (see e.g. Hikage et al. 
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e  
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2
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ublic domain in the US. 
019 ; Hamana et al. 2020 ; Asgari et al. 2021 ; Giblin et al. 2021 ;
eymans et al. 2021 ; Joachimi et al. 2021 ; Abbott et al. 2022 ;
mon et al. 2022 ; P ande y et al. 2022 ; Prat et al. 2022 ; Secco et al. 
022a ). 
Since measurements of the broad-band photometry of galaxies 

nly allow us to extract limited redshift information, measurements 
f two-point statistics of density fields are typically considered in 
rojection along the line of sight. The line of sight or sample redshift
istribution p samp ( z) enters the corresponding WL and Large-Scale 
tructure (LSS) theory predictions, which are used to constrain cos- 
ological parameters using measurements of the projected density 
elds in a lik elihood framew ork. In order to calibrate the credible

ntervals on cosmological parameters, it is important to characterize 
nd control sources of systematic bias and uncertainty in p samp ( z)
stimates (see e.g. Huterer et al. 2006 ; Hoyle et al. 2018 ; Tanaka
t al. 2018 ; Hikage et al. 2019 ; Joudaki et al. 2020 ; Hildebrandt et al.
021 ). 
23. This work is written by (a) US Go v ernment employee(s) and is in the 
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One primary science driver for photometric surv e ys is to constrain
he dark energy equation-of-state parameters by measuring the
istance–redshift and growth–redshift relations (see e.g. Albrecht
t al. 2006 , p. 31) which both enter the WL and LSS modelling
nd parametrize the growth of structure and expansion history of
ur universe. This approach leads to degeneracies between cosmo-
ogical parameters that describe the cosmic density fields, p samp ( z)
arameters that enter the aforementioned line-of-sight projection
ernel (e.g. Ma, Hu & Huterer 2006 ; Bernstein & Huterer 2010 ),
nd other modelling components such as the galaxy-dark matter bias
see e.g. Matarrese et al. 1997 ; Clerkin et al. 2015 ; Chang et al.
016 ; Prat et al. 2018 ; Simon & Hilbert 2018 ; Sugiyama et al. 2020 ;
t ̈olzner et al. 2022 ) and intrinsic alignments (Amon et al. 2022 ;
 ́anchez et al. 2022 ; Secco et al. 2022b ). Parameters that describe

he sample redshift distribution for samples of galaxies can therefore
 xhibit a de generac y with cosmological or astrophysical parameters.
naccuracies in the distance (or redshift) measurements of ensembles
f galaxies are therefore important for modelling systematics in these
urv e ys. 

The two main sources of information available to constrain
edshifts of individual galaxies as well as samples of galaxies are
easurements of their photometry and spatial clustering. Methods

hat exploit photometric information (for a recent re vie w, see Salv ato,
lbert & Hoyle 2019 ; Newman & Gruen 2022 ) can be broadly
ategorized into two classes. Empirical methods (Tagliaferri et al.
003 ; Collister & Lahav 2004 ; Gerdes et al. 2010 ; Carrasco Kind &
runner 2013 ; Bonnett 2015 ; Rau et al. 2015 ; Hoyle 2016 ) utilize
alibration data to directly learn a mapping from the measured
hotometry to the redshift of galaxies given a spectroscopic surv e y.
emplate fitting methods (e.g. Arnouts et al. 1999 ; Ben ́ıtez 2000 ;
eldmann et al. 2006 ; Ilbert et al. 2006 ; Greisel et al. 2015 ;
eistedt, Mortlock & Peiris 2016 ; Malz & Hogg 2020 ) use a

orward model that constrains the redshift of galaxies using a
ikelihood of the ‘reproduced’ galaxy flux, given a model for the
alaxy spectral energy distribution (SED) and other parameters of 
nterest. 

Both of these approaches lead to consistent estimators if their
nderlying assumptions are met and a correct statistical estimator
s constructed. Ho we ver, in real data, incorrectly modelled selection
unctions and modelling uncertainties can lead to significant model
isspecification. A particular example are selection functions in

pectroscopic data sets used for redshift calibration (Masters et al.
017 , 2019 ; Hartley et al. 2020 ), due to the impractically long ex-
osure times required to spectroscopically observe colour-complete
amples at faint magnitudes (see e.g. Huterer et al. 2014 ; Newman
t al. 2015 ). One goal of this paper is to discuss and discern the
ssumptions made in various p samp ( z) inference methodologies by
iscussing them in a unified likelihood framework. 
As mentioned, a second method to constrain p samp ( z) are spatial

ross-correlations between photometric and spectroscopic samples
e.g. Newman 2008 ; McQuinn & White 2013 ; M ́enard et al. 2013 ;
cottez et al. 2016 ; Davis et al. 2017 ; Morrison et al. 2017 ;
accanelli, Rahman & Ko v etz 2017 ; Gatti et al. 2018 ; van den
usch et al. 2020 ; Hildebrandt et al. 2021 ). Since the photometric
nd spectroscopic samples trace the same underlying dark-matter
eld, the amplitudes of the two-point function measured between
pectroscopic samples (binned in redshift) and the full photometric
ample (with no accurate redshift information) can constrain the
ample redshift distribution of the full photometric sample p samp ( z).
edshift-dependent galaxy-dark matter bias of the photometric
nd spectroscopic samples, cosmic magnification effects (see e.g.
cranton et al. 2005 ), and the redshift evolution of the underlying
NRAS 524, 5109–5131 (2023) 
ark-matter density field affect the aforementioned relative redshift
in heights. 
While it is a challenge to correct for these degenerate effects, cross-

orrelations are one of the most important techniques for p samp ( z)
alibration today. We note that two-point statistics from e.g. WL
e.g. Benjamin et al. 2013 ; St ̈olzner et al. 2021 ), or shear-ratios (e.g.
rat et al. 2019 ; Giblin et al. 2021 ; S ́anchez et al. , 2022 ) can also be
sed in the context of redshift estimation. 
Ho we ver, since WL in particular is considered one of the most

romising methods to constrain dark energy, photometric redshift
stimation is treated in our analysis as a systematic that enters the
heoretical modelling of a separate ‘cosmological’ likelihood rather
han using WL statistics as a redshift estimation technique. Recently,
he question of how to integrate redshift uncertainty into a likelihood
f two-point statistics has been considered (McLeod, Balan &
bdalla 2017 ; Hoyle & Rau 2019 ), especially in the context of
ow to combine template fitting and cross-correlation measurements
Jones & Heavens 2019 ; S ́anchez & Bernstein 2019 ; Alarcon et al.
020 ; Rau, Wilson & Mandelbaum 2020 ; Myles et al. 2021 ; Cawthon
t al. 2022 ; Gatti et al. 2022 ; Rau et al. 2022 ; Zhang et al. 2023 ).
n Rau et al. ( 2022 ), we developed a Bayesian hierarchical inference
ramework that self-consistently combines information from both
ross-correlation redshift estimation and photometry, specifically
iscussing aspects of regularization and probability calibration. Rau
t al. ( 2022 ) validate the basic aspects of our presented methodology
sing mock data where well-controlled sources of systematics are
odelled. While the usage of simulated mock data necessarily has

imitations, we performed this analysis with the greatest possible
ealism in mind. We found that a hierarchical modelling approach
imilar to the one presented in this paper can indeed reach the
ev el of accurac y necessary for LSST, as measured using common
erformance metrics. 
This paper presents the sample redshift inference methodology for

he HSC Y3 cosmological WL analysis, which consists of two cosmic
hear analyses (Dalal et al. 2023 ; Li et al. 2023a ) in four tomographic
ins and a 3x2pt analysis (Miyatake et al. 2023 ; More et al. 2023 ;
ugiyama et al. 2023 ) which uses one tomographic bin. This paper
resents our inference methodology in the context of the cosmic
hear analyses, where it was used as the default method for redshift
nference. Tomography refers here to binning the shear catalogue
long the redshift dimension, using a predictor for redshift. While the
eparation of these tomographic samples in redshift is typically not
erfect, i.e. the sample redshift distributions of adjacent tomographic
ins will o v erlap, autocorrelations and cross-correlations estimated
n the tomographic samples will have more information about
he redshift evolution of the growth of structure than the two-
oint function estimated on the unbinned sample. We utilize five
and photometry in the grizy filter set to infer the tomographic
ample redshift distributions (tomographic p samp ( z)). We apply our
ethodology to the Hyper Suprime-Cam three-year shape catalogue 1 

ata set (HSC Y3), and derive and recommend prior distributions
 v er a p samp ( z) parametrization that can be used in the subsequent
osmological WL analyses. 

This work presents a significant update to the HSC sample
edshift inference methodology developed for the first year (HSC
1) analyses presented in Hikage et al. ( 2019 ) and Hamana et al.

 2020 ). This is vital, since the increased area of the shear catalogue
rom 136 . 9 deg 2 (HSC Y1) to 433 . 5 deg 2 (HSC Y3) implies that our
edshift calibration accuracy has to significantly impro v e to prev ent
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Figure 1. Forecast of the impact and importance of using an updated p samp ( z) 
inference methodology on cosmological inference from the predicted Y3 data 
vector and covariance matrix. The purple contour uses the ‘stacked’ redshift 
distribution for the Y1 galaxy catalogue, while the orange contour uses the 
Y1 redshift distribution inferred from an analysis similar to this work. The 
change in redshift distribution causes a 0.5 σ shift in the S 8 constraints, which 
is significant for the upcoming Y3 cosmic shear analyses. 
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ystematic biases or uncertainties in cosmological parameters from 

ominating o v er the statistical uncertainties. 

 MOTIVATION  

he HSC Y1 sample redshift distribution calibration described 
n Hikage et al. ( 2019 ) and applied in the context of the Y3
osmic shear analysis in that work and in Hamana et al. ( 2020 )
stimates the sample redshift distributions in tomographic bins by 
eweighting COSMOS2015 (Ilbert et al. 2006 ; Laigle et al. 2016 )
alaxies in colour space. The quantification of uncertainty includes a 
ystematic error budget derived by comparing the reweighted sample 
edshift distribution with the sample redshift distribution estimators 
btained from a set of seven independent methods. The HSC Y1 
nalyses used uncertainties in the means of the tomographic redshift 
istributions as parameters to marginalize o v er photometric redshift 
ncertainty. 
The forthcoming HSC Y3 analyses also include a systematic error 

udget based on a comparison of models, but presents a significantly 
pdated framework for sample redshift inference that includes a 
reatment of cosmic variance as well as a cross-correlation calibration 
f sample redshift distributions based on a sample of Luminous 
ed Galaxies (LRGs, Oguri 2014 ; Oguri et al. 2018a , b ; Ishikawa
t al. 2021 ) selected using the Cluster finding algorithm based on
ulti-band Identification of Red-sequence gAlaxies (CAMIRA). We 
ill abbreviate this sample as ‘CAMIRA LRG’ in the following. 
he inclusion of a cross-correlation data vector into the inference 
f the sample redshift distribution p samp ( z) is arguably the most
ignificant impro v ement o v er the Y1 analyses, as it allows us to
ndependently test the quality of the estimated p samp ( z) in the 
omographic bins. 

We refer to the remainder of the paper for an explanation of the
SC Y3 redshift inference methodology. Ho we ver, we w ould lik e

o moti v ate the ef fect that these significant changes have on our
edshift calibration using a forecast, which is based on a mock Y3 WL
osmological analysis. We perform a mock analysis of a synthetic 
ata vector with a redshift distribution inferred for the HSC Y1 shape
atalogue, using a similar analysis to the one presented in this work,
nd compare it with an analysis using the simple ‘stacked’ redshift
istribution from Hamana et al. ( 2020 ). The main difference from
he methodology described in the rest of this work is the usage of the
irichlet distribution, as well as the usage of a model combination 

cheme described in Rau et al (in preparation) that accounts for the
odel uncertainty across the several different photometric redshift 

odes applied to the HSC Y1 data set and described in Hamana et al.
 2020 ). 

The sample redshift posteriors and the inference scheme employed 
o marginalize o v er the uncertainty in those parameters are both
escribed in Zhang et al. ( 2023 ). The sampling is based on using
he mean of the tomographic redshift distributions as the main 
arameter o v er which we marginalize (referred to as the ‘shift
odel’ in the following). The cosmological parameter inference 

s performed using the multinest method with 500 live points. We 
onsider nine cosmological and nine astrophysical parameters and 
our parameters within the shift model. The simulated data vector 
ncludes noise based on the scaled HSC first year covariance as
escribed in Zhang et al. ( 2023 ). Both contours shown in Fig. 1 use
he shift model to marginalize o v er the p samp ( z) uncertainties, where
ur prior on the tomographic p samp ( z) is generated using the mean
edshifts of 1000 samples of sample redshift posterior generated 
y the updated methodology. The prior on the mean redshift of
he stacked redshift distribution follows Hamana et al. ( 2020 ). We
enerate an approximation to the Y3 covariance by dividing the Y1
ovariance by 3, which approximately accounts for the increase in 
rea from Y1 to Y3 while ignoring changes in the contiguity of the
urv e y footprint. Fig. 1 compares the posteriors in the �m − S 8 
lane. 
We note a 0.5 σ shift in S 8 , which shows that the updated

nalysis would predict a higher S 8 value. Note that the syn-
hetic data vector is generated with the updated redshift distribu- 
ion, so the analysis with that redshift distribution reco v ers the
rue cosmological parameters. This figure illustrates the impor- 
ance of p samp ( z) calibration and in particular of a joint p samp ( z)
nalysis that includes complementary data sources and analysis 
echniques. 

 DATA  

he following sections describe the data sets and catalogues that we
se in this work. Specifically, we consider three data sets that are
ele v ant at different stages of the analysis. Section 3.1 describes the
hotometric data included in the HSC shear catalogue, Section 3.2 
he catalogue of LRGs (Oguri 2014 ; Oguri et al. 2018a , b ; Ishikawa
t al. 2021 ) that we will use for our cross-correlation analysis, and
ection 3.3 a matched catalogue between the photometric data and 
patially o v erlapping spectroscopic surv e ys. We will abbreviate the
hotometric data included in the HSC shear catalogue as ‘HSC 

hot’, the catalogue of LRGs as ‘CAMIRA LRG’, and the matched
atalogue as ‘specXphot’. 

.1 HSC Y3 shape catalogue 

he Hyper Suprime-Cam surv e y, which is part of the Subaru Strategic
rogram (SSP), is an optical imaging surv e y carried out using the Hy-
MNRAS 524, 5109–5131 (2023) 



5112 M. M. Rau et al. 

M

Figure 2. Distribution of i -band cmodel magnitudes for the four tomographic 
bins. We show the i -band cmodel magnitudes on the horizontal axis and the 
number of galaxies on the y -axis. The median magnitudes are shown in the 
legend, the magnitude bin size is � = 0.11. 
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Figure 3. Photometric versus spectroscopic redshift for CAMIRA LRG 

galaxies with spectroscopic redshifts. The dashed black line denotes perfect 
photometric redshift prediction. There is a small population (0.02 per cent) 
of redshift outliers at z spec > 5 which we do not show here. The contour line 
annotations indicate the corresponding probability density values in per cent. 
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er Suprime-Cam (HSC, Miyazaki et al. 2018 ), a wide field camera
ith 1.77 deg 2 field of view installed on the 8.2 m Subaru telescope.
he shear catalogue we use in this work, as part of the year-3 analysis,
onsists of 417 deg 2 2 of wide-field optical galaxy photometry in gri zy
ith a 5 σ limiting magnitude of r ≈ 26. We refer the reader to Aihara

t al. ( 2018 ) and Aihara et al. ( 2022 ) for a more detailed o v erview
f the design of the HSC surv e y. The catalogues from this internal
ata release along with the shape catalogue and their calibrations are
xpected to be made public as part of a future incremental update
o PDR3 (Aihara et al. 2022 ) after the cosmological analyses are 
nished. 
Fig. 2 plots the cmodel 3 magnitude distribution in the i band for the

our tomographic bins. The tomographic bins (‘Bin 1’, ‘Bin 2’, ‘Bin
’, ‘Bin 4’) are selected using a procedure described in Section 5.2 to
ave approximately the redshift ranges of (0.3, 0.6], (0.6, 0.9], (0.9,
.2], and (1.2, 1.5]. 
We see that all four tomographic bins extend to magnitudes

ainter than 24 in the i band, where the majority of galaxies have
 magnitude around that value. Bins 1–4 contain 24, 33, 28, and
5 per cent of the galaxies, respectively, and the raw (ef fecti ve)
alaxy number densities are 3.92 (3.77), 5.63 (5.07), 4.68 (4.00),
nd 2.60 (2.12) arcmin −2 . Since we present this analysis in the
ontext of the upcoming cosmic shear analysis for HSC Y3, we
pply our methodology to galaxies contained in the shear catalogue
hat has a magnitude limit of 24.5. We therefore need to include all
f the lensing selection criteria and lensing weights throughout the
nalysis. Lensing weights are inverse variance weights derived in the
onstruction of the galaxy shape estimate. For a description of the
ethodology to derive these selection criteria and lensing weights,
NRAS 524, 5109–5131 (2023) 

 We remo v e a 20 de g 2 re gion that failed the cosmic shear B-mode test (see 
hang et al. 2023 ). 
 The SDSS CModel magnitude (Lupton et al. 2001 ; Abazajian et al. 2004 ) 
lgorithm fits a galaxy using elliptical models with both an exponential profile 
nd a de Vaucouleurs profile. The derived CModel flux is approximately a 
inear interpolation between exponential and de Vaucouleurs models. We 
efer to Huang et al. ( 2017 ) for more details. 
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e refer to Li et al. ( 2022 ). In the following text, we will refer to the
hear catalogue as ‘HSC phot’. 

.2 CAMIRA LRG sample 

he CAMIRA LRG sample 4 contains LRGs selected using the
AMIRA algorithm (Oguri 2014 ; Oguri et al. 2018b ; Ishikawa et al.
021 ). CAMIRA identifies LRGs as red-sequence galaxies based
n their photometry and their consistency with the expected colours
rom stellar population synthesis models. The LRG sample has a
imited redshift range of z < 1.2 and the redshifts of these LRGs
re subject to photometric redshift error. 5 In this work, we use the
AMIRA LRG sample as a reference catalogue for spatial cross-
orrelations with galaxy samples from HSC phot. This will allow
s to construct a likelihood that constrains the p samp ( z). Since the
RG galaxy population provides a photometric sample with good

edshift quality and well-understood clustering properties, it is the
deal reference sample for cross-correlation studies. Ho we ver, as
e will describe in Section 5.5 , we need to marginalize o v er the
hotometric redshift error of the LRGs. This requires a model for the
hotometric redshift error of the CAMIRA LRG galaxies, which we
etail there. The photometric redshift error model is calibrated using
he corresponding LRG subsample of the full specXphot reference
ample described in Section 3.3 . Fig. 3 shows the photometric
edshift of the CAMIRA LRGs against the spectroscopic redshifts of
he aforementioned specXphot reference subsample as a contour plot.

e see that, especially around z spec ≈ 0.4/ z phot ≈ 0.2, a well-known
edshift region where the 4000 Å break crosses between the g and
he r filters, the photometric redshift of the CAMIRA LRG galaxies
hows a mean bias in the contour lines, although we identify a small
umber of outlier galaxies with z spec > 5. This population consists of
.02 per cent of the full CAMIRA LRG specXphot reference sample;
 ht tps://github.com/oguri/clust er cat alogs/tree/main/hsc s20a camira (Ac- 
essed 2022 June 10) 
 Photometric redshifts for LRGs are often derived using SED fitting tech- 
iques and have significantly better redshift accuracy compared with the full 
hotometric sample. 

https://github.com/oguri/cluster_catalogs/tree/main/hsc_s20a_camira
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Figure 4. Distribution of photometric redshift residuals of z spec − z PhotZ . 
The black dashed vertical line denotes the mean, while the grey contours 
show the range between the 16th and 84th percentiles (selected to resemble 
a ‘Gaussianized’ 1 σ interval). 
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he contamination is small and we leave a further investigation of
he outlier population for future work. The bias at low photometric 
edshift is also apparent in the right tail of Fig. 4 , which shows a
istogram of the residual redshift error z spec − z Phot . The black dashed
ertical line shows the mean residual redshift error (0.018), while the 
re y re gion visualizes the range between the 16th ( −0.017) and 84th
0.052) percentiles (equi v alent to the ‘Gaussian’ ±1 σ intervals). 

.3 Spectr oscopic r efer ence samples 

his section gives an overview of the spectroscopic reference 
amples that are available to match against HSC phot to generate 
he ‘specXphot’ calibration sample. We will concentrate on the 
spects that are rele v ant for this work and refer to Tanaka et al.
 2018 ) for a more detailed description of the reference samples and
he selection criteria used to generate them. The reference sample 
Nishizawa et al. 2020 ) is assembled from the following sources:
COSMOS DR3 (Lilly et al. 2009 ), zCOSMOS faint (Lilly et al.
009 ) including pri v ate spectroscopic data 6 , COSMOS2015 (Laigle 
t al. 2016 ), UDSz (Bradshaw et al. 2013 ; McLure et al. 2013 ),
D-HST (Skelton et al. 2014 ; Momche v a et al. 2016 ), FMOS-
OSMOS (Silverman et al. 2015 ), VVDS (Le F ̀evre et al. 2013 ),
IPERS PDR1 (Garilli et al. 2014 ), SDSS DR12 (Alam et al.
015 ), GAMA DR2 (Liske et al. 2015 ), WiggleZ DR1 (Drinkwater
t al. 2010 ), DEEP2 DR4 (Davis et al. 2003 ; Newman et al. 2013 ),
ANDELS DR2 (Pentericci et al. 2018 ), C3R2 (Masters et al. 
017 , 2019 ), and PRIMUS DR1 (Coil et al. 2011 ; Cool et al.
013 ). The spectroscopic redshift measurements are extracted from 

oth high-quality spectroscopic measurements ( ≈170 000 galaxies) 
nd lower resolution prism spectroscopy ( ≈37 000 galaxies). In 
ddition, Tanaka et al. ( 2018 ) also include 170 000 Cosmos2015
ultiband photometric redshifts and a sample of pri v ately obtained 

pectroscopic redshifts (Mara Salvato private communication). 
Tanaka et al. ( 2018 ) homogenize the catalogue to ensure approx-

mately uniform data quality. This is done by imposing cuts on the
uality flags in the respective source catalogues. The galaxies are 
 Mara Salvato (private communication). 

e
m
v

hen matched to HSC phot (see Section 3.1 ) to create the specXphot
eference sample. This catalogue contains both the photometric 
easurements in HSC phot and the spectroscopic redshift estimates 

rom the listed sources. 
We will utilize this data set as a reference sample to calibrate

nd train photometric redshift estimates. While the selection cuts 
mposed by Tanaka et al. ( 2018 ) are designed to minimize the
mpact of colour-redshift incompleteness on photometric redshift 
stimates trained on the specXphot calibration sample, we still have 
o consider the spatial selection function due to the much smaller
urv e y footprint of the specXphot sample in relation to HSC phot.
urthermore, residual selection function induced systematics will 

ikely remain, which moti v ates our usage of cross-correlations for
edshift calibration. 

To give an overview of this data set, Fig. 5 shows the normalized
pectroscopic redshift distribution of the specXphot sample (upper 
anel), the histogram of the i -band magnitude (middle panel), and
he spatial area co v ered by the specXphot calibration catalogue up to
i.e. fainter than) the magnitude limit plotted on the horizontal axis
lower panel). The middle panel shows that the specXphot calibration 
atalogue co v ers the magnitude range of the HSC phot sample (black
ashed histogram). We generate the lower panel by adding up the
rea as a function of i -band magnitude co v ered by the specXphot
alibration catalogue using a healpix pixelization (G ́orski et al. 2005 )
ith NSIDE = 1024. The black dashed horizontal line shows the size
f the COSMOS2015 calibration field ( ≈ 2 deg 2 ) that dominates the
ata at the faint end. It represents the lower limit on the HSC Y3
rea, for which we have available calibration data. This lower limit
ill be used in Section 5.4 to derive a conservative assessment of the

osmic variance error budget in our p samp ( z) inference methodology.

 THE  PHOTOMETRIC  REDSHIFT  PROBLEM  

he p samp ( z) of galaxies is a vital component in the modelling
f projected density fields in weak gravitational lensing and LSS. 
his one-point density distribution along the line of sight enters the
rojection kernel in the modelling of these probes. In this section,
e summarize the foundational methodology for estimating the 

edshift distributions of galaxy ensembles (‘ p samp ( z) inference’, 
ereafter). 
There are two main approaches to the photometric redshift prob- 

em. The ‘forward-modelling’ approach models the data generating 
rocess 7 and treats the p samp ( z) as the prior on the redshift of
ndividual galaxies. We note that ‘traditional’ approaches like SED 

tting would also fall under this cate gory. The alternativ e ‘conditional 
ensity estimation’ approach constructs a direct probabilistic map- 
ing between the photometry of galaxies and their redshift. For HSC,
e consider both methodologies, and therefore describe p samp ( z) 

nference in both scenarios in the following two subsections. We 
ote ho we ver that the models that we select for our final inference
‘DNNz’ and ‘DEMPz’, see Section 5.1 ) are both conditional density
stimation techniques. We still describe both methodologies in detail 
or completeness. 
MNRAS 524, 5109–5131 (2023) 

rties from population distributions like the sample redshift distribution and 
apping these quantities to measured observables, like e.g. the photometry, 

ia a likelihood (or sampling distribution). 
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M

Figure 5. Illustration of the spatial co v erage and the distribution of galaxies 
as a function of i -band magnitude for the specXphot Calibration data set 
used for p indiv ( z) estimation. Top: Spectroscopic redshift distribution of the 
specXphot calibration sample. The histogram is normalized to integrate to 
unity. Middle: Distribution of galaxies in i -band magnitude for the specXphot 
Calibration data set (red solid) and the HSC phot data set (black dashed) 
including lensing weights. Lower: Area in square de grees co v ered by the 
specXphot data set as a function of i -band magnitude. The vertical axis, 
plotted on the symmetrical log scale, shows the total area co v ered by 
all galaxies with i -band magnitude brighter than the value shown on the 
horizontal axis. The dashed horizontal line shows the area co v ered by the 
COSMOS2015 data set that dominates the specXphot data set at the faint 
end. 
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Throughout this paper we parametrize the p samp ( z) using a his-

ogram with height parameters φnz for N bins histogram bins as 

 samp ( z) = 

N bins ∑ 

i= 1 

φnz , i 1 i ( z) , (1) 

here 1 i denotes the ‘indicator’ function for a given histogram bin i .
he indicator function 1 ( z) is unity if z falls in the histogram bin, and
ero otherwise. We note that instead of a histogram parametrization
ne could also consider a kernel ansatz using, e.g. a Gaussian kernel.
his could have advantages because we could consider a continuous
NRAS 524, 5109–5131 (2023) 
pproximation with (potentially) fewer parameters. However, this
s not expected to be a vital reduction in approximation error. In
he current analysis we decided to use the histogram, a flexible
arametrization that does not necessitate the development of a
pecialized model for the p samp ( z). In the following subsections we
ill describe two methodologies to infer sample redshift distributions
 samp ( z). 
We want to briefly (and somewhat colloquially) comment on

he different interpretation of p samp ( z) in both contexts. Both tech-
iques formulate a likelihood for the parameters φ. The likelihood
ormulated in Section 4.1 describes a sampling distribution o v er
he observed flux. The approach Section 4.2 describes a sampling
istribution o v er parameters of a density estimate constructed us-
ng conditional density estimates that map directly from observed
hotometry to galaxy redshift. We highlight that it is important to
istinguish both approaches and continue with a detailed description
f each in the following subsections. 

.1 Forward-modelling approach 

he goal of the forward modelling approach in general and SED
odelling in particular is to formulate a statistical procedure that

ierarchically models the relation between ensemble distributions of
uantities of interest like galaxy redshift, type, or stellar mass, the
orresponding properties of individual galaxies and observables like
hotometry. 
In a simplified model (focussing on the redshift z as the quantity

f interest) we can formulate this as (e.g. Leistedt et al. 2016 ; Malz &
ogg 2020 ; Rau et al. 2022 ) 

( ̂  F | φnz , �) = 

N gal ∏ 

i= 1 

∫ 
d z i ω i p( f i | z i , �) p( z i | φnz , �) . (2) 

ere, ˆ F denotes the set of fluxes of all N gal galaxies in the sample,
 i ( z i ) denotes the flux in a filter set (redshift) of the individual galaxy
ith index i , and � denotes a set of auxiliary parameters that describe
ther galaxy properties such as galaxy type or stellar mass. The
actor ω i denotes the lensing weight for galaxy i . We note that bold
ymbols denote vector quantities. Equation ( 2 ) assumes that the flux
nd redshift of each galaxy are drawn independently of any other.
o simplify the notation we will implicitly assume conditioning
n �, but omit it from the notation in the following discussion.
ffects like blending (MacCrann et al. 2022 ; Li et al. 2023b ) break

he aforementioned assumption of independence of the galaxy flux
easurements. This requires either the formulation of a joint flux

ikelihood of sets of galaxies or a reformulation of the likelihood
n the pixel level to facilitate a joint inference with photometry and
hear. We do not expect this approximation to dominate the error
udget for this analysis and refer to future work. Also, note that
i et al. ( 2022 ) explored the connection between redshift and shear
alibration in the context of simulations devised to explore blending
ffects for HSC surv e y data, and hav e already folded this effect into
ur understanding of redshift-dependent shear calibration. 
We identify the term p( f i | z i , �) in equation ( 2 ) as the likelihood

f the observed individual galaxy flux given redshift, and the term
( z i | φnz , �) as the prior distribution of the galaxy redshifts given

he parameters that describe the sample redshift distribution (see
quation ( 1 ) for the definition of these parameters). This specifies
 forward model, where the individual galaxy redshifts z i are first
drawn’ from the sample redshift distribution, denoted by the prior
( z i | φnz , �). The likelihood then relates the drawn galaxy redshifts
 i to the observed galaxy fluxes f i via the likelihood function
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8 Note that the likelihood is not a probability density, but a function. The 
probability measure is ‘provided’ by the prior. 
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hotoz.pdf (Accessed 2022 October) 
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( f i | z i , �). We note that the sample redshift distribution p samp ( z) is
ere conditional on both the parameters φnz that are used to construct 
he distribution, as well as auxillary parameters � that describe other 
uantities of interest. 
In the following text we present a toy model that illustrates some

spects of the forward model formulation in a more concise manner. 
e also refer to Meister ( 2009 ), Rau et al. ( 2022 ), and Padmanabhan

t al. ( 2005 ) for similar introductions. Simplifying the problem and
otation we can relate equation ( 2 ) to the linear model 

nz noisy = K · φnz true (3) 

y identifying p( ̂  F | φnz , �) with a ‘smeared-out’ and observed vector
nz noisy , the set of likelihoods { p( f i | z i , �) | 0 < i < N gal } with the
atrix K and the sample redshift distribution p( z i | φnz , �) with a

oiseless, or ‘true’, vector φnz true . 
Thus, to reco v er φnz true we need to inv ert the matrix K , which

an be very sensitive to small variations in φnz noisy or the matrix 
K . The former could be caused, for example, by the photometric 
oise, the latter by model error in the forward model. The sensitivity
f the linear model on these variations depends on the condition 
umber of K , which will in turn depend on the resolution of the
econstruction, i.e. the histogram width in our parametrization. The 
orward modelling approach therefore treats p samp ( z) inference as an 
nverse problem whose solution is critically dependent on accurate 
odelling of the individual galaxy likelihoods and the regularization 

trategies that we impose. The likelihood modelling should also 
nclude how galaxies are selected into tomographic bins and other 
election functions. 

Typically one needs to ‘regularize’ this inverse problem. Regu- 
arization techniques reduce the noise in the reconstructed p samp ( z)
y adding constraints to its shape. Ideally this information is not 
hosen arbitrarily, but rather results from data-driven constraints (e.g. 
 cross-correlation data vector that is included into the inference). 
e refer to a more detailed discussion on regularization and its
ethodological challenges in our previous work (Rau et al. 2022 ). 
e w ould lik e to note that instead of analytically modelling the

ikelihood function, one can also impose a synthetic likelihood. This 
an be done for example using a density estimate constructed using
 Self-Organizing Map (see e.g. Kohonen 1982 ) that is trained on
alibration data as in e.g. S ́anchez & Bernstein ( 2019 ), Alarcon et al.
 2020 ), and Myles et al. ( 2021 ). In this case the same considerations
ould apply, where we can substitute the analytical likelihood with 
 likelihood that is empirically estimated. One of the methods 
onsidered but ultimately not selected in this work is the Mizuki SED
tting method (T anaka 2015 ; T anaka et al. 2018 ). Mizuki is an SED
tting technique that formulates an analytic likelihood function, so 

he techniques described in this section directly apply. In Appendix B , 
e provide a detailed description of our sample redshift inference 
ethodology. 

.2 Conditional density estimation approach 

he conditional density estimation approach (see e.g. Lima et al. 
008 ; Carrasco Kind & Brunner 2013 ; Rau et al. 2015 ; Dalmasso
t al. 2020 ) constructs a density estimate between the photometry of
alaxies and the redshift p ( z| f ) using a calibration, or training, data
et. As such, the conditional density estimation approach depends on 
he calibration data set to constrain the conditional distribution p ( z| f ).
he calibration data set provides information about the mapping 
etween photometry and redshift and the probability density of 
edshift given photometry. 
In contrast, forward modelling explicitly considers a likelihood 
unction or, alternatively, constructs a sampling distribution using 
umerical simulations. The forward modelling approach therefore 
ust include information on the relative abundance of galaxies of 

ifferent type and redshift into the prior (or as part of the simulation
raws). Imposing a prior on the population distributions such as the
 samp ( z) ef fecti v ely acts as a re gularization. 8 

For the conditional density estimation approach, one can for- 
ulate an estimate for the sample redshift distribution via 
arginalization 

 samp ( z) = 

∫ 
df p ( z| f) p ( f) . (4) 

Equation ( 4 ) also describes a linear system, similar to equation ( 3 ).
o we ver, equation ( 4 ) is typically much better ‘conditioned’ than

quation ( 3 ), if we do not consider regularization. 
Ho we ver, due to the dependency of a conditional density estimate

n a training data set, the conditional density estimation approach 
ften suffers from non-negligible epistemic (i.e. model) uncertainty 
nd bias in the construction of the conditional density estimates 
 ( z| f ). This can lead to sub-optimal probability calibration of the
stimates p ( z| f ). Appendix A describes an estimating function ap-
roach that allows the marginalization o v er the epistemic (or ‘model
ncertainty’) and aleatoric (or ‘intrinsic statistical noise’) uncertainty 
n the estimator construction of equation ( 4 ). This is achieved via the
ormulation of a likelihood function. 

 PHOTOMETRIC  REDSHIFT  INFERENCE  

IPELINE  

n the following subsections we describe in more detail our methodol-
gy for performing p samp ( z) inference for HSC Y3 WL analyses. We
eiterate that all estimates for p samp ( z) in this work include the lensing
eights that are available for all galaxies in the shear catalogue as
escribed in Section 3.1 . 

.1 Individual Galaxy redshift estimation 

n the following text, we will briefly describe the three photometric
edshift techniques for individual galaxies used in this work. For 
 more detailed description of these methods we refer to the
hotometric redshift analysis study for the third public data release. 9 

.1.1 Mizuki 

he photometric redshift code Mizuki (T anaka 2015 ; T anaka et al.
018 ) is an SED fitting technique. It uses an SED template set
onstructed using Bruzual–Charlot models (Bruzual & Charlot 
003 ), a stellar population synthesis code that uses an initial mass
unction following Chabrier ( 2003 ), a dust attenuation modelling 
rom Calzetti et al. ( 2000 ), and emission-line modelling assum-
ng solar metallicity (Inoue 2011 ). The method applies a set of
edshift-dependent Bayesian priors on the physical properties. After 
stimation, the photometric redshift distributions of galaxies are 
alibrated (Bordoloi, Lilly & Amara 2010 ) using the specXphot 
ata set to impro v e error quantification. We refer the reader to
MNRAS 524, 5109–5131 (2023) 

https://hsc-release.mtk.nao.ac.jp/doc/wp-content/uploads/2022/08/pdr3_photoz.pdf
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anaka ( 2015 ) and Tanaka et al. ( 2018 ) for more details on the 
ethodology. 

.1.2 DNNz 

NNz is a neural-network-based photometric redshift conditional
ensity estimation code. The DNNz architecture consists of multi-
ayer perceptrons with five hidden layers. The training uses cmodel
ux es, unblended convolv ed flux es, point spread function flux es,
nd galaxy shape information. The construction of the conditional
ensity uses 100 nodes in the output layer, and each represent a
edshift histogram bin spanning from z = 0 to 7 (Nishizawa et al. in
reparation). 

.1.3 DEMPz 

he Direct Empirical Photometric redshift code (DEMPz) is an
mpirical technique for photometric redshift estimation (Hsieh &
ee 2014 ; Tanaka et al. 2018 ) that constructs conditional density
stimates. The technique uses quadratic polynomial interpolation
f 40 nearest neighbour galaxies in a training set, with a distance
stimated in a 10-dimensional feature space (5 mag, four colours,
nd shape information). DEMPz obtains error estimates for the
onstructed conditional densities using resampling procedures. This
lso includes resampling of the input feature uncertainties and
ootstrapping the training galaxies. 

.2 Sample selection 

e bin the full sample described in Section 3.1 into four tomographic
ins by selecting galaxies using the best estimation of the DNNz
onditional density estimates within redshift intervals of (0.3, 0.6],
0.6, 0.9], (0.9, 1.2], and (1.2, 1.5]. 

After catalogue creation we identify regions of data space that
ill be difficult to calibrate using the cross-correlations with the
AMIRA LRG sample, and therefore have the potential to produce
 large systematic error (see Section 5.5 ). In particular, we identify
ouble solutions in the Mizuki SED fits and DNNz conditional
ensity estimates, associated with a significant fraction of outliers
t z � 3.0 for both methods. These photometric redshift solutions
ave redshift-template degeneracies that produce multiple solutions.
ince the secondary solutions are outside the redshift co v erage of

he CAMIRA LRG sample, they cannot be calibrated using spatial
ross-correlations. Therefore, we decide to remo v e these galaxies
rom the sample. 

We identify galaxies with double solutions by defining the fol-
owing selection metric based on the distance between the 0.025
nd 0.975 quantiles of the Mizuki posterior solutions and DNNz
onditional density estimates: (
z Mizuki 

0.975 ,i − z Mizuki 
0.025 ,i 

)
< 2 . 7 and 

(
z DNNz 

0.975 ,i − z DNNz 
0.025 ,i 

)
< 2 . 7 , (5) 

here z Mizuki 
0.975 ,i and z Mizuki 

0.025 ,i denote the 0.975 and 0.025 percentiles
or galaxy i derived using the Mizuki estimates of posterior red-
hift, respectively; and similarly for the DNNz conditional density
edshift predictions. We found that the abo v e criteria based on
he Mizuki and DNNz methods is optimal to ensure that the
emoval of double solutions is efficient for Mizuki, DNNz, and 
EMPz. 
We apply this criterion to the first and the second tomographic

edshift bins, reducing their sample size by 31 per cent and 8
er cent, respectively. The third and fourth tomographic bins have
NRAS 524, 5109–5131 (2023) 
egligible double solutions. We therefore do not apply any cuts
o the corresponding galaxy samples. We illustrate the effect of
emoving the double solutions on the stacked (summed) redshift
istribution in Fig. 6 . We can see that a reduction of 31 per cent
n sample size by applying equation ( 5 ) remo v es double solutions
or all three methods available in this work. In the following
ext, we will denote the removal of double solutions as the 
calibration cut’. 

We have also confirmed that this selection does not induce a
patial selection effect. This was tested by comparing the spatial
istribution of galaxies before and after we apply the calibration cut
nd confirming that no significant modification of the clustering was
ntroduced by the cut. 

This is illustrated in Fig. 7 , where we test the impact of the
alibration cut on the spatial distribution of galaxies. We first confirm
f the fraction of galaxies rejected by the calibration cut (i.e. galaxies
ith doubly peaked p indiv ( z)) s is comparable for all subfields. This
as to take into account the variation due to sampling variance, which
e quantify by dividing into subregions within the different fields.
he top panel plots several normalized histograms o v er s where each
istogram corresponds to a separate field listed in the legend. Note
hat we obtain a distribution p ( s ) o v er s for each field by estimating
 on each patch within each field. The vertical dashed line denotes
he mean of the histograms o v er the different fields, the errorbars
enote the field-to-field variation. We see that s is consistent across
he different fields. 

In the lower panels we investigate if the spatial distribution of
emo v ed galaxies is spatially ‘random’, or if we have to expect a
orrelation signal based on the calibration cut. The vertical axis shows
he difference between the correlation function estimated on the
atalogue in each field subject to the calibration cut and a catalogue
here galaxies are remo v ed randomly. The horizontal dashed line
uides the eye towards the zero line. The error contours are obtained
y jackknife resampling the catalogue within each field. We see
hat the measured autocorrelation functions are consistent between
he randomly selected catalogue and the catalogue subject to the
alibration cut. 

.3 Individual Galaxy redshift estimation to enable sample 
edshift distribution ( p samp ( z)) inference 

his project considered all three individual galaxy photomet-
ic redshift estimates introduced in Section 5.1 and performed
n initial comparison between sample redshift posteriors ob-
ained using these three methods with the cross-correlation con-
traints. We found insufficient agreement for the Mizuki solu-
ions, whereas DEMPz and DNNz where more consistent. By
teratively reproducing the inconsistencies using analytic error

odels, we identified a number of problems with the Mizuki
olutions. 

We found that the Mizuki photometric redshift solutions are
iscalibrated (Nishizawa et al. in preparation) and that systematics

nduced by uncorrected selection functions from galaxy selection,
bject weighting, and the calibration cut can lead to additional
ias in the sample redshift inference for the Mizuki code. A
ecalibration of the Mizuki likelihoods using the specXphot sample
ased on Bordoloi et al. ( 2010 ) only slightly impro v ed the results.
e concluded that the consistency between the DEMPz and DNNz

odes and the cross-correlation measurements was still better. We
ote that including the aforementioned selection function into the
ikelihood formulation is structurally simple, but would require a
erun of the Mizuki solutions which was not deemed practical. We
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Figure 6. The stacked photo- z posteriors for galaxies in the first (upper panel, 0 . 3 < z dnnz best ≤ 0 . 6) and second (lower panel, 0 . 6 < z dnnz best ≤ 0 . 9) 
tomographic redshift bin estimated from three photo- z estimation codes. Cuts on the interquartile distance are applied to these galaxies to remo v e the secondary 
peak in the stack ed posteriors. The stack ed posteriors for the fiducial cut, which remo v es 31 per cent of the galaxies in the first bin, are plotted as red lines. 
These posteriors are normalized so that they have total probability of one. 
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herefore selected DNNz as our primary method and DEMPz as the 
lternative method for the subsequent analysis. In the following text, 
e will refer to sample redshift distribution inference methodology 
ased on individual galaxy redshift distributions, abbreviated as the 
ector-valued � p indiv ( z ), as ‘photometry-based p samp ( z ) estimation’, or
hort ‘PhotZ’. 

.4 Formulation of the ensemble redshift distribution prior 

ased on our fiducial model choice we apply the empirical likelihood 
ethodology described in Appendix A to estimate p samp ( z) for the

our tomographic bins based on the DNNz � p indiv ( z). 
As we discuss in detail in Appendix A , the empirical likelihood

stimation obeys the central limit theorem. The large sample size 
f our catalogues implies that the statistical error in the maximum 

mpirical likelihood estimate is much smaller than other sources of 
ncertainty. These include a cosmic variance contribution from the 
patially limited training sample (see Section 3.3 ), as well as the
ncertainty in the individual galaxy redshift estimation model (epis- 
emic uncertainty). In the remainder of this section we will discuss
ur approach to including cosmic variance into our sample redshift 
stimation procedure. Our treatment of the epistemic uncertainty will 
e discussed in Section 5.7 . 
The basis for our p samp ( z) error model is the logistic Gaussian pro-

ess. The logistic Gaussian process, first applied to sample redshift 
stimation by Rau et al. ( 2020 ), assumes that the number counts
f galaxies as a function of redshift are lognormally distributed. 
he model can capture cross-bin correlations and provides more 
odelling complexity than, e.g. the Dirichlet distribution as we 

iscuss in Appendix E . 
The logistic Gaussian process prior on the parameters φnz can be 

ormulated as follows: 

s ∼ N ( s | μ, �) 

ρ = exp ( s ) 

nz : = 

{ 

ρi ∑ 

j ρj 

∣∣∣∣ 0 < i < N bins 

} 

, (6) 

here ( μ/ � ) denotes the (mean v ector/co variance matrix). We note
hat equation ( 6 ) relates to a lognormal model for the galaxy counts,
here ρ is the expected number of galaxies per redshift. The 
imension of ( s / ρ/ φnz ) is N bins as introduced in equation ( 1 ). 
As discussed in Section 3.3 , the faint end of our training set is dom-

nated by COSMOS2015 data. This induces a cosmic variance error 
ontribution that we include into our logistic Gaussian process model 
ased on the cosmic variance measurements for the COSMOS2015 
ata set by S ́anchez et al. ( 2020 ). We detail our methodology in
ppendix C . 
MNRAS 524, 5109–5131 (2023) 
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Figure 7. Testing the impact of the calibration cut on the spatial distribution of galaxies by resampling the catalogue for the first tomographic bin. Top panel: 
Test if the fraction of galaxies rejected by the calibration cut ( s ) is comparable for all subfields. Each histogram corresponds to a separate field listed in the 
legend, where the histograms over s show the variation across the different patches within the field. The vertical dashed line denotes the mean of the histograms 
o v er the different fields with errorbars denoting the field-to-field v ariation. Lo wer panels: Testing if the spatial distribution of remo v ed galaxies is ‘random’. The 
vertical axis shows the difference between the correlation function estimated on the catalogue in each field subject to the calibration cut and a catalogue where 
galaxies are remo v ed randomly. The horizontal dashed line shows the zero line. The error contours are obtained by jackknife resampling. 
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.5 Ensemble redshift distribution likelihood from spatial 
r oss-corr elations (cr oss-corr elation) 

o further constrain the p samp ( z), we utilize spatial cross-
orrelations with the CAMIRA LRG sample. This approach has
wo goals: it provides an independent consistency check for the
 samp ( z) derived using the DNNz approach, and it allows a joint
nference of the p samp ( z) informed by both the photometry of galaxies
nd the spatial cross-correlations with the CAMIRA LRG sample. 

As detailed in Section 3.2 , the CAMIRA LRG sample extends
nly to z � 1.2 and the photoZ of the CAMIRA LRG galaxies are
hemselves subject to error. This subsection gives an overview of the
ross-correlation measurements and the likelihood formulation. We
efer to Appendix D for the technical details. 

Using vector notation, where each vector component corresponds
o the cross-correlation measurement in a redshift bin, we can predict
he spatial cross-correlation between the CAMIRA LRG sample and
SC phot as 

 LRG −Y3 ∝ φnz b PhotZ b LRG w DM , (7) 
NRAS 524, 5109–5131 (2023) 
here w DM is the scale-averaged, redshift- and cosmology-
ependent, two-point function of the dark matter density field. The
erms b PhotZ and b LRG are the redshift-dependent galaxy-dark matter
ias terms from the (HSC phot/CAMIRA LRG) sample and φnz are
he parameters defined in equation ( 1 ). We use ‘The-Wizz’ (a code
escribed in Morrison et al. 2017 ) to measure these cross-correlations
nd use bootstrap re-sampling (as described in Morrison et al. 2017 )
o obtain a covariance matrix of the measurements. We include
he lensing weights in the two-point estimator, and choose a scale
ange of 0 . 1 –1 . 0 Mpc for our measurements. These measurements
re repeated for 10 catalogues generated by sampling from our
AMIRA LRG photometric error model, which is a conditional
ensity estimate that maps the noisy CAMIRA LRG photometric
edshift to the unknown true redshifts. This mapping is trained on
he specXphot calibration data. 

Using the scheme described in Appendix D we marginalize
 v er the realizations to derive a likelihood for the cross-correlation
easurements that has an inflated covariance � LRG −PhotZ due to the

ontribution of the CAMIRA LRG photometric redshift error. Using
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 Gaussian Likelihood ansatz we obtain 

p( ̂  w LRG −PhotZ | φnz PhotZ , b PhotZ , b LRG ) 

= N ( ̂  w LRG −PhotZ | w LRG −PhotZ ( φnz PhotZ , b PhotZ , b LRG ) , � LRG −PhotZ ) , 

(8) 

here ˆ w LRG −PhotZ denotes the spatial cross-correlation measure- 
ents between the CAMIRA LRG and HSC phot catalogues, 
 LRG −PhotZ ( φnz PhotZ , b PhotZ , b LRG ) denotes the theory prediction, and 
 LRG −PhotZ the covariance matrix that is adjusted for the CAMIRA 

RG photometric redshift error. 
In this analysis we marginalize o v er a parameter that describes

he product b PhotZ b LRG for each tomographic bin. For three tomo- 
raphic bins we therefore have three parameters that account for 
he product of galaxy-dark matter bias for galaxies in the HSC
hot and the CAMIRA LRG samples. We predict 10 the dark matter 
ontribution w DM using the Core Cosmology Library, version 1.0.0 
CCL, Chisari et al. 2019 ) 11 using halofit to model the non-linear
ower spectrum (Takahashi et al. 2012 ). We do not marginalize o v er
osmological parameters that enter w LRG-PhotZ , as we find that the 
hoice of cosmology does not strongly impact the posterior p samp ( z).
oncretely, we note that the spatial cross-correlation data vector is 
 scale-averaged correlation function. Its redshift scaling affects the 
nferred cross-correlation redshift distributions on the ∼ 20 per cent 
evel by (suppressing/increasing) the (low/high)-z flank. However, 
ariations in cosmology affect the redshift scaling of the scale- 
veraged dark-matter correlation at the ∼ 10 per cent level (for 
ather extreme cosmologies at the 2 σ contour of Stage III surv e ys),
hich implies that the cosmology-dependence of the inferred cross- 

orrelation redshift distributions is subdominant to other systematics 
uch as the redshift-dependent galaxy-dark matter bias modelling 
ncertainties. 

.6 Joint constraints 

sing the logistic Gaussian Process model defined in Section 5.4 
nd the cross-correlation likelihood defined in equation ( 8 ), we 
an sample from the joint posterior of the parameters that describe 
he sample redshift distribution φnz , defined in equation ( 1 ), and
he product b = b LRG b PhotZ of the galaxy-dark matter bias of the 
AMIRA LRG ( b LRG ) and HSC phot ( b PhotZ ) samples 

( φnz , b | ̂  w LRG −PhotZ ) ∝ p( ̂  w LRG −PhotZ | φnz , b ) p( φnz ) p( b ) . (9) 

he sampling of the φnz parameters has to be carried out with respect
o a likelihood that only constrains a subset of φnz due to the limited
edshift co v erage of the CAMIRA LRG sample. We note that the
arameters φnz can be normalized to lie on the simplex 12 , i.e. to
um to unity. It is therefore useful to instead perform inference with
espect to the random variable s , defined in equation ( 6 ). Using this
eparametrization we can perform inference in R 

N bins using standard 
pproaches and then transform to the original parameter φnz . We 
se Elliptical Slice Sampling (Murray, Adams & MacKay 2010 ) for
ur inference. Elliptical slice sampling works particularly well for a 
ogistic Gaussian process prior, since it can utilize the aforementioned 
eparametrization that relates the logistic Gaussian process to the 
ulti v ariate normal distribution. 
0 We use �DM = 0.258868, �b = 0.048252, h = 0.6777, n s = 0.95, and 

8 = 0.8. 
1 https:// github.com/LSSTDESC/ CCL (Accessed 2022 September 22) 
2 The probability simplex is defined as S = { x i | 

∑ N 
i= 1 x i = 1 and 0 ≤ x i ≤

 for 1 ≤ i ≤ N} . 

f  

d
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Fig. 8 shows the resulting posterior sample redshift distributions 
or the following three scenarios: 

(i) photometry-based sample redshift distribution estimation 
‘PhotZ (DNNz)’, grey) utilizing the DNNz code and including our 
odel for cosmic variance following Section 5.3 and Section 5.4 ; 
(ii) clustering redshift estimation (‘WX (0.1–1.0 Mpc)’, black) 

ollowing Section 5.5 ; and 
(iii) the combination of spatial information and photometry 

‘PhotZ & WX’, red) following Section 5.6 . 

The horizontal axis of Fig. 8 shows the redshift, while the vertical
xis shows the probability density of posterior tomographic p samp ( z).
he distributions are normalized to integrate to unity. We report 
ontours/errorbars corresponding to piecewise ±1 σ errors. In the 
ase of ‘PhotZ’ and ‘PhotZ & WX’ which both have asymmetric
osterior distributions, we report contours between the 16th and 
4th percentiles. The blue errorbars show the standard deviation 
n the mean 13 cross-correlation measurement with respect to the 
ifferent catalogue draws from the CAMIRA LRG error model. We 
pecifically see that even for only 10 catalogues, this error is already
uch smaller compared with the statistical uncertainty of ‘WX (0.1–

.0 Mpc)’. We note that the black errorbars for the cross-correlation
onstraints are plotted assuming the maximum a posteriori values 
f b defined in equation ( 9 ), which act to normalize the clustering
edshift measurements. This allows us to plot the clustering redshift 
onstraints on the same scale as ‘PhotZ (DNNz)’ and ‘PhotZ & WX’.
e note that we do this for illustrative purposes only; we marginalize
 v er b to infer ‘PhotZ & WX’. 
Since the CAMIRA LRG sample redshift co v erage e xtends to z 
 1.2, we can only partially calibrate the third tomographic bin.
e also decided to not include a cross-correlation data vector in the

ample redshift distribution calibration of the fourth tomographic 
in. This is moti v ated by the o v erall small redshift o v erlap with
he CAMIRA LRG sample. Furthermore, for significant parts of 
he rele v ant redshift range (1.0 < z < 1.2), there is a trend in the
nferred n ( z) in the third bin that might indicate the need for more
omplex modelling of astrophysical effects like redshift-dependent 
alaxy-dark matter bias. It is therefore likely that we might include
dditional systematics in the calibration of the fourth tomographic 
in low-redshift tail for very moderate gains in statistical accuracy. 
We conclude that the clustering redshift measurements are broadly 

onsistent with the constraints we derive based on the photometry 
f galaxies. Ho we ver, there are slight inconsistencies between the
PhotZ’ and ‘WX’ constraints around z ≈ 0.2. This is around the same
edshift where we know that the photometric redshift distributions 
f the CAMIRA LRG galaxies are biased (see Section 3.2 ). This
mplies an incomplete correction of this bias from our error model.
his inconsistency is moderate, on the level of 2 σ–3 σ with respect

o the joint posterior (PhotZ & WX). We leave further investigations
or future work. 

.7 Prior recommendation for WL analysis 

ig. 9 shows the distribution of posterior mean for the four tomo-
raphic bins. We define the posterior mean as the mean estimated
or each posterior tomographic p samp ( z) sample. We can derive the
istribution of posterior mean for each tomographic bin by sampling 
rom the posterior p samp ( z) shown in Fig. 9 . This is done for the joint
MNRAS 524, 5109–5131 (2023) 

3 We refer here to the standard deviation in the mean estimate, which scales 
ith 1 / 

√ 

N , where N corresponds to the number of catalogues drawn. 

https://github.com/LSSTDESC/CCL
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Figure 8. Sample redshift distribution ( p samp ( z)) posteriors for the four tomographic redshift bins of the HSC Y3 lensing sample derived to include information 
from the photometry (‘PhotZ (DNNz)’, grey area), spatial clustering (‘WX (0.1–1.0 Mpc)’, black dots) and the combination of spatial information and photometry 
(‘PhotZ & WX’, red area). The blue dots denote the standard deviation on the mean of WX (i.e. clustering redshift) measurements. The CAMIRA LRG sample 
has a limited redshift co v erage to z < 1.2, due to which the high-redshift tomographic bin does not include a cross-correlation data vector. The inference includes 
the lensing weights consistently in all likelihood terms. The piecewise intervals denote the ±1 σ errors. 
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onstraint (‘PhotZ & WX’, red contours) and the photometry-based
nference (‘PhotZ (DNNz)’, grey contours) for each tomographic
in. We now estimate the mean of each sample drawn in this way.
his results in distributions of posterior mean for our tomographic
ins in both scenarios. 
We see that the distributions of posterior mean are consistent for the

wo methods in the first three tomographic bins. There is mild tension
n the lowest tomographic bin, which can be explained by the incon-
istency at z ≈ 0.2 as described in the previous section. We further
uantify the ‘information gained’ by the cross-correlation likelihood
 v er the ‘PhotZ (DNNz)’ prior by calculating the Kullback–Leibler
KL) Divergence between the prior and posterior based on the results
uoted in Table 1 , where we use a Gaussian approximation for the
osterior mean distributions of tomographic bins to calculate the
L Divergence. The KL divergence between prior and posterior is

eferred to as the ‘Bayesian Surprise’ in statistics (see e.g. Itti &
aldi 2009 ; Baldi & Itti 2010 ) 14 and the results are quoted in Table
 under the column ‘Bayesian Surprise’. Table 1 indicates that the
argest amount of information is added in the first tomographic bin.

e note, ho we ver, that this does not allow us to judge if the Bayesian
urprise is due to unaccounted systematics or statistical fluctuation.
 comparison with the results from the second and third bins,
NRAS 524, 5109–5131 (2023) 

4 The Bayesian Surprise is sometimes referred to as the ‘information gain’ 
n cosmology (e.g. Grandis et al. 2016 ). 

m  

1

hich are an order of magnitude smaller, hints towards unaccounted
ystematics in the first bin as the most likely explanation for the large
ayesian surprise value. 
Fig. 9 further illustrates that the width of the distributions of pos-

erior mean decreases when we include the spatial cross-correlation
ata vector. This highlights the importance of including cross-
orrelations in the sample redshift calibration as both a consistency
heck and an additional constraint. We relate this result to the
xpected biases in the WL power spectra in Fig. 10 , proceeding
n close analogy to our study of the distribution of posterior mean.

e estimate the WL power spectra on each draw from the posterior
 samp ( z) using the Core Cosmology Library, version 1.0.0 (CCL,
hisari et al. 2019 ) 15 and calculate the relative bias � C 
 between

he posterior distributions of WL power spectra estimated using the
hotometry alone (Phot (DNNz)) and including the spatial cross-
orrelations (Phot & WX). The relative bias is defined as 

C 
 = 

C 
Phot & WX 

 − C 

Phot (DNNz) 

 

C 

Phot (DNNz) 

 

. (10) 

Fig. 10 shows � C 
 as a function of scale for the (first/second/third)
omographic bin. We see that the relative difference between the

easurements using the photometry (DNNz) alone shows a tension
5 https:// github.com/LSSTDESC/ CCL (Accessed 2022 September 22) 

https://github.com/LSSTDESC/CCL
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Figure 9. Comparison of the distributions of posterior tomographic mean for the four tomographic redshift distributions shown in Fig. 9 . The subpanels 
correspond to increasing tomographic bin mean redshift. The (red/black) histograms show the result for the constraint (PhotZ (DNNz)/Phot & WX) which 
corresponds to the exclusion/inclusion of the spatial cross-correlation data vector with the CAMIRA LRG sample. There is consistency between the posterior 
distributions of tomographic mean estimates obtained using the photometry alone (black) and in combination with the clustering redshift data vector (red). 

Table 1. Mean and standard deviation of the posterior mean for the different tomographic redshift bins. The first column 
lists the corresponding results for the first year analysis (Hamana et al. 2020 ) (Y1 Analysis), the results obtained using 
the photometry alone with cosmic variance correction (PhotZ (DNNz)), the results we obtain using the DEMPz code (Y3 
DEMPz), and the joint constraints with the cross-correlation data vector (Y3 PhotZ & WX). The DEMPz results, here used as 
an alternative methodology, are obtained by taking the average of the normalized � p indiv ( z). For conditional density estimates 
like DEMPz this amounts to a mean estimate of the marginalization in equation ( 4 ) (see Section 4.2 ). The final two columns 
lists the Bayesian Surprise values (Y3 Bayesian Surprise) and the total error budget that includes our systematics error budget 
as explained in Section 5.7 (Y3 T otal). W e note that all columns except the first are derived on the year 3 data set described in 
Section 3 with different galaxy selection (but similar redshift range) compared with the S16A analysis. 

Y1 Analysis Y3 PhotZ (DNNz) Y3 DEMPz Y3 PhotZ & WX Y3 Bayesian Surprise Y3 Total 

Bin 1 0.44 (0.0285) 0.463 (0.005) 0.463 0.452 (0.004) 3.84 0.452 (0.024) 
Bin 2 0.77 (0.014) 0.766 (0.004) 0.777 0.766 (0.003) 0.10 0.766 (0.022) 
Bin 3 1.05 (0.0383) 1.084 (0.004) 1.097 1.081 (0.004) 0.28 1.081 (0.031) 
Bin 4 1.33 (0.0376) 1.330 (0.003) 1.350 - - 1.330 (0.034) 
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hat is significant in Bin 1 compared with the expected signal-to-
oise ratio, which hints towards remaining uncorrected systematic 
iases. We discuss this further in Section 7 . In the following text we
iscuss our conserv ati ve assessment of tomographic p samp ( z) error
oti v ated by the aforementioned tensions. 
Since the sample redshift posteriors obtained in this work will 

e used as part of the HSC Y3 WL cosmological analysis, we
iscuss here which parametrization we will employ to marginalize 
 v er sample redshift uncertainty. Following Zhang et al. ( 2023 ),
e will use the maximum a posteriori solution for the p samp ( z) and
ary the mean using a Gaussian prior informed by the inference
escribed in the previous sections. While Zhang et al. ( 2023 ) explored
ultiple ways of marginalizing o v er the full posterior for the redshift

istribution, at the level of precision of this HSC analysis, marginal-
MNRAS 524, 5109–5131 (2023) 
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Figure 10. Comparison of the distributions of relative bias in WL power 
spectra (see equation 10 ) between the posterior p samp ( z) informed by the 
photometry alone (Phot (DNNz)) and the joint constraints that include 
the spatial cross-correlations (Phot & WX). We plot the results for the 
(first/second/third) tomographic bins (Bin 1/Bin 2/Bin 3) corresponding to 
the results shown in Figs 8 and 9 . The solid lines show the median and the 
contours show the (16/84) percentiles corresponding to the Gaussianized ±1 σ
errors. The black horizontal dashed lines show the ±1 σ errors that correspond 
to the expected signal-to-noise ratio of the WL power spectra measurements. 

i  

s  

p  

p

m
 

p  

c  

p  

D  

r  

b
 

t  

r  

r  

t  

4  

t
 

p  

a  

a  

d  

h  

d  

D  

w  

p

1

d

 

c

σ

A
σ  

σ  

t  

c  

s  

T  

l

σ

 

t  

w  

w  

(  

e  

a
 

d  

p  

f  

H  

(  

c  

v  

t  

e
 

c  

c  

t  

c  

m  

p  

c  

W  

o  

m  

j  

b  

e
 

r  

(  

w  

r  

w  

c

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/4/5109/7222384 by C
arnegie M

ellon U
niversity user on 28 N

ovem
ber 2023
zing o v er uncertainty in the mean redshift was found to be entirely
ufficient. We also include an additional error contribution that
arametrizes differences in sample redshift inference across different
�  indiv ( z) solutions, where we will use DEMPz as an alternative 

ethod. 
We derive the combined error budget based on the aforementioned

arametrization of the posterior mean. In order to include discrepan-
ies between different � p indiv ( z) solutions into the analysis, we com-
are the results obtained using DNNz with the DEMPz results. The
EMPz method was selected because it showed superior photometric

edshift accuracy compared with the Mizuki results 16 and o v erall
etter consistency with the clustering redshift measurements. 
Since the DEMPz and DNNz methods will be correlated, we have

o formulate an upper limit on the error budget. Furthermore, we
equire that this upper limit calculation will be conserv ati ve with
espect to the residual systematics in Bin 1 discussed in Fig. 9 and
he HSC first-year (Y1) result (Hamana et al. 2020 ) for Bin 4, as Bin
 lacks the additional constraints from the spatial correlations with
he CAMIRA LRG sample. 

While we present a significantly updated methodology, we do not
rovide additional data-driven consistency checks that would warrant
 significantly smaller systematic error budget compared with the Y1
nalysis. To derive this total error budget we combine the standard
eviation of the posteriors of the joint constraint (shown as red
istograms in Fig. 9 ), which we will denote as σ joint , with the absolute
ifference between the p samp ( z) derived using the alternative method
EMPz and our joint fiducial analysis. The latter error contribution
ill be denoted as σ sys . We reiterate that we consider here only the
osterior tomographic mean. 
NRAS 524, 5109–5131 (2023) 

6 See ht tps://hsc-release.mt k.nao.ac.jp/doc/wp-content /uploads/2022/08/p 
r3 photoz.pdf

6

T  

i  

T  

i  
We introduce the correlation coefficient ρ with | ρ| ≤ 1 and
ombine σ sys with the statistical error budget σ joint as 

joint, sys = 

√ 

σ 2 
joint + σ 2 

sys + 2 ρσsys σjoint 

≤
√ 

σ 2 
joint + σ 2 

sys + 2 σsys σjoint . (11) 

n upper limit on σ joint, sys is therefore given as σ joint, sys ≤
joint + σ sys . This implies an upper limit for (Bin 1/Bin 4) of
joint, sys, (Bin1/Bin4) = (0.015/0.023). This systematic error budget for

he Bin 1 and Bin 4 is similar to the absolute difference between the
onstraints of ‘PhotZ (DNNz)’ and ‘Phot & WX’ in Fig. 9 and much
maller than the error budget for Bin 4 assumed in Y1 as quoted in
 able 1 . W e therefore choose to utilize a more conserv ati ve upper

imit by applying the Minkowsi inequality directly to equation ( 11 ): 

joint, sys ≤ σjoint + σsys + 

√ 

2 σsys σjoint . (12) 

We recommend the right-hand side of equation ( 12 ) as a conserva-
ive prior width for the HSC Y3 cosmological WL analysis. Ho we ver,
e strongly recommend performing a sensitivity study for this prior
idth especially for Bin 4. We refer to Dalal et al. ( 2023 ), Li et al.

 2023a ), More et al. ( 2023 ), Miyatake et al. ( 2023 ), and Sugiyama
t al. ( 2023 ) for further details on the conclusions of this analysis
nd their implications on prior choices. 

Table 1 summarizes our results by giving the mean and standard
eviation of the posterior mean for the various analysis scenarios
resented in this work. The columns list the corresponding results
or the Y1 analysis in Hamana et al. ( 2020 ), the results obtained for
SC Y3 using the photometry alone with cosmic variance correction

‘PhotZ (DNNz)’ in Fig. 8 ), the results we obtain using the DEMPz
ode and the joint constraints that include the cross-correlation data
ector (‘PhotZ & WX’ in Fig. 8 ). The final column lists the final result
hat includes the conserv ati ve assessment of model error following
quation ( 12 ). 

The error budget we obtain from a combination of cross-
orrelations and photometry without the additional systematic un-
ertainty term is almost an order of magnitude smaller than in
he HSC Y1 results. The p samp ( z) constraints we obtain from the
ross-correlation measurements and the � p indiv ( z) are consistent. The
odel error assessment that we use for our final recommendation on

riors is therefore very conserv ati ve and is very similar and/or more
onserv ati ve compared with the error budget in the HSC Y1 analysis.
e note that the error budget is dominated by our assessment

f model error, i.e. derived by the comparison with the DEMPz
ethod. This assessment of model error is conserv ati ve, since the

oint constraint between the CAMIRA LRG and the photometry
ased inference would allow for almost an order of magnitude smaller
rror in the posterior mean. 

Ho we ver, it is not overly pessimistic and is less than double the
esidual systematic expected from the difference between the PhotZ
DNNz) and PhotZ&WX results presented in Bin 1 of Fig. 9 . Future
 ork w ould benefit from adding additional constraints to the high-

edshift tomographic bin, e.g. by including spatial cross-correlations
ith DESI and by reconsidering the low-redshift systematics in the

ross-correlation constraints. 

 SUMMARY  

his work presents posterior sample redshift distributions ( p samp ( z))
n four tomographic bins for the HSC three-year shape catalogue.
o exploit the synergy between complementary sources of redshift

nformation, we combined p samp ( z) constraints from spatial cross-

https://hsc-release.mtk.nao.ac.jp/doc/wp-content/uploads/2022/08/pdr3_photoz.pdf
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17 Tanaka et al. ( 2018 ) analyse Y1 data. The paper does not present a principled 
inference strategy to derive p samp ( z), e.g. Mizuki that requires deconvolving 
for photometric redshift error (see Section 4.1 ). Ho we ver, this does not 
invalidate a qualitative comparison with our analysis. 
18 Model error refers here to error contributions (both systematic and statisti- 
cal), for example from lack of training data, uncorrected selection functions 
in the training data, inaccurate modelling of SEDs, priors, or photometry. 
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orrelations and from individual galaxy photometric redshift distri- 
utions ( � p indiv ( z)) derived from the galaxies photometry. We perform 

ross-correlation based p samp ( z) inference using the CAMIRA LRG 

ample, which allowed us to obtain constraints within the limited 
edshift range of the LRG sample of z ≤ 1.2. The presented analysis
ad to account for three main sources of systematic biases and 
ncertainties: the intrinsic photometric redshift error in the LRGs, 
he significant variation (both methodologically and in quality) of the 
rovided � p indiv ( z), and the spatial colour-redshift-dependent selection 
unctions of our specXphot redshift calibration sample. 

The goals of the analysis were to provide posteriors for the 
ele v ant tomographic p samp ( z), demonstrate consistency between the 
onstraints derived using the spatial cross-correlations and � p indiv ( z), 
nd recommend priors on p samp ( z) parameters for the cosmological 
L analysis. The latter should also incorporate an assessment of 
odel error and should reflect conserv ati ve analysis choices under 

cceptable degradation of cosmological parameter constraints. We 
laim that these analysis goals were accomplished in our analysis. 

Our analysis was structured as follows (see Section 5 ): 

(i) Sample definition and selection (Section 5.2 ); 
(ii) Estimation of individual and tomographic p samp ( z) using 

hotometry-based inference (Phot, Section 5.3 ); 
(iii) Incorporation of cosmic variance from the spatially limited 

pecXphot training sample into the constraint (Section 5.4 ); 
(iv) Cross-correlation-based p samp ( z) inference (WX, Section 5.5 ); 
(v) Joint inference combining WX and Phot (Section 5.6 ); 
(vi) Recommendation of the science-ready photometric redshift 

riors for WL (Section 5.7 ). 

The sample was limited to galaxies with single-peaked � p indiv ( z). 
he removal of galaxies that show secondary, high-redshift ( z > 

.2) photometric redshift solutions is essential for our analysis, to 
nsure that we can validate our photometric redshifts with the data 
roducts available. Since the CAMIRA LRG sample does not allow 

 calibration to z > 1.2 and the specXphot calibration sample is
xpected to be incomplete at the faint end of the colour–magnitude 
pace, we cannot reliably validate secondary solutions at z� 1.2. 

This work introduces a framework for sample redshift inference 
or both empirical methods based on conditional density estimation 
nd methods that are based on SED fitting or likelihood-based 
orward modelling. Initially we considered three methods for � p indiv ( z) 
stimation: a likelihood based SED fitting code (Mizuki) and two 
mpirical methods (DNNz, DEMPz). 

We selected the DNNz method, a conditional density estimation 
ethod for photometric redshifts, as our fiducial inference method 

ased on initial comparisons with the cross-correlation data vector. 
s the specXphot calibration sample used for training the individual 
alaxy redshift estimators at the faint end of the sample co v ers only
 small solid angle, we construct a logistic Gaussian Process model 
o parametrize the cosmic variance component in the error model for
he inferred tomographic p samp ( z). 

In the next analysis step, we measured spatial cross-correlations 
etween the CAMIRA LRG and the HSC Y3 photometric shape 
atalogue (HSC phot) for the first three tomographic bins (within z 
 1.2) and account for the photometric redshift error in the CAMIRA
RG sample in the construction of the cross-correlation likelihood. 
e demonstrated consistency between the p samp ( z) constraints de- 

ived from the cross-correlation data vector and photometry-based 
ample redshift inference. 

Utilizing a joint inference framework that accounts for the limited 
edshift co v erage of the cross-correlation measurements, we obtained 
osterior p samp ( z) in four tomographic bins. 
Finally we included a conserv ati ve error assessment based on
 comparison with an alternative photometric redshift algorithm, 
DEMPz’. While the final constraint on the mean of the tomographic
ins is much narrower than the results obtained in the HSC Y1
nalysis (Hamana et al. 2020 ), our conserv ati ve assessment of model
rror yields a prior recommendation for the HSC three-year WL 

nalysis that is similar to (and more conserv ati ve than) the Y1 HSC
osmological WLanalysis. 

 DISCUSSION  AND  FUTURE  WORK  

n the following text, we describe a range of known limitations in
ur analysis that moti v ate our conserv ati ve error assessment and
ighlight avenues for future work. We concentrate on five areas of
his analysis where we identified limitations: 

(i) Error quantification of � p indiv ( z); 
(ii) Treatment of selection functions of the specXphot calibration 

ample; 
(iii) Treatment of cosmic variance induced by redshift calibration 

sing the specXphot calibration sample; 
(iv) Photometric redshift uncertainties and systematics of 

AMIRA LRG galaxies; 
(v) Simplistic treatment of astrophysical effects in the modelling 

f the cross-correlation data vector. 

In the following paragraphs we will discuss each of these items in
rder. 
(i) There are a number of unmodelled systematics in the construc-

ion of � p indiv ( z) using DNNz, DEMPz, and Mizuki that are likely
xplanations for the large differences between their estimates relative 
o the statistical uncertainty. We show this in Table 1 where the model
rror from differences in the DNNz and DEMPz results dominates 
he error budget. This is qualitatively consistent with the first year
SC analysis 17 of individual galaxy redshift distribution systematics 

n Tanaka et al. ( 2018 ). Figs 11 and 14 in that paper illustrate
ignificant differences between the estimates obtained using different 
ethodologies both in terms of the estimated p samp ( z) (fig. 11) and

n terms of the PIT metric (fig. 14), which quantifies how well the
�  indiv ( z) are calibrated with respect to a specXphot reference data set.
he significant differences between the methods imply an incomplete 
ssessment of model error. 18 

(ii) While the specXphot calibration data were assembled to reduce 
he impact of unwanted selection functions and we employ the 
alibration cut (see Section 5.2 ) to remo v e problematic re gions in
olour space with doubly peaked p indiv ( z), it likely does not provide
n unbiased source of redshift calibration for model e v aluation
nd training. Our analysis therefore used cross-correlations with 
he CAMIRA LRG sample, within the aforementioned limited 
edshift co v erage, for redshift calibration and imposed a conserv ati ve
ssessment of model error. The latter is moti v ated by an acceptable
egradation in the cosmological parameter constraints forecasted for 
he upcoming WL analysis. Ho we ver, future analyses with the full
SC surv e y data set and upcoming surv e ys such as LSST will have
MNRAS 524, 5109–5131 (2023) 
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o continue to further impro v e the analysis methodology to reduce
his source of systematic uncertainty. 

(iii) Our approach to quantify cosmic variance from the spatially
mall calibration field suffers from three main limitations that we
iscuss in the following text. We note, however, that the current
nalysis will likely not be methodologically limited in this area as
he dominant source of uncertainty is the model error in the � p indiv ( z).
he modelling of the variance of the point field within a patch on

he sky depends not only on the point-field expected number density
er area and redshift, which can be scaled to match the colour-
edshift distribution of the target field, but also on the clustering
f the galaxies of the underlying process. The latter is modelled
ased on the COSMOS2015 field, which co v ers a small area, has
ifferent clustering properties than other fields, and might be subject
o a non-random spatial selection function. 19 The small area and
onrandom selection function implies that any statistic derived from
his field will not be fully representative of other fields. This means
hat our cosmic variance estimate derived on COSMOS2015 is not
ecessarily representative of the true cosmic variance contribution
f photometric redshift estimates trained on any COSMOS2015-size
atch on the sky. Since the galaxy field is ergodic, this becomes
ess of a concern for spatially larger fields or if several small but
patially separated fields are used. Furthermore, since the variance
oes not uniquely identify the stochastic process that describes the
 samp ( z) uncertainty, every assessment of cosmic variance has model
ssumptions. We discuss this point in detail in Appendix E . We note
hat we neglect spatial correlations between the COSMOS2015 field
nd HSC phot, i.e. we do not formulate a full spatial model for
edshift inference in this work, which can affect our assessment of
osmic variance. These limitations affect the redshift calibration in
ther surv e ys such as DES, which is also based on spatially small
alibration fields. We also note that the individual galaxy redshift
stimates presented in this work do not allow us to construct a direct
elation to the COSMOS2015 training set galaxies, which limits our
bility to perform a cosmic variance correction in colour space. In
uture work, we will present a spatial model for redshift inference
hat will extend the current approach to treat cosmic variance in
 samp ( z) estimation (Rau et al. in preparation). 
(iv) Our modelling of the WX data vector depends on accurately

arametrizing the photometric redshift systematics of the CAMIRA
RG sample. As discussed, especially at low redshift, these sys-

ematics can be quite significant. Our current modelling is based
n a specXphot calibration sample, as we did not obtain access to
he rele v ant CAMIRA LRG likelihoods. As a result, our correction
ould be subject to residual systematics from spectroscopic selection
unctions. This needs to be reconsidered in the future, along with
 better assessment of galaxy-dark matter bias for the calibration
ample. This includes parametrizing a redshift and scale dependence
n the galaxy-dark matter bias within each tomographic bin for the
hotometric sample and the calibration sample. In order to constrain
his more complex assessment of galaxy-dark matter bias, it will be
mportant to extend the data vector towards autocorrelations of the
hotometric and reference samples. 
(v) Regarding the modelling of the cross-correlation data vector,

e limited our analysis to a constant galaxy-dark matter bias within
ach tomographic source bin and did not include an assessment of
NRAS 524, 5109–5131 (2023) 

9 F or e xample, randomly selecting multiple spatially small patches on the 
ky would show different clustering properties than ‘fa v ouring interesting’ 
egions with an abundance of clusters and therefore produce a different 
osmic-variance model. 

a  

I  

P  

t  

P  

H  
agnification bias. Gatti et al. ( 2022 ) studied the effect of magnifica-
ion bias on cross-correlation based p samp ( z) inference in the context
f the Dark-Energy-Surv e y Year 3 analysis. While performed in the
ontext of different data and analysis, we can expect the effect of
agnification bias to be subdominant compared with the modelling

f a redshift-dependent galaxy-dark matter bias and subdominant
ompared with our conserv ati ve total error budget. While based
n a qualitative extrapolation of their quantitative assessments (see
able Gatti et al. 2022 ), the good agreement between WX and
3 PhotZ reported in Fig. 8 provide some basis for that claim.
uture measurements with larger signal-to-noise ratio will need to
econsider this assumption. 

In conclusion, we have presented a p samp ( z) inference methodology
or the HSC Y3 shape catalogue that represents a significant update
 v er the methodology in previous HSC WL analyses. We have
orecasted the effect of our updated methodology on the previous
SC S16A analysis in Section 2 and demonstrated that our updated
ethodology can account for shifts in the �m - S 8 plane of 0.5 σ after

escaling the covariance matrix from previous HSC WL measure-
ents to account for the increased area in the HSC Y3 catalogue.
his highlights the importance of sample redshift calibration as we
repare not only for the HSC analysis but also look ahead towards
pcoming surv e ys like LSST. 
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PPENDIX  A:  CONDITIONAL  DENSITY  

STIMATION  METHODOLOGY  

1 Ov er view 

n the following appendix, we describe our methodology to perform
ample redshift inference in the context of conditional density
stimation in continuation of Section 4.2 . The discussion in this
ection applies to the DNNz and DEMPz methods. The basic idea of
onditional density redshift estimation is to construct an estimator of
he true conditional density p ( z| f ) of the redshift z given the fluxes (or
hotometry) f . We construct this mapping between the ‘true’ redshift
 and measured flux, which requires a specXphot ‘training’ data set.
his can be constructed using spatially o v erlapping spectroscopic
nd photometric surv e y data, which pro vides both photometry and
ccurate spectroscopic redshifts. Upon constructing a conditional
ensity estimator ˆ p ( z| f), for a particular photometric surv e y, we can
onstruct an estimator of the p samp ( z) as 

ˆ  samp ( z) = 

∫ 
ˆ p ( z| f ) ̂  p ( f )d f , (A1) 

here ˆ p ( z| f ) and ˆ p ( f ) denote estimators of the conditional density
f redshift z given flux f and of the marginal density of colour–
agnitude space ˆ p ( f). We note here the difference between construct-

ng an estimator of the conditional density ˆ p ( z| f) and a ‘forward mod-
lling’ approach that would require the formulation of a likelihood (or
he non-parametric estimator thereof) p ( f | z). The former is a density
stimation problem and requires the availability of a calibration data
et to provide information on the redshift distribution of galaxies as
 function of measured photometry. The latter induces an inverse
roblem that depends on knowledge of the data-generating process
rom a true redshift to measured photometry. One would include
dditional redshift information here in the formulation of the prior.
e stress that these model formulations are very different and refer
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o Appendix B for a detailed description of the redshift inference 
ethodology in the context of likelihood-based forward modelling. 

n the following text, we will comment on the assumptions behind 
he conditional density estimation methodology. 

2 Assumptions 

he basic assumption of empirical methods is that the data in the
alibration and target data sets follow the same conditional densities 
 ( z| f ) of the redshift z given the fluxes (or photometry) f . We also
ote that there exist no unbiased non-parametric density estimators 
Rosenblatt 1956 ). Therefore, a prime challenge for these methods 
s the selection of bandwidth, or smoothing scale. 

Inaccurate selection of smoothing can lead to biases in redshift 
nference that are rele v ant for cosmological inference, as shown in
rior work (Rau et al. 2017 ). The authors also demonstrated that
iases from inaccurate selection of smoothing can be mitigated in 
osmological inference using parametric bootstrap techniques. In the 
ontext of this work, we can assume that misspecification errors due 
o non-representative training data and epistemic uncertainty from a 
ack of training data will be more severe than biases due to inaccurate
andwidth selection. 

3 Methodology 

n the following text, we construct an empirical likelihood of 
he density estimator equation ( A1 ) that allows us to marginalize
 v er systematics in a principled way. Under the assumptions de-
cribed in the previous paragraph, we can parametrize p ( z| f ) as a
istogram 

( z| f) = 

N bins ∑ 

i= 1 

w i ( f) 1 i ( z) , (A2) 

here w i denotes the histogram bin height and 1 i ( z) is unity if the
edshift is within bin i , and zero otherwise. N bins denotes the number
f histogram bins. 
This yields an estimator for p ( z) as 

( z) = 

N bins ∑ 

i= 1 

(∫ 
w i ( f ) p( f )d f 

)
1 i ( z) = 

N bins ∑ 

i= 1 

E f [ w i ( f) ] 1 i ( z) , (A3) 

here E f [ w i ( f )] denotes the expectation value of the weights w i ( f )
rt to the marginal distribution of photometry. The weights w i ( f )

an depend on parameters η that describe additional sources of error, 
nduced by unmodelled selection functions in the training data or by 
ntrinsic model bias in the conditional density estimates. 

Based on this relation, we can employ the empirical likelihood 
ormalism (e.g. Owen 1990 , 2001 ; P a witan 2001 ) and construct an
stimating equation 

 ([ φnz , η] , f) = w ( f, η) − φnz , (A4) 

here φnz denotes the modelled histogram heights (see equation 1 ) of
he p samp ( z). We note here that w ( f, η) is a function of the measured
hotometry and parameters that describe other systematics, whereas 
nz is the parameter vector to be estimated. 
Under the assumption that the parameter set η accurately describes 

he systematics mentioned abo v e, we seek values for η and φnz such
hat 

 f [ ψ ([ φnz , η] , f) ] = 0 . (A5) 

e can treat the application of lensing weights ω lens ( f ) as a selection
unction and follow the recipe described in Owen ( 2001 ) of modify-
ng the expected estimating equation by transforming the probability 
easure as 

 = 

∫ 
ψ ([ φnz , η] , f ) dF ( f ) = 

∫ 
ψ WL ([ φnz , η] , f ) ω lens ( f ) dG ( f ) , 

(A6) 

here ω lens ( f ) denotes the lensing weights as a function of photometry
and other auxillary parameters omitted here). In the following 
ext, we will omit the dependence of the lensing weights on f for
onvenience. It is understood that the introduction of lensing weights 
mplies a dependence on a variety of parameters that describe the

easurement of galaxy shapes. 
(d F ( f )/d G ( f )) denotes the (unweighted/weighted) probability mea-

ures where d F ( f ) = ω lens d G ( f ). 
We introduce ( w WL ( f, η)/ φnz WL ) that denote the weighted (mea-

ured/modelled) WL histogram height parameters that include lens- 
ng weights as 

w WL ( f, η) = w ( f, η) ω lens 

φnz WL = φnz ω lens . 
(A7) 

he new estimating equation ψ WL ([ φnz WL , η] , f) is now adjusted
or the lensing weights and can be used in conjunction with the
mpirical likelihood framework to define a likelihood on the mean 
 f 
[
w i , WL ( f, η) 

]
in equation ( A3 ). We reiterate that E f 

[
w i , WL ( f, η) 

]
enotes here the expectation over the w i , WL ( f, η) corresponding to
in i o v er all galaxies in the sample. 
The empirical likelihood framework is a non-parametric approach 

o estimation, which imposes an empirical discrete distribution o v er
he weights w WL ( f, η) and then utilizes Lagrange multipliers to
onstrain this distribution such that the discrete probabilities sum 

o unity, are positive, and the estimating function relation 

 f 
[
ψ WL ([ φnz WL , η] , f) 

] = 0 (A8) 

s fullfilled. One can show in analogy to Owen ( 2001 ) that a profile
og-likelihood on the mean equation ( A3 ) is obtained by finding the
oots to 

( λ) = 

N gal ∑ 

i= 1 

( 

w WL ( f i , η) − φnz WL 

N gal − λT 
(
w WL ( f i , η) − φnz WL 

)
) 

, (A9) 

nd subsequently e v aluating the profile log-likelihood as 

 ([ η, φnz WL ]) = −
N gal ∑ 

i= 1 

log 
(
N gal − λT ( w WL ( f i , η) − φnz WL ) 

)
. (A10) 

Equation ( A9 ) is monotonic in λ, which is a Lagrange multiplier of
imension N bins . Here, N gal denotes the number of galaxies in the sam-

le. We reach a root for λ = 0, where φnz WL = 
1 

N gal 

∑ N gal 
i= 1 w WL ( f i , η).

his corresponds to the empirical mean of the weights w WL ( f, η),
ften referred to as the ‘stacked distribution’. This terminology is 
onventional but misleading because it is often applied inappropri- 
tely to summing up likelihood functions of forward models, which 
s an undefined operation. We refer to Appendix B for a discussion
n estimating the p samp ( z) in this context. 
The central limit theorem holds for the empirical likelihood 

ramework and the co v erage error conv erges as 1/ N , where N denotes
he sample size (Owen 2001 ). Thus, for the large sample sizes
onsidered in this work, we can safely neglect the statistical error
n the maximum empirical likelihood estimate, given that other 
rror contributions, such as model misspecification error and cosmic 
ariance, are considerably larger. 
MNRAS 524, 5109–5131 (2023) 
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PPENDIX  B:  FORWARD  MODELLING  

ETHODOLOGY  

1 Ov er view 

n this appendix, we describe the forward modelling formulation
f sample redshift inference in more detail and derive a variational
nference scheme to perform efficient p samp ( z) inference in this frame-
ork. In Section 4.1 , we discussed a simplified model, focussing on

he redshift z as the quantity of interest, as (e.g. Leistedt et al. 2016 ;
alz & Hogg 2020 ; Rau et al. 2022 ) 

( ̂  F | φnz , �) = 

N gal ∏ 

i= 1 

∫ 
d z i ω i p( f i | z i , �) p( z i | φnz , �) . (B1) 

e reiterate that ˆ F denotes the set of fluxes of all N gal galaxies in the
ample, f i ( z i ) denotes the flux (redshift) of the individual galaxy with
ndex i , and � denotes a set of auxiliary parameters that describe other
alaxy properties such as galaxy type or stellar mass. The weights
 i denote the lensing weights for each galaxy in the sample. 

2 Assumptions 

he simplified equation ( B1 ) assumes that the flux and redshift of
ach galaxy are drawn independently of any other. In a more general
etting, we could formulate a joint lik elihood. The forw ard modelling
pproach does not assume the availability of calibration data and
s therefore more general than the conditional density estimation
ethodology. In contrast to conditional density estimation, equation

 B1 ) implies a hierarchical inference of the p samp ( z). The same applies
o other population distributions for quantities of interest. For noisy
easurements of photometry, this inverse problem can be poorly

onditioned. Practical applications must impose explicit or implicit
ssumptions to control the posterior variance, either by setting priors
n quantities of interest or restricting the complexity of rele v ant
odels. Model misspecification error is a significant complication

n this conte xt. Giv en the comple x modelling of SEDs, selection
unctions, and photometric error, any practical application must
erify their modelling assumptions on calibration data. 

3 Methodology 

e discretize the � p indiv ( z) on the same grid that defines the p samp ( z)
istogram defined in equation ( 1 ). We define a matrix defined as the
et: 

z : = { pz ij ( �) | 0 < i ≤ N gal , 0 < j ≤ N bins } , (B2) 

here the entries are given as the integrals of the likelihood of galaxy
 o v er the j redshift histogram bin weighted by the lensing weights
 i 

z ij ( �) : = ω i 

∫ 
p( f i | z i , �) 1 j ( z)d z i . (B3) 

Using the definition equation ( 1 ) we can write the log-likelihood
s 

log 
(
p( ̂  F | φnz , �) 

)
= 

N gal ∑ 

i= 1 

log 

⎛ 

⎝ 

N bins ∑ 

j 

φnz , j pz ij ( �) 

⎞ 

⎠ . (B4) 
NRAS 524, 5109–5131 (2023) 
he logarithm in equation ( B4 ) and the fact that φnz is normalized (it
an be transformed to lie on the simplex) makes the e v aluation and
ptimization of equation ( B4 ) non-trivial. 20 

We can circumvent both issues by introducing the binary variables
ij that associate bin j with galaxy i . The complete data likelihood

hen reads 

( ̂  F , ρ| φnz , �) ∝ 

N gal ∏ 

i= 1 

N bins ∏ 

j= 1 

(
φnz , j pz ij ( �) 

)ρij 
, (B5) 

hich we identify as a multinominal likelihood. Imposing a Dirichlet
rior o v er the parameters φnz then yields the joint distribution
( ̂  F , ρ, φnz | �). 
Variational inference maximizes the Evidence Lower Bound

ELBO), which is equi v alent to minimizing the Kullback–Leibler
ivergence between the true, unknown, posterior, and an ‘ansatz’,
he variational distribution 

LBO = E q( ρ, φnz ) 

[ 
log 

(
p( ̂  F , ρ, φnz | �) 

)
− log q( ρ, φnz ) 

] 
, (B6) 

here q( ρ, φnz ) denotes the variational distribution to be optimized.
ere, this involves imposing an analytic form for the variational
istribution and then maximizing the ELBO with respect to its
arameters. 
We make a mean-field ansatz for the variational distribution 

( ρ, φnz ) ≈ q( ρ) q( φnz ) , (B7) 

hich assumes independence between ρ and φnz . 
Under the mean-field approximation, variational inference reduces

o a simple scheme of updating each component iteratively by mean-
eld coordinate ascent. Setting the Lagrange function constructed
sing the variational derivative of the ELBO to zero, we can derive
he following coordinate ascent iteration steps: 

( ρ) ∝ exp 
(
E q( φnz ) 

[
log p( ρ| φnz , pz ) 

])
∝ 

N gal ∏ 

i= 1 

N bins ∏ 

j= 1 

( 

exp 

( 

ψ( αj ) − ψ 

( 
N bins ∑ 

a= 1 

αa 

) 

+ log ( pz ij ) 

) ) ρij 

, 

(B8) 

nd 

( φnz ) ∝ exp 
(
E q( ρ) 

[
log p( φnz | ρ, pz ) 

])
= Dir ( α0 + 

N gal ∑ 

i= 1 

γi ) , (B9) 

here we have omitted the conditioning of the variational distribu-
ions on the parameter α for notational convenience. We note that

is iteratively updated in the argument of the Dirichlet defined
n equation ( B9 ). The sum in equation ( B9 ) goes o v er the N gal -
imension of the matrix, whose elements are defined as 

ij = 

exp 
(
ψ( αj ) − ψ( 

∑ N bins 
a= 1 αa ) + log ( pz ij ) 

)
∑ N bins 

j= 1 exp 
(
ψ( αj ) − ψ( 

∑ N bins 
a= 1 αa ) + log ( pz ij ) 

) . (B10) 

ere, ψ denotes the digamma function; the Dirichlet distribution is
bbreviated as ‘Dir’. The variational distributions defined in equation
 B8 ) and equation ( B9 ) are iteratively updated until convergence. 
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While this iterative scheme can be expected to computationally 
utperform MCMC approaches, a mean-field ansatz often leads to 
he estimation of too narrow credibility intervals. 

In our numerical experience, the undercoverage 21 under reason- 
ble regularization (e.g. by selecting broader histogram bins) is ap- 
roximately 20 per cent, which is subdominant compared with other 
ources of error induced by spatial-, colour- and redshift-dependent 
election functions or model misspecification. We therefore used the 
ariational inference scheme in this work during the initial stages 
f the project, where we e v aluated the accuracy of the Mizuki
ndividual galaxy photometric redshifts. However, we note that the 
alidity of the variational inference approximation will depend on 
he resolution (e.g. given by the histogram bins size) and can be
xpected to deteriorate for poorly conditioned scenarios with high 
ariance. In these cases, we can expect credibility intervals to exhibit 
nderco v erage. In contrast, maximum a posteriori predictions can be 
xpected to be still entirely accurate. 

PPENDIX  C:  CHARACTERIZING  COSMIC  

ARIANCE  USING  LOGISTIC  GAUSSIAN  

ROCESSES  

n this appendix, we discuss how logistic Gaussian processes provide 
 flexible model to include cosmic variance induced sample noise into 
 samp ( z) inference. 
We first consider the redshift-dependent lognormal doubly 

tochastic point process specified as 

ρi ∼ LogNorm ( μ, � ) 

 i ∼ Poisson ( ρi ) , (C1) 

here μ and � are the mean and covariance parameters of the 
ognormal distribution, the ρ i are the mean parameters of the Poisson 
istribution that describes the galaxy number counts in redshift 
imension, and N i denotes the number of galaxies in each redshift
in. The p samp ( z), which enters the modelling of two-point statistics,
s normalized to integrate to unity. We therefore need to sample o v er
ormalized histogram counts of a multinomial instead of parameters 
f a Poisson distribution. 
The lognormal ‘Cox process’ defined in equation ( C1 ) can be

qui v alently defined as 

ρi ∼ LogNorm ( μ, � ) 

N ∼ MultNominal ( φnz , N ) 

N ∼ Poisson ( ρ) 

nz ,i = 

ρi ∑ N bins 
i= 0 ρi 

ρ = 

N bins ∑ 

i= 0 

ρi , (C2) 

here we have decomposed the Poisson distribution into the product 
f a multinominal distribution that depends on the normalized ρ- 
arameters and a Poisson distribution that depends on their sum ρ. 
he random variable N denotes the total number of galaxies across 
ll bins. 

Here, N bins is the number of redshift bins introduced in equation 
 1 ). Since the modelling of the angular correlation function depends
n the normalized p samp ( z), we will concentrate on the distribution
1 Underco v erage refers here to underestimating the width of the credibility 
ntervals. 

2

m

f φnz , where equation ( C2 ) defines the logistic Gaussian process
pecification of our model. We make the simplifying assumption of 
gnoring the cross-correlations between neighbouring redshift bins, 
hich has been shown to be a reasonable approximation in S ́anchez

t al. ( 2020 ). To include an error contribution to the lognormal model
ovariance that matches the variation in the COSMOS field, we 
re interested to predict the coefficient of variation, i.e. the ratio
etween the standard deviation and mean, for the HSC phot data in
he COSMOS field as a function of redshift due to cosmic variance
nd use it to derive a cosmic variance error budget on the p samp ( z)
odel for each tomographic bin. To this end, we first formulate a
odel for the variance of galaxy counts as a function of redshift that

an be fitted to the results of S ́anchez et al. ( 2020 ). 
Consider two sets of galaxies within a spatial area and redshift

in, which we denote as B 1 and B 2 . We can express the covariance
f the number of galaxies within the sets N ( B 1/2 ) as (e.g. Stoyan &
toyan 1994 ) 

cov ( N ( B 1 ) , N ( B 2 )) = E [ N ( B 1 ) N ( B 2 ) ] − E [ N ( B 1 ) ] E [ N ( B 2 ) ] 

= E 

[ ∑ 

x 1 ∈ N( B 1 ) 

∑ 

x 2 ∈ N( B 2 ) 

1 B 1 ( x 1 ) 1 B 2 ( x 2 ) 

] 

− ρB 1 V ( B 1 ) ρB 2 V ( B 2 ) , 

(C3) 

here V ( B 1/2 ) and ρB 1 / 2 denotes the volume and expected number
ensity of B 1 and B 2 . The volume is defined with respect to spatial
rea and redshift bin and the expected number density ρ denotes the
xpected number of galaxies observed in B per unit volume. 1 B ( x )
enotes the indicator function which is unity if a galaxy can be found
t position x and zero otherwise. The first term corresponds to the
econd-moment measure, i.e. the expected number of galaxy pairs 
ncluding ‘pairs’ of the same galaxy. This can be expressed as a
unction of the two-point correlation function, the number densities, 
nd the effect of the surv e y mask. The variance contribution we obtain
ithin a set B under the assumption of homogeneity and isotropy can
e defined as 

 ar[ N ( B)] = ρB V ( B) + ρ2 
B 

“
B 

ξ ( || x 1 − x 2 || ) d x 1 d x 2 . (C4) 

he first term in equation ( C4 ) is the ‘shot noise’ contribution. The
econd term in equation ( C4 ) depends on the ‘clustering’ of the
alaxy field, parametrized by the pair-correlation function ξ ( x 1 , x 2 )
nd the surv e y geometry that enters the double integral over B . 

We develop a simple model for the COSMOS2015 data based 
n equation ( C4 ) by parametrizing ρB proportional to a lognormal
istribution and the integral of the correlation function proportional 
o a power law. Our model has five parameters; an amplitude and
cale parameter for the power-law model and two parameters that 
escribe the line-of-sight number density of the COSMOS2015 
umber counts with a normalization amplitude. We then fit this model 
o the redshift-dependent Var [ N ]/ N values reported in S ́anchez et al.
 2020 ), shown in the left panel of Fig. C1 . The black dashed line
ho ws the v alues reported in S ́anchez et al. ( 2020 ), and the red line
hows the best-fitting solution to our model. We see that at low
edshift the linear dependence on the lognormal-shaped line-of-sight 
umber density of the COSMOS2015 number counts flattens the 
ower-law shape. In the right panel of Fig. C1 , we plot the coefficient
f variation (red) and the coefficient of variation 22 from only the shot
oise contribution, i.e. the first term of equation ( C4 ). In agreement
MNRAS 524, 5109–5131 (2023) 

2 The coefficient of variation is the ratio of the standard deviation to the 
ean. 
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ith S ́anchez et al. ( 2020 ) we see that the shot noise contribution is
ubdominant for the COSMOS2015 data set. This difference will be
ven larger for our data due to the larger amount of galaxies in HSC
hot. 
The cosmic variance contribution to the coefficient of variation is

trictly bounded from abo v e by the total coefficient of variation by 
 “

B 

ξ ( || x 1 − x 2 || ) d x 1 d x 2 ≤ σ [ N ( B)] 
/
E[ N ( B)] . (C5) 

e choose to use the ‘full’ coefficient of variation from COS-
OS2015 (CV), in our model, even though the shot noise contribu-

ion would already be included in the empirical likelihood framework
or the deconvolution approach in the Mizuki case), which will lead
o an o v erestimation of our error budget following equation ( C5 ). 

In order to derive the cosmic variance error contribution on the
edshift distribution, we scale the CV by the number counts in
edshift bins as predicted by the empirical likelihood framework
or alternatively by our deconvolution algorithm) using 

[ N i ] = N tot π
ML 
i , (C6) 

here πML 
i defines the maximum empirical likelihood estimate in

edshift bin i as discussed in Section 5.4 , and ( N i / N tot ) denotes the
redshift bin i /total number of galaxies) in the tomographic bin. 

Using the method of moments we can now estimate the parameters
and � defined in equation ( C2 ) as 

μi = log 

⎛ 

⎝ 

E[ N i ] √ 

CV 
2 
i + 1 

⎞ 

⎠ 

2 
i = log 

(
CV i 

2 + 1 
)
, (C7) 

here the coefficient of variation is given as 

V i = σ [ N i ] 
/
E[ N i ] . (C8) 

his allows us to specify the logistic Gaussian process prior in
quation ( C2 ) defined in N bins redshift bins for each of the four
omographic bins in our sample. 

Given these definitions we can simplify the specification of the
ogistic Gaussian process on the parameters φnz in equation ( 1 ) to 

s ∼ N ( s | μ, � CV ) 

nz : = 

{ 

exp ( s i ) ∑ 

j exp ( s j ) 

∣∣∣∣ 0 < i < N bins 

} 

, (C9) 

here μ and the diagonal matrix � CV are defined in equation
 C7 ). The sampling of the φnz parameters is expressed in terms of
he variable s that follows a multivariate normal distribution. This
orresponds to the definition in equation ( 6 ). 

PPENDIX  D:  MARGINALIZING  OVER  THE  

AMIRA  LRG  PHOTOMETRIC  REDSHIFT  

RROR  

n the following text, we describe the definition of the marginal
ikelihood that accounts for the photometric redshift error of the
AMIRA LRG (LRG) sample introduced in Section 3.2 . In this
pproach we treat the redshifts of each LRG as a latent variable.
ince we do not have access to the likelihood of the photometric
edshift method implemented in the CAMIRA method, we utilize the
alibration data set described in Section 3.3 to estimate a conditional
istribution between the flux of the LRGs f LRG and their redshift z LRG .
his is done by matching the LRG catalogue and the specXphot
NRAS 524, 5109–5131 (2023) 
alibration catalogue and constructing a kernel based conditional
ensity estimate. We can then marginalize the likelihood of spatial
ross-correlations between the LRG and HSC photometric sample
phot) as 

p( ̂  w LRG −PhotZ | φnz PhotZ , b PhotZ , b LRG ) 

= 

“
p( ̂  w LRG −PhotZ | φnz PhotZ , b PhotZ , b LRG , z LRG , f LRG ) 

×p ( z LRG | f LRG ) p ( f LRG ) d f LRG d z LRG , (D1) 

here ˆ w LRG −PhotZ denotes the spatial cross-correlation measurements
etween the LRG and HSC phot catalogues, φnz PhotZ denotes the
 samp ( z) parameters of the HSC phot sample, and ( b PhotZ / b LRG ) is the
alaxy-dark matter bias of the (HSC phot/CAMIRA LRG) sample.
he left-hand side defines the marginal likelihood introduced in equa-

ion ( 8 ). The term p ( z LRG | f LRG ) is the aforementioned conditional
istribution of the LRGs’ redshift given their flux. We also include
he lensing weights for the HSC phot sample by weighting the pair
ounts used to construct the measurement ˆ w LRG −PhotZ according to
he prescription implemented in ‘The-Wizz’ (Morrison et al. 2017 ). 

Since the cross-correlation measurements do not vary much
etween realizations of LRG redshifts drawn from p ( z LRG | f LRG ),
e can e v aluate this double integral using a Monte Carlo estimate: 

ˆ p ( ̂  w LRG −PhotZ | φnz PhotZ , b PhotZ , b LRG ) 

= 

1 

M 

∑ 

( f LRG , z LRG ) 

(
p( ̂  w LRG −PhotZ | φnz PhotZ , b PhotZ , b LRG , z LRG , f LRG ) 

)
,

(D2

here we sample M sets ( f LRG , z LRG ) from the estimated joint
istribution ˆ p ( f LRG , z LRG ) by sampling sequentially as 

f LRG ∼ ˆ p ( f LRG ) 

 LRG ∼ ˆ p ( z LRG | f LRG ) . (D3) 

n this sampling scheme one has to recalculate the lensing-weighted
air-counts for each replication. This has the advantage that the scales
nd redshift bins can be consistently selected, but the disadvantage
f high computational cost. Ho we ver, we iterate and verify that
he variance in the integrand is moderate due to the small LRG
hotometric redshift error. Accordingly, we can use a small number
f realizations ( M = 10 in our case), which makes this a practical
pproach. We finally note that we speed up the construction of the
onditional density estimate ˆ p ( z LRG | f LRG ) by training directly on
he residuals between the specXphot ‘true’ redshifts in the training
et z LRG and the estimated mean photometric redshift estimates
 phot, LRG , i.e. we construct ˆ p ( z LRG | z phot, LRG ). 

While this potentially increases the variation in the resampled
AMIRA LRG redshifts, since we do not use the full information

n the photometry as predictors, it allows us to train our error model
fficiently on subsamples of LRG galaxies with very small variations
etween the conditional density function estimates due to the higher
ensity of LRG training galaxies in the one-dimensional covariate
 phot, LRG . 

PPENDIX  E:  DISCUSSION  OF  PRIOR  CHOICE  

n this appendix, we discuss methodological differences between
he logistic Gaussian Process as a prior o v er the p samp ( z) and the
stablished alternative choice of the Dirichlet. 

We have introduced the logistic Gaussian process as a prior
istribution o v er p samp ( z) in Rau et al. ( 2020 ), where we discuss
e veral adv antages in terms of characterizing the covariance between
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Figure C1. Left: Var ( N )/ N model for the COSMOS2015 data as a function of redshift used in this work (red) compared with the (black, dashed) predictions 
in S ́anchez et al. ( 2020 ). Right: Coef ficient of v ariation as a function of redshift predicted by our model (red) compared with the contribution from shot noise 
alone (black). 

n
w
a
s

i  

t
w
s  

v  

i
h

G  

t

φ

w
m
φ

w

e  

s  

i

c
o
l
c
t  

a
m
h  

m  

(

m

w  

t  

o
b  

i  

t  

G
 

w
c

T E E 

P
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/4/5109/7222384 by C
arnegie M

ellon U
niversity user on 28 N

ove
eighbouring redshift bins. Furthermore, as explained in Appendix C 

e can relate our choice of logistic Gaussian process prior to 
 lognormal model for the one-point density along the line of 
ight. 

The Dirichlet distribution is an alternative prior that can be 
mposed o v er coefficients of finite basis function models like e.g.
he histogram. It is a conjugate prior to the multinomial likelihood 
hich is a significant advantage in designing sampling and inference 

chemes as, for example, demonstrated in the deri v ation of the
ariational inference scheme in Appendix B . In this context it
s often applied as an uninformative prior over the histogram 

eights. 
The Dirichlet distribution is related to a gamma distribution 

amma ( α, 1) in a similar way as the logistic Gaussian Process to
he lognormal model. 

ρi ∼ Gamma ( α, 1) 

N ∼ MultNominal ( φnz , N ) 

nz , i = 

ρi ∑ N bins 
i= 0 ρi 

, (E1) 

here the vector N denotes the galaxy counts drawn from the 
ultinomial and N denotes the total number of galaxies. The vector 

nz would then be distributed according to a Dirichlet distribution 
ith coefficients α. 
Concentrating on the distribution of ρ, which describes the 

xpected number density of the point process along the line of
ight, the logistic Gaussian process as the prior o v er the p samp ( z)
mplies a lognormal model, dependent on both a mean vector and 
ublished by Oxford University 
ress on behalf of Royal Astronomical Society 2023. This work is written by (a) US Go v ernment emp
ovariance, whereas the choice of a Dirichlet distribution implies a 
ne parameter Gamma distribution, dependent on the vector α. The 
imitation of the one-parameter Gamma distribution is that both the 
oefficient of variation and the average number density depend on 
he same parameter vector α. This means that we cannot parametrize
 redshift-dependency in the coefficient of variation in the Dirichlet 
odel while leaving the mean histogram heights constant. We can 

o we ver change the average coefficient of variation while leaving the
ean constant as demonstrated in the follo wing. Follo wing Minka

 2000 ) we can reparametrize the Dirichlet as 

s = 

∑ 

k 

αk 

 = 

α

s 
, (E2) 

here ( m /s) relates to the (mean/precision) of the Dirichlet distribu-
ion o v er the histogram heights. When the mean m is kept constant,
ne can modify the standard deviation of the Dirichlet distribution 
y scaling the precision s . S ́anchez et al. ( 2020 ) mention this aspect
n their work in a slightly different context. We further note that
ypically the lognormal distribution can be adjusted to be close to the
amma distribution. 
In summary, we use the logistic Gaussian Process model in this

ork as it allows a more flexible parametrization of uncertainty 
ompared with the Dirichlet model. 

his paper has been typeset from a T X/L A T X file prepared by the author. 
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