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Abstract

Drone-based multispectral sensing is a valuable tool for dryland spatial ecology, yet there has been limited investigation
of the reproducibility of measurements from drone-mounted multispectral camera array systems or the intercomparison
between drone-derived measurements, field spectroscopy, and satellite data. Using radiometrically calibrated data from two
multispectral drone sensors (MicaSense RedEdge (MRE) and Parrot Sequoia (PS)) co-located with a transect of
hyperspectral measurements (tramway) in the Chihuahuan desert (New Mexico, USA), we found a high degree of
correspondence within individual drone data sets, but that reflectance measurements and vegetation indices varied between
field, drone, and satellite sensors. In comparison to field spectra, MRE had a negative bias, while PS had a positive bias. In
comparison to Sentinel2, PS showed the best agreement, while MRE had a negative bias for all bands. A variogram analysis
of NDVI showed that ecological pattern information was lost at grains coarser than 1.8 m, indicating that drone-based
multispectral sensors provide information at an appropriate spatial grain to capture the heterogeneity and spectral variability
of this dryland ecosystem in a dry season state. Investigators using similar workflows should understand the need to account
for biases between sensors. Modelling spatial and spectral upscaling between drone and satellite data remains an important
research priority.
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1. Introduction

ing ecosystem-level information on dryland parameters
from
A third of the world's population is estimated to live satellite remote sensing (RS) data remains a challenge due

in drylands, which cover approximately 41% of the Earth's  to scaling issues related to the heterogeneous nature of dry-

land surface (Saftriel and Adeel 2005). Drylands are predicted land ecology (Biederman et al. 2017; Fawcett et al. 2022), low
to increase in global extent to cover 50% of the land by vegetation signal-to-noise ratios relative to bright soil back-

2100 (Nagler et al. 2007). Climate change is also predicted  grounds, and high dynamism in relation to seasonal rainfall
to shift ecosystem mechanisms currently prevalent in dry- variability (Smith et al. 2019). Furthermore, some satellite

lands into historically wetter climatic zones (Griinzweig et al. RS products (e.g., MODIS17A2) demonstrate poor
correspon-
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2022). Dryland climates have a high degree of temporal rain-

fall variability (Schlesinger et al. 2009; Thomey et al. 2011)
and, as water-limited ecosystems, C uptake and release are
sensitive to this variability, leading to variations in above-
ground biomass (AGB) (Houghton et al. 2001; McDowell et
al. 2008; Vargas et al. 2012). Increasingly, this variability of
dryland ecosystems is being recognised as important in the

context of the global C cycle (Poulter et al. 2014; Ahlstrém
et al. 2015; Sitch et al. 2015). For this reason, it is impor-

tant that robust methodologies are developed for monitor-
ing dryland vegetation conditions and dynamics over space

and time, and yet, various studies have shown that retriev-

and geomorphologists because research has shown that
factors such as vegetation patterns and connectivity are
fundamental to understanding dryland productivity and the
provision of ecosystem services (Schlesinger and Pilmanis
1998; Schlesinger et al. 2009', Mayor et al. 2013; Okin et
al. 2015).

While the relatively coarse grain of satellite observations
makes retrieval of dryland surface properties challenging, there are
alternative approaches that can be used proximally to deliver useful
scale-appropriate information about dryland dynamics, and these
have been widely tested. Within plant sciences, drone
methodologies have progressed significantly over the past decade,
with great potential to deliver information about plant community
assemblages and structural ecosystem parameters (Assmann et al.
2020; Sun et al. 2021). Indeed, dryland scientists have
experimented with drone-captured imaging data for describing
ecosystem vario
u ability (examples include Laliberte et al. 2011; Swetnam et al.
2018; Sankey et al. 2019). Photogrammetric workflows applied to
drone data in drylands have delivered unique insights into spatial
ecology, plant structural forms, and biomass distribution (Cunliffe
et al. 2016, 2022a; Mclntire et al. 2022). Closer to the ground,
Gamon et al. (2006a) have demonstrated the rich information
content of hyperspectral information from transects sampled by
automated tramways in Californian chaparral. While there have
been some experiments outside of drylands that have successfully
undertaken scaling of data between drone-based and satellite
observations (e.g., Fernandez-Guisuraga et al. 2018; Franzini et al.
2019; Assmann et al. 2020; Fawcett et al. 2020; Lu et al. 2020), less
attention has been given to this challenge in drylands despite the
potentially important ramifications of combining data across these
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dence with
productivity
measured at the site level by flux tower observations, cap-

temporal patterns ofgross ecosystem

turing less than 30% of the observed interannual variabil-
ity (Biederman et al. 2017). There is a bias in remote sens-
ing studies of dryland ecosystems towards sampling at peak
greenness, with a lack of corresponding studies undertaken
in dry season conditions. The latter is critical for monitor-

ing seasonal fluctuations in C, but patterns and dynamics
are

much less well understood, with little information on how
RS
products at different scales might perform under these con-

ditions. Crucially, the spatial and temporal heterogeneity of

dryland ecosystems is relevant for ecologists, soil scientists,

scales of measurement (from spatial spectroscopy to drones
and then to satellite observations). There is a strong
argument for undertaking multiscale experiments in
drylands to address the "scale mismatch" between remote
sensing and other observations of carbon stocks and fluxes
(Gamon 2015) and to support the appropriate scaling of
field-based physiology measurements and the individual
plant or eddy covariance footprint level to larger landscape
0 or regional scales (Cunliffe et al. 2022b).

This study builds on the vision proposed in

Gamon et al's (2006b) Spectral Network
(SPECNET) paper, which advocates for
experiments that compare optically sampled

datasets across different scales. We address the key
knowledge gaps in how optical remote sensing
datasets at different scales compare with each other
in dry season (low biomass) conditions. We use a
fixed position transect of  hyperspectral
measurements sampled by a tramway system
equipped with a hyperspectral sensor at the Jornada
Basin Experimental Range in New Mexico, USA.
Concurrently with the hyperspectral measurements
along the transect, multispectral data were acquired
from tweo drone multiple camera array sensors
(Parrot Sequoia (PS) and MicaSense RedEdge-M
(MRE)). These two systems were compared
because previous work has shown radiometric
accuracy and consistency with such minicamera,
array-based imaging radiometers to be quite
variable (Franzini et al. 2019; Fawcett et al. 2020;
Lu et al. 2020; Olsson et al. 2021). Our goal was to
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examine the relationship between the hyperspectral data
near the ground and products delivered from the drone-
captured data before comparing it with satellite data
captured by Sentinel-2. We address the following research
questions for a dryland ecosystem in dry season conditions:

1. What is the correspondence within and between datasets
captured by MRE and PS sensors?

2. What is the relationship between data captured from lightweight
multispectral sensors on drones and field spectroradiometric
measurements?

(98]

. What is the spatial grain of semivariance in NDVI?

4. To what extent do vegetation indices correspond between drone-
captured and Sentinel-2 image data in drylands?

2. Materials and methods
2.1. Study site

The study was conducted on a site with open shrubland vegetation
cover in the northern Chihuahuan Desert, New Mexico, USA,
which is described in more detail by Monger et al. (2006) and
Rango et al. (2006). The study site was on a piedmont slope (bajada)
of the San Andreas mountains, located within the Jornada Basin
Experimental Range (latitude 32.582, longitude —106.635). The
site lies at ca. 1188 m above mean sea level, with a mean annual
temperature of 14.7 ° ¢ and a mean annual precipitation 0f245 mm.
The dominant shrubs are evergreen Larrea tridentata (creosote
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bush) and winter-deciduous Prosopis glandulosa (honey
mesquite). Other cover types at lower density include
Flourensia cernua (tarbush) and patchy occurrences of the
grasses Muhlenbergia porteri (bush muhly) and Dasyochloa
pulchella (fluff grass). Prosopis glandulosa and F. cernua
were both in a leaf-off state at the time of the survey. The
site occasionally experiences grazing and browsing by stray
domestic cattle, free-ranging introduced Oryx, and native
mammals (jack rabbits and desert pronghorn). The soils at
the site are Ustic Calciargids, and the underlying parent
material consists of limestone, other sedimentary rock, and
some igneous rock. The study site is adjacent to the US-JOI
flux monitoring station, which produces high-frequency
measurements of energy, water, and C0? flux.

2.2. Overall experimental design

The experiment was designed to capture multiple drone
surveys with the PS and MRE sensors coincident with
hyperspectral measurements of surface reflectance sampled
at fixed positions along a transect. Figure la shows the
location of the site. Detailed experimental aspects are
described in subsequent sections.

Figure 2 provides an overview of the timing of data
capture, where field measurements and drone surveys were
captured entirely on 24 February 2020, and the Sentinel-2
overpass occurred on the previous day. Three sets of drone
surveys were flown over the tramway area of interest (AOI)
and one set over a wider AOI, with the tramway
measurements taken on three passes at the start, middle, and
end of the drone survey period (Fig. 2).

1. Location of the study site (a), photograph of tramway spectrometer in operation (b), location map of the tramway
position (red line), tramway area of interest (AOI) for drone surveys (green rectangle), and area AOI for wider drone
surveys (c); taking pre-flight calibration reference images, separate calibration images were taken centred over each panel
in turn, hence why some panels here are shown as shaded since they are not being measured (d), and diagram of tramway
measurement footprints superimposed on a true colour orthomosaic of part of the tramway (e).
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L W
s Jornada Experimental Range
New Mexico

Location of
Tramway transect

Survey extent for
Tramway coincident
drone flights:
TRM_1, TRM_2 and
TRM_3

Survey extent for
wider area survey
flights used for
comparison with
Sentinel-2 satellite
data: ARE_1
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Fig.

2. Schematic illustration of the timing of data acquisition relative to solar elevation—all field data were captured on
24 February 2020, while the Sentinel-2 scene was captured on 23 February 2020. The time stated is local time (UTC -7).
MRE— MicaSense Red Edge sensor. PS—Parrot Sequoia sensor. ARE 1—Larger area drone survey shown in Fig. lc.
TRM 1, 2, and 3—tramway-focused drone survey shown in Fig. IC.

Sentinel-2 Overpass (day before)

ARE_1
Drone Surveys

TRM_1
Solar Elevation
Degrees

FirstTramway Run
40

Drone Surveys

SecondTramway Run

TRM_2
Drone Surveys

TRM_3
Drone Surveys

ThirdTramway Run

30

2.3. Atmospheric conditions during data
acquisition

All drone survey flights on 24 February 2020 were
conducted in cloud-free (Sky code O after Assmann et al.
2018) sunny conditions with a wind speed less than 4 mls.
The mean air temperature on the survey day was 9 ° ¢ with
a maximum of 18 ° ¢, minimum of 0.4 °c and no
precipitation recorded. On the 23 FebrualY (Sentinel-2
overpass), the mean air temperature was Il °c, the maximum
was 14 °c, the minimum was 4 °c, and 0.2 mm of total
precipitation was recorded for the 24 h period.

2.4. Tramway field hyperspectral

measurements

The ground remote sensing platform is a robotic tram
system, equipped with a cart hosting a dual detector
spectrometer at the Jornada Experimental Range (JER) to
monitor ecosystem optical properties. The tramline
(pictured in Fig. 1b) is 110 m long and was installed with
the intent to sample the dominant species present (e.g., P.
glandulosa (honey mesquite), Larrea tridentate (creosote),
and bare ground (shrub interspace)). The tram system is
similar to that described by Gamon et al. (2006a) for a
California Chaparral ecosystem and forms part of a larger
Long Term Ecological Research (LTER) study (Havstad et
al. 2020). The instrument used in the cart is a dual detector
spectrometer (Unispec DC; PP System, Amesbury, MA,
USA) that contains two detector channels, one for radiance
from the target and the other for downwelling irradiance.
The spectral range for this instrument is from 310 nm to
approximately 1130 nm with a 3 nm resolution. The
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spectrometer was triggered by metal markers
situated every meter on the tramline, with
measurements acquired on three runs at separate
times, as outlined in Fig. 2.
For the final reflectance calculation, the ratio between
radiance and irradiance was corrected using a reference
calibration of a 99% reflective white standard panel. The
collected spectral reflectance was processed using
rHyperSpec software (https:llsel-
jornada.shinyapps.iolrHyperSpecl) (Laney 2013) to extract
the hemispherical conical reflectance factor (HCRF)
reflectance that we used in this study for further analysis.

2.5. UAV image data and processing

Twomultispectral multi-camera array sensors were used in
the study. Their spectral response curves are given in Fig. 3
relative to those from the corresponding Sentinel-2 bands.
We flew three surveys concentrating on the tramway AOI
(130 m x 20 m) and one survey over a wider area (covering
130 m x 200 m) as detailed in Table S2. All survey flights
were conducted in cloud-free (Sky code O after Assmann et
al. 2018) sunny conditions with a wind speed less than 4 mls
and an air temperature of ca. 14—18 °c. The locationlextent
of the tramway-focused surveys (TRM I, TRM 2, and
TRM 3) and wider area surveys (ARE 1) are shown in Fig.
lc.
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2.5.1. Parrot Sequoia image data

Drone image data were acquired using a PS multi-camera array

TRM _ 3, respectively. The larger survey area (ARE
1) was flown at a height of 67 m, resulting in a GSD
of 6.63 cm.

attached to a 3-D-printed mount on a DJI Phantom 4 Advanced
multirotor UAV. The sensor was angled by ca. 10 degrees to attain

a near-nadir angle when the drone was flying forward. The Sequoia
measures light in the green, red, red edge, and NIR wavelength
regions, as detailed in Table SI. The PS survey flight height of 50
m (Table S2) resulted in a ground sampling distance (GSD) of 5.08,
5.29, and 5.36 cm for the tramway-focused survey flights TRM 1,

2.5.2. MicaSense RedEdge-M data

Drone image data were acquired using a MRE-M
multicamera array mounted on a DJI Phantom 4 Pro
Platinum multirotor UAV. The sensor was angled by
ca. 10 degrees to attain a near-nadir angle when the

3. Sensor response curves and wavelength ranges for drone and satellite sensors used in this study. (a) Sensor response
curve for MicaSense RedEdge (MRE) (Mamaghani and Salvaggio 2019), (b) sensor response curve for Parrot Sequoia (PS)

(Fawcett et al’ )20), (c) sensc_ Ase curve for Sentinel-2 sensors (S2) (ESA 2019), and dard bandwidths
compared for I£ ¢a Sense RedE« and Sentinel-2 sensors (see Table S2 for manufacturer-sta Iwidths). HCREF,
. . . &§.
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forward. The MRE sensors record light in the blue, green,
red, red edge, and NIR wavelength regions as detailed in
Table SI. The MRE spatial sensor resolution is finer than the
PS sensor, and flight heights of 80 m and 110 m (Table S2)
were implemented to achieve similar GSD for both sensor
surveys. GSD was 5.33, 5.46, and 5.43 cm for the tramway-
focused MRE survey flights and 7.42 cm for the larger
ARE I survey area.

2.5.3. Processing of drone data

The image data from each of the PS and MRE drone surveys were
processed in Pix4D software version 4.8.0 (Pix4D, Switzerland),
including geometric correction using at least five precisely
geolocated ground control points and radiometric calibration to
surface reflection (Assmann et al. 2018).

Drone Syst App'. 11: 1-27 (2023)

Radiometric calibration was performed using preflight
images of a Spectralon™ grey reference target with 43%
average reflectance over the PS wavelength range. This was
used instead of a white reference panel to avoid saturation.
A subset of the original survey set was used to produce an
orthomosaic of surface reflectance for each band for the
tramway area, using only flight lines closest to nadir above
the tramway to avoid any images with a lower angle of
observation being used within the reconstruction of the
orthomosaic for the tramway footprints.

2.6. Sentinel-2 image data

A Sentinel-2 A bottom of atmosphere (L2A) reflectance
image for the closest available date to the field and drone
data acquisition, 23 February 202010:43 local time (the day
before drone flights and spectral tramway data capture; Fig.
2), was downloaded from the ESA Copernicus Open Access
Hub. The meteorological conditions were similar on the
satellite image data acquisition date/time to the drone and
tramway surveys. The image bands used for this study were
blue (B2—IO m spatial resolution), green (B3—IO m
spatial resolution), red (B4— 10 m spatial resolution), red
edge (BS, 136, and B7—20 m spatial resolution), and NIR
(B8-10 m spatial resolution), with band wavelength regions
given in Table SI. The sensor response curve for Sentinel-2
is given in Fig. 3, with comparisons with the manufacturer-
supplied band wavelength regions for the PS and MRE
multiple camera arrays.

Multitemporal co-registration of Sentinel-2 image data is
known to be of the order of one pixel or 12 m accuracy
(Rufin et al. 2021). To facilitate the direct comparison of
the drone-acquired image data and Sentinel-2 image data,
the coregistration betweeen drone and satellite data was
checked by spatially resampling the drone data to the
coarser 10 m resolution of the Sentinel-2 image data and
visually comparing the images. We checked co-registration
using the co-register Images function in R (RStoolbox

dx.doi.org/10.1139/dsa-2023-0003
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package version 0.3.0) and found that the geo-
registration as supplied by ESA was opti-

2.7. Planetscope fine spatial resolution

satellite image data

A PlanetScope scene image from the Dove-R
instrument (instrument id PS2.SD) for 24 February
2020, 10:49 local time (the same day as the tramway
and drone data acquisition) was ordered and
downloaded from the Planet Explorer website. The
PlanetScope image data has a 3 m pixel resolution
comprising blue, green, red, and near-infrared bands
and was used within this study to facilitate a spatial
comparison of data at an intermediate spatial
resolution betweeen the drone and Sentinel-2 image
data. Due to the unavailability of sensor response
functions, the PlanetScope image data were not
included in the spectral intercomparison with drone
and hyperspectral data.

2.8. Intercomparison of data from tramway
hyperspectral instrument and drone

S€nsors

To facilitate comparison of multiscale sensors, the drone
data were resampled to the spatial resolution of the tramway
measurement footprints using the methodolow described
below. The footprint of each hyperspectral measurement
was delineated as a polygon using a projected field-of-view
based on survey-grade GNSS observations combined with a
digital surface model. These polygons were used in R (R
Core Team 2021) to extract surface reflectance from the
drone image data and produce an average reflectance value
for each tramway measurement location for each sensor
band using the "exact extract" function (exactextractr
package, version 0.9.1) (Baston and ISciences 2022). Due
to the varying height of the tramway along its length, these
footprints varied from 0.67 to 1.06 m in diameter, which
sampled between 154 and 385 drone image pixels per
footprint (at a GSD of 5.4 c¢cm). In addition to comparing
individual drone survey data for each footprint, the three
drone survey observations were averaged (using the mean)
to streamline the comparison between hyperspectral and
drone sensor measurements.

To facilitate the intercomparison of spectral
measurements, tramway-derived hyperspectral reflectance
values were spectrally resampled using the sensor response
functions for the PS (D'Odorico et al. 2013) and MRE-M
(Mamaghani and Salvaggio 2019) following the
method010U described by D'Odorico et al. (2013) to
produce HCRF datasets spectrally comparable to the
respective drone sensors (Fig. 3). Comparisons between
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data sets were performed in R, with assessments made using the
mean absolute deviation (MAD). To evaluate the agreement
between variables, we calculated Lin's concordance correlation
coefficient (CCC) (Lin 1989, 2000) using the DescTools package
(Signorell Andri et Multi 2022). We used strength of agreement
interpretations of the CCC following criteria suggested by McBride
(2005), where CCC values of >0.99 are described as almost perfect
agreement, values between 0.95 and 0.99 are described as
substantial agreement, values between 0.90 and 0.95 are described
as moderate agreement, and values below 0.90 are described as poor
agreement. We used total least squares regression to fit linear
models that account for uncertainty in both dependent and
independent variables. Formulae for the vegetation indices
Normalised Difference Vegetation Index (NDVI), Soil Adjusted
Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index
(MSAV12), and Modified Triangular Vegetation Index (MTV12)
used in this study are given in Table S3.

2.9. Intercomparison of drone and satellite data

To enable spatially explicit comparison of PS and MRE with the
Sentinel-2 data, the drone data were processed by extracting mean
data using a shapefile generated from the 10 m Sentinel-2 grid
resolution using the exactextractr package in R.

To assess the spatial grain of semivariance of spectral reflectance
in both the PS and MRE image data, we randomly sampled the data
to 25% of image pixels, applied the vari-

Drone syst. App'. 11: 1-27 (2023)
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Table 1. Summary statistics for the intercomparison of reflectance measurements derived

from the three Parrot Sequoia (PS) surveys.

PS surveys—intercomparison of reflectance measurements

Survey results

Sensor Band

©)

Note: Mean absolute deviation

TRMI compared with TRM2 Green 0.004 0.984 0.991
0.006 0.984 0.992

Red edge 0.007 0.975 0.987

Near-infrared 0.008 0.976 0.986

TRM2 compared with TRM3 Green 0.003 0.989 0.994
0.005 0.990 0.994

Red edge 0.007 0.980 0.990

Near-infrared 0.006 0.987 0.992

TRMI compared with TRM3 Green 0.006 0.951 0.974
0.010 0.952 0.976

Red edge 0.012 0.934 0.966

Near-infrared 0.013 0.934 0.961

(MAD), coefficient of
determination (R2), and Lin's

concordance correlation

are values presented.

ogram function, and fitted models using the "gstat"
package in R (Pebesma 2004; Griler et al. 2016). The
image sampling was required to achieve a reduction in
data size sufficient to run the variogram function on the
workstation available.
To derive a map of vegetation cover for the study area,
a random forest classification of the MRE drone image data
(survey ARE I) was carried out in Python using the
Scikitlearn machine learning package (Pedregosa et al. 2011).
Training polygons for two classes, vegetation cover (all types)
and bare ground, were manually digitised by one operator
directly onto the MRE drone image orthomosaic and randomly
split into training ( 100 polygons) and validation (50
polygons) data sets. A six-layer image stack containing NDVI
and the five reflectance bands was used in the random forest
machine learning process to produce a binary classification of
vegetation cover. Grid vector files matching the 10 m
resolution Sentinel-2 pixel resolution and 3 m resolution
PlanetScope (L3B) pixels were developed in R. The fractional
vegetation cover (WC) for each grid pixel was calculated from
the veg. etation cover classification image using the zonal
statistics package in QGIS (QGIS Development Team 2009).

3. Results

3.1. Reproducibility of drone image data
from different survey flights

Intercomparison plots betweeen individual survey
flights for the PS and MRE sensors of data extracted for
each tramway footprint are presented in Figs. SI, S2, S3,
S4, and S5, with summary statistics presented in Tables
1 and 2 The PS sensor data extracted from the three

Drone Syst App'. 11: 1-27 (2023)

coefficient (CCC)

survey flights TRMI, TRM2, and TRM3 had low
variation  betw™een survey flight reflectance
measurements, with a MAD of betw™een 0.003 and
0.013 across all sensor bands (Table 1). The agreement
between PS survey reflectance measurements was
substantial to almost perfect, with Lin's CCC between
0.961 and 0.994. Similarly, the MRE survey
measurements had substantial agreement between
surveys (Table 2). with a CCC of between 0.963 and
0.996 and a MAD of between 0.011 and 0.002. The
intrasensor agreement between the three surveys for the
PS and MRE sensors justified the use of mean values
from the three surveys in the remaining analysis
presented in this paper.

3.2. Comparison of PS and MRE reflectance

measurements

Intercomparisons between PS and MRE surface reflectance
measurements extracted for tramway footprints are shown in
Fig. 4. For all sensor bands, the PS recorded higher reflectance
values than the MRE, with moderate agreement for the NIR and
green bands (CCC 0.934 and 0.907, respectively) and poor
agreement for the red and especially the red edge bands (CCC
0.842 and 0.642, respectively) (interpretations after McBride
(2005)). A higher calculated NDVI resulted for MRE data
compared with the PS (Fig. 5), with a CCC value of 0.621. It
should be noted that the centre wavelengths and bandwidth of
the sensor bands in the electromagnetic spectrum differ
between the camera systems (Fig. 3 and Table Sl), and to
explore this further, we resampled the hyperspectral tramway
data for both PS and MRE bandwidths and then calculated and
plotted the resulting NDVI (Fig. S6). This analysis shows that
the MRE sensor bandwidth locations result in higher NDVI
values; however, the difference in NDVI that can be attributed
to the sensor positions is smaller (NIAD: 0.011, CCC: 0.983)

dx.doi.org/10.1139/dsa-2023-0003 9
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compared with the difference in survey results (MAD: 0.07,
CCC: 0.619) betweeen the two sensors.

3.3. Comparison between tramway hyperspectral
field spectral measurements and drone-

derived sulface reflectance
Intercomparison  plots of tramway  hyperspectral
measurements and drone survey derived surface reflectance
(mean data) measurements are presented in Fig. 6 for blue,
green,

Table 2. Summary statistics

for the

The MRE multiple camera array (MCA) sensors
recorded slightly lower reflectance in blue, green, red,
and red edge bandwidths compared with hyperspectral
measurements, with CCC agreement values of 0.842,
0.836, 0.92, and 0.924, respectively (Table 3 and Fig.
6). Reflectance measurements for the NIR band showed
a slightly positive bias (CCC: 0.891) compared with
hyperspectral measurements, with the fitted slope
indicating that this bias reduces with higher reflectance
values. NDVI calculated from the MRE image data has

intercomparison of reflectance

measurements derived from the three MicaSense RedEdge (MRE) surveys.

MRE surveys intercomparison of reflectance measurements

Survey results Sensor band R2
TRMI compared with TRM2 Blue 0.002 0.993 0.994
Green 0.002 0.994 0.996
0.004 0.993 0.996
Red edge 0.003 0.991 0.996
Near-infrared 0.004 0.988 0.994
TRM2 compared with TRM3 Blue 0.005 0.981 0.971
Green 0.005 0.972 0.977
0.008 0.978 0.984
Red edge 0.009 0.973 0.977
o Near-infrared 0.006 0.972 0.982
TRMI compared with TRM3 Blue 0.004 0.957 0.969
Green 0.006 0.956 0.973
0.010 0.958 0.970
Note: Mean absolute deviation (MAD), Red. edge 0.011 0.949 0.963
coefficient of determination (R?), and Near-infrared 0.009 0.936 0.963

Lin's concordance correlation
coefficient (CCC) values are presented.

red, red edge, and NIR wavelength bands, and
summary statistics for the intercomparison are
presented in Table 3. Plots of the individual drone
survey data compared with corresponding tramway
measurements are presented in Figs. S7, S8, S9, SIO,
Sli, S12, S13, and S14. NDVI derived from
hyperspectral tramway measurements is compared with
drone data in Fig. 7.

The PS sensor data had a positive bias in the red, red
edge, and NIR bands compared with the hyperspectral
instrument, with poor CCC agreement values of 0.846,
0.732, and 0.803, respectively (Table 3 and Fig. 6).
There was a closer agreement in the PS green
wavelength band, with a moderate agreement
CCC of 0.921. NDVI values derived from the PS did

not have a 1 1 relationship with hyperspectral field
measurements, with 0 the fitted linear model indicating that
NDVI values tend to be positively biased for values below 0.15
and negatively biased for higher NDVI values, as shown in Fig.
7.

10

a positive bias with a constant higher offset compared
with tramway measurements (CCC: 0.677). MRE-
derived NDVI had a higher difference with
hyperspectral data than with PS data (Fig. 7). The
statistical measures presented in Table 3 would appear
to suggest that with better agreement in the red and NIR
wavelengths, the MRE sensor should also be closer in
NDVI to the hyperspectral data; however, the MAD and
CCC values do not reflect the relative positive and
negative bias in these bands that results in a larger
difference in NDVI.

3.4. Comparison between vegetation indices
derived from hyperspectral field and drone
measurements.

We tested the correspondence across several different
vegetation indices widely used in studies of dryland

ecosystems. Comparison plots of vegetation indices (NDVI,
SAVI, MSAV12, and MFIV12) for MRE and PS image data

Drone syst. App'. 11: 1-27 (2023) | dx.doi.org/10.1139/dsa-2023-0003
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Fig.
compared with tramway data are shown in Figs. S15 and S16, 0.5 MAD: 0.056
respectively, with summary statistics given in Table 4. E-’é (999:' -
For MRE image data, the SAVI, MSAV12, and MTV12 Woal y= "0.018 + 0.847 x
calculated vegetation indices have less variation (MAD: 0.036, =
0.032, and 0.016, respectively) than NDVI (MAD: 0.061) and g
demonstrate a smaller positive bias than NDVI. Only the MIVI @ 03
calculated values for MRE data have a higher agreement (CCC: E_
0.843) than the NDVI (CCC: 0.679) with those calculated from 802
tramway measurements. .§
For PS-derived vegetation indices, the SAVI, MSAV12, and H -
MTV12 all have less variation in values compared with et
hyperspectral tramway measurements (MAD: 0.012,0.011, and
0.017, respectively) than the NDVI (MAD: 0.024) and less 0.0+

variation compared with MRE-derived equivalent vegetation
indices. SAVI, MSAV12, and MIVI indices all had lower
agreementwith the hyperspectral tramway data (CCC: 0.858,
0.846, and 0.82, respectively) than NDVI (CCC: 0.868). 0
Broadly, the data show that adopting alternative vegetation
indices to NDVI in the comparison with tramway data reduces
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Fig. 5. Comparison of drone-derived NDVI from Parrot Sequoia and MicaSense RedEdge surveys TRM 1, demonstrating the
higher NDVI values obtained from the MRE survey. RGB orthomosaic (a), comparison plot of extracted NDVI for each
tramway measurement footprint derived from PS and MRE surveys (b), NDVI image data from PS survey TRMI (c), NDVI
image data derived from MRE survey TRMI (d). Mean absolute deviation (MAD), coefficient of determination (R?), and

Lin's concordance
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Results of the geostatistical analysis applied to NDVI
data from PS and MRE drone image survey data over
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semivariance reaches a plateau irrespective of further
increases in separation distance, with the "sill variance"
being the semi-variance value at the range (and an
indicator of the total amount of spatial variation
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present). Nugget variance is the model intercept and is
related to measurement error and noise. As data
become more spatially clustered, the range is expected
to increase (lsaaks and Srivastava 1989). The values
obtained from a fitted model show that both sensors
had similar "range" values of 1.76 m (PS) and 1.82 m
(MRE). This indicates that the textural grain of spatial
variation in NDVI is of this order. The sill variance is
much greater for the MRE sensor compared with the
PS (0.0105 vs. 0.0048, respectively), showing that the
total amount of spatial variation in NDVI measured by
the MRE sensor was greater than in the PS data (e.g.,
maximum NDVI was higher in MRE than in PS).

3.6. Intercomparison of sulface reflectance
derived from Sentinel-2 and drone image
data

Plots of comparison betw™een drone and Sentinel-2 derived
surface reflectance values are given in Fig. S17 and Fig. S19 for
PS and MRE sensors, respectively, with the statistical

14 Drone syst. App'. 11: 1-27 (2023) | dx.doi.org/10.1139/dsa-2023-0003
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Fig.

6. Mean surface reflectance of tramway footprints for (a) green, (b) red, (c) red edge, and (d) near-infrared (NIR)
bands compared betvveen drone-acquired MRE (MicaSense RedEdge) and PS (Parrot Sequoia) image data and tramway
hyperspectral measurements. Tramway data were resampled to the wavelength band of the corresponding drone sensor.
Mean absolute deviation (MAD), coefficient of determination (R?), and Lin's concordance correlation coefficient (CCC)
values are presented.
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Table 3. Mean drone sensed reflectance—summary
statistics for intercomparison of Sequoia and MicaSense
RedEdge measurements with hyperspectral
measurements from tramway.

Parrot Sequoia MicaSense
compared with RedEdge
hyperspectral compared  with
measurements hyperspectral
measurements
CCC CCC
Blue 0.842 0.011
Green 0.921 0.012 0.836 0.017
Red 0.846 0.029 0.920 0.018
Red Edge 0.732 0.041 0.924 0.016
NIR 0.803 0.033 0.891 0.018
NDVI 0.868 0.024 0.677 0.061

o Note: Mean absolute deviation (MAD) and Lin's concordance correlation coe efficient
(CCC) values are presented.

analysis of each band summarised in Table 6. The RedEdge
wavelengths in Sentinel-2 data have a spatial resolution of
20 m sensed in three bands (Table SI—B5, B6, and B7); the
PS RedEdge sensor was compared against Sentinel-2 Band
6 and the MRE against Sentinel-2 Bands 5 and 6 in Fig. S18.
The PS and Sentinel-2 reflectance measurements have a
low MAD across all sensor bands (MAD: 0.009 to 0.015)
(Fig. S17 and Table 6). The CCC measure of agreement
between the PS and Sentinel-2 data was between 0.515 and

0.813 for the band sensor data and was 0.259 for NDVI.
The MRE sensors have a negative bias compared with
Sentinel-2 data in all bands, with MAD values of between 0.020 and
0.027. The CCC values for the agreement between MRE and
Sentinel-2 data were lower than for the PS comparison, ranging
between 0.127 and 0.366. Due to the lower variance in the data at
this spatial resolution, the values were more clustered, making it
difficult to fit a robust linear model to describe the relationship
between Sentinel-2 and drone-acquired data. The PS-derived NDVI
plots (Fig. S18) in0 dicate broadly similar values to Sentinel-2
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NDVI values; however, the MRE-derived NDVI values
(Fig. S19) are consistently higher than Sentinel-2 data.
Figure 9 demonstrates how, at.the 10 m spatial resolution
of the Sentinel-2 image data, the variation in surface
reflectance is lower than at the drone image resolution, and
the resulting coarser scale NDVI image data conveys less
information on the spatial heterogeneity of the vegetation.

3.7. Intercomparison of vegetation
indices derived from Sentinel-2

and drone image data

Vegetation indices derived from Sentinel-2 data
were compared with drone image data aggregated
to the same pixel extent in the plots presented in Fig.
S20. The low data variability at the spatial scale of
the Sentinel-2 data meant that there is very limited
inference space for intercomparison, and it is
diffcult to fit linear models to the plotted data in
derived vegetation indices, which is reflected in the
R? and CCC values (Fig. S20 and Table 7).
Acknowledging these limitations, there was good
correspondence betvveen drone and Sentinel2-
derived vegetation indices, as indicated by the
MAD values (Table 7).

3.8. Comparison between drone-derived FVC

and vegetation indices flom satellite data

The random forest machine learning-derived classified
vegetation cover map for the wider study area (ARE 1) and
the resulting downscaled PVC for Sentinel-2 (10 m spatial
resolution) pixel footprints are presented in Fig. S21. The
overall WC for the wider study area is 29.75%, with PVC
in Sentinel2 pixels ranging from 12.9% to 55%.
Comparison plots of Sentinel-2 NDVI and MSAV12 with
WC for each pixel presented in Fig. S22 show a poor
correspondence (MAD: 0.163 and 0.211; CCC: 0.023 and
0.003, respectively) between vegetation indices and FVC at
10 m spatial resolution. To investigate whether
correspondence was improved by using finer-resolution
satellite data, we performed a separate comparison using
PlanetScope (3 m spatial resolution) image data. The FVC
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results with NDVIIMSAV 12 comparisons are presented in Fig. S23.
The comparison plots of PlanetScope NDVI and MSAV12
presented in Fig. S23 also show a similar low correspondence with
FVC (MAD: 0.215 and 0.161; CCC: 0.015 and 0.038, respectively)
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range of interesting complexities arise from the
grainvarying comparisons. Using these multiscale datasets
in concert with each other allowed us to address questions
regarding data correspondence across scales. Our

7. Parrot Sequoia NDVI plotted along tramway length against hyperspectral measurements resampled to the same
spectral resolution. (a) Comparison plot of Parrot Sequoia-derived NDVI against hyperspectral measurements for the same
footprints; (b) MicaSense RedEdge NDVI plotted along tramway length against hyperspectral measurements resampled to
the same spectral resolution; and (¢) comparison plot of MicaSense RedEdge derived NDVI against hyperspectral

measurements for the same footprints.

BerretBeayni NOVI'ansTramwayPata Mean NOVI'

ctrometer NOW (resamipked for Soguois Bandwidlh)

MicaSense RedEdge NDVI and Tramway Data Mean NDVI

Tramway Spactrometer NDVI (resampied for MIRE Dandwiatn)
MRE NDWI

at the finer grain of the 3 m pixel resolution. The low band
importance scores (0.00915) for NDVI from the random forest
machine learning algorithm (Fig. S21e¢) indicate that this VI was not
an important predictor for discriminating vegetation cover in this
classifier.

4. Discussion

We present the results of a unique experiment that combines
transect-based hyperspectral measurements of surface reflectance
factors with simultaneously captured (reflectance-calibrated) drone-
mounted MCA sensor data and near-time satellite observations. In
doing so, we responded directly to Gamon et al. (2006b) and Gamon
(2015), whose work called for such experiments to bridge the
scaling gap, and Sun et al.'s (2021) work, which highlighted these
endeavours as enabling basic ecological questions to be answered
across multiple scales. Furthermore, we did so in a low-biomass
dryland setting, which is understudied globally. We show that a
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discussion is structured according to the four questions
posed at the start of the experiment.

4.1. Reproducibility = within  and
correspondence between MRE and
PS sensors

The reproducibility ufthin each of the MRE and PS
datasets (n =3) suggests that these sensors can reliably
reproduce results in dryland conditions and therefore appear
suitable for use in comparison studies of different sites and
over different time scales. Achieving this reproducibility
requires standard Table 4. Summary statistical table of
analysis of different vegetation indices derived from drone-
acquired 1image data compared with tramway
measurements.
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0 RedEdge
Parrot Sequoia compared compared  with
with hyperspectral hyperspectral
measurements measurements
CCC CCC
0.868 0.024 0.679 0.061
SAVI 0.858 0.012 0.567 0.036
MSAVI12 0.846 0.011 0.538 0.032
0.820 0.017 0.843 0.016

MTVI2

Note: Mean absolute deviation (MAD) and Lin's concordance correlation cc»
effcient (CCC) values are presented.

protocols encompassing flight survey planning, ground
control, sensor calibration, and image processing.

All the surveys were conducted in similar cloud-free
weather conditions, with a small variation in solar elevations
ranging from 43.2 to 48 degrees. Further investigation would
be required to assess whether the same drone sensors would
produce similar results when acquiring data under a wider
range of solar elevation and cloud conditions or over longer
time periods. Furthermore, we did not test the long-term
radiometric stability of the MCA sensors, and it is reported
elsewhere that the PS sensor is prone to temperature-
dependent shifts in sensitivity (Olsson et al. 2021). We did
follow Olsson et al.'s (2021) suggestion to allow both MCA
sensors a warming-up period of 1 min prior to data
acquisition, but it is plausible to suggest that sensor
operations through the growing season in different air
temperature conditions could impact data quality over longer
timescales.

Betweeen the MRE and PS datasets, we found important
differences. The MRE sensor produced reflectance data that were
generally lower in all bands than the PS sensor, with the calculated
NDVI being higher when derived from the MRE sensor than the PS.
This higher NDVI can be partially explained by the different
wavelength positions and widths sampled by the two sensors. The
comparison of NDVI generated by resampling the hyperspectral
data to the different sensor response curves (Fig. S7) demonstrates
that the bandwidths sampled by the MRE sensors result in higher
NDVI values than for the PS band widths. However, this difference
in sampled bands alone does not appear to fully explain the higher
positive bias of the MRE-derived NDVI relative to the PS image
data. Investigators should be mindful that the data from the two
sensors are not directly equivalent, especially
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Fig.

8. Experimental semivariogram of Parrot Sequoia and MicaSense RedEdge derived NDVI image data over the wider
area (2.6 ha) survey (ARE 1I).

Table 6. Summary table—statistical comparison between
Sentinel-2 image data and drone-derived image data

® MicaSense RedEdge
® Parrot Sequoia
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Table 5. Results of semi-variogram analysis taken from fitted model.

Variogram

Parrot Sequoia NDVI

MicaSense RedEdge NDVI

Lag (unit distance sampled)

Sill
Nugget

0.0742
1.8206
0.0105

Parrot Sequoia
compared with

VlicaSense RedEdge

compared with

Sentinel-2 Sentinel-2
Sentinel-2 measurements measurements
Band cee cee
Blue 0.154 0.020
Gireen 0541 o011 0294 0021
Red 0789 0009 0366 0.027
Red Edge BS 0.246 0.028
Red Edge B6
e 0515 oors 0127 0.043
0.813 0.009 0.420 0.024
0.259 0.013 0.217 0.025

resampled to the pixel grain of Sentinel-2 image.
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Note: Mean absolute deviation (MAD) and Lin's concordance
correlation co-effcient (CCC) values are presented.

in higher level products such as NDVI, which can
ampli$' differences. As a note of caution—we
suggest that if others wish to combine data from
tweo different mini-MCA sensors we advocate for
ecosystem-specific adjustment factors (e.g., based
on Fig. 4b or the resampled tramway spectra
comparisons in Figs. S8—S16), but we suggest that
these would need further investigation across a
greater range of conditions than tested here. Such
correction factors are commonly used in satellite RS
studies to translate data and products between
sensors with different radiometric characteristics
(e.g., Roy et al. 2016; Fassnacht et al. 2019), but the
process of doing so with drone datasets has been less
well explored and likely has different constraints
(fewer corresponding observations, for example).

Relationship between drone-acquired

multispectral reflectance products and

field reflectance factor measurements
from the tramway-mounted
spectroradiometer

Drone-derived reflectance products and tramway-derived
hyperspectral reflectance data produced different results,
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with the difference more pronounced in higher level products such
as NDVI. The PS-derived reflectance values were higher than the
field-based hyperspectral measurement (by betweeen 5% and
16%), a result consistent with other vegetation studies using the PS
sensor (Fawcett et al. 2020). MRE sensor-recorded radiance was
lower compared with field spectroradiometer measurements (by
betweeen 4% and 13%) consistent with other studies using an MRE
sensor (Padrd et al. 2018). The calculated NDVI for the PS system
had a pattern and magnitude of deviation similar to those found by
Fawcett et al. (2020). The consistent positive bias in NDVI derived
from the MRE sensor was of a larger deviation than the
hyperspectral tramway measurements (ca. 11 %). We posit that

these differences were caused by a combination of the
following factors:

(a) Uncertainties in the projected footprints of the tramway
spectroradiometer at each measurement location, which
should be a random effect and relatively low order.

(b) Spatial mismatch between the predicted conical
footprint view of the spectroradiometer and the circular
extract captured from the drone orthomosaics. We
expect that in the heterogenous dryland system, this
might lead

9. Example ofMicaSense Red Edge (MRE) (a) and Parrot Sequoia (PS) NDVI (c) image data resampled to the spatial
resolution of Sentinel-2 (10 m) (b and d, respectively). Corresponding NDVI image from Sentinel-2 image data (e).
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Table 7. Summary table—statistical comparison
betvveen Sentinel-2 image data and drone-derived
vegetation indices.

Parrot  Sequoia  MicaSense
compared with RedEdge
Sentinel-2 compared with
measurements Sentinel-2
Sentinel-2 measurements
CCC MAD CCC
NDVI 0.259 0.013 0.217 0.025
SAVI 0.117 0.008 0.119 0.014
MSAV12 0.098 0.007 0.12 0.01
0.103 0.017 0.214 0.013

Note: Mean absolute deviation (MAD) and Lin's concordance correlation co®
efficient (CCC) values are presented.

o to different proportions of bare ground vs. vegetation within the

drone-modelled field-of-view compared with the
spectroradiometer data, and therefore might introduce a
systematic bias caused by soil contamination of
vegetation spectral signatures. Given that we found
soiladjusted VIS (SAVI and MSAV12; Table 2) to show
less variation compared with NDVI, this seems a
plausible explanation.

(c) Adjacency and atmospheric effects in drone and satellite

data might be expected to exert some impacts, particularly
in relation to the comparison of proximal sensing to RS data
from Sentinel-2. We argue that at drone level and below,
atmospheric uncertainties should be negligible because of
the regularity with which measurements were calibrated,
and because of the clarity of the atmospheric conditions on
the day of the experiment.

(d) For the MCA sensors, we used manufacturer-supplied

spectral response functions, which may not have perfectly
represented the full width and half maximum (FWHM) and
central wavelengths of each band, since every sensor is
slightly variable compared with generalised specifications.
We expect this to have had a small impact 0 but may partially
explain the biases between MCA sensors. Similarly, sensor-
specific calibration uncertainties, which are diffcult to
untangle, may have added to this uncertainty. These tweo
factors could explain some of the differences betweeen the
tweo drone-mounted sensors.

Following Cunliffe et al. (2020), we assert that it is crucial
for researchers developing transfer functions betw™een
NDVI and other ecological or biophysical attributes (e.g.,
AGB or gas fluxes) to evaluate the potential impact of these
variations and uncertainties on results. Using alternative
vegetation indices could be expected to affect the
correspondence between spectroscopic and drone-acquired
reflectance products. Crucially, in this experiment, we assert
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that the spatial sampling pattern of the transect
imposed a regularity on the measurements, which
limited the questions that could be answered. Future
experiments engaging with tramway-mounted
spectrometers such as this could explore more
diverse ways of capturing spectral data (focusing on
spectral endmembers describing particular species
or land cover types, for example), which would
enable questions on reflectance and biophysical
processes to be investigated at a plant species level.

4.3. What is the spatial grain of semivariance

in spectral reflectance?

Scaling up from ground-based observations to drones and
then to satellite data requires an understanding of the effects
of the spatial scale of observation as well as the relative
performance of spectral sensors. The importance of
observation scales for gathering useful information on
ecological spatial processes and spatial differences is well
known (Dungan et al. 2002; Wagner and Fortin 2005;
Jackson and Fahrig 2015). The spatial scaling issue is
identified as one of the most important in remote sensing
(Wu and Li 2009) and a major cause of uncertainty within
the results of remote sensing studies (Lechner et al. 2012).
Our results corroborate this and evidence the complexity of
comparing optical signals across different spatial grains.

The heterogeneity of the dryland vegetation at different
spatial grains is demonstrated by our variogram analysis of
the drone-derived image data. At spatial resolutions greater
than ca. 1.8 m, the variability in the system is mostly lost,
and this ecosystem appears more homogeneous. Our
analysis of FVC at Sentinel-2 (10 m) and PlanetScope (3 m)
spatial resolutions also indicates a poor ability to relate
vegetation indices to plant fractional cover in these dry
season conditions at coarser grains. Recently, Taylor et al.
(2021) demonstrated that to be able to consistently detect
land surface phen010U in a dryland ecosystem, fractional
cover of up to 60% was required within a pixel. Following
the framework proposed by Strahler et al. (1986), our
multiscale study covers the transition between fine grain,
where individual features are larger in extent than the
sensing spatial resolution (i.e., tramway and drone data),
and coarse grain, where features are smaller than the sensing
resolution (i.e., satellite data). Strahler et al. (1986)
suggested that spatial domains that occur across this fine-
coarse transition may require the formulation of models
specific to the actual sizes of elements and resolution cells.
We contend that modelling the spatial and spectral upscaling
betweeen drone and satellite data remains an important
research priority for these heterogeneous dryland
ecosystems.
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Fig.
4.4. Correspondence of vegetation indices between
drone-captured and Sentinel-2 data

In broad terms, drone-captured image data produces similar
reflectance data for wavelength bands and vegetation index values
to Sentinel-2 image data. The PS sensor had the greatest agreement
with Sentinel-2 image data. The MRE sensor had a negative bias
compared with the Sentinel-2 image data, following a similar trend
to that exhibited when comparing with field-based measurements.
As discussed in Section 4.3, at Sentinel-2 resolution (10 m pixel
size), the ability to detect and measure spatial variability in this
dryland ecosystem under winter conditions is greatly reduced, and
consequently, the results for different vegetation indices do not
allow us to derive inferences about their relative
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usefulness for characterising this dryland ecosystem in the
dry season.

4.5. Avenues for further investigation

A key reflection on this experiment relates to the spatial
sampling of spectral data by the tramway. This tramway was
constructed to replicate the experiment explained in Gamon et al.
(2006a), where the major question was to "systematically" sample
ecosystem optical properties. In addressing that question, the
tramway is configured to capture spectral measurements at regular
intervals of 1 m to deliver an unbiased sample of the dryland
structure. This precludes the capability to measure examples of
"pure" spectral endmembers, since most of the tramway sampling
locations gave footprints that included mixtures of bare soil and
vegetation elements. Indeed, bare ground was the dominant (>
50%) cover type in 63% o
u of the tramway hyperspectral measurements (note: broadly

similar to the 29.75% PVC calculated for the study area;
Fig. S22b). Therefore, it was not possible to perform an
analysis of the reflectance data at the plant species level
since there were insufficient pure plant samples for
endmember analysis. Further work with the tramway to
address different questions about seasonal and spatial
variations in pure plant specieslsoil spectral endmembers
could be undertaken with different stopping points along the
transect programmed to coincide with ideally 100% single-
species plant cover or 100% bare soil. Furthermore, given
that the tramway instrument executes a two-way journey
(out and back) to deliver replication, in the future the
instrument could be configured to sample plantlsoil
endmembers on the return journey to address different
questions.

A further avenue for investigation would be to repeat the
intercomparison of hyperspectral, drone, and satellite
measurements during different landscape phenophases. An
intercomparison of peak biomass conditions during the wet season
would be valuable to assess whether the results from this study are
reproduced at higher greenness levels. Additional studies at
different times of the year would also address questions relating to
the ability of drone and satellite sensors to 0 detect vegetation
anomalies and capture temporal changes in these dryland
ecosystems.

In addition to nadir measurements such as those from the
tramway, future work might also consider the suggestions
of Wardley et al. (1987), who queried the spatial and
spectral complexities of scene models over heterogeneous
vegetation. They explain that information such as the
threedimensional form of the spectral reflectance function
(e.g., approximation of the bidirectional reflectance
distribution function (i.e., more than nadir measurements)),
and spatial information on the geometric arrangement of
canopy components is required to build improved scene
models. Furthermore, they suggest that temporal dynamics
need to be captured, and spectral tramways such as the one
used here offer an ideal vehicle from which to fill this
knowledge gap.
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5. Conclusion

Using radiometrically calibrated data from two
multispectral drone sensors (MRE and PS) co-
located with a transect

syst.Appl. : dx.doi .org/10.1 139/dsa-2023-0003

of hyperspectral measurements (tramway), we found that
drone-based multispectral sensors capture data at the
necessary fine spatial and spectral resolution to provide
useful information characterising this dryland ecosystem in
the dry season. We found that data collected by the same
drone sensors had a strong spectral similarity, but that
reflectance measurements and vegetation indices (NDVI,
MTV12, MSAVI2, and SAVI) varied between field, drone,
and satellite sensors. We conclude that investigators using
data from different sensors need to account for biases in the
spectral sensitivity of the sensors. Analysis of satellite
image data at 3 m (PlanetScope) and 10 m (Sentinel-2)
resolution showed that the spectral range in the data was
reduced compared with drone data, and the variogram
analysis of NDVI derived from the drone data found that
ecological pattern information was lost at grains coarser
than 1.8 m. These findings suggest that in the dry season in
this dryland ecosystem, sensor spatial resolutions should be
finer than 1.8 m to capture relevant ecological information.

The intercomparison of hyperspectral, drone, and satellite
data presented in this paper helps to interpret satellite data,
such as those from PlanetScope and Sentinel-2, that have
too coarse spatial resolutions for capturing important
ecological patterns. We conclude that modelling spatial and
spectral upscaling between drone and satellite data remains
a complex yet important research priority for these
heterogeneous chyland ecosystems.
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