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ABSTRACT

We present posterior sample redshift distributions for the Hyper Suprime-Cam Subaru Strategic Program Weak Lensing three-
year (HSC Y3) analysis. Using the galaxies’ photometry and spatial cross-correlations, we conduct a combined Bayesian
Hierarchical Inference of the sample redshift distributions. The spatial cross-correlations are derived using a subsample of
Luminous Red Galaxies (LRGs) with accurate redshift information available up to a photometric redshift of z < 1.2. We derive
the photometry-based constraints using a combination of two empirical techniques calibrated on spectroscopic and multiband
photometric data that cover a spatial subset of the shear catalogue. The limited spatial coverage induces a cosmic variance error
budget that we include in the inference. Our cross-correlation analysis models the photometric redshift error of the LRGs to
correct for systematic biases and statistical uncertainties. We demonstrate consistency between the sample redshift distributions
derived using the spatial cross-correlations, the photometry, and the posterior of the combined analysis. Based on this assessment,
we recommend conservative priors for sample redshift distributions of tomographic bins used in the three-year cosmological
Weak Lensing analyses.

Key words: methods: data analysis —methods: numerical — methods: statistical —techniques: photometric — galaxies: distances
and redshifts —cosmology: observations.

1 INTRODUCTION

Cosmological weak lensing (WL) and structure growth analyses for
the current and next generation of large area photometric surveys
like the Dark Energy Survey (DES; e.g. Abbott et al. 2018),
the Kilo-Degree Survey (KiDS; e.g. Hildebrandt et al. 2017), the
Hyper Suprime-Cam (HSC; e.g. Aihara et al. 2018), the Rubin
Observatory Legacy Survey of Space and Time (LSST; e.g. Ivezic¢
etal.2019), the Roman Space Telescope (e.g. Spergel et al. 2015), and
Euclid (e.g. Laureijs et al. 2011) depend on accurately accounting
for sources of systematic bias and uncertainty (e.g. Mandelbaum
2018). The primary cosmological probes in these campaigns are
measurements of the growth of structure based on two-point statistics
of galaxy and gravitational shear fields (see e.g. Hikage et al.
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2019; Hamana et al. 2020; Asgari et al. 2021; Giblin et al. 2021;
Heymans et al. 2021; Joachimi et al. 2021; Abbott et al. 2022;
Amon et al. 2022; Pandey et al. 2022; Prat et al. 2022; Secco et al.
2022a).

Since measurements of the broad-band photometry of galaxies
only allow us to extract limited redshift information, measurements
of two-point statistics of density fields are typically considered in
projection along the line of sight. The line of sight or sample redshift
distribution pgmp(z) enters the corresponding WL and Large-Scale
Structure (LSS) theory predictions, which are used to constrain cos-
mological parameters using measurements of the projected density
fields in a likelihood framework. In order to calibrate the credible
intervals on cosmological parameters, it is important to characterize
and control sources of systematic bias and uncertainty in pemp(z)
estimates (see e.g. Huterer et al. 2006; Hoyle et al. 2018; Tanaka
et al. 2018; Hikage et al. 2019; Joudaki et al. 2020; Hildebrandt et al.
2021).
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One primary science driver for photometric surveys is to constrain
the dark energy equation-of-state parameters by measuring the
distance-redshift and growth-redshift relations (see e.g. Albrecht
et al. 2006, p. 31) which both enter the WL and LSS modelling
and parametrize the growth of structure and expansion history of
our universe. This approach leads to degeneracies between cosmo-
logical parameters that describe the cosmic density fields, pgamp(z)
parameters that enter the aforementioned line-of-sight projection
kernel (e.g. Ma, Hu & Huterer 2006; Bernstein & Huterer 2010),
and other modelling components such as the galaxy-dark matter bias
(see e.g. Matarrese et al. 1997; Clerkin et al. 2015; Chang et al.
2016; Prat et al. 2018; Simon & Hilbert 2018; Sugiyama et al. 2020;
Stolzner et al. 2022) and intrinsic alignments (Amon et al. 2022;
Sanchez et al. 2022; Secco et al. 2022b). Parameters that describe
the sample redshift distribution for samples of galaxies can therefore
exhibit a degeneracy with cosmological or astrophysical parameters.
Inaccuracies in the distance (or redshift) measurements of ensembles
of galaxies are therefore important for modelling systematics in these
surveys.

The two main sources of information available to constrain
redshifts of individual galaxies as well as samples of galaxies are
measurements of their photometry and spatial clustering. Methods
that exploit photometric information (for a recent review, see Salvato,
Ilbert & Hoyle 2019; Newman & Gruen 2022) can be broadly
categorized into two classes. Empirical methods (Tagliaferri et al.
2003; Collister & Lahav 2004; Gerdes et al. 2010; Carrasco Kind &
Brunner 2013; Bonnett 2015; Rau et al. 2015; Hoyle 2016) utilize
calibration data to directly learn a mapping from the measured
photometry to the redshift of galaxies given a spectroscopic survey.
Template fitting methods (e.g. Arnouts et al. 1999; Benitez 2000;
Feldmann et al. 2006; Ilbert et al. 2006; Greisel et al. 2015;
Leistedt, Mortlock & Peiris 2016; Malz & Hogg 2020) use a
forward model that constrains the redshift of galaxies using a
likelihood of the ‘reproduced’ galaxy flux, given a model for the
galaxy spectral energy distribution (SED) and other parameters of
interest.

Both of these approaches lead to consistent estimators if their
underlying assumptions are met and a correct statistical estimator
is constructed. However, in real data, incorrectly modelled selection
functions and modelling uncertainties can lead to significant model
misspecification. A particular example are selection functions in
spectroscopic data sets used for redshift calibration (Masters et al.
2017, 2019; Hartley et al. 2020), due to the impractically long ex-
posure times required to spectroscopically observe colour-complete
samples at faint magnitudes (see e.g. Huterer et al. 2014; Newman
et al. 2015). One goal of this paper is to discuss and discern the
assumptions made in various ps.mp(z) inference methodologies by
discussing them in a unified likelihood framework.

As mentioned, a second method to constrain pgump(z) are spatial
cross-correlations between photometric and spectroscopic samples
(e.g. Newman 2008; McQuinn & White 2013; Ménard et al. 2013;
Scottez et al. 2016; Davis et al. 2017; Morrison et al. 2017;
Raccanelli, Rahman & Kovetz 2017; Gatti et al. 2018; van den
Busch et al. 2020; Hildebrandt et al. 2021). Since the photometric
and spectroscopic samples trace the same underlying dark-matter
field, the amplitudes of the two-point function measured between
spectroscopic samples (binned in redshift) and the full photometric
sample (with no accurate redshift information) can constrain the
sample redshift distribution of the full photometric sample pgamp(z).
Redshift-dependent galaxy-dark matter bias of the photometric
and spectroscopic samples, cosmic magnification effects (see e.g.
Scranton et al. 2005), and the redshift evolution of the underlying
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dark-matter density field affect the aforementioned relative redshift
bin heights.

While itis a challenge to correct for these degenerate effects, cross-
correlations are one of the most important techniques for pgump(z)
calibration today. We note that two-point statistics from e.g. WL
(e.g. Benjamin et al. 2013; Stolzner et al. 2021), or shear-ratios (e.g.
Prat et al. 2019; Giblin et al. 2021; Sanchez et al. , 2022) can also be
used in the context of redshift estimation.

However, since WL in particular is considered one of the most
promising methods to constrain dark energy, photometric redshift
estimation is treated in our analysis as a systematic that enters the
theoretical modelling of a separate ‘cosmological’ likelihood rather
than using WL statistics as a redshift estimation technique. Recently,
the question of how to integrate redshift uncertainty into a likelihood
of two-point statistics has been considered (McLeod, Balan &
Abdalla 2017; Hoyle & Rau 2019), especially in the context of
how to combine template fitting and cross-correlation measurements
(Jones & Heavens 2019; Sanchez & Bernstein 2019; Alarcon et al.
2020; Rau, Wilson & Mandelbaum 2020; Myles et al. 2021; Cawthon
et al. 2022; Gatti et al. 2022; Rau et al. 2022; Zhang et al. 2023).
In Rau et al. (2022), we developed a Bayesian hierarchical inference
framework that self-consistently combines information from both
cross-correlation redshift estimation and photometry, specifically
discussing aspects of regularization and probability calibration. Rau
et al. (2022) validate the basic aspects of our presented methodology
using mock data where well-controlled sources of systematics are
modelled. While the usage of simulated mock data necessarily has
limitations, we performed this analysis with the greatest possible
realism in mind. We found that a hierarchical modelling approach
similar to the one presented in this paper can indeed reach the
level of accuracy necessary for LSST, as measured using common
performance metrics.

This paper presents the sample redshift inference methodology for
the HSC Y3 cosmological WL analysis, which consists of two cosmic
shear analyses (Dalal et al. 2023; Li et al. 2023a) in four tomographic
bins and a 3x2pt analysis (Miyatake et al. 2023; More et al. 2023;
Sugiyama et al. 2023) which uses one tomographic bin. This paper
presents our inference methodology in the context of the cosmic
shear analyses, where it was used as the default method for redshift
inference. Tomography refers here to binning the shear catalogue
along the redshift dimension, using a predictor for redshift. While the
separation of these tomographic samples in redshift is typically not
perfect, i.e. the sample redshift distributions of adjacent tomographic
bins will overlap, autocorrelations and cross-correlations estimated
on the tomographic samples will have more information about
the redshift evolution of the growth of structure than the two-
point function estimated on the unbinned sample. We utilize five
band photometry in the grizy filter set to infer the tomographic
sample redshift distributions (tomographic psmp(z)). We apply our
methodology to the Hyper Suprime-Cam three-year shape catalogue'
data set (HSC Y3), and derive and recommend prior distributions
OVer a pamp(z) parametrization that can be used in the subsequent
cosmological WL analyses.

This work presents a significant update to the HSC sample
redshift inference methodology developed for the first year (HSC
Y1) analyses presented in Hikage et al. (2019) and Hamana et al.
(2020). This is vital, since the increased area of the shear catalogue
from 136.9 deg? (HSC Y1) to 433.5 deg? (HSC Y3) implies that our
redshift calibration accuracy has to significantly improve to prevent

Data observed through 2019.
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systematic biases or uncertainties in cosmological parameters from
dominating over the statistical uncertainties.

2 MOTIVATION

The HSC Y1 sample redshift distribution calibration described
in Hikage et al. (2019) and applied in the context of the Y3
cosmic shear analysis in that work and in Hamana et al. (2020)
estimates the sample redshift distributions in tomographic bins by
reweighting COSMOS2015 (Ilbert et al. 2006; Laigle et al. 2016)
galaxies in colour space. The quantification of uncertainty includes a
systematic error budget derived by comparing the reweighted sample
redshift distribution with the sample redshift distribution estimators
obtained from a set of seven independent methods. The HSC Y1
analyses used uncertainties in the means of the tomographic redshift
distributions as parameters to marginalize over photometric redshift
uncertainty.

The forthcoming HSC Y3 analyses also include a systematic error
budget based on a comparison of models, but presents a significantly
updated framework for sample redshift inference that includes a
treatment of cosmic variance as well as a cross-correlation calibration
of sample redshift distributions based on a sample of Luminous
Red Galaxies (LRGs, Oguri 2014; Oguri et al. 2018a, b; Ishikawa
et al. 2021) selected using the Cluster finding algorithm based on
Multi-band Identification of Red-sequence gAlaxies (CAMIRA). We
will abbreviate this sample as ‘CAMIRA LRG’ in the following.
The inclusion of a cross-correlation data vector into the inference
of the sample redshift distribution pgmp(z) is arguably the most
significant improvement over the Y1 analyses, as it allows us to
independently test the quality of the estimated pgmp(z) in the
tomographic bins.

We refer to the remainder of the paper for an explanation of the
HSC Y3 redshift inference methodology. However, we would like
to motivate the effect that these significant changes have on our
redshift calibration using a forecast, which is based on amock Y3 WL
cosmological analysis. We perform a mock analysis of a synthetic
data vector with a redshift distribution inferred for the HSC Y1 shape
catalogue, using a similar analysis to the one presented in this work,
and compare it with an analysis using the simple ‘stacked’ redshift
distribution from Hamana et al. (2020). The main difference from
the methodology described in the rest of this work is the usage of the
Dirichlet distribution, as well as the usage of a model combination
scheme described in Rau et al (in preparation) that accounts for the
model uncertainty across the several different photometric redshift
codes applied to the HSC Y1 data set and described in Hamana et al.
(2020).

The sample redshift posteriors and the inference scheme employed
to marginalize over the uncertainty in those parameters are both
described in Zhang et al. (2023). The sampling is based on using
the mean of the tomographic redshift distributions as the main
parameter over which we marginalize (referred to as the ‘shift
model’ in the following). The cosmological parameter inference
is performed using the multinest method with 500 live points. We
consider nine cosmological and nine astrophysical parameters and
four parameters within the shift model. The simulated data vector
includes noise based on the scaled HSC first year covariance as
described in Zhang et al. (2023). Both contours shown in Fig. 1 use
the shift model to marginalize over the psmp(2) uncertainties, where
our prior on the tomographic pgmp(z) is generated using the mean
redshifts of 1000 samples of sample redshift posterior generated
by the updated methodology. The prior on the mean redshift of
the stacked redshift distribution follows Hamana et al. (2020). We

HSC WL redshift distribution inference ~ 5111
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Figure 1. Forecast of the impact and importance of using an updated psamp(z)
inference methodology on cosmological inference from the predicted Y3 data
vector and covariance matrix. The purple contour uses the ‘stacked’ redshift
distribution for the Y1 galaxy catalogue, while the orange contour uses the
Y1 redshift distribution inferred from an analysis similar to this work. The
change in redshift distribution causes a 0.5¢ shift in the Sg constraints, which
is significant for the upcoming Y3 cosmic shear analyses.

generate an approximation to the Y3 covariance by dividing the Y1
covariance by 3, which approximately accounts for the increase in
area from Y1 to Y3 while ignoring changes in the contiguity of the
survey footprint. Fig. 1 compares the posteriors in the €2,, — Sg
plane.

We note a 0.5¢ shift in Sg, which shows that the updated
analysis would predict a higher Sg value. Note that the syn-
thetic data vector is generated with the updated redshift distribu-
tion, so the analysis with that redshift distribution recovers the
true cosmological parameters. This figure illustrates the impor-
tance of pgamp(z) calibration and in particular of a joint pgmp(z)
analysis that includes complementary data sources and analysis
techniques.

3 DATA

The following sections describe the data sets and catalogues that we
use in this work. Specifically, we consider three data sets that are
relevant at different stages of the analysis. Section 3.1 describes the
photometric data included in the HSC shear catalogue, Section 3.2
the catalogue of LRGs (Oguri 2014; Oguri et al. 2018a, b; Ishikawa
et al. 2021) that we will use for our cross-correlation analysis, and
Section 3.3 a matched catalogue between the photometric data and
spatially overlapping spectroscopic surveys. We will abbreviate the
photometric data included in the HSC shear catalogue as ‘HSC
phot’, the catalogue of LRGs as ‘CAMIRA LRG’, and the matched
catalogue as ‘specXphot’.

3.1 HSC Y3 shape catalogue

The Hyper Suprime-Cam survey, which is part of the Subaru Strategic
Program (SSP), is an optical imaging survey carried out using the Hy-

MNRAS 524, 5109-5131 (2023)
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Figure 2. Distribution of i-band cmodel magnitudes for the four tomographic
bins. We show the i-band cmodel magnitudes on the horizontal axis and the
number of galaxies on the y-axis. The median magnitudes are shown in the
legend, the magnitude bin size is A = 0.11.

per Suprime-Cam (HSC, Miyazaki et al. 2018), a wide field camera
with 1.77 deg? field of view installed on the 8.2 m Subaru telescope.
The shear catalogue we use in this work, as part of the year-3 analysis,
consists of 417 deg?? of wide-field optical galaxy photometry in grizy
with a So limiting magnitude of » &~ 26. We refer the reader to Aihara
et al. (2018) and Aihara et al. (2022) for a more detailed overview
of the design of the HSC survey. The catalogues from this internal
data release along with the shape catalogue and their calibrations are
expected to be made public as part of a future incremental update
to PDR3 (Aihara et al. 2022) after the cosmological analyses are
finished.

Fig. 2 plots the cmodel® magnitude distribution in the i band for the
four tomographic bins. The tomographic bins (‘Bin 1°, ‘Bin 2’, ‘Bin
3’, ‘Bin 4’) are selected using a procedure described in Section 5.2 to
have approximately the redshift ranges of (0.3, 0.6], (0.6, 0.9], (0.9,
1.2],and (1.2, 1.5].

We see that all four tomographic bins extend to magnitudes
fainter than 24 in the i band, where the majority of galaxies have
a magnitude around that value. Bins 1-4 contain 24, 33, 28, and
15 percent of the galaxies, respectively, and the raw (effective)
galaxy number densities are 3.92 (3.77), 5.63 (5.07), 4.68 (4.00),
and 2.60 (2.12) arcmin~2. Since we present this analysis in the
context of the upcoming cosmic shear analysis for HSC Y3, we
apply our methodology to galaxies contained in the shear catalogue
that has a magnitude limit of 24.5. We therefore need to include all
of the lensing selection criteria and lensing weights throughout the
analysis. Lensing weights are inverse variance weights derived in the
construction of the galaxy shape estimate. For a description of the
methodology to derive these selection criteria and lensing weights,

2We remove a 20 deg? region that failed the cosmic shear B-mode test (see
Zhang et al. 2023).

3The SDSS CModel magnitude (Lupton et al. 2001; Abazajian et al. 2004)
algorithm fits a galaxy using elliptical models with both an exponential profile
and a de Vaucouleurs profile. The derived CModel flux is approximately a
linear interpolation between exponential and de Vaucouleurs models. We
refer to Huang et al. (2017) for more details.

MNRAS 524, 5109-5131 (2023)
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Figure 3. Photometric versus spectroscopic redshift for CAMIRA LRG
galaxies with spectroscopic redshifts. The dashed black line denotes perfect
photometric redshift prediction. There is a small population (0.02 per cent)
of redshift outliers at zspec > 5 which we do not show here. The contour line
annotations indicate the corresponding probability density values in per cent.

we refer to Li et al. (2022). In the following text, we will refer to the
shear catalogue as ‘HSC phot’.

3.2 CAMIRA LRG sample

The CAMIRA LRG sample* contains LRGs selected using the
CAMIRA algorithm (Oguri 2014; Oguri et al. 2018b; Ishikawa et al.
2021). CAMIRA identifies LRGs as red-sequence galaxies based
on their photometry and their consistency with the expected colours
from stellar population synthesis models. The LRG sample has a
limited redshift range of z < 1.2 and the redshifts of these LRGs
are subject to photometric redshift error.’ In this work, we use the
CAMIRA LRG sample as a reference catalogue for spatial cross-
correlations with galaxy samples from HSC phot. This will allow
us to construct a likelihood that constrains the pgmp(z). Since the
LRG galaxy population provides a photometric sample with good
redshift quality and well-understood clustering properties, it is the
ideal reference sample for cross-correlation studies. However, as
we will describe in Section 5.5, we need to marginalize over the
photometric redshift error of the LRGs. This requires a model for the
photometric redshift error of the CAMIRA LRG galaxies, which we
detail there. The photometric redshift error model is calibrated using
the corresponding LRG subsample of the full specXphot reference
sample described in Section 3.3. Fig. 3 shows the photometric
redshift of the CAMIRA LRGs against the spectroscopic redshifts of
the aforementioned specXphot reference subsample as a contour plot.
We see that, especially around zgpec 2 0.4/zpn0 A 0.2, a well-known
redshift region where the 4000 A break crosses between the g and
the r filters, the photometric redshift of the CAMIRA LRG galaxies
shows a mean bias in the contour lines, although we identify a small
number of outlier galaxies with zsp.. > 5. This population consists of
0.02 per cent of the full CAMIRA LRG specXphot reference sample;

“https://github.com/oguri/cluster_catalogs/tree/main/hsc_s20a_camira (Ac-
cessed 2022 June 10)

SPhotometric redshifts for LRGs are often derived using SED fitting tech-
niques and have significantly better redshift accuracy compared with the full
photometric sample.
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Figure 4. Distribution of photometric redshift residuals of zspec — ZPhotz-
The black dashed vertical line denotes the mean, while the grey contours
show the range between the 16th and 84th percentiles (selected to resemble
a ‘Gaussianized’ lo interval).

the contamination is small and we leave a further investigation of
the outlier population for future work. The bias at low photometric
redshift is also apparent in the right tail of Fig. 4, which shows a
histogram of the residual redshift error zspec — Zphot- The black dashed
vertical line shows the mean residual redshift error (0.018), while the
grey region visualizes the range between the 16th (—0.017) and 84th
(0.052) percentiles (equivalent to the ‘Gaussian’ 10 intervals).

3.3 Spectroscopic reference samples

This section gives an overview of the spectroscopic reference
samples that are available to match against HSC phot to generate
the ‘specXphot’ calibration sample. We will concentrate on the
aspects that are relevant for this work and refer to Tanaka et al.
(2018) for a more detailed description of the reference samples and
the selection criteria used to generate them. The reference sample
(Nishizawa et al. 2020) is assembled from the following sources:
zCOSMOS DR3 (Lilly et al. 2009), zCOSMOS faint (Lilly et al.
2009) including private spectroscopic data®, COSMOS2015 (Laigle
et al. 2016), UDSz (Bradshaw et al. 2013; McLure et al. 2013),
3D-HST (Skelton et al. 2014; Momcheva et al. 2016), FMOS-
COSMOS (Silverman et al. 2015), VVDS (Le Feévre et al. 2013),
VIPERS PDRI (Garilli et al. 2014), SDSS DRI12 (Alam et al.
2015), GAMA DR2 (Liske et al. 2015), WiggleZ DR1 (Drinkwater
et al. 2010), DEEP2 DR4 (Davis et al. 2003; Newman et al. 2013),
VANDELS DR2 (Pentericci et al. 2018), C3R2 (Masters et al.
2017, 2019), and PRIMUS DR1 (Coil et al. 2011; Cool et al.
2013). The spectroscopic redshift measurements are extracted from
both high-quality spectroscopic measurements (*170 000 galaxies)
and lower resolution prism spectroscopy (/37000 galaxies). In
addition, Tanaka et al. (2018) also include 170000 Cosmos2015
multiband photometric redshifts and a sample of privately obtained
spectroscopic redshifts (Mara Salvato private communication).
Tanaka et al. (2018) homogenize the catalogue to ensure approx-
imately uniform data quality. This is done by imposing cuts on the
quality flags in the respective source catalogues. The galaxies are

6Mara Salvato (private communication).
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then matched to HSC phot (see Section 3.1) to create the specXphot
reference sample. This catalogue contains both the photometric
measurements in HSC phot and the spectroscopic redshift estimates
from the listed sources.

We will utilize this data set as a reference sample to calibrate
and train photometric redshift estimates. While the selection cuts
imposed by Tanaka et al. (2018) are designed to minimize the
impact of colour-redshift incompleteness on photometric redshift
estimates trained on the specXphot calibration sample, we still have
to consider the spatial selection function due to the much smaller
survey footprint of the specXphot sample in relation to HSC phot.
Furthermore, residual selection function induced systematics will
likely remain, which motivates our usage of cross-correlations for
redshift calibration.

To give an overview of this data set, Fig. 5 shows the normalized
spectroscopic redshift distribution of the specXphot sample (upper
panel), the histogram of the i-band magnitude (middle panel), and
the spatial area covered by the specXphot calibration catalogue up to
(i.e. fainter than) the magnitude limit plotted on the horizontal axis
(lower panel). The middle panel shows that the specXphot calibration
catalogue covers the magnitude range of the HSC phot sample (black
dashed histogram). We generate the lower panel by adding up the
area as a function of i-band magnitude covered by the specXphot
calibration catalogue using a healpix pixelization (Gorski et al. 2005)
with NSIDE = 1024. The black dashed horizontal line shows the size
of the COSMOS2015 calibration field (~ 2 deg?) that dominates the
data at the faint end. It represents the lower limit on the HSC Y3
area, for which we have available calibration data. This lower limit
will be used in Section 5.4 to derive a conservative assessment of the
cosmic variance error budget in our p,mp(z) inference methodology.

4 THE PHOTOMETRIC REDSHIFT PROBLEM

The pgamp(z) of galaxies is a vital component in the modelling
of projected density fields in weak gravitational lensing and LSS.
This one-point density distribution along the line of sight enters the
projection kernel in the modelling of these probes. In this section,
we summarize the foundational methodology for estimating the
redshift distributions of galaxy ensembles (‘psamp(z) inference’,
hereafter).

There are two main approaches to the photometric redshift prob-
lem. The ‘forward-modelling’ approach models the data generating
process’ and treats the Psamp(2) as the prior on the redshift of
individual galaxies. We note that ‘traditional’ approaches like SED
fitting would also fall under this category. The alternative ‘conditional
density estimation’ approach constructs a direct probabilistic map-
ping between the photometry of galaxies and their redshift. For HSC,
we consider both methodologies, and therefore describe pgmp(z)
inference in both scenarios in the following two subsections. We
note however that the models that we select for our final inference
(‘DNNz’ and ‘DEMPzZ’, see Section 5.1) are both conditional density
estimation techniques. We still describe both methodologies in detail
for completeness.

"The ‘data generating process’ refers to the procedure of drawing galaxy prop-
erties from population distributions like the sample redshift distribution and
mapping these quantities to measured observables, like e.g. the photometry,
via a likelihood (or sampling distribution).
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Figure 5. Illustration of the spatial coverage and the distribution of galaxies
as a function of i-band magnitude for the specXphot Calibration data set
used for pingiv(z) estimation. Top: Spectroscopic redshift distribution of the
specXphot calibration sample. The histogram is normalized to integrate to
unity. Middle: Distribution of galaxies in i-band magnitude for the specXphot
Calibration data set (red solid) and the HSC phot data set (black dashed)
including lensing weights. Lower: Area in square degrees covered by the
specXphot data set as a function of i-band magnitude. The vertical axis,
plotted on the symmetrical log scale, shows the total area covered by
all galaxies with i-band magnitude brighter than the value shown on the
horizontal axis. The dashed horizontal line shows the area covered by the
COSMOS2015 data set that dominates the specXphot data set at the faint
end.

Throughout this paper we parametrize the pgmp(z) using a his-
togram with height parameters ¢, for Np,s histogram bins as

Nbins

psamp(z) = Zd’nz,i]li(z)s ()
i=1

where 1; denotes the ‘indicator’ function for a given histogram bin i.
The indicator function 1(z) is unity if z falls in the histogram bin, and
zero otherwise. We note that instead of a histogram parametrization
one could also consider a kernel ansatz using, e.g. a Gaussian kernel.
This could have advantages because we could consider a continuous
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approximation with (potentially) fewer parameters. However, this
is not expected to be a vital reduction in approximation error. In
the current analysis we decided to use the histogram, a flexible
parametrization that does not necessitate the development of a
specialized model for the psmp(z). In the following subsections we
will describe two methodologies to infer sample redshift distributions
psamp(z)-

We want to briefly (and somewhat colloquially) comment on
the different interpretation of pgmp(z) in both contexts. Both tech-
niques formulate a likelihood for the parameters ¢. The likelihood
formulated in Section 4.1 describes a sampling distribution over
the observed flux. The approach Section 4.2 describes a sampling
distribution over parameters of a density estimate constructed us-
ing conditional density estimates that map directly from observed
photometry to galaxy redshift. We highlight that it is important to
distinguish both approaches and continue with a detailed description
of each in the following subsections.

4.1 Forward-modelling approach

The goal of the forward modelling approach in general and SED
modelling in particular is to formulate a statistical procedure that
hierarchically models the relation between ensemble distributions of
quantities of interest like galaxy redshift, type, or stellar mass, the
corresponding properties of individual galaxies and observables like
photometry.

In a simplified model (focussing on the redshift z as the quantity
of interest) we can formulate this as (e.g. Leistedt et al. 2016; Malz &
Hogg 2020; Rau et al. 2022)

N, gal

p(E1n. @) = [ [ @200 p(Eics, DGl 2. @)
i=1

Here, F denotes the set of fluxes of all Ngq galaxies in the sample,
f; (z;) denotes the flux in a filter set (redshift) of the individual galaxy
with index i, and €2 denotes a set of auxiliary parameters that describe
other galaxy properties such as galaxy type or stellar mass. The
factor w; denotes the lensing weight for galaxy i. We note that bold
symbols denote vector quantities. Equation (2) assumes that the flux
and redshift of each galaxy are drawn independently of any other.
To simplify the notation we will implicitly assume conditioning
on £, but omit it from the notation in the following discussion.
Effects like blending (MacCrann et al. 2022; Li et al. 2023b) break
the aforementioned assumption of independence of the galaxy flux
measurements. This requires either the formulation of a joint flux
likelihood of sets of galaxies or a reformulation of the likelihood
on the pixel level to facilitate a joint inference with photometry and
shear. We do not expect this approximation to dominate the error
budget for this analysis and refer to future work. Also, note that
Li et al. (2022) explored the connection between redshift and shear
calibration in the context of simulations devised to explore blending
effects for HSC survey data, and have already folded this effect into
our understanding of redshift-dependent shear calibration.

We identify the term p(f;|z;, &) in equation (2) as the likelihood
of the observed individual galaxy flux given redshift, and the term
D(zZi|¢nz, ) as the prior distribution of the galaxy redshifts given
the parameters that describe the sample redshift distribution (see
equation (1) for the definition of these parameters). This specifies
a forward model, where the individual galaxy redshifts z; are first
‘drawn’ from the sample redshift distribution, denoted by the prior
P(2Zi|Pnz, ). The likelihood then relates the drawn galaxy redshifts
z; to the observed galaxy fluxes f; via the likelihood function
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p(fi|z;, ). We note that the sample redshift distribution pgmp(2) is
here conditional on both the parameters ¢,, that are used to construct
the distribution, as well as auxillary parameters §2 that describe other
quantities of interest.

In the following text we present a toy model that illustrates some
aspects of the forward model formulation in a more concise manner.
We also refer to Meister (2009), Rau et al. (2022), and Padmanabhan
et al. (2005) for similar introductions. Simplifying the problem and
notation we can relate equation (2) to the linear model

¢nznoisy =K- ¢nzm|e 3)

by identifying p(F|¢nZ, 2) with a ‘smeared-out’ and observed vector
Duznoisy» the set of likelihoods {p(fi|zi, )]0 < i < Nga} with the
matrix K and the sample redshift distribution p(z;|¢,,, ) with a
noiseless, or ‘true’, vector @, -

Thus, to recover ¢y, we need to invert the matrix K, which
can be very sensitive to small variations in ¢y, 0r the matrix
K. The former could be caused, for example, by the photometric
noise, the latter by model error in the forward model. The sensitivity
of the linear model on these variations depends on the condition
number of K, which will in turn depend on the resolution of the
reconstruction, i.e. the histogram width in our parametrization. The
forward modelling approach therefore treats pgamp(z) inference as an
inverse problem whose solution is critically dependent on accurate
modelling of the individual galaxy likelihoods and the regularization
strategies that we impose. The likelihood modelling should also
include how galaxies are selected into tomographic bins and other
selection functions.

Typically one needs to ‘regularize’ this inverse problem. Regu-
larization techniques reduce the noise in the reconstructed psamp(z)
by adding constraints to its shape. Ideally this information is not
chosen arbitrarily, but rather results from data-driven constraints (e.g.
a cross-correlation data vector that is included into the inference).
We refer to a more detailed discussion on regularization and its
methodological challenges in our previous work (Rau et al. 2022).
We would like to note that instead of analytically modelling the
likelihood function, one can also impose a synthetic likelihood. This
can be done for example using a density estimate constructed using
a Self-Organizing Map (see e.g. Kohonen 1982) that is trained on
calibration data as in e.g. Sdnchez & Bernstein (2019), Alarcon et al.
(2020), and Myles et al. (2021). In this case the same considerations
would apply, where we can substitute the analytical likelihood with
a likelihood that is empirically estimated. One of the methods
considered but ultimately not selected in this work is the Mizuki SED
fitting method (Tanaka 2015; Tanaka et al. 2018). Mizuki is an SED
fitting technique that formulates an analytic likelihood function, so
the techniques described in this section directly apply. In Appendix B,
we provide a detailed description of our sample redshift inference
methodology.

4.2 Conditional density estimation approach

The conditional density estimation approach (see e.g. Lima et al.
2008; Carrasco Kind & Brunner 2013; Rau et al. 2015; Dalmasso
et al. 2020) constructs a density estimate between the photometry of
galaxies and the redshift p(z|f) using a calibration, or training, data
set. As such, the conditional density estimation approach depends on
the calibration data set to constrain the conditional distribution p(z|f).
The calibration data set provides information about the mapping
between photometry and redshift and the probability density of
redshift given photometry.

HSC WL redshift distribution inference 5115

In contrast, forward modelling explicitly considers a likelihood
function or, alternatively, constructs a sampling distribution using
numerical simulations. The forward modelling approach therefore
must include information on the relative abundance of galaxies of
different type and redshift into the prior (or as part of the simulation
draws). Imposing a prior on the population distributions such as the
Psamp(2) effectively acts as a regularization.?

For the conditional density estimation approach, one can for-
mulate an estimate for the sample redshift distribution via
marginalization

Peamy(2) = / df p(zIf)p(E) @

Equation (4) also describes a linear system, similar to equation (3).
However, equation (4) is typically much better ‘conditioned’ than
equation (3), if we do not consider regularization.

However, due to the dependency of a conditional density estimate
on a training data set, the conditional density estimation approach
often suffers from non-negligible epistemic (i.e. model) uncertainty
and bias in the construction of the conditional density estimates
p(z|f). This can lead to sub-optimal probability calibration of the
estimates p(z|f). Appendix A describes an estimating function ap-
proach that allows the marginalization over the epistemic (or ‘model
uncertainty’) and aleatoric (or ‘intrinsic statistical noise’) uncertainty
in the estimator construction of equation (4). This is achieved via the
formulation of a likelihood function.

5 PHOTOMETRIC REDSHIFT INFERENCE
PIPELINE

In the following subsections we describe in more detail our methodol-
ogy for performing psamp(z) inference for HSC Y3 WL analyses. We
reiterate that all estimates for pg,mp(2) in this work include the lensing
weights that are available for all galaxies in the shear catalogue as
described in Section 3.1.

5.1 Individual Galaxy redshift estimation

In the following text, we will briefly describe the three photometric
redshift techniques for individual galaxies used in this work. For
a more detailed description of these methods we refer to the
photometric redshift analysis study for the third public data release.’

5.1.1 Mizuki

The photometric redshift code Mizuki (Tanaka 2015; Tanaka et al.
2018) is an SED fitting technique. It uses an SED template set
constructed using Bruzual-Charlot models (Bruzual & Charlot
2003), a stellar population synthesis code that uses an initial mass
function following Chabrier (2003), a dust attenuation modelling
from Calzetti et al. (2000), and emission-line modelling assum-
ing solar metallicity (Inoue 2011). The method applies a set of
redshift-dependent Bayesian priors on the physical properties. After
estimation, the photometric redshift distributions of galaxies are
calibrated (Bordoloi, Lilly & Amara 2010) using the specXphot
data set to improve error quantification. We refer the reader to

8Note that the likelihood is not a probability density, but a function. The
probability measure is ‘provided’ by the prior.
9https://hsc-release.mtk.nao.ac.jp/doc/wp-content/uploads/2022/08/pdr3_p
hotoz.pdf (Accessed 2022 October)
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Tanaka (2015) and Tanaka et al. (2018) for more details on the
methodology.

5.1.2 DNNz

DNNz is a neural-network-based photometric redshift conditional
density estimation code. The DNNz architecture consists of multi-
layer perceptrons with five hidden layers. The training uses cmodel
fluxes, unblended convolved fluxes, point spread function fluxes,
and galaxy shape information. The construction of the conditional
density uses 100 nodes in the output layer, and each represent a
redshift histogram bin spanning from z = 0 to 7 (Nishizawa et al. in
preparation).

5.1.3 DEMPz

The Direct Empirical Photometric redshift code (DEMPz) is an
empirical technique for photometric redshift estimation (Hsieh &
Yee 2014; Tanaka et al. 2018) that constructs conditional density
estimates. The technique uses quadratic polynomial interpolation
of 40 nearest neighbour galaxies in a training set, with a distance
estimated in a 10-dimensional feature space (5 mag, four colours,
and shape information). DEMPz obtains error estimates for the
constructed conditional densities using resampling procedures. This
also includes resampling of the input feature uncertainties and
bootstrapping the training galaxies.

5.2 Sample selection

‘We bin the full sample described in Section 3.1 into four tomographic
bins by selecting galaxies using the best estimation of the DNNz
conditional density estimates within redshift intervals of (0.3, 0.6],
(0.6,0.9], (0.9, 1.2], and (1.2, 1.5].

After catalogue creation we identify regions of data space that
will be difficult to calibrate using the cross-correlations with the
CAMIRA LRG sample, and therefore have the potential to produce
a large systematic error (see Section 5.5). In particular, we identify
double solutions in the Mizuki SED fits and DNNz conditional
density estimates, associated with a significant fraction of outliers
at z 2 3.0for both methods. These photometric redshift solutions
have redshift-template degeneracies that produce multiple solutions.
Since the secondary solutions are outside the redshift coverage of
the CAMIRA LRG sample, they cannot be calibrated using spatial
cross-correlations. Therefore, we decide to remove these galaxies
from the sample.

We identify galaxies with double solutions by defining the fol-
lowing selection metric based on the distance between the 0.025
and 0.975 quantiles of the Mizuki posterior solutions and DNNz
conditional density estimates:

Mizuki Mizuki DNNz DNNz
(20975,:' - Z0025,:‘) <27 and (10975,:‘ - Zvozs,i) <27, ®)

where z{$78% and z{{3% denote the 0.975 and 0.025 percentiles

for galaxy i derived using the Mizuki estimates of posterior red-
shift, respectively; and similarly for the DNNz conditional density
redshift predictions. We found that the above criteria based on
the Mizuki and DNNz methods is optimal to ensure that the
removal of double solutions is efficient for Mizuki, DNNz, and
DEMPz.

We apply this criterion to the first and the second tomographic
redshift bins, reducing their sample size by 31 percent and 8
per cent, respectively. The third and fourth tomographic bins have
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negligible double solutions. We therefore do not apply any cuts
to the corresponding galaxy samples. We illustrate the effect of
removing the double solutions on the stacked (summed) redshift
distribution in Fig. 6. We can see that a reduction of 31 percent
in sample size by applying equation (5) removes double solutions
for all three methods available in this work. In the following
text, we will denote the removal of double solutions as the
‘calibration cut’.

We have also confirmed that this selection does not induce a
spatial selection effect. This was tested by comparing the spatial
distribution of galaxies before and after we apply the calibration cut
and confirming that no significant modification of the clustering was
introduced by the cut.

This is illustrated in Fig. 7, where we test the impact of the
calibration cut on the spatial distribution of galaxies. We first confirm
if the fraction of galaxies rejected by the calibration cut (i.e. galaxies
with doubly peaked pingiv(z)) s is comparable for all subfields. This
has to take into account the variation due to sampling variance, which
we quantify by dividing into subregions within the different fields.
The top panel plots several normalized histograms over s where each
histogram corresponds to a separate field listed in the legend. Note
that we obtain a distribution p(s) over s for each field by estimating
s on each patch within each field. The vertical dashed line denotes
the mean of the histograms over the different fields, the errorbars
denote the field-to-field variation. We see that s is consistent across
the different fields.

In the lower panels we investigate if the spatial distribution of
removed galaxies is spatially ‘random’, or if we have to expect a
correlation signal based on the calibration cut. The vertical axis shows
the difference between the correlation function estimated on the
catalogue in each field subject to the calibration cut and a catalogue
where galaxies are removed randomly. The horizontal dashed line
guides the eye towards the zero line. The error contours are obtained
by jackknife resampling the catalogue within each field. We see
that the measured autocorrelation functions are consistent between
the randomly selected catalogue and the catalogue subject to the
calibration cut.

5.3 Individual Galaxy redshift estimation to enable sample
redshift distribution (psamp(z)) inference

This project considered all three individual galaxy photomet-
ric redshift estimates introduced in Section 5.1 and performed
an initial comparison between sample redshift posteriors ob-
tained using these three methods with the cross-correlation con-
straints. We found insufficient agreement for the Mizuki solu-
tions, whereas DEMPz and DNNz where more consistent. By
iteratively reproducing the inconsistencies using analytic error
models, we identified a number of problems with the Mizuki
solutions.

We found that the Mizuki photometric redshift solutions are
miscalibrated (Nishizawa et al. in preparation) and that systematics
induced by uncorrected selection functions from galaxy selection,
object weighting, and the calibration cut can lead to additional
bias in the sample redshift inference for the Mizuki code. A
recalibration of the Mizuki likelihoods using the specXphot sample
based on Bordoloi et al. (2010) only slightly improved the results.
We concluded that the consistency between the DEMPz and DNNz
codes and the cross-correlation measurements was still better. We
note that including the aforementioned selection function into the
likelihood formulation is structurally simple, but would require a
rerun of the Mizuki solutions which was not deemed practical. We
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Figure 6. The stacked photo-z posteriors for galaxies in the first (upper panel, 0.3 < Zgnnzbest < 0.6) and second (lower panel, 0.6 < Zgnnz_best < 0.9)

tomographic redshift bin estimated from three photo-z estimation codes. Cuts on the interquartile distance are applied to these galaxies to remove the secondary
peak in the stacked posteriors. The stacked posteriors for the fiducial cut, which removes 31 percent of the galaxies in the first bin, are plotted as red lines.

These posteriors are normalized so that they have total probability of one.

therefore selected DNNz as our primary method and DEMPz as the
alternative method for the subsequent analysis. In the following text,
we will refer to sample redshift distribution inference methodology
based on individual galaxy redshift distributions, abbreviated as the
vector-valued Pingiv(z), as ‘photometry-based Dsamp(2) €stimation’, or
short ‘PhotZ’.

5.4 Formulation of the ensemble redshift distribution prior

Based on our fiducial model choice we apply the empirical likelihood
methodology described in Appendix A to estimate pgmp(z) for the
four tomographic bins based on the DNNZ Pingiv(2).

As we discuss in detail in Appendix A, the empirical likelihood
estimation obeys the central limit theorem. The large sample size
of our catalogues implies that the statistical error in the maximum
empirical likelihood estimate is much smaller than other sources of
uncertainty. These include a cosmic variance contribution from the
spatially limited training sample (see Section 3.3), as well as the
uncertainty in the individual galaxy redshift estimation model (epis-
temic uncertainty). In the remainder of this section we will discuss
our approach to including cosmic variance into our sample redshift
estimation procedure. Our treatment of the epistemic uncertainty will
be discussed in Section 5.7.

The basis for our pgmp(z) error model is the logistic Gaussian pro-
cess. The logistic Gaussian process, first applied to sample redshift
estimation by Rau et al. (2020), assumes that the number counts
of galaxies as a function of redshift are lognormally distributed.

The model can capture cross-bin correlations and provides more
modelling complexity than, e.g. the Dirichlet distribution as we
discuss in Appendix E.

The logistic Gaussian process prior on the parameters ¢,, can be
formulated as follows:

s ~ N(slp, %)
p = exp(s)

— Pi
e

0 <i< Nbins} 5 (6)

where (u/X) denotes the (mean vector/covariance matrix). We note
that equation (6) relates to a lognormal model for the galaxy counts,
where p is the expected number of galaxies per redshift. The
dimension of (s/p/¢,,) is Npins as introduced in equation (1).

As discussed in Section 3.3, the faint end of our training set is dom-
inated by COSMOS2015 data. This induces a cosmic variance error
contribution that we include into our logistic Gaussian process model
based on the cosmic variance measurements for the COSMOS2015
data set by Sanchez et al. (2020). We detail our methodology in
Appendix C.

MNRAS 524, 5109-5131 (2023)

€202 J8qWIBAON g§Z U0 Jasn AlisiaAiun uoja\ a1bauie) Aq $8£222/2/601S/v/v2S/eloe/seluw/woo dno olwapese//:sdiy Woll papeojumoc]



5118 M. M. Rau et al.
1‘2‘: GAMAO9H
0 101 [ GAMA15H
S sl 1 HECTOMAP
T 6l 1 VVDS
C
g 4 WIDE12
21 . XMM
0 — T T T = - 8
0.00 005 010 015 020 025 030 035 0.40
Fraction of Galaxies Rejected by the Calibration Cut s
GAMAO9H GAMA15H
0.002] 0.0015
0.0010
__ 0.0014 ~ 0.00051
[} D
s 0.000 < 0.0000
< _0.001] < -0.0005
—0.0010
—-0.002 —0.00151 : : ‘ ‘ ‘
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
0 [deg.] 6 [deg.]
HECTOMAP VVDS
o.004{ 0.002
0.0021 0.001
o o
s 0.000 < 0.000
i <
—0.002 —0.001
—0004{ —0.002
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
6 [deg.] 6 [deg.]
WIDE12 XMM
4 J\
0.0024 0.002
_. 0.0011 __0.0014
() D
s 0.000 < 0.000
< _0.0011 < _0.001
—0.002’ _0002, -
0.5 10 15 2.0 2.5 05 1.0 15 2.0 2.5
6 [deg.] 6 [deg.]

Figure 7. Testing the impact of the calibration cut on the spatial distribution of galaxies by resampling the catalogue for the first tomographic bin. Top panel:
Test if the fraction of galaxies rejected by the calibration cut (s) is comparable for all subfields. Each histogram corresponds to a separate field listed in the
legend, where the histograms over s show the variation across the different patches within the field. The vertical dashed line denotes the mean of the histograms
over the different fields with errorbars denoting the field-to-field variation. Lower panels: Testing if the spatial distribution of removed galaxies is ‘random’. The
vertical axis shows the difference between the correlation function estimated on the catalogue in each field subject to the calibration cut and a catalogue where
galaxies are removed randomly. The horizontal dashed line shows the zero line. The error contours are obtained by jackknife resampling.

5.5 Ensemble redshift distribution likelihood from spatial
cross-correlations (cross-correlation)

To further constrain the pgmp(z), we utilize spatial cross-
correlations with the CAMIRA LRG sample. This approach has
two goals: it provides an independent consistency check for the
Dsamp(2) derived using the DNNz approach, and it allows a joint
inference of the pg,mp(z) informed by both the photometry of galaxies
and the spatial cross-correlations with the CAMIRA LRG sample.

As detailed in Section 3.2, the CAMIRA LRG sample extends
only to z S 1.2 and the photoZ of the CAMIRA LRG galaxies are
themselves subject to error. This subsection gives an overview of the
cross-correlation measurements and the likelihood formulation. We
refer to Appendix D for the technical details.

Using vector notation, where each vector component corresponds
to the cross-correlation measurement in a redshift bin, we can predict
the spatial cross-correlation between the CAMIRA LRG sample and
HSC phot as

WLRG-Y3 X @nz Dphoiz PLrRG WDM , @)
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where wpy is the scale-averaged, redshift- and cosmology-
dependent, two-point function of the dark matter density field. The
terms bpnotz and b re are the redshift-dependent galaxy-dark matter
bias terms from the (HSC phot/CAMIRA LRG) sample and ¢, are
the parameters defined in equation (1). We use ‘The-Wizz’ (a code
described in Morrison et al. 2017) to measure these cross-correlations
and use bootstrap re-sampling (as described in Morrison et al. 2017)
to obtain a covariance matrix of the measurements. We include
the lensing weights in the two-point estimator, and choose a scale
range of 0.1-1.0 Mpc for our measurements. These measurements
are repeated for 10 catalogues generated by sampling from our
CAMIRA LRG photometric error model, which is a conditional
density estimate that maps the noisy CAMIRA LRG photometric
redshift to the unknown true redshifts. This mapping is trained on
the specXphot calibration data.

Using the scheme described in Appendix D we marginalize
over the realizations to derive a likelihood for the cross-correlation
measurements that has an inflated covariance X rg—_phorz due to the
contribution of the CAMIRA LRG photometric redshift error. Using
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a Gaussian Likelihood ansatz we obtain

P(WLRG—Photz| Pnzphotz> PPhotz> PLRG)

= N(WLRG-Photz| WLRG—PhotZ (@nzphozs PPhotzs PLRG), ZLRG—Photz)s
(8)

where Wirg_phorz denotes the spatial cross-correlation measure-
ments between the CAMIRA LRG and HSC phot catalogues,
WLRG—PhotZ(Pnzphotz» PPhotz, PLrG) denotes the theory prediction, and
Y| RG—Photz the covariance matrix that is adjusted for the CAMIRA
LRG photometric redshift error.

In this analysis we marginalize over a parameter that describes
the product bphoz bLrg for each tomographic bin. For three tomo-
graphic bins we therefore have three parameters that account for
the product of galaxy-dark matter bias for galaxies in the HSC
phot and the CAMIRA LRG samples. We predict'® the dark matter
contribution wpy using the Core Cosmology Library, version 1.0.0
(CCL, Chisari et al. 2019)11 using halofit to model the non-linear
power spectrum (Takahashi et al. 2012). We do not marginalize over
cosmological parameters that enter Wirg.photz, as We find that the
choice of cosmology does not strongly impact the posterior psamp(z).
Concretely, we note that the spatial cross-correlation data vector is
a scale-averaged correlation function. Its redshift scaling affects the
inferred cross-correlation redshift distributions on the ~ 20 per cent
level by (suppressing/increasing) the (low/high)-z flank. However,
variations in cosmology affect the redshift scaling of the scale-
averaged dark-matter correlation at the ~ 10 per cent level (for
rather extreme cosmologies at the 2o contour of Stage III surveys),
which implies that the cosmology-dependence of the inferred cross-
correlation redshift distributions is subdominant to other systematics
such as the redshift-dependent galaxy-dark matter bias modelling
uncertainties.

5.6 Joint constraints

Using the logistic Gaussian Process model defined in Section 5.4
and the cross-correlation likelihood defined in equation (8), we
can sample from the joint posterior of the parameters that describe
the sample redshift distribution ¢,,, defined in equation (1), and
the product b = b rg bphoz Of the galaxy-dark matter bias of the
CAMIRA LRG (bLrg) and HSC phot (bppoz) samples

p(¢nz’ bl"’\VLRGfPhotZ) X p("’\VLRGfPhotzlqanv b)[)(¢nz)p(b) . (9)

The sampling of the ¢,, parameters has to be carried out with respect
to a likelihood that only constrains a subset of ¢,, due to the limited
redshift coverage of the CAMIRA LRG sample. We note that the
parameters ¢, can be normalized to lie on the simplex'?, i.e. to
sum to unity. It is therefore useful to instead perform inference with
respect to the random variable s, defined in equation (6). Using this
reparametrization we can perform inference in RNvi»s using standard
approaches and then transform to the original parameter ¢,,. We
use Elliptical Slice Sampling (Murray, Adams & MacKay 2010) for
our inference. Elliptical slice sampling works particularly well for a
logistic Gaussian process prior, since it can utilize the aforementioned
reparametrization that relates the logistic Gaussian process to the
multivariate normal distribution.

10We use Qppm = 0.258868, Qp, = 0.048252, h = 0.6777, n; = 0.95, and
og =0..8.

https://github.com/LSSTDESC/CCL (Accessed 2022 September 22)
12The probability simplex is defined as S = {x;| ZIN= 1 Xxi=1land0 <x; <
1forl <i <N}.
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Fig. 8 shows the resulting posterior sample redshift distributions
for the following three scenarios:

(i) photometry-based sample redshift distribution estimation
(‘PhotZ (DNNz)’, grey) utilizing the DNNz code and including our
model for cosmic variance following Section 5.3 and Section 5.4;

(ii) clustering redshift estimation (‘WX (0.1-1.0 Mpc)’, black)
following Section 5.5; and

(iii) the combination of spatial information and photometry
(‘PhotZ & WX, red) following Section 5.6.

The horizontal axis of Fig. 8 shows the redshift, while the vertical
axis shows the probability density of posterior tomographic psamp(z)-
The distributions are normalized to integrate to unity. We report
contours/errorbars corresponding to piecewise 1o errors. In the
case of ‘PhotZ’ and ‘PhotZ & WX’ which both have asymmetric
posterior distributions, we report contours between the 16th and
84th percentiles. The blue errorbars show the standard deviation
in the mean'? cross-correlation measurement with respect to the
different catalogue draws from the CAMIRA LRG error model. We
specifically see that even for only 10 catalogues, this error is already
much smaller compared with the statistical uncertainty of ‘WX (0.1-
1.0 Mpc)’. We note that the black errorbars for the cross-correlation
constraints are plotted assuming the maximum a posteriori values
of b defined in equation (9), which act to normalize the clustering
redshift measurements. This allows us to plot the clustering redshift
constraints on the same scale as ‘PhotZ (DNNz)’ and ‘PhotZ & WX".
We note that we do this for illustrative purposes only; we marginalize
over b to infer ‘PhotZ & WX'.

Since the CAMIRA LRG sample redshift coverage extends to z
< 1.2, we can only partially calibrate the third tomographic bin.
We also decided to not include a cross-correlation data vector in the
sample redshift distribution calibration of the fourth tomographic
bin. This is motivated by the overall small redshift overlap with
the CAMIRA LRG sample. Furthermore, for significant parts of
the relevant redshift range (1.0 < z < 1.2), there is a trend in the
inferred n(z) in the third bin that might indicate the need for more
complex modelling of astrophysical effects like redshift-dependent
galaxy-dark matter bias. It is therefore likely that we might include
additional systematics in the calibration of the fourth tomographic
bin low-redshift tail for very moderate gains in statistical accuracy.

We conclude that the clustering redshift measurements are broadly
consistent with the constraints we derive based on the photometry
of galaxies. However, there are slight inconsistencies between the
‘PhotZ’ and ‘WX constraints around z & 0.2. This is around the same
redshift where we know that the photometric redshift distributions
of the CAMIRA LRG galaxies are biased (see Section 3.2). This
implies an incomplete correction of this bias from our error model.
This inconsistency is moderate, on the level of 2030 with respect
to the joint posterior (PhotZ & WX). We leave further investigations
for future work.

5.7 Prior recommendation for WL analysis

Fig. 9 shows the distribution of posterior mean for the four tomo-
graphic bins. We define the posterior mean as the mean estimated
for each posterior tomographic psmp(z) sample. We can derive the
distribution of posterior mean for each tomographic bin by sampling
from the posterior pgmp(z) shown in Fig. 9. This is done for the joint

13We refer here to the standard deviation in the mean estimate, which scales
with 1/+/N, where N corresponds to the number of catalogues drawn.
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Figure 8. Sample redshift distribution (psamp(z)) posteriors for the four tomographic redshift bins of the HSC Y3 lensing sample derived to include information
from the photometry (‘PhotZ (DNNz)’, grey area), spatial clustering (‘“WX (0.1-1.0 Mpc)’, black dots) and the combination of spatial information and photometry
(‘PhotZ & WX, red area). The blue dots denote the standard deviation on the mean of WX (i.e. clustering redshift) measurements. The CAMIRA LRG sample
has a limited redshift coverage to z < 1.2, due to which the high-redshift tomographic bin does not include a cross-correlation data vector. The inference includes
the lensing weights consistently in all likelihood terms. The piecewise intervals denote the 1o errors.

constraint (‘PhotZ & WX, red contours) and the photometry-based
inference (‘PhotZ (DNNz)’, grey contours) for each tomographic
bin. We now estimate the mean of each sample drawn in this way.
This results in distributions of posterior mean for our tomographic
bins in both scenarios.

We see that the distributions of posterior mean are consistent for the
two methods in the first three tomographic bins. There is mild tension
in the lowest tomographic bin, which can be explained by the incon-
sistency at z ~ 0.2 as described in the previous section. We further
quantify the ‘information gained’ by the cross-correlation likelihood
over the ‘PhotZ (DNNz)’ prior by calculating the Kullback-Leibler
(KL) Divergence between the prior and posterior based on the results
quoted in Table 1, where we use a Gaussian approximation for the
posterior mean distributions of tomographic bins to calculate the
KL Divergence. The KL divergence between prior and posterior is
referred to as the ‘Bayesian Surprise’ in statistics (see e.g. Itti &
Baldi 2009; Baldi & Itti 2010)'* and the results are quoted in Table
1 under the column ‘Bayesian Surprise’. Table 1 indicates that the
largest amount of information is added in the first tomographic bin.
We note, however, that this does not allow us to judge if the Bayesian
Surprise is due to unaccounted systematics or statistical fluctuation.
A comparison with the results from the second and third bins,

14The Bayesian Surprise is sometimes referred to as the ‘information gain’
in cosmology (e.g. Grandis et al. 2016).
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which are an order of magnitude smaller, hints towards unaccounted
systematics in the first bin as the most likely explanation for the large
Bayesian surprise value.

Fig. 9 further illustrates that the width of the distributions of pos-
terior mean decreases when we include the spatial cross-correlation
data vector. This highlights the importance of including cross-
correlations in the sample redshift calibration as both a consistency
check and an additional constraint. We relate this result to the
expected biases in the WL power spectra in Fig. 10, proceeding
in close analogy to our study of the distribution of posterior mean.
We estimate the WL power spectra on each draw from the posterior
Psamp(2) using the Core Cosmology Library, version 1.0.0 (CCL,
Chisari et al. 2019)"> and calculate the relative bias AC, between
the posterior distributions of WL power spectra estimated using the
photometry alone (Phot (DNNz)) and including the spatial cross-
correlations (Phot & WX). The relative bias is defined as

Phot & WX Phot (DNNz)
C -C
14 14

AC, = (10)

thot (DNNz)

Fig. 10 shows ACy as a function of scale for the (first/second/third)
tomographic bin. We see that the relative difference between the
measurements using the photometry (DNNz) alone shows a tension

Ihttps://github.com/LSSTDESC/CCL (Accessed 2022 September 22)
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Figure 9. Comparison of the distributions of posterior tomographic mean for the four tomographic redshift distributions shown in Fig. 9. The subpanels
correspond to increasing tomographic bin mean redshift. The (red/black) histograms show the result for the constraint (PhotZ (DNNz)/Phot & WX) which
corresponds to the exclusion/inclusion of the spatial cross-correlation data vector with the CAMIRA LRG sample. There is consistency between the posterior
distributions of tomographic mean estimates obtained using the photometry alone (black) and in combination with the clustering redshift data vector (red).

Table 1. Mean and standard deviation of the posterior mean for the different tomographic redshift bins. The first column
lists the corresponding results for the first year analysis (Hamana et al. 2020) (Y1 Analysis), the results obtained using
the photometry alone with cosmic variance correction (PhotZ (DNNz)), the results we obtain using the DEMPz code (Y3
DEMPz), and the joint constraints with the cross-correlation data vector (Y3 PhotZ & WX). The DEMPz results, here used as
an alternative methodology, are obtained by taking the average of the normalized pingiv(z). For conditional density estimates
like DEMPz this amounts to a mean estimate of the marginalization in equation (4) (see Section 4.2). The final two columns
lists the Bayesian Surprise values (Y3 Bayesian Surprise) and the total error budget that includes our systematics error budget
as explained in Section 5.7 (Y3 Total). We note that all columns except the first are derived on the year 3 data set described in
Section 3 with different galaxy selection (but similar redshift range) compared with the S16A analysis.

Y1 Analysis Y3 PhotZ (DNNz) Y3 DEMPz Y3 PhotZ & WX Y3 Bayesian Surprise Y3 Total
Bin 1 0.44 (0.0285) 0.463 (0.005) 0.463 0.452 (0.004) 3.84 0.452 (0.024)
Bin 2 0.77 (0.014) 0.766 (0.004) 0.777 0.766 (0.003) 0.10 0.766 (0.022)
Bin 3 1.05 (0.0383) 1.084 (0.004) 1.097 1.081 (0.004) 0.28 1.081 (0.031)
Bin 4 1.33 (0.0376) 1.330 (0.003) 1.350 - - 1.330 (0.034)

that is significant in Bin 1 compared with the expected signal-to-
noise ratio, which hints towards remaining uncorrected systematic
biases. We discuss this further in Section 7. In the following text we
discuss our conservative assessment of tomographic psamp(z) error
motivated by the aforementioned tensions.

Since the sample redshift posteriors obtained in this work will
be used as part of the HSC Y3 WL cosmological analysis, we

discuss here which parametrization we will employ to marginalize
over sample redshift uncertainty. Following Zhang et al. (2023),
we will use the maximum a posteriori solution for the pgmp(z) and
vary the mean using a Gaussian prior informed by the inference
described in the previous sections. While Zhang et al. (2023) explored
multiple ways of marginalizing over the full posterior for the redshift
distribution, at the level of precision of this HSC analysis, marginal-
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Figure 10. Comparison of the distributions of relative bias in WL power
spectra (see equation 10) between the posterior psump(z) informed by the
photometry alone (Phot (DNNz)) and the joint constraints that include
the spatial cross-correlations (Phot & WX). We plot the results for the
(first/second/third) tomographic bins (Bin 1/Bin 2/Bin 3) corresponding to
the results shown in Figs 8 and 9. The solid lines show the median and the
contours show the (16/84) percentiles corresponding to the Gaussianized 1o
errors. The black horizontal dashed lines show the 1o errors that correspond
to the expected signal-to-noise ratio of the WL power spectra measurements.

izing over uncertainty in the mean redshift was found to be entirely
sufficient. We also include an additional error contribution that
parametrizes differences in sample redshift inference across different
Dindiv(z) solutions, where we will use DEMPz as an alternative
method.

We derive the combined error budget based on the aforementioned
parametrization of the posterior mean. In order to include discrepan-
cies between different piyq;,(z) solutions into the analysis, we com-
pare the results obtained using DNNz with the DEMPz results. The
DEMPz method was selected because it showed superior photometric
redshift accuracy compared with the Mizuki results'® and overall
better consistency with the clustering redshift measurements.

Since the DEMPz and DNNz methods will be correlated, we have
to formulate an upper limit on the error budget. Furthermore, we
require that this upper limit calculation will be conservative with
respect to the residual systematics in Bin 1 discussed in Fig. 9 and
the HSC first-year (Y1) result (Hamana et al. 2020) for Bin 4, as Bin
4 lacks the additional constraints from the spatial correlations with
the CAMIRA LRG sample.

While we present a significantly updated methodology, we do not
provide additional data-driven consistency checks that would warrant
a significantly smaller systematic error budget compared with the Y1
analysis. To derive this total error budget we combine the standard
deviation of the posteriors of the joint constraint (shown as red
histograms in Fig. 9), which we will denote as o join¢, With the absolute
difference between the ps,mp(z) derived using the alternative method
DEMPz and our joint fiducial analysis. The latter error contribution
will be denoted as o 5;. We reiterate that we consider here only the
posterior tomographic mean.

16See  https://hsc-release.mtk.nao.ac.jp/doc/wp-content/uploads/2022/08/p
dr3_photoz.pdf
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We introduce the correlation coefficient p with |p| < 1 and
combine o with the statistical error budget o join, as

2
Ojoint,sys — \/O'joim + Uszys + 2pasysajoim

< \/‘ﬂ%im + Uszys + 2O‘sys“joint . (1 1)

Ojoint + Osys. This implies an upper limit for (Bin 1/Bin 4) of
O joint, sys, (Bin1/Bind) = (0.015/0.023). This systematic error budget for
the Bin 1 and Bin 4 is similar to the absolute difference between the
constraints of ‘PhotZ (DNNz)’ and ‘Phot & WX’ in Fig. 9 and much
smaller than the error budget for Bin 4 assumed in Y1 as quoted in
Table 1. We therefore choose to utilize a more conservative upper
limit by applying the Minkowsi inequality directly to equation (11):

An upper limit on ojoin,sys i therefore given as ojoin,sys =<

Ojoint,sys = Ojoint + Osys + 2O—sysorjuint . (12)

We recommend the right-hand side of equation (12) as a conserva-
tive prior width for the HSC Y3 cosmological WL analysis. However,
we strongly recommend performing a sensitivity study for this prior
width especially for Bin 4. We refer to Dalal et al. (2023), Li et al.
(2023a), More et al. (2023), Miyatake et al. (2023), and Sugiyama
et al. (2023) for further details on the conclusions of this analysis
and their implications on prior choices.

Table 1 summarizes our results by giving the mean and standard
deviation of the posterior mean for the various analysis scenarios
presented in this work. The columns list the corresponding results
for the Y1 analysis in Hamana et al. (2020), the results obtained for
HSC Y3 using the photometry alone with cosmic variance correction
(‘PhotZ (DNNz)’ in Fig. 8), the results we obtain using the DEMPz
code and the joint constraints that include the cross-correlation data
vector (‘PhotZ & WX in Fig. 8). The final column lists the final result
that includes the conservative assessment of model error following
equation (12).

The error budget we obtain from a combination of cross-
correlations and photometry without the additional systematic un-
certainty term is almost an order of magnitude smaller than in
the HSC Y1 results. The pgmp(z) constraints we obtain from the
cross-correlation measurements and the pingiv(z) are consistent. The
model error assessment that we use for our final recommendation on
priors is therefore very conservative and is very similar and/or more
conservative compared with the error budget in the HSC Y1 analysis.
We note that the error budget is dominated by our assessment
of model error, i.e. derived by the comparison with the DEMPz
method. This assessment of model error is conservative, since the
joint constraint between the CAMIRA LRG and the photometry
based inference would allow for almost an order of magnitude smaller
error in the posterior mean.

However, it is not overly pessimistic and is less than double the
residual systematic expected from the difference between the PhotZ
(DNNz) and PhotZ& WX results presented in Bin 1 of Fig. 9. Future
work would benefit from adding additional constraints to the high-
redshift tomographic bin, e.g. by including spatial cross-correlations
with DESI and by reconsidering the low-redshift systematics in the
cross-correlation constraints.

6 SUMMARY

This work presents posterior sample redshift distributions (psamp(z))
in four tomographic bins for the HSC three-year shape catalogue.
To exploit the synergy between complementary sources of redshift
information, we combined pgump(z) constraints from spatial cross-
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correlations and from individual galaxy photometric redshift distri-
butions ( pingiv(z)) derived from the galaxies photometry. We perform
cross-correlation based pgamp(2) inference using the CAMIRA LRG
sample, which allowed us to obtain constraints within the limited
redshift range of the LRG sample of z < 1.2. The presented analysis
had to account for three main sources of systematic biases and
uncertainties: the intrinsic photometric redshift error in the LRGs,
the significant variation (both methodologically and in quality) of the
provided Pingiv(2), and the spatial colour-redshift-dependent selection
functions of our specXphot redshift calibration sample.

The goals of the analysis were to provide posteriors for the
relevant tomographic ps,mp(2), demonstrate consistency between the
constraints derived using the spatial cross-correlations and Pingiv(2),
and recommend priors on pg.mp(z) parameters for the cosmological
WL analysis. The latter should also incorporate an assessment of
model error and should reflect conservative analysis choices under
acceptable degradation of cosmological parameter constraints. We
claim that these analysis goals were accomplished in our analysis.

Our analysis was structured as follows (see Section 5):

(i) Sample definition and selection (Section 5.2);

(ii) Estimation of individual and tomographic pgmp(z) using
photometry-based inference (Phot, Section 5.3);

(iii) Incorporation of cosmic variance from the spatially limited
specXphot training sample into the constraint (Section 5.4);

(iv) Cross-correlation-based psamp(z) inference (WX, Section 5.5);

(v) Joint inference combining WX and Phot (Section 5.6);

(vi) Recommendation of the science-ready photometric redshift
priors for WL (Section 5.7).

The sample was limited to galaxies with single-peaked piniv(2).
The removal of galaxies that show secondary, high-redshift (z >
1.2) photometric redshift solutions is essential for our analysis, to
ensure that we can validate our photometric redshifts with the data
products available. Since the CAMIRA LRG sample does not allow
a calibration to z > 1.2 and the specXphot calibration sample is
expected to be incomplete at the faint end of the colour—-magnitude
space, we cannot reliably validate secondary solutions at zZ1.2.

This work introduces a framework for sample redshift inference
for both empirical methods based on conditional density estimation
and methods that are based on SED fitting or likelihood-based
forward modelling. Initially we considered three methods for pingiv(z)
estimation: a likelihood based SED fitting code (Mizuki) and two
empirical methods (DNNz, DEMPz).

We selected the DNNz method, a conditional density estimation
method for photometric redshifts, as our fiducial inference method
based on initial comparisons with the cross-correlation data vector.
As the specXphot calibration sample used for training the individual
galaxy redshift estimators at the faint end of the sample covers only
a small solid angle, we construct a logistic Gaussian Process model
to parametrize the cosmic variance component in the error model for
the inferred tomographic psamp(2).

In the next analysis step, we measured spatial cross-correlations
between the CAMIRA LRG and the HSC Y3 photometric shape
catalogue (HSC phot) for the first three tomographic bins (within z
< 1.2) and account for the photometric redshift error in the CAMIRA
LRG sample in the construction of the cross-correlation likelihood.
We demonstrated consistency between the pgamp(z) constraints de-
rived from the cross-correlation data vector and photometry-based
sample redshift inference.

Utilizing a joint inference framework that accounts for the limited
redshift coverage of the cross-correlation measurements, we obtained
POSterior pemp(z) in four tomographic bins.

HSC WL redshift distribution inference 5123

Finally we included a conservative error assessment based on
a comparison with an alternative photometric redshift algorithm,
‘DEMPz’. While the final constraint on the mean of the tomographic
bins is much narrower than the results obtained in the HSC Y1
analysis (Hamana et al. 2020), our conservative assessment of model
error yields a prior recommendation for the HSC three-year WL
analysis that is similar to (and more conservative than) the Y1 HSC
cosmological WLanalysis.

7 DISCUSSION AND FUTURE WORK

In the following text, we describe a range of known limitations in
our analysis that motivate our conservative error assessment and
highlight avenues for future work. We concentrate on five areas of
this analysis where we identified limitations:

(i) Error quantification of pinaiv(2);

(i1) Treatment of selection functions of the specXphot calibration
sample;

(iii) Treatment of cosmic variance induced by redshift calibration
using the specXphot calibration sample;

(iv) Photometric redshift uncertainties and systematics of
CAMIRA LRG galaxies;

(v) Simplistic treatment of astrophysical effects in the modelling
of the cross-correlation data vector.

In the following paragraphs we will discuss each of these items in
order.

(1) There are a number of unmodelled systematics in the construc-
tion of Pinaiv(z) using DNNz, DEMPz, and Mizuki that are likely
explanations for the large differences between their estimates relative
to the statistical uncertainty. We show this in Table 1 where the model
error from differences in the DNNz and DEMPz results dominates
the error budget. This is qualitatively consistent with the first year
HSC analysis'” of individual galaxy redshift distribution systematics
in Tanaka et al. (2018). Figs 11 and 14 in that paper illustrate
significant differences between the estimates obtained using different
methodologies both in terms of the estimated psump(z) (fig. 11) and
in terms of the PIT metric (fig. 14), which quantifies how well the
Pindiv(2) are calibrated with respect to a specXphot reference data set.
The significant differences between the methods imply an incomplete
assessment of model error. '

(ii) While the specXphot calibration data were assembled to reduce
the impact of unwanted selection functions and we employ the
calibration cut (see Section 5.2) to remove problematic regions in
colour space with doubly peaked pjngiv(z), it likely does not provide
an unbiased source of redshift calibration for model evaluation
and training. Our analysis therefore used cross-correlations with
the CAMIRA LRG sample, within the aforementioned limited
redshift coverage, for redshift calibration and imposed a conservative
assessment of model error. The latter is motivated by an acceptable
degradation in the cosmological parameter constraints forecasted for
the upcoming WL analysis. However, future analyses with the full
HSC survey data set and upcoming surveys such as LSST will have

17 Tanaka et al. (2018) analyse Y1 data. The paper does not present a principled
inference strategy to derive psamp(z), €.g. Mizuki that requires deconvolving
for photometric redshift error (see Section 4.1). However, this does not
invalidate a qualitative comparison with our analysis.

18Model error refers here to error contributions (both systematic and statisti-
cal), for example from lack of training data, uncorrected selection functions
in the training data, inaccurate modelling of SEDs, priors, or photometry.
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to continue to further improve the analysis methodology to reduce
this source of systematic uncertainty.

(iii) Our approach to quantify cosmic variance from the spatially
small calibration field suffers from three main limitations that we
discuss in the following text. We note, however, that the current
analysis will likely not be methodologically limited in this area as
the dominant source of uncertainty is the model error in the Pingiv(2).
The modelling of the variance of the point field within a patch on
the sky depends not only on the point-field expected number density
per area and redshift, which can be scaled to match the colour-
redshift distribution of the target field, but also on the clustering
of the galaxies of the underlying process. The latter is modelled
based on the COSMOS2015 field, which covers a small area, has
different clustering properties than other fields, and might be subject
to a non-random spatial selection function.'” The small area and
nonrandom selection function implies that any statistic derived from
this field will not be fully representative of other fields. This means
that our cosmic variance estimate derived on COSMOS2015 is not
necessarily representative of the true cosmic variance contribution
of photometric redshift estimates trained on any COSMOS2015-size
patch on the sky. Since the galaxy field is ergodic, this becomes
less of a concern for spatially larger fields or if several small but
spatially separated fields are used. Furthermore, since the variance
does not uniquely identify the stochastic process that describes the
Psamp(2) uncertainty, every assessment of cosmic variance has model
assumptions. We discuss this point in detail in Appendix E. We note
that we neglect spatial correlations between the COSMOS2015 field
and HSC phot, i.e. we do not formulate a full spatial model for
redshift inference in this work, which can affect our assessment of
cosmic variance. These limitations affect the redshift calibration in
other surveys such as DES, which is also based on spatially small
calibration fields. We also note that the individual galaxy redshift
estimates presented in this work do not allow us to construct a direct
relation to the COSMOS2015 training set galaxies, which limits our
ability to perform a cosmic variance correction in colour space. In
future work, we will present a spatial model for redshift inference
that will extend the current approach to treat cosmic variance in
Dsamp(2) estimation (Rau et al. in preparation).

(iv) Our modelling of the WX data vector depends on accurately
parametrizing the photometric redshift systematics of the CAMIRA
LRG sample. As discussed, especially at low redshift, these sys-
tematics can be quite significant. Our current modelling is based
on a specXphot calibration sample, as we did not obtain access to
the relevant CAMIRA LRG likelihoods. As a result, our correction
could be subject to residual systematics from spectroscopic selection
functions. This needs to be reconsidered in the future, along with
a better assessment of galaxy-dark matter bias for the calibration
sample. This includes parametrizing a redshift and scale dependence
in the galaxy-dark matter bias within each tomographic bin for the
photometric sample and the calibration sample. In order to constrain
this more complex assessment of galaxy-dark matter bias, it will be
important to extend the data vector towards autocorrelations of the
photometric and reference samples.

(v) Regarding the modelling of the cross-correlation data vector,
we limited our analysis to a constant galaxy-dark matter bias within
each tomographic source bin and did not include an assessment of

19For example, randomly selecting multiple spatially small patches on the
sky would show different clustering properties than ‘favouring interesting’
regions with an abundance of clusters and therefore produce a different
cosmic-variance model.
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magnification bias. Gatti et al. (2022) studied the effect of magnifica-
tion bias on cross-correlation based ps.mp(z) inference in the context
of the Dark-Energy-Survey Year 3 analysis. While performed in the
context of different data and analysis, we can expect the effect of
magnification bias to be subdominant compared with the modelling
of a redshift-dependent galaxy-dark matter bias and subdominant
compared with our conservative total error budget. While based
on a qualitative extrapolation of their quantitative assessments (see
Table Gatti et al. 2022), the good agreement between WX and
Y3 PhotZ reported in Fig. 8 provide some basis for that claim.
Future measurements with larger signal-to-noise ratio will need to
reconsider this assumption.

In conclusion, we have presented a ps,mp(z) inference methodology
for the HSC Y3 shape catalogue that represents a significant update
over the methodology in previous HSC WL analyses. We have
forecasted the effect of our updated methodology on the previous
HSC S16A analysis in Section 2 and demonstrated that our updated
methodology can account for shifts in the ©2,,-Ss plane of 0.50 after
rescaling the covariance matrix from previous HSC WL measure-
ments to account for the increased area in the HSC Y3 catalogue.
This highlights the importance of sample redshift calibration as we
prepare not only for the HSC analysis but also look ahead towards
upcoming surveys like LSST.
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APPENDIX A: CONDITIONAL DENSITY
ESTIMATION METHODOLOGY

A1l Overview

In the following appendix, we describe our methodology to perform
sample redshift inference in the context of conditional density
estimation in continuation of Section 4.2. The discussion in this
section applies to the DNNz and DEMPz methods. The basic idea of
conditional density redshift estimation is to construct an estimator of
the true conditional density p(z|f) of the redshift z given the fluxes (or
photometry) f. We construct this mapping between the ‘true’ redshift
z and measured flux, which requires a specXphot ‘training’ data set.
This can be constructed using spatially overlapping spectroscopic
and photometric survey data, which provides both photometry and
accurate spectroscopic redshifts. Upon constructing a conditional
density estimator p(z|f), for a particular photometric survey, we can
construct an estimator of the pgmp(z) as

Psamp(2) = /ﬁ(ZIf)ﬁ(f)df, (AD)

where p(z|f) and p(f) denote estimators of the conditional density
of redshift z given flux f and of the marginal density of colour—
magnitude space p(f). We note here the difference between construct-
ing an estimator of the conditional density p(z|f) and a ‘forward mod-
elling’ approach that would require the formulation of a likelihood (or
the non-parametric estimator thereof) p(f|z). The former is a density
estimation problem and requires the availability of a calibration data
set to provide information on the redshift distribution of galaxies as
a function of measured photometry. The latter induces an inverse
problem that depends on knowledge of the data-generating process
from a true redshift to measured photometry. One would include
additional redshift information here in the formulation of the prior.
We stress that these model formulations are very different and refer
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to Appendix B for a detailed description of the redshift inference
methodology in the context of likelihood-based forward modelling.
In the following text, we will comment on the assumptions behind
the conditional density estimation methodology.

A2 Assumptions

The basic assumption of empirical methods is that the data in the
calibration and target data sets follow the same conditional densities
p(z|f) of the redshift z given the fluxes (or photometry) f. We also
note that there exist no unbiased non-parametric density estimators
(Rosenblatt 1956). Therefore, a prime challenge for these methods
is the selection of bandwidth, or smoothing scale.

Inaccurate selection of smoothing can lead to biases in redshift
inference that are relevant for cosmological inference, as shown in
prior work (Rau et al. 2017). The authors also demonstrated that
biases from inaccurate selection of smoothing can be mitigated in
cosmological inference using parametric bootstrap techniques. In the
context of this work, we can assume that misspecification errors due
to non-representative training data and epistemic uncertainty from a
lack of training data will be more severe than biases due to inaccurate
bandwidth selection.

A3 Methodology

In the following text, we construct an empirical likelihood of
the density estimator equation (A1) that allows us to marginalize
over systematics in a principled way. Under the assumptions de-
scribed in the previous paragraph, we can parametrize p(z|f) as a
histogram

Nbins

PGt = wih1i(2), (A2)
i=1

where w; denotes the histogram bin height and 1,(z) is unity if the
redshift is within bin i, and zero otherwise. Ny;,s denotes the number
of histogram bins.

This yields an estimator for p(z) as

Nbins

P@=Y ( / m—(f)p(f)df) 1@ =Y Elwi®li(2), (A3)
i=1

i=1

Nbins

where E¢[w;(f)] denotes the expectation value of the weights w;(f)
wrt to the marginal distribution of photometry. The weights w;(f)
can depend on parameters 5 that describe additional sources of error,
induced by unmodelled selection functions in the training data or by
intrinsic model bias in the conditional density estimates.

Based on this relation, we can employ the empirical likelihood
formalism (e.g. Owen 1990, 2001; Pawitan 2001) and construct an
estimating equation

V(P 0], £) = w(k, n) — ¢z, (A4)

where ¢,,, denotes the modelled histogram heights (see equation 1) of
the peamp(z). We note here that w(f, 3) is a function of the measured
photometry and parameters that describe other systematics, whereas
¢, is the parameter vector to be estimated.

Under the assumption that the parameter set y accurately describes
the systematics mentioned above, we seek values for 5 and ¢,, such
that

E¢ [¥([¢nz; 0], ©)] = 0. (A5)

We can treat the application of lensing weights wjens(f) as a selection
function and follow the recipe described in Owen (2001) of modify-
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ing the expected estimating equation by transforming the probability
measure as

0= / V(o 7). DAF(E) = / Voot (o 11, Drens(DAGH) |
(A6)

where wjeqs(f) denotes the lensing weights as a function of photometry
(and other auxillary parameters omitted here). In the following
text, we will omit the dependence of the lensing weights on f for
convenience. It is understood that the introduction of lensing weights
implies a dependence on a variety of parameters that describe the
measurement of galaxy shapes.

(dF(£)/dG(f)) denotes the (unweighted/weighted) probability mea-
sures where dF(f) = wjensdG(f).

We introduce (wwy(f, 7)/@n,w;) that denote the weighted (mea-
sured/modelled) WL histogram height parameters that include lens-
ing weights as

wWL(fy 77) = w(f, 77) Wiens

(A7)
Duzwl, = Puz Dlens -

The new estimating equation ¥y ([¢nzwr, 7], £) is now adjusted
for the lensing weights and can be used in conjunction with the
empirical likelihood framework to define a likelihood on the mean
E¢ [w;,wi(f, n)] in equation (A3). We reiterate that E¢ [w; wi.(f, n)]
denotes here the expectation over the w; wi(f, #) corresponding to
bin i over all galaxies in the sample.

The empirical likelihood framework is a non-parametric approach
to estimation, which imposes an empirical discrete distribution over
the weights wwy(f, ) and then utilizes Lagrange multipliers to
constrain this distribution such that the discrete probabilities sum
to unity, are positive, and the estimating function relation

Et [¥wi(@nzwe. n]. )] =0 (AB)

is fullfilled. One can show in analogy to Owen (2001) that a profile
log-likelihood on the mean equation (A3) is obtained by finding the
roots to

wwi (i, 1) — Pzwr > (A9)

Ngal
A) =
g( ) ; <Ngal - )\-T (wWL(fiv 71) - ¢n7,WL)

and subsequently evaluating the profile log-likelihood as

N, gal

€. Growi) = — D 10g (Nga — AT (wwr(f;. ) — Puawr)) - (A10)

i=1

Equation (A9) is monotonic in A, which is a Lagrange multiplier of
dimension Nyiys. Here, Ny denotes the number of galaxies in the sam-

ple. We reach aroot for A = 0, where ¢,,vw; = ﬁ Z,le" ww(f;, 1).
This corresponds to the empirical mean of the weights wwy(f, ),
often referred to as the ‘stacked distribution’. This terminology is
conventional but misleading because it is often applied inappropri-
ately to summing up likelihood functions of forward models, which
is an undefined operation. We refer to Appendix B for a discussion
on estimating the py,mp(z) in this context.

The central limit theorem holds for the empirical likelihood
framework and the coverage error converges as 1/N, where N denotes
the sample size (Owen 2001). Thus, for the large sample sizes
considered in this work, we can safely neglect the statistical error
in the maximum empirical likelihood estimate, given that other
error contributions, such as model misspecification error and cosmic
variance, are considerably larger.
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APPENDIX B: FORWARD MODELLING
METHODOLOGY

B1 Overview

In this appendix, we describe the forward modelling formulation
of sample redshift inference in more detail and derive a variational
inference scheme to perform efficient pg,mp(z) inference in this frame-
work. In Section 4.1, we discussed a simplified model, focussing on
the redshift z as the quantity of interest, as (e.g. Leistedt et al. 2016;
Malz & Hogg 2020; Rau et al. 2022)

Ngal

p(E1dn. @) = [ 201 p(hics, DGl 9. ®B1)
i=1

We reiterate that I denotes the set of fluxes of all Ngq galaxies in the
sample, f; (z;) denotes the flux (redshift) of the individual galaxy with
index 7, and £ denotes a set of auxiliary parameters that describe other
galaxy properties such as galaxy type or stellar mass. The weights
w; denote the lensing weights for each galaxy in the sample.

B2 Assumptions

The simplified equation (B1) assumes that the flux and redshift of
each galaxy are drawn independently of any other. In a more general
setting, we could formulate a joint likelihood. The forward modelling
approach does not assume the availability of calibration data and
is therefore more general than the conditional density estimation
methodology. In contrast to conditional density estimation, equation
(B1) implies a hierarchical inference of the psamp(z). The same applies
to other population distributions for quantities of interest. For noisy
measurements of photometry, this inverse problem can be poorly
conditioned. Practical applications must impose explicit or implicit
assumptions to control the posterior variance, either by setting priors
on quantities of interest or restricting the complexity of relevant
models. Model misspecification error is a significant complication
in this context. Given the complex modelling of SEDs, selection
functions, and photometric error, any practical application must
verify their modelling assumptions on calibration data.

B3 Methodology

We discretize the Pingiv(z) on the same grid that defines the pyump(z)
histogram defined in equation (1). We define a matrix defined as the
set:

pz = {PZU(QHO <i= Ngalv 0 < j = Nvins}» (B2)

where the entries are given as the integrals of the likelihood of galaxy
i over the j redshift histogram bin weighted by the lensing weights
wj

pzij(S2) := w,-/p(filzi,ﬂ)lj(Z)dzi- (B3)

Using the definition equation (1) we can write the log-likelihood
as

Neal Nbins

tog (p(Fign. ) = tog | S duipz(® | (B4)
i=1 j
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The logarithm in equation (B4) and the fact that ¢,, is normalized (it
can be transformed to lie on the simplex) makes the evaluation and
optimization of equation (B4) non-trivial.>’

‘We can circumvent both issues by introducing the binary variables
p;; that associate bin j with galaxy i. The complete data likelihood
then reads

N‘éﬂl Nbins

PE, pldn, @) o [T T (Pnes p2is(®)™, (BS)

i=1 j=1

which we identify as a multinominal likelihood. Imposing a Dirichlet
prior over the parameters ¢y, then yields the joint distribution
P, p, $n,|2).

Variational inference maximizes the Evidence Lower Bound
(ELBO), which is equivalent to minimizing the Kullback-Leibler
divergence between the true, unknown, posterior, and an ‘ansatz’,
the variational distribution

ELBO = Ey(5.,, [log (p(F. p. 61,1®)) —Togq(p. 0] . (B6)

where g(p, ¢,,) denotes the variational distribution to be optimized.
Here, this involves imposing an analytic form for the variational
distribution and then maximizing the ELBO with respect to its
parameters.

We make a mean-field ansatz for the variational distribution

q(p, 6u) ~ q(p)q(Pnz) , (B7)

which assumes independence between p and ¢,,.

Under the mean-field approximation, variational inference reduces
to a simple scheme of updating each component iteratively by mean-
field coordinate ascent. Setting the Lagrange function constructed
using the variational derivative of the ELBO to zero, we can derive
the following coordinate ascent iteration steps:

q(p) o exp (Eqy,,) [10g p(plu:, p2)])

Neal Nping Nbins Pij
o H H (exp (lﬁ(aj) -y (Z; aa) + log (pz,;,-))) ,

i=1 j=1

(B8)
and
q(@ns) o< exp (Eyqp) [log p(¢n.lp, p2)])
Ngal
= Dir(eto + »_ 7). (B9)

i=1
where we have omitted the conditioning of the variational distribu-
tions on the parameter « for notational convenience. We note that
o is iteratively updated in the argument of the Dirichlet defined
in equation (B9). The sum in equation (B9) goes over the Ng,-
dimension of the matrix, whose elements are defined as

exp (V@) = (N o) + log (pzy)
Sy exp (Ve — W) o) + log (pzy)

Here, ¢ denotes the digamma function; the Dirichlet distribution is
abbreviated as ‘Dir’. The variational distributions defined in equation
(B8) and equation (B9) are iteratively updated until convergence.

Vij = (B10)

20 A possible way to perform the optimization in a brute-force approach is
by projected gradient descent. However, we derive a simpler scheme in the
following text.
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While this iterative scheme can be expected to computationally
outperform MCMC approaches, a mean-field ansatz often leads to
the estimation of too narrow credibility intervals.

In our numerical experience, the undercoverage?' under reason-
able regularization (e.g. by selecting broader histogram bins) is ap-
proximately 20 per cent, which is subdominant compared with other
sources of error induced by spatial-, colour- and redshift-dependent
selection functions or model misspecification. We therefore used the
variational inference scheme in this work during the initial stages
of the project, where we evaluated the accuracy of the Mizuki
individual galaxy photometric redshifts. However, we note that the
validity of the variational inference approximation will depend on
the resolution (e.g. given by the histogram bins size) and can be
expected to deteriorate for poorly conditioned scenarios with high
variance. In these cases, we can expect credibility intervals to exhibit
undercoverage. In contrast, maximum a posteriori predictions can be
expected to be still entirely accurate.

APPENDIX C: CHARACTERIZING COSMIC
VARIANCE USING LOGISTIC GAUSSIAN
PROCESSES

In this appendix, we discuss how logistic Gaussian processes provide
aflexible model to include cosmic variance induced sample noise into
Dsamp(2) inference.

We first consider the redshift-dependent lognormal doubly
stochastic point process specified as

pi ~ LogNorm(u, X)
N; ~ Poisson(p;), (C1

where p and ¥ are the mean and covariance parameters of the
lognormal distribution, the p; are the mean parameters of the Poisson
distribution that describes the galaxy number counts in redshift
dimension, and N; denotes the number of galaxies in each redshift
bin. The psamp(z), wWhich enters the modelling of two-point statistics,
is normalized to integrate to unity. We therefore need to sample over
normalized histogram counts of a multinomial instead of parameters
of a Poisson distribution.

The lognormal ‘Cox process’ defined in equation (C1) can be
equivalently defined as

pi ~ LogNorm(u, %)
N ~ MultNominal(¢,,, N)
N ~ Poisson(p)

Pi

- St pi
Nbins

p= p (€2)

i=0

where we have decomposed the Poisson distribution into the product
of a multinominal distribution that depends on the normalized p-
parameters and a Poisson distribution that depends on their sum p.
The random variable N denotes the total number of galaxies across
all bins.

Here, Ny is the number of redshift bins introduced in equation
(1). Since the modelling of the angular correlation function depends
on the normalized pgump(2), we will concentrate on the distribution

2lUndercoverage refers here to underestimating the width of the credibility
intervals.
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of ¢,,, where equation (C2) defines the logistic Gaussian process
specification of our model. We make the simplifying assumption of
ignoring the cross-correlations between neighbouring redshift bins,
which has been shown to be a reasonable approximation in Sdnchez
etal. (2020). To include an error contribution to the lognormal model
covariance that matches the variation in the COSMOS field, we
are interested to predict the coefficient of variation, i.e. the ratio
between the standard deviation and mean, for the HSC phot data in
the COSMOS field as a function of redshift due to cosmic variance
and use it to derive a cosmic variance error budget on the pgmp(z)
model for each tomographic bin. To this end, we first formulate a
model for the variance of galaxy counts as a function of redshift that
can be fitted to the results of Sanchez et al. (2020).

Consider two sets of galaxies within a spatial area and redshift
bin, which we denote as B; and B,. We can express the covariance
of the number of galaxies within the sets N(By,,) as (e.g. Stoyan &
Stoyan 1994)

CoV(N(B1), N(By)) = E [N(B1)N(By)] — E[N(B)] E [N(By)]

=E| Y Y lpa)la®)| —ps V(B)psV(B),

X1€N(B1) x2€N(By)

(C3)

where V(B1;2) and pgp,, denotes the volume and expected number
density of B; and B,. The volume is defined with respect to spatial
area and redshift bin and the expected number density p denotes the
expected number of galaxies observed in B per unit volume. 1 z(x)
denotes the indicator function which is unity if a galaxy can be found
at position x and zero otherwise. The first term corresponds to the
second-moment measure, i.e. the expected number of galaxy pairs
including ‘pairs’ of the same galaxy. This can be expressed as a
function of the two-point correlation function, the number densities,
and the effect of the survey mask. The variance contribution we obtain
within a set B under the assumption of homogeneity and isotropy can
be defined as

Var[N(B)] = psV(B) + pé/f&(llxl — X[ dx1dx; . (€4
B

The first term in equation (C4) is the ‘shot noise’ contribution. The
second term in equation (C4) depends on the ‘clustering’ of the
galaxy field, parametrized by the pair-correlation function & (x;, x3)
and the survey geometry that enters the double integral over B.

We develop a simple model for the COSMOS2015 data based
on equation (C4) by parametrizing pp proportional to a lognormal
distribution and the integral of the correlation function proportional
to a power law. Our model has five parameters; an amplitude and
scale parameter for the power-law model and two parameters that
describe the line-of-sight number density of the COSMOS2015
number counts with a normalization amplitude. We then fit this model
to the redshift-dependent Var[N]/N values reported in Sdnchez et al.
(2020), shown in the left panel of Fig. C1. The black dashed line
shows the values reported in Sanchez et al. (2020), and the red line
shows the best-fitting solution to our model. We see that at low
redshift the linear dependence on the lognormal-shaped line-of-sight
number density of the COSMOS2015 number counts flattens the
power-law shape. In the right panel of Fig. C1, we plot the coefficient
of variation (red) and the coefficient of variation®” from only the shot
noise contribution, i.e. the first term of equation (C4). In agreement

22The coefficient of variation is the ratio of the standard deviation to the
mean.
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with Sanchez et al. (2020) we see that the shot noise contribution is
subdominant for the COSMOS2015 data set. This difference will be
even larger for our data due to the larger amount of galaxies in HSC
phot.

The cosmic variance contribution to the coefficient of variation is
strictly bounded from above by the total coefficient of variation by

\/[ £(IIx1 — Xz|)dx1dx; < o[N(B)]/E[N(B)]. (C5)
B

We choose to use the ‘full’ coefficient of variation from COS-
MOS2015 (CV), in our model, even though the shot noise contribu-
tion would already be included in the empirical likelihood framework
(or the deconvolution approach in the Mizuki case), which will lead
to an overestimation of our error budget following equation (CS5).

In order to derive the cosmic variance error contribution on the
redshift distribution, we scale the CV by the number counts in
redshift bins as predicted by the empirical likelihood framework
(or alternatively by our deconvolution algorithm) using

E[N:] = N tM", (C6)

where 7ML defines the maximum empirical likelihood estimate in
redshift bin i as discussed in Section 5.4, and (N;/N,) denotes the
(redshift bin i/total number of galaxies) in the tomographic bin.

Using the method of moments we can now estimate the parameters
;1 and X defined in equation (C2) as

E[N;]
i =log | ———=
\/CVi+1
o? =log (CVi* +1), (C7)

where the coefficient of variation is given as
CV; = o[N;]1/E[N;]. (C8)

This allows us to specify the logistic Gaussian process prior in
equation (C2) defined in Ny, redshift bins for each of the four
tomographic bins in our sample.

Given these definitions we can simplify the specification of the
logistic Gaussian process on the parameters ¢,, in equation (1) to

s ~ N(slu, Zcv)
oo {5
Zj exp(s;)

where g and the diagonal matrix ¥cy are defined in equation
(C7). The sampling of the ¢,, parameters is expressed in terms of
the variable s that follows a multivariate normal distribution. This
corresponds to the definition in equation (6).

0<i< mes} , (C9)

APPENDIX D: MARGINALIZING OVER THE
CAMIRA LRG PHOTOMETRIC REDSHIFT
ERROR

In the following text, we describe the definition of the marginal
likelihood that accounts for the photometric redshift error of the
CAMIRA LRG (LRG) sample introduced in Section 3.2. In this
approach we treat the redshifts of each LRG as a latent variable.
Since we do not have access to the likelihood of the photometric
redshift method implemented in the CAMIRA method, we utilize the
calibration data set described in Section 3.3 to estimate a conditional
distribution between the flux of the LRGs f; g and their redshift z; rg.
This is done by matching the LRG catalogue and the specXphot

MNRAS 524, 5109-5131 (2023)

calibration catalogue and constructing a kernel based conditional
density estimate. We can then marginalize the likelihood of spatial
cross-correlations between the LRG and HSC photometric sample
(phot) as

P(WLRG=Photz|Pnzphozs PPhotz» BLRG)

= /ﬁ(WLRG—PhOIZ|¢nZPh0a7 bPholZs bLRG7 Z1 RG> fLRG)

x p(zLrgfLre) p(fLrg) dfiLrG dZirG (D1)

where Wi rG_phorz denotes the spatial cross-correlation measurements
between the LRG and HSC phot catalogues, ¢p;p,.z denotes the
Psamp(2) parameters of the HSC phot sample, and (bphoiz/bLrc) is the
galaxy-dark matter bias of the (HSC phot/CAMIRA LRG) sample.
The left-hand side defines the marginal likelihood introduced in equa-
tion (8). The term p(zyrg|fLrg) is the aforementioned conditional
distribution of the LRGs’ redshift given their flux. We also include
the lensing weights for the HSC phot sample by weighting the pair
counts used to construct the measurement Wi rG—pnorz according to
the prescription implemented in ‘The-Wizz’ (Morrison et al. 2017).
Since the cross-correlation measurements do not vary much
between realizations of LRG redshifts drawn from p(zpgrg|fLrc),
we can evaluate this double integral using a Monte Carlo estimate:

ﬁ(WLRGfPholzlqsnzPho(Z, bPhOlZv bLRG)

=$Z

(fLRG,ZLRG)

(P("’\VLRG—PhotzlfbnzthZv bphotz, bLrG: ZLRG> fLRG)) ;

D2)

where we sample M sets (fLrg, ZLrg) from the estimated joint
distribution p(f rg, ZLrg) by sampling sequentially as

firg ~ p(firc)
21rG ~ P(2Ziralfira) - (D3)

In this sampling scheme one has to recalculate the lensing-weighted
pair-counts for each replication. This has the advantage that the scales
and redshift bins can be consistently selected, but the disadvantage
of high computational cost. However, we iterate and verify that
the variance in the integrand is moderate due to the small LRG
photometric redshift error. Accordingly, we can use a small number
of realizations (M = 10 in our case), which makes this a practical
approach. We finally note that we speed up the construction of the
conditional density estimate p(zirg|firg) by training directly on
the residuals between the specXphot ‘true’ redshifts in the training
set zirg and the estimated mean photometric redshift estimates
Zphot, LRG> 1.€. W€ construct P(ZLrG|Zphot,LRG)-

While this potentially increases the variation in the resampled
CAMIRA LRG redshifts, since we do not use the full information
in the photometry as predictors, it allows us to train our error model
efficiently on subsamples of LRG galaxies with very small variations
between the conditional density function estimates due to the higher
density of LRG training galaxies in the one-dimensional covariate
Zphot, LRG-

APPENDIX E: DISCUSSION OF PRIOR CHOICE

In this appendix, we discuss methodological differences between
the logistic Gaussian Process as a prior over the pgmp(z) and the
established alternative choice of the Dirichlet.

We have introduced the logistic Gaussian process as a prior
distribution over pgump(z) in Rau et al. (2020), where we discuss
several advantages in terms of characterizing the covariance between
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Figure C1. Left: Var(N)/N model for the COSMOS2015 data as a function of redshift used in this work (red) compared with the (black, dashed) predictions
in Sénchez et al. (2020). Right: Coefficient of variation as a function of redshift predicted by our model (red) compared with the contribution from shot noise

alone (black).

neighbouring redshift bins. Furthermore, as explained in Appendix C
we can relate our choice of logistic Gaussian process prior to
a lognormal model for the one-point density along the line of
sight.

The Dirichlet distribution is an alternative prior that can be
imposed over coefficients of finite basis function models like e.g.
the histogram. It is a conjugate prior to the multinomial likelihood
which is a significant advantage in designing sampling and inference
schemes as, for example, demonstrated in the derivation of the
variational inference scheme in Appendix B. In this context it
is often applied as an uninformative prior over the histogram
heights.

The Dirichlet distribution is related to a gamma distribution
Gamma(e, 1) in a similar way as the logistic Gaussian Process to
the lognormal model.

pi ~ Gamma(e, 1)

N ~ MultNominal(¢,,, N)
Pi
¢nz,1 Z 1N=hg‘“ Py 5
where the vector N denotes the galaxy counts drawn from the
multinomial and N denotes the total number of galaxies. The vector
¢n, would then be distributed according to a Dirichlet distribution
with coefficients «.

Concentrating on the distribution of p, which describes the
expected number density of the point process along the line of
sight, the logistic Gaussian process as the prior over the pgmp(z)
implies a lognormal model, dependent on both a mean vector and

(ED)
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covariance, whereas the choice of a Dirichlet distribution implies a
one parameter Gamma distribution, dependent on the vector «. The
limitation of the one-parameter Gamma distribution is that both the
coefficient of variation and the average number density depend on
the same parameter vector . This means that we cannot parametrize
a redshift-dependency in the coefficient of variation in the Dirichlet
model while leaving the mean histogram heights constant. We can
however change the average coefficient of variation while leaving the
mean constant as demonstrated in the following. Following Minka

(2000) we can reparametrize the Dirichlet as

Do
K

o
N

1)
Il

m =

s

(E2)

where (m/s) relates to the (mean/precision) of the Dirichlet distribu-
tion over the histogram heights. When the mean m is kept constant,
one can modify the standard deviation of the Dirichlet distribution
by scaling the precision s. Sdnchez et al. (2020) mention this aspect
in their work in a slightly different context. We further note that
typically the lognormal distribution can be adjusted to be close to the

Gamma distribution.

In summary, we use the logistic Gaussian Process model in this
work as it allows a more flexible parametrization of uncertainty

compared with the Dirichlet model.
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