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Abstract 
Drone-based multispectral sensing is a valuable tool for dryland spatial ecology, yet there has been limited investigation 

of the reproducibility of measurements from drone-mounted multispectral camera array systems or the intercomparison 
between drone-derived measurements, field spectroscopy, and satellite data. Using radiometrically calibrated data from two 
multispectral drone sensors (MicaSense RedEdge (MRE) and Parrot Sequoia (PS)) co-located with a transect of 
hyperspectral measurements (tramway) in the Chihuahuan desert (New Mexico, USA), we found a high degree of 
correspondence within individual drone data sets, but that reflectance measurements and vegetation indices varied between 
field, drone, and satellite sensors. In comparison to field spectra, MRE had a negative bias, while PS had a positive bias. In 
comparison to Sentinel2, PS showed the best agreement, while MRE had a negative bias for all bands. A variogram analysis 
of NDVI showed that ecological pattern information was lost at grains coarser than 1.8 m, indicating that drone-based 
multispectral sensors provide information at an appropriate spatial grain to capture the heterogeneity and spectral variability 
of this dryland ecosystem in a dry season state. Investigators using similar workflows should understand the need to account 
for biases between sensors. Modelling spatial and spectral upscaling between drone and satellite data remains an important 
research priority. 
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1. Introduction 
0  ing ecosystem-level information on dryland parameters 

from 
 A third of the world's population is estimated to live satellite remote sensing (RS) data remains a challenge due 

 in drylands, which cover approximately 41% of the Earth's to scaling issues related to the heterogeneous nature of dry- 

 land surface (Safriel and Adeel 2005). Drylands are predicted land ecology (Biederman et al. 2017; Fawcett et al. 2022), low 
 to increase in global extent to cover 50% of the land by vegetation signal-to-noise ratios relative to bright soil back- 

 2100 (Nagler et al. 2007). Climate change is also predicted grounds, and high dynamism in relation to seasonal rainfall 

 to shift ecosystem mechanisms currently prevalent in dry- variability (Smith et al. 2019). Furthermore, some satellite 

 lands into historically wetter climatic zones (Grünzweig et al. RS products (e.g., MODIS17A2) demonstrate poor 
correspon- 
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 2022). Dryland climates have a high degree of temporal rain- dence with temporal patterns ofgross ecosystem 
productivity 

 fall variability (Schlesinger et al. 2009; Thomey et al. 2011) measured at the site level by flux tower observations, cap- 

 and, as water-limited ecosystems, C uptake and release are turing less than 30% of the observed interannual variabil- 

 sensitive to this variability, leading to variations in above- ity (Biederman et al. 2017). There is a bias in remote sens- 

 ground biomass (AGB) (Houghton et al. 2001; McDowell et ing studies of dryland ecosystems towards sampling at peak 

 al. 2008; Vargas et al. 2012). Increasingly, this variability of greenness, with a lack of corresponding studies undertaken 

 dryland ecosystems is being recognised as important in the in dry season conditions. The latter is critical for monitor- 

 context of the global C cycle (Poulter et al. 2014; Ahlström ing seasonal fluctuations in C, but patterns and dynamics 
are 

 et al. 2015; Sitch et al. 2015). For this reason, it is impor- much less well understood, with little information on how 
RS 

 tant that robust methodologies are developed for monitor- products at different scales might perform under these con- 

 ing dryland vegetation conditions and dynamics over space ditions. Crucially, the spatial and temporal heterogeneity of 

 and time, and yet, various studies have shown that retriev- dryland ecosystems is relevant for ecologists, soil scientists, 

and geomorphologists because research has shown that 
factors such as vegetation patterns and connectivity are 
fundamental to understanding dryland productivity and the 
provision of ecosystem services (Schlesinger and Pilmanis 
1998; Schlesinger et al. 2009', Mayor et al. 2013; Okin et 
al. 2015). 

While the relatively coarse grain of satellite observations 
makes retrieval of dryland surface properties challenging, there are 
alternative approaches that can be used proximally to deliver useful 
scale-appropriate information about dryland dynamics, and these 
have been widely tested. Within plant sciences, drone 
methodologies have progressed significantly over the past decade, 
with great potential to deliver information about plant community 
assemblages and structural ecosystem parameters (Assmann et al. 
2020; Sun et al. 2021). Indeed, dryland scientists have 
experimented with drone-captured imaging data for describing 
ecosystem vario 
u ability (examples include Laliberte et al. 2011; Swetnam et al. 
2018; Sankey et al. 2019). Photogrammetric workflows applied to 
drone data in drylands have delivered unique insights into spatial 
ecology, plant structural forms, and biomass distribution (Cunliffe 
et al. 2016, 2022a; McIntire et al. 2022). Closer to the ground, 
Gamon et al. (2006a) have demonstrated the rich information 
content of hyperspectral information from transects sampled by 
automated tramways in Californian chaparral. While there have 
been some experiments outside of drylands that have successfully 
undertaken scaling of data between drone-based and satellite 
observations (e.g., Fernandez-Guisuraga et al. 2018; Franzini et al. 
2019; Assmann et al. 2020; Fawcett et al. 2020; Lu et al. 2020), less 
attention has been given to this challenge in drylands despite the 
potentially important ramifications of combining data across these 

scales of measurement (from spatial spectroscopy to drones 
and then to satellite observations). There is a strong 
argument for undertaking multiscale experiments in 
drylands to address the "scale mismatch" between remote 
sensing and other observations of carbon stocks and fluxes 
(Gamon 2015) and to support the appropriate scaling of 
field-based physiology measurements and the individual 
plant or eddy covariance footprint level to larger landscape 
0 or regional scales (Cunliffe et al. 2022b). 

This study builds on the vision proposed in 
Gamon et al.'s (2006b) Spectral Network 
(SPECNET) paper, which advocates for 
experiments that compare optically sampled 
datasets across different scales. We address the key 
knowledge gaps in how optical remote sensing 
datasets at different scales compare with each other 
in dry season (low biomass) conditions. We use a 
fixed position transect of hyperspectral 
measurements sampled by a tramway system 
equipped with a hyperspectral sensor at the Jornada 
Basin Experimental Range in New Mexico, USA. 
Concurrently with the hyperspectral measurements 
along the transect, multispectral data were acquired 
from tw•o drone multiple camera array sensors 
(Parrot Sequoia (PS) and MicaSense RedEdge-M 
(MRE)). These two systems were compared 
because previous work has shown radiometric 
accuracy and consistency with such minicamera, 
array-based imaging radiometers to be quite 
variable (Franzini et al. 2019; Fawcett et al. 2020; 
Lu et al. 2020; Olsson et al. 2021). Our goal was to 
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examine the relationship between the hyperspectral data 
near the ground and products delivered from the drone-
captured data before comparing it with satellite data 
captured by Sentinel-2. We address the following research 
questions for a dryland ecosystem in dry season conditions: 

1. What is the correspondence within and between datasets 
captured by MRE and PS sensors? 

2. What is the relationship between data captured from lightweight 
multispectral sensors on drones and field spectroradiometric 
measurements? 

3. What is the spatial grain of semivariance in NDVI? 
4. To what extent do vegetation indices correspond between drone-

captured and Sentinel-2 image data in drylands? 

2. Materials and methods 

2.1. Study site 
The study was conducted on a site with open shrubland vegetation 

cover in the northern Chihuahuan Desert, New Mexico, USA, 
which is described in more detail by Monger et al. (2006) and 
Rango et al. (2006). The study site was on a piedmont slope (bajada) 
of the San Andreas mountains, located within the Jornada Basin 
Experimental Range (latitude 32.582, longitude —106.635). The 
site lies at ca. 1188 m above mean sea level, with a mean annual 
temperature of 14.7 o c and a mean annual precipitation of245 mm. 
The dominant shrubs are evergreen Larrea tridentata (creosote 

bush) and winter-deciduous Prosopis glandulosa (honey 
mesquite). Other cover types at lower density include 
Flourensia cernua (tarbush) and patchy occurrences of the 
grasses Muhlenbergia porteri (bush muhly) and Dasyochloa 
pulchella (fluff grass). Prosopis glandulosa and F. cernua 
were both in a leaf-off state at the time of the survey. The 
site occasionally experiences grazing and browsing by stray 
domestic cattle, free-ranging introduced Oryx, and native 
mammals (jack rabbits and desert pronghorn). The soils at 
the site are Ustic Calciargids, and the underlying parent 
material consists of limestone, other sedimentary rock, and 
some igneous rock. The study site is adjacent to the US-JOI 
flux monitoring station, which produces high-frequency 
measurements of energy, water, and C02 flux. 

2.2. Overall experimental design 
The experiment was designed to capture multiple drone 

surveys with the PS and MRE sensors coincident with 
hyperspectral measurements of surface reflectance sampled 
at fixed positions along a transect. Figure la shows the 
location of the site. Detailed experimental aspects are 
described in subsequent sections. 

Figure 2 provides an overview of the timing of data 
capture, where field measurements and drone surveys were 
captured entirely on 24 February 2020, and the Sentinel-2 
overpass occurred on the previous day. Three sets of drone 
surveys were flown over the tramway area of interest (AOI) 
and one set over a wider AOI, with the tramway 
measurements taken on three passes at the start, middle, and 
end of the drone survey period (Fig. 2). 

1. Loca�on of the study site (a), photograph of tramway spectrometer in opera�on (b), loca�on map of the tramway 
posi�on (red line), tramway area of interest (AOI) for drone surveys (green rectangle), and area AOI for wider drone 
surveys (c); taking pre-flight calibra�on reference images, separate calibra�on images were taken centred over each panel 
in turn, hence why some panels here are shown as shaded since they are not being measured (d), and diagram of tramway 
measurement footprints superimposed on a true colour orthomosaic of part of the tramway (e). 
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2. Schematic illustration of the timing of data acquisition relative to solar elevation—all field data were captured on 
24 February 2020, while the Sentinel-2 scene was captured on 23 February 2020. The time stated is local time (UTC -7). 
MRE— MicaSense Red Edge sensor. PS—Parrot Sequoia sensor. ARE_1—Larger area drone survey shown in Fig. lc. 
TRM_I, 2, and 3—tramway-focused drone survey shown in Fig. IC. 

Sentinel-2 Overpass (day before) 

Solar Elevation 
Degrees 

 40  
30 

2.3. Atmospheric conditions during data 
acquisition 

All drone survey flights on 24 February 2020 were 
conducted in cloud-free (Sky code O after Assmann et al. 
2018) sunny conditions with a wind speed less than 4 mls. 
The mean air temperature on the survey day was 9 o c with 
a maximum of 18 o c, minimum of 0.4 oc and no 
precipitation recorded. On the 23 FebruaIY (Sentinel-2 
overpass), the mean air temperature was Il o c, the maximum 
was 14 oc, the minimum was 4 oc, and 0.2 mm of total 
precipitation was recorded for the 24 h period. 

2.4. Tramway field hyperspectral 
0 measurements 

The ground remote sensing platform is a robotic tram 
system, equipped with a cart hosting a dual detector 
spectrometer at the Jornada Experimental Range (JER) to 
monitor ecosystem optical properties. The tramline 
(pictured in Fig. 1b) is 110 m long and was installed with 
the intent to sample the dominant species present (e.g., P. 
glandulosa (honey mesquite), Larrea tridentate (creosote), 
and bare ground (shrub interspace)). The tram system is 
similar to that described by Gamon et al. (2006a) for a 
California Chaparral ecosystem and forms part of a larger 
Long Term Ecological Research (LTER) study (Havstad et 
al. 2020). The instrument used in the cart is a dual detector 
spectrometer (Unispec DC; PP System, Amesbury, MA, 
USA) that contains two detector channels, one for radiance 
from the target and the other for downwelling irradiance. 
The spectral range for this instrument is from 310 nm to 
approximately 1130 nm with a 3 nm resolution. The 

spectrometer was triggered by metal markers 
situated every meter on the tramline, with 
measurements acquired on three runs at separate 
times, as outlined in Fig. 2. 

For the final reflectance calculation, the ratio between 
radiance and irradiance was corrected using a reference 
calibration of a 99% reflective white standard panel. The 
collected spectral reflectance was processed using 
rHyperSpec software (https:llseI-
jornada.shinyapps.iolrHyperSpecl) (Laney 2013) to extract 
the hemispherical conical reflectance factor (HCRF) 
reflectance that we used in this study for further analysis. 

2.5. UAV image data and processing 
multispectral multi-camera array sensors were used in 

the study. Their spectral response curves are given in Fig. 3 
relative to those from the corresponding Sentinel-2 bands. 
We flew three surveys concentrating on the tramway AOI 
(130 m x 20 m) and one survey over a wider area (covering 
130 m x 200 m) as detailed in Table S2. All survey flights 
were conducted in cloud-free (Sky code O after Assmann et 
al. 2018) sunny conditions with a wind speed less than 4 mls 
and an air temperature of ca. 14—18 oc. The locationlextent 
of the tramway-focused surveys (TRM_I, TRM_2, and 
TRM 3) and wider area surveys (ARE 1) are shown in Fig. 
lc. 

First  Tramway  Run Second  Tramway  Run Third  Tramway  Run 

o 
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2.5.1. Parrot Sequoia image data 
Drone image data were acquired using a PS multi-camera array 

attached to a 3-D-printed mount on a DJI Phantom 4 Advanced 
multirotor UAV. The sensor was angled by ca. 10 degrees to attain 
a near-nadir angle when the drone was flying forward. The Sequoia 
measures light in the green, red, red edge, and NIR wavelength 
regions, as detailed in Table Sl. The PS survey flight height of 50 
m (Table S2) resulted in a ground sampling distance (GSD) of 5.08, 
5.29, and 5.36 cm for the tramway-focused survey flights TRM 1, 

TRM_2, and 
reflectance 
factor 
(Schaepman-
Strub et al. 
2006). 

o 

0 

TRM_3, respectively. The larger survey area (ARE 
1) was flown at a height of 67 m, resulting in a GSD 
of 6.63 cm. 

2.5.2. MicaSense RedEdge-M data 
Drone image data were acquired using a MRE-M 

multicamera array mounted on a DJI Phantom 4 Pro 
Platinum multirotor UAV. The sensor was angled by 
ca. 10 degrees to attain a near-nadir angle when the 

drone 
was 

flying 

3. Sensor response curves and wavelength ranges for drone and satellite sensors used in this study. (a) Sensor response 
curve for MicaSense RedEdge (MRE) (Mamaghani and Salvaggio 2019), (b) sensor response curve for Parrot Sequoia (PS) 
(Fawcett et al. 2020), (c) sensor response curve for Sentinel-2 sensors (S2) (ESA 2019), and (d) standard bandwidths 
compared for Mica Sense RedEdge, PS, and Sentinel-2 sensors (see Table S2 for manufacturer-stated bandwidths). HCRF, 
hemispherical conical 

MicaSense 
Red Edge 
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forward. The MRE sensors record light in the blue, green, 
red, red edge, and NIR wavelength regions as detailed in 
Table Sl. The MRE spatial sensor resolution is finer than the 
PS sensor, and flight heights of 80 m and 110 m (Table S2) 
were implemented to achieve similar GSD for both sensor 
surveys. GSD was 5.33, 5.46, and 5.43 cm for the tramway-
focused MRE survey flights and 7.42 cm for the larger 
ARE_I survey area. 

2.5.3. Processing of drone data 
The image data from each of the PS and MRE drone surveys were 

processed in Pix4D software version 4.8.0 (Pix4D, Switzerland), 
including geometric correction using at least five precisely 
geolocated ground control points and radiometric calibration to 
surface reflection (Assmann et al. 2018). 

Radiometric calibration was performed using preflight 
images of a SpectralonTM grey reference target with 43% 
average reflectance over the PS wavelength range. This was 
used instead of a white reference panel to avoid saturation. 
A subset of the original survey set was used to produce an 
orthomosaic of surface reflectance for each band for the 
tramway area, using only flight lines closest to nadir above 
the tramway to avoid any images with a lower angle of 
observation being used within the reconstruction of the 
orthomosaic for the tramway footprints. 

o 2.6. Sentinel-2 image data 
A Sentinel-2 A bottom of atmosphere (L2A) reflectance 

image for the closest available date to the field and drone 
data acquisition, 23 February 202010:43 local time (the day 
before drone flights and spectral tramway data capture; Fig. 
2), was downloaded from the ESA Copernicus Open Access 
Hub. The meteorological conditions were similar on the 
satellite image data acquisition date/time to the drone and 
tramway surveys. The image bands used for this study were 
blue (B2—IO m spatial resolution), green (B3—IO m 
spatial resolution), red (B4— 10 m spatial resolution), red 
edge (B5, 136, and B7—20 m spatial resolution), and NIR 
(B8-IO m spatial resolution), with band wavelength regions 
given in Table SI. The sensor response curve for Sentinel-2 
is given in Fig. 3, with comparisons with the manufacturer-
supplied band wavelength regions for the PS and MRE 
multiple camera arrays. 

Multitemporal co-registration of Sentinel-2 image data is 
known to be of the order of one pixel or 12 m accuracy 
(Rufin et al. 2021). To facilitate the direct comparison of 
the drone-acquired image data and Sentinel-2 image data, 
the coregistration betw•een drone and satellite data was 
checked by spatially resampling the drone data to the 
coarser 10 m resolution of the Sentinel-2 image data and 
visually comparing the images. We checked co-registration 
using the co-register Images function in R (RStoolbox 

package version 0.3.0) and found that the geo-
registration as supplied by ESA was opti- 

2.7. Planetscope fine spatial resolution 
satellite image data 

A PlanetScope scene image from the Dove-R 
instrument (instrument id PS2.SD) for 24 February 
2020, 10:49 local time (the same day as the tramway 
and drone data acquisition) was ordered and 
downloaded from the Planet Explorer website. The 
PlanetScope image data has a 3 m pixel resolution 
comprising blue, green, red, and near-infrared bands 
and was used within this study to facilitate a spatial 
comparison of data at an intermediate spatial 
resolution betw•een the drone and Sentinel-2 image 
data. Due to the unavailability of sensor response 
functions, the PlanetScope image data were not 
included in the spectral intercomparison with drone 
and hyperspectral data. 

2.8. Intercomparison of data from tramway 
hyperspectral instrument and drone 
sensors 

To facilitate comparison of multiscale sensors, the drone 
data were resampled to the spatial resolution of the tramway 
measurement footprints using the methodolow described 
below. The footprint of each hyperspectral measurement 
was delineated as a polygon using a projected field-of-view 
based on survey-grade GNSS observations combined with a 
digital surface model. These polygons were used in R (R 
Core Team 2021) to extract surface reflectance from the 
drone image data and produce an average reflectance value 
for each tramway measurement location for each sensor 
band using the "exact_extract" function (exactextractr 
package, version 0.9.1) (Baston and ISciences 2022). Due 
to the varying height of the tramway along its length, these 
footprints varied from 0.67 to 1.06 m in diameter, which 
sampled between 154 and 385 drone image pixels per 
footprint (at a GSD of 5.4 cm). In addition to comparing 
individual drone survey data for each footprint, the three 
drone survey observations were averaged (using the mean) 
to streamline the comparison between hyperspectral and 
drone sensor measurements. 

To facilitate the intercomparison of spectral 
measurements, tramway-derived hyperspectral reflectance 
values were spectrally resampled using the sensor response 
functions for the PS (D'Odorico et al. 2013) and MRE-M 
(Mamaghani and Salvaggio 2019) following the 
method010U described by D'Odorico et al. (2013) to 
produce HCRF datasets spectrally comparable to the 
respective drone sensors (Fig. 3). Comparisons between 
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data sets were performed in R, with assessments made using the 
mean absolute deviation (MAD). To evaluate the agreement 
between variables, we calculated Lin's concordance correlation 
coefficient (CCC) (Lin 1989, 2000) using the DescTooIs package 
(Signorell Andri et Multi 2022). We used strength of agreement 
interpretations of the CCC following criteria suggested by McBride 
(2005), where CCC values of >0.99 are described as almost perfect 
agreement, values between 0.95 and 0.99 are described as 
substantial agreement, values between 0.90 and 0.95 are described 
as moderate agreement, and values below 0.90 are described as poor 
agreement. We used total least squares regression to fit linear 
models that account for uncertainty in both dependent and 
independent variables. Formulae for the vegetation indices 
Normalised Difference Vegetation Index (NDVI), Soil Adjusted 
Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index 
(MSAV12), and Modified Triangular Vegetation Index (MTV12) 
used in this study are given in Table S3. 

2.9. Intercomparison of drone and satellite data 
To enable spatially explicit comparison of PS and MRE with the 

Sentinel-2 data, the drone data were processed by extracting mean 
data using a shapefile generated from the 10 m Sentinel-2 grid 
resolution using the exactextractr package in R. 

To assess the spatial grain of semivariance of spectral reflectance 
in both the PS and MRE image data, we randomly sampled the data 
to 25% of image pixels, applied the vari- 
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Table 1. Summary statistics for the intercomparison of reflectance measurements derived 
from the three Parrot Sequoia (PS) surveys. 

o 

Note: Mean absolute deviation 
(MAD), coefficient of 

determination (R2), and Lin's 
concordance correlation 

coefficient (CCC) 
are values presented. 

ogram function, and fitted models using the "gstat" 
package in R (Pebesma 2004; Gräler et al. 2016). The 
image sampling was required to achieve a reduction in 
data size sufficient to run the variogram function on the 
workstation available. 

To derive a map of vegetation cover for the study area, 
a random forest classification of the MRE drone image data 
(survey ARE_I) was carried out in Python using the 
Scikitlearn machine learning package (Pedregosa et al. 2011). 
Training polygons for two classes, vegetation cover (all types) 
and bare ground, were manually digitised by one operator 
directly onto the MRE drone image orthomosaic and randomly 
split into training ( 100 polygons) and validation (50 
polygons) data sets. A six-layer image stack containing NDVI 
and the five reflectance bands was used in the random forest 
machine learning process to produce a binary classification of 
vegetation cover. Grid vector files matching the 10 m 
resolution Sentinel-2 pixel resolution and 3 m resolution 
PlanetScope (L3B) pixels were developed in R. The fractional 
vegetation cover (WC) for each grid pixel was calculated from 
the veg   etation cover classification image using the zonal 
statistics package in QGIS (QGIS Development Team 2009). 

3. Results 
3.1. Reproducibility of drone image data 

from different survey flights 
Intercomparison plots betw•een individual survey 

flights for the PS and MRE sensors of data extracted for 
each tramway footprint are presented in Figs. Sl, S2, S3, 
S4, and S5, with summary statistics presented in Tables 
1 and 2 The PS sensor data extracted from the three 

survey flights TRMI, TRM2, and TRM3 had low 
variation betwmeen survey flight reflectance 
measurements, with a MAD of betwmeen 0.003 and 
0.013 across all sensor bands (Table 1). The agreement 
between PS survey reflectance measurements was 
substantial to almost perfect, with Lin's CCC between 
0.961 and 0.994. Similarly, the MRE survey 
measurements had substantial agreement between 
surveys (Table 2). with a CCC of between 0.963 and 
0.996 and a MAD of between 0.011 and 0.002. The 
intrasensor agreement between the three surveys for the 
PS and MRE sensors justified the use of mean values 
from the three surveys in the remaining analysis 
presented in this paper. 

3.2. Comparison of PS and MRE reflectance 
measurements 

Intercomparisons between PS and MRE surface reflectance 
measurements extracted for tramway footprints are shown in 
Fig. 4. For all sensor bands, the PS recorded higher reflectance 
values than the MRE, with moderate agreement for the NIR and 
green bands (CCC 0.934 and 0.907, respectively) and poor 
agreement for the red and especially the red edge bands (CCC 
0.842 and 0.642, respectively) (interpretations after McBride 
(2005)). A higher calculated NDVI resulted for MRE data 
compared with the PS (Fig. 5), with a CCC value of 0.621. It 
should be noted that the centre wavelengths and bandwidth of 
the sensor bands in the electromagnetic spectrum differ 
between the camera systems (Fig. 3 and Table Sl), and to 
explore this further, we resampled the hyperspectral tramway 
data for both PS and MRE bandwidths and then calculated and 
plotted the resulting NDVI (Fig. S6). This analysis shows that 
the MRE sensor bandwidth locations result in higher NDVI 
values; however, the difference in NDVI that can be attributed 
to the sensor positions is smaller (NIAD: 0.011, CCC: 0.983) 

PS surveys—intercomparison of reflectance measurements   

Survey results 
Sensor Band    

TRMI compared with TRM2 Green 

Red edge 
Near-infrared 

0.004 
0.006 
0.007 
0.008 

0.984 
0.984 
0.975 
0.976 

0.991 
0.992 
0.987 
0.986 

TRM2 compared with TRM3 Green 

Red edge 
Near-infrared 

0.003 
0.005 
0.007 
0.006 

0.989 
0.990 
0.980 
0.987 

0.994 
0.994 
0.990 
0.992 

TRMI compared with TRM3 Green 

Red edge 
Near-infrared 

0.006 
0.010 
0.012 
0.013 

0.951 
0.952 
0.934 
0.934 

0.974 
0.976 
0.966 
0.961 
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compared with the difference in survey results (MAD: 0.07, 
CCC: 0.619) betw•een the two sensors. 

3.3. Comparison between tramway hyperspectral 
field spectral measurements and drone-
derived sulface reflectance 

Intercomparison plots of tramway hyperspectral 
measurements and drone survey derived surface reflectance 
(mean data) measurements are presented in Fig. 6 for blue, 
green, 

coefficient (CCC) values are presented. 

red, red edge, and NIR wavelength bands, and 
summary statistics for the intercomparison are 
presented in Table 3. Plots of the individual drone 
survey data compared with corresponding tramway 
measurements are presented in Figs. S7, S8, S9, SIO, 
Sli, S12, S13, and S14. NDVI derived from 
hyperspectral tramway measurements is compared with 
drone data in Fig. 7. 

The PS sensor data had a positive bias in the red, red 
edge, and NIR bands compared with the hyperspectral 
instrument, with poor CCC agreement values of 0.846, 
0.732, and 0.803, respectively (Table 3 and Fig. 6). 
There was a closer agreement in the PS green 
wavelength band, with a moderate agreement 
CCC of 0.921. NDVI values derived from the PS did 

not have a 1 : 1 relationship with hyperspectral field 
measurements, with 0 the fitted linear model indicating that 
NDVI values tend to be positively biased for values below 0.15 
and negatively biased for higher NDVI values, as shown in Fig. 
7. 

The MRE multiple camera array (MCA) sensors 
recorded slightly lower reflectance in blue, green, red, 
and red edge bandwidths compared with hyperspectral 
measurements, with CCC agreement values of 0.842, 
0.836, 0.92, and 0.924, respectively (Table 3 and Fig. 
6). Reflectance measurements for the NIR band showed 
a slightly positive bias (CCC: 0.891) compared with 
hyperspectral measurements, with the fitted slope 
indicating that this bias reduces with higher reflectance 
values. NDVI calculated from the MRE image data has 

a positive bias with a constant higher offset compared 
with tramway measurements (CCC: 0.677). MRE-
derived NDVI had a higher difference with 
hyperspectral data than with PS data (Fig. 7). The 
statistical measures presented in Table 3 would appear 
to suggest that with better agreement in the red and NIR 
wavelengths, the MRE sensor should also be closer in 
NDVI to the hyperspectral data; however, the MAD and 
CCC values do not reflect the relative positive and 
negative bias in these bands that results in a larger 
difference in NDVI. 

3.4. Comparison between vegetation indices 
derived from hyperspectral field and drone 
measurements. 

We tested the correspondence across several different 
vegetation indices widely used in studies of dryland 
ecosystems. Comparison plots of vegetation indices (NDVI, 
SAVI, MSAV12, and MEIV12) for MRE and PS image data 

Table 2. Summary statistics for the intercomparison of reflectance 
measurements derived from the three MicaSense RedEdge (MRE) surveys. 

MRE surveys intercomparison of reflectance measurements  

Survey results Sensor band  R2  

TRMI compared with TRM2 Blue 
Green 

Red edge 
Near-infrared 

0.002 
0.002 
0.004 
0.003 
0.004 

0.993 
0.994 
0.993 
0.991 
0.988 

0.994 
0.996 
0.996 
0.996 
0.994 

TRM2 compared with TRM3 Blue 
Green 

Red edge 
Near-infrared 

0.005 
0.005 
0.008 
0.009 
0.006 

0.981 
0.972 
0.978 
0.973 
0.972 

0.971 
0.977 
0.984 
0.977 
0.982 

TRMI compared with TRM3 Blue 
Green 

Red edge 
Near-infrared 

0.004 
0.006 
0.010 
0.011 
0.009 

0.957 
0.956 
0.958 
0.949 
0.936 

0.969 
0.973 
0.970 
0.963 
0.963 

o 

Note: Mean absolute deviation (MAD), 
coefficient of determination (R2 ), and 

Lin's concordance correlation 
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compared with tramway data are shown in Figs. S15 and S16, 
respectively, with summary statistics given in Table 4. 

For MRE image data, the SAVI, MSAV12, and MTV12 
calculated vegetation indices have less variation (MAD: 0.036, 
0.032, and 0.016, respectively) than NDVI (MAD: 0.061) and 
demonstrate a smaller positive bias than NDVI. Only the MIVI 
calculated values for MRE data have a higher agreement (CCC: 
0.843) than the NDVI (CCC: 0.679) with those calculated from 
tramway measurements. 

For PS-derived vegetation indices, the SAVI, MSAV12, and 
MTV12 all have less variation in values compared with 
hyperspectral tramway measurements (MAD: 0.012, 0.011, and 
0.017, respectively) than the NDVI (MAD: 0.024) and less 
variation compared with MRE-derived equivalent vegetation 
indices. SAVI, MSAV12, and MIVI indices all had lower 
agreementwith the hyperspectral tramway data (CCC: 0.858, 
0.846, and 0.82, respectively) than NDVI (CCC: 0.868). 

Broadly, the data show that adopting alternative vegetation 
indices to NDVI in the comparison with tramway data reduces 
the variability in the data but does not improve the agreement 
as measured by Lin's CCC except for the NflV12 used with 
MRE data. 

Comparison Of Sequoia 
with MRE Green 

o  
 0.0 0.1 0.2 0.3 0.4 0.5 

Reflectance (Green) Sequoia 

Comparison of Sequoia 
with MRE Rededge 

 
 0.0 0.1 0.2 0.3 0.4 0.5 

0 Reflectance (RedEdge) Sequoia 

Comparison Of Sequoia 
with MRE NOVI 

0.4 

u 0.3 

z 0.2 

0.1 

0.0 
 0.0 0.1 0.2 0.3 0.4 0.5 

NDVI sequoia 

 Syst.  11.•  

4. Comparison of Parrot Sequoia (Sequoia) and MicaSense RedEdge (MRE) reflectance for green, re     
nearinfared (NIR) sensor bands, and NDVI for all survey data (mean for each tramway footprint). The   
devia�on (MAD), coefficient of determina�on (R2 ), and Lin's concordance correla�on coefficient (    
presented. 

0.5 
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Comparison of Sequoia with MRE NIR 
0.0 0.1 0.2 0.3 0.4 0.5 

Reflectance (NIR) Sequoia 
Fig. 5. Comparison of drone-derived NDVI from Parrot Sequoia and MicaSense RedEdge surveys TRM 1, demonstra�ng the 
higher NDVI values obtained from the MRE survey. RGB orthomosaic (a), comparison plot of extracted NDVI for each 
tramway measurement footprint derived from PS and MRE surveys (b), NDVI image data from PS survey TRMI (c), NDVI 
image data derived from MRE survey TRMI (d). Mean absolute devia�on (MAD), coefficient of determina�on (R2 ), and 
Lin's concordance 

with  MRE  Red 
Comparison  Of  Sequoia 

0.0 0.1 0.2 0.3 0.4 0.5 
Reflectance  (Red)  Sequoia 
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correla�on coefficient (CCC) values are presented. 

o 

0 

3.5. 

Spa�al grain of semivariance in 
spectral reflectance 

Results of the geosta�s�cal analysis applied to NDVI 
data from PS and MRE drone image survey data over 

the 2.6 ha ARE_I area are presented in Fig. 8 and Table 
5. The range of a variogram is the lag at which 

semivariance reaches a plateau irrespec�ve of further 
increases in separa�on distance, with the "sill variance" 
being the semi-variance value at the range (and an 
indicator of the total amount of spa�al varia�on 

 
RGB Orthomosaic 

 
Parrot Sequoia NDVI - First Tramway Drone Survey 

 o 0.15 0.3 0.45 0.6 0.75 

 
Normalised Difference Vegeta�on Index (NDVI) 

b. Comparison of Sequoia survey TRMI with 
MRE TRMI NOVI 

0.5 

0.4 

0.3 

3 
0 0.2 

0.1 

0.0 
0.0 0.1 0.2 0.3 0.4 0.5 

NOVI Sequoia 

 
MicaSense RedEdge NDVI - First Tramway Drone Survey 

0 1 2 3 4 5 m 

 

000 Hyperspectral Tramway 
Measurement Footprint 

0.07 

0.621 
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present). Nugget variance is the model intercept and is 
related to measurement error and noise. As data 
become more spa�ally clustered, the range is expected 
to increase (Isaaks and Srivastava 1989). The values 
obtained from a fited model show that both sensors 
had similar "range" values of 1.76 m (PS) and 1.82 m 
(MRE). This indicates that the textural grain of spa�al 
varia�on in NDVI is of this order. The sill variance is 
much greater for the MRE sensor compared with the 
PS (0.0105 vs. 0.0048, respec�vely), showing that the 
total amount of spa�al varia�on in NDVI measured by 
the MRE sensor was greater than in the PS data (e.g., 
maximum NDVI was higher in MRE than in PS). 

3.6. Intercomparison of sulface reflectance 
derived from Sen�nel-2 and drone image 
data 

Plots of comparison betwmeen drone and Sen�nel-2 derived 
surface reflectance values are given in Fig. S17 and Fig. S19 for 
PS and MRE sensors, respec�vely, with the sta�s�cal 
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6. Mean surface reflectance of tramway footprints for (a) green, (b) red, (c) red edge, and (d) near-infrared (NIR) 
bands compared betvveen drone-acquired MRE (MicaSense RedEdge) and PS (Parrot Sequoia) image data and tramway 
hyperspectral measurements. Tramway data were resampled to the wavelength band of the corresponding drone sensor. 
Mean absolute devia�on (MAD), coefficient of determina�on (R2 ), and Lin's concordance correla�on coefficient (CCC) 
values are presented. 

 MICASENSE REDEDGE PARROT SEQUOIA 

o  
 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 
 a. Tramway Green band Tramway Green band 

 
 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 
 b. Tramway Red band Tramway Red band 

0  
 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 
 c. Tramway RedEdge band Tramway RedEdge band 
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 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 
 d. TramwayNlR band Tramway NIR band 

Table 3. Mean drone sensed reflectance—summary 
statistics for intercomparison of Sequoia and MicaSense 
RedEdge measurements with hyperspectral 
measurements from tramway. 

Parrot Sequoia 
compared with 
hyperspectral 
measurements 

MicaSense 
RedEdge 
compared with 
hyperspectral 
measurements 

CCC CCC 
Blue   0.842 0.011 

Green 0.921 0.012 0.836 0.017 
Red 0.846 0.029 0.920 0.018 
Red Edge 0.732 0.041 0.924 0.016 

 0.803 0.033 0.891 0.018 
 0.868 0.024 0.677 0.061 

 
o Note: Mean absolute deviation (MAD) and Lin's concordance correlation co• efficient 

(CCC) values are presented. 

analysis of each band summarised in Table 6. The RedEdge 
wavelengths in Sentinel-2 data have a spatial resolution of 
20 m sensed in three bands (Table SI—B5, B6, and B7); the 
PS RedEdge sensor was compared against Sentinel-2 Band 
6 and the MRE against Sentinel-2 Bands 5 and 6 in Fig. S18. 

The PS and Sentinel-2 reflectance measurements have a 
low MAD across all sensor bands (MAD: 0.009 to 0.015) 
(Fig. S17 and Table 6). The CCC measure of agreement 
between the PS and Sentinel-2 data was between 0.515 and 
0.813 for the band sensor data and was 0.259 for NDVI. 

The MRE sensors have a negative bias compared with 
Sentinel-2 data in all bands, with MAD values of between 0.020 and 
0.027. The CCC values for the agreement between MRE and 
Sentinel-2 data were lower than for the PS comparison, ranging 
between 0.127 and 0.366. Due to the lower variance in the data at 
this spatial resolution, the values were more clustered, making it 
difficult to fit a robust linear model to describe the relationship 
between Sentinel-2 and drone-acquired data. The PS-derived NDVI 
plots (Fig. S18) in0 dicate broadly similar values to Sentinel-2 

NDVI values; however, the MRE-derived NDVI values 
(Fig. S19) are consistently higher than Sentinel-2 data. 
Figure 9 demonstrates how, at  the 10 m spatial resolution 
of the Sentinel-2 image data, the variation in surface 
reflectance is lower than at the drone image resolution, and 
the resulting coarser scale NDVI image data conveys less 
information on the spatial heterogeneity of the vegetation. 

3.7. Intercomparison of vegetation 
indices derived from Sentinel-2 
and drone image data 

Vegetation indices derived from Sentinel-2 data 
were compared with drone image data aggregated 
to the same pixel extent in the plots presented in Fig. 
S20. The low data variability at the spatial scale of 
the Sentinel-2 data meant that there is very limited 
inference space for intercomparison, and it is 
diffcult to fit linear models to the plotted data in 
derived vegetation indices, which is reflected in the 
R2 and CCC values (Fig. S20 and Table 7). 
Acknowledging these limitations, there was good 
correspondence betvveen drone and Sentinel2-
derived vegetation indices, as indicated by the 
MAD values (Table 7). 

3.8. Comparison between drone-derived FVC 
and vegetation indices flom satellite data 

The random forest machine learning-derived classified 
vegetation cover map for the wider study area (ARE_I) and 
the resulting downscaled PVC for Sentinel-2 (10 m spatial 
resolution) pixel footprints are presented in Fig. S21. The 
overall WC for the wider study area is 29.75%, with PVC 
in Sentinel2 pixels ranging from 12.9% to 55%. 
Comparison plots of Sentinel-2 NDVI and MSAV12 with 
WC for each pixel presented in Fig. S22 show a poor 
correspondence (MAD: 0.163 and 0.211; CCC: 0.023 and 
0.003, respectively) between vegetation indices and FVC at 
10 m spatial resolution. To investigate whether 
correspondence was improved by using finer-resolution 
satellite data, we performed a separate comparison using 
PlanetScope (3 m spatial resolution) image data. The FVC 
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results with NDVIlMSAV12 comparisons are presented in Fig. S23. 
The comparison plots of PlanetScope NDVI and MSAV12 
presented in Fig. S23 also show a similar low correspondence with 
FVC (MAD: 0.215 and 0.161; CCC: 0.015 and 0.038, respectively) 

at the finer grain of the 3 m pixel resolution. The low band 
importance scores (0.00915) for NDVI from the random forest 
machine learning algorithm (Fig. S21e) indicate that this VI was not 
an important predictor for discriminating vegetation cover in this 
classifier. 

4. Discussion 
We present the results of a unique experiment that combines 

transect-based hyperspectral measurements of surface reflectance 
factors with simultaneously captured (reflectance-calibrated) drone-
mounted MCA sensor data and near-time satellite observations. In 
doing so, we responded directly to Gamon et al. (2006b) and Gamon 
(2015), whose work called for such experiments to bridge the 
scaling gap, and Sun et al.'s (2021) work, which highlighted these 
endeavours as enabling basic ecological questions to be answered 
across multiple scales. Furthermore, we did so in a low-biomass 
dryland setting, which is understudied globally. We show that a 

range of interesting complexities arise from the 
grainvarying comparisons. Using these multiscale datasets 
in concert with each other allowed us to address questions 
regarding data correspondence across scales. Our 

discussion is structured according to the four questions 
posed at the start of the experiment. 

4.1. Reproducibility within and 
correspondence between MRE and 
PS sensors 

The reproducibility ufthin each of the MRE and PS 
datasets (n  3) suggests that these sensors can reliably 
reproduce results in dryland conditions and therefore appear 
suitable for use in comparison studies of different sites and 
over different time scales. Achieving this reproducibility 
requires standard Table 4. Summary statistical table of 
analysis of different vegetation indices derived from drone-
acquired image data compared with tramway 
measurements. 

7. Parrot Sequoia NDVI plotted along tramway length against hyperspectral measurements resampled to the same 
spectral resolution. (a) Comparison plot of Parrot Sequoia-derived NDVI against hyperspectral measurements for the same 
footprints; (b) MicaSense RedEdge NDVI plotted along tramway length against hyperspectral measurements resampled to 
the same spectral resolution; and (c) comparison plot of MicaSense RedEdge derived NDVI against hyperspectral 
measurements for the same footprints. 

 

parrot  Sequoia  NOV'  and  Tramway  Mean  NOV' 

NOVI 

band 
c

o 
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0 

 0.868 0.024 0.679 0.061 

SAVI 0.858 0.012 0.567 0.036 
MSAV12 0.846 0.011 0.538 0.032 

 0.820 0.017 0.843 0.016 
 

Note: Mean absolute deviation (MAD) and Lin's concordance correlation cc» 
effcient (CCC) values are presented. 

protocols encompassing flight survey planning, ground 
control, sensor calibration, and image processing. 

All the surveys were conducted in similar cloud-free 
weather conditions, with a small variation in solar elevations 
ranging from 43.2 to 48 degrees. Further investigation would 
be required to assess whether the same drone sensors would 
produce similar results when acquiring data under a wider 
range of solar elevation and cloud conditions or over longer 
time periods. Furthermore, we did not test the long-term 
radiometric stability of the MCA sensors, and it is reported 
elsewhere that the PS sensor is prone to temperature-
dependent shifts in sensitivity (Olsson et al. 2021). We did 
follow Olsson et al.'s (2021) suggestion to allow both MCA 
sensors a warming-up period of 1 min prior to data 
acquisition, but it is plausible to suggest that sensor 
operations through the growing season in different air 
temperature conditions could impact data quality over longer 
timescales. 

Betw•een the MRE and PS datasets, we found important 
differences. The MRE sensor produced reflectance data that were 
generally lower in all bands than the PS sensor, with the calculated 
NDVI being higher when derived from the MRE sensor than the PS. 
This higher NDVI can be partially explained by the different 
wavelength positions and widths sampled by the two sensors. The 
comparison of NDVI generated by resampling the hyperspectral 
data to the different sensor response curves (Fig. S7) demonstrates 
that the bandwidths sampled by the MRE sensors result in higher 
NDVI values than for the PS band widths. However, this difference 
in sampled bands alone does not appear to fully explain the higher 
positive bias of the MRE-derived NDVI relative to the PS image 
data. Investigators should be mindful that the data from the two 
sensors are not directly equivalent, especially 

Parrot Sequoia compared 
with hyperspectral 

measurements 

MicaSense 
RedEdge 
compared with 
hyperspectral 
measurements 

ccc ccc 
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8. Experimental semivariogram of Parrot Sequoia and MicaSense RedEdge derived NDVI image data over the wider 
area (2.6 ha) survey (ARE_I). 

 
Distance (m) 

o 
Table 5. Results of semi-variogram analysis taken from fitted model. 

Variogram Parrot Sequoia NDVI MicaSense RedEdge NDVI 

Lag (unit distance sampled) 

Sill 
Nugget 

0.0663 
1.7698 
0.0048 

0.0742 
1.8206 
0.0105 

Table 6. Summary table—statistical comparison between 
Sentinel-2 image data and drone-derived image data 

resampled to the pixel grain of Sentinel-2 image. 

0 

Note: Mean absolute deviation (MAD) and Lin's concordance 
correlation effcient (CCC) values are presented. 

in higher level products such as NDVI, which can 
ampli$' differences. As a note of caution—we 
suggest that if others wish to combine data from 
tw•o different mini-MCA sensors we advocate for 
ecosystem-specific adjustment factors (e.g., based 
on Fig. 4b or the resampled tramway spectra 
comparisons in Figs. S8—S16), but we suggest that 
these would need further investigation across a 
greater range of conditions than tested here. Such 
correction factors are commonly used in satellite RS 
studies to translate data and products between 
sensors with different radiometric characteristics 
(e.g., Roy et al. 2016; Fassnacht et al. 2019), but the 
process of doing so with drone datasets has been less 
well explored and likely has different constraints 
(fewer corresponding observations, for example). 

4.2. Relationship between drone-acquired 
multispectral reflectance products and 
field reflectance factor measurements 
from the tramway-mounted 
spectroradiometer 

Drone-derived reflectance products and tramway-derived 
hyperspectral reflectance data produced different results, 

Sentinel-2 

Parrot Sequoia 
compared with 

Sentinel-2 
measurements 

MicaSense RedEdge 
compared with 

Sentinel-2 
measurements 

Band ccc  ccc  

Blue 
Green 
Red 
Red Edge B5 
Red Edge B6 

0.541 
0.789 

0.515 
0.813 
0.259 

0.011 
0.009 

0.015 
0.009 
0.013 

0.154 
0.294 
0.366 
0.246 
0.127 
0.420 
0.217 

0.020 
0.021 
0.027 
0.028 
0.043 
0.024 
0.025 

5 10 15 



Canadian Science Publishing 

 20 Drone syst. App'. 11: 1-27 (2023) | dx.doi.orq/10.1139/dsa-2023-0003 

with the difference more pronounced in higher level products such 
as NDVI. The PS-derived reflectance values were higher than the 
field-based hyperspectral measurement (by betw•een 5% and 
16%), a result consistent with other vegetation studies using the PS 
sensor (Fawcett et al. 2020). MRE sensor-recorded radiance was 
lower compared with field spectroradiometer measurements (by 
betw•een 4% and 13%) consistent with other studies using an MRE 
sensor (Padrö et al. 2018). The calculated NDVI for the PS system 
had a pattern and magnitude of deviation similar to those found by 
Fawcett et al. (2020). The consistent positive bias in NDVI derived 
from the MRE sensor was of a larger deviation than the 
hyperspectral tramway measurements (ca. 11 %). We posit that 

these differences were caused by a combination of the 
following factors: 

(a) Uncertainties in the projected footprints of the tramway 
spectroradiometer at each measurement location, which 
should be a random effect and relatively low order. 

(b) Spatial mismatch between the predicted conical 
footprint view of the spectroradiometer and the circular 
extract captured from the drone orthomosaics. We 
expect that in the heterogenous dryland system, this 
might lead 

9. Example ofMicaSense Red Edge (MRE) (a) and Parrot Sequoia (PS) NDVI (c) image data resampled to the spa�al 
resolu�on of Sen�nel-2 (10 m) (b and d, respec�vely). Corresponding NDVI image from Sen�nel-2 image data (e). 
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Table 7. Summary table—statistical comparison 
betvveen Sentinel-2 image data and drone-derived 
vegetation indices. 

Sentinel-2 

Parrot Sequoia 
compared with 

Sentinel-2 
measurements 

MicaSense 
RedEdge 
compared with 

Sentinel-2 
measurements 

 CCC MAD CCC  

NDVI 
SAVI 
MSAV12 

0.259 
0.117 
0.098 
0.103 

0.013 
0.008 
0.007 
0.017 

0.217 
0.119 
0.12 

0.214 

0.025 
0.014 
0.01 
0.013 

Note: Mean absolute deviation (MAD) and Lin's concordance correlation co• 
efficient (CCC) values are presented. 

o to different proportions of bare ground vs. vegetation within the 
drone-modelled field-of-view compared with the 
spectroradiometer data, and therefore might introduce a 
systematic bias caused by soil contamination of 
vegetation spectral signatures. Given that we found 
soiladjusted VIS (SAVI and MSAV12; Table 2) to show 
less variation compared with NDVI, this seems a 
plausible explanation. 

(c) Adjacency and atmospheric effects in drone and satellite 
data might be expected to exert some impacts, particularly 
in relation to the comparison of proximal sensing to RS data 
from Sentinel-2. We argue that at drone level and below, 
atmospheric uncertainties should be negligible because of 
the regularity with which measurements were calibrated, 
and because of the clarity of the atmospheric conditions on 
the day of the experiment. 

(d) For the MCA sensors, we used manufacturer-supplied 
spectral response functions, which may not have perfectly 
represented the full width and half maximum (FWHM) and 
central wavelengths of each band, since every sensor is 
slightly variable compared with generalised specifications. 
We expect this to have had a small impact 0 but may partially 
explain the biases between MCA sensors. Similarly, sensor-
specific calibration uncertainties, which are diffcult to 
untangle, may have added to this uncertainty. These tw•o 
factors could explain some of the differences betw•een the 
tw•o drone-mounted sensors. 

Following Cunliffe et al. (2020), we assert that it is crucial 
for researchers developing transfer functions betwmeen 
NDVI and other ecological or biophysical attributes (e.g., 
AGB or gas fluxes) to evaluate the potential impact of these 
variations and uncertainties on results. Using alternative 
vegetation indices could be expected to affect the 
correspondence between spectroscopic and drone-acquired 
reflectance products. Crucially, in this experiment, we assert 

that the spatial sampling pattern of the transect 
imposed a regularity on the measurements, which 
limited the questions that could be answered. Future 
experiments engaging with tramway-mounted 
spectrometers such as this could explore more 
diverse ways of capturing spectral data (focusing on 
spectral endmembers describing particular species 
or land cover types, for example), which would 
enable questions on reflectance and biophysical 
processes to be investigated at a plant species level. 

4.3. What is the spatial grain of semivariance 
in spectral reflectance? 

Scaling up from ground-based observations to drones and 
then to satellite data requires an understanding of the effects 
of the spatial scale of observation as well as the relative 
performance of spectral sensors. The importance of 
observation scales for gathering useful information on 
ecological spatial processes and spatial differences is well 
known (Dungan et al. 2002; Wagner and Fortin 2005; 
Jackson and Fahrig 2015). The spatial scaling issue is 
identified as one of the most important in remote sensing 
(Wu and Li 2009) and a major cause of uncertainty within 
the results of remote sensing studies (Lechner et al. 2012). 
Our results corroborate this and evidence the complexity of 
comparing optical signals across different spatial grains. 

The heterogeneity of the dryland vegetation at different 
spatial grains is demonstrated by our variogram analysis of 
the drone-derived image data. At spatial resolutions greater 
than ca. 1.8 m, the variability in the system is mostly lost, 
and this ecosystem appears more homogeneous. Our 
analysis of FVC at Sentinel-2 (10 m) and PlanetScope (3 m) 
spatial resolutions also indicates a poor ability to relate 
vegetation indices to plant fractional cover in these dry 
season conditions at coarser grains. Recently, Taylor et al. 
(2021) demonstrated that to be able to consistently detect 
land surface phen010U in a dryland ecosystem, fractional 
cover of up to 60% was required within a pixel. Following 
the framework proposed by Strahler et al. (1986), our 
multiscale study covers the transition between fine grain, 
where individual features are larger in extent than the 
sensing spatial resolution (i.e., tramway and drone data), 
and coarse grain, where features are smaller than the sensing 
resolution (i.e., satellite data). Strahler et al. (1986) 
suggested that spatial domains that occur across this fine-
coarse transition may require the formulation of models 
specific to the actual sizes of elements and resolution cells. 
We contend that modelling the spatial and spectral upscaling 
betw•een drone and satellite data remains an important 
research priority for these heterogeneous dryland 
ecosystems. 
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4.4. Correspondence of vegetation indices between 
drone-captured and Sentinel-2 data 

In broad terms, drone-captured image data produces similar 
reflectance data for wavelength bands and vegetation index values 
to Sentinel-2 image data. The PS sensor had the greatest agreement 
with Sentinel-2 image data. The MRE sensor had a negative bias 
compared with the Sentinel-2 image data, following a similar trend 
to that exhibited when comparing with field-based measurements. 
As discussed in Section 4.3, at Sentinel-2 resolution (10 m pixel 
size), the ability to detect and measure spatial variability in this 
dryland ecosystem under winter conditions is greatly reduced, and 
consequently, the results for different vegetation indices do not 
allow us to derive inferences about their relative 
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usefulness for characterising this dryland ecosystem in the 
dry season. 

4.5. Avenues for further investigation 
A key reflection on this experiment relates to the spatial 

sampling of spectral data by the tramway. This tramway was 
constructed to replicate the experiment explained in Gamon et al. 
(2006a), where the major question was to "systematically" sample 
ecosystem optical properties. In addressing that question, the 
tramway is configured to capture spectral measurements at regular 
intervals of 1 m to deliver an unbiased sample of the dryland 
structure. This precludes the capability to measure examples of 
"pure" spectral endmembers, since most of the tramway sampling 
locations gave footprints that included mixtures of bare soil and 
vegetation elements. Indeed, bare ground was the dominant (> 
50%) cover type in 63% o 
u of the tramway hyperspectral measurements (note: broadly 

similar to the 29.75% PVC calculated for the study area; 
Fig. S22b). Therefore, it was not possible to perform an 
analysis of the reflectance data at the plant species level 
since there were insufficient pure plant samples for 
endmember analysis. Further work with the tramway to 
address different questions about seasonal and spatial 
variations in pure plant specieslsoil spectral endmembers 
could be undertaken with different stopping points along the 
transect programmed to coincide with ideally 100% single-
species plant cover or 100% bare soil. Furthermore, given 
that the tramway instrument executes a two-way journey 
(out and back) to deliver replication, in the future the 
instrument could be configured to sample plantlsoil 
endmembers on the return journey to address different 
questions. 

A further avenue for investigation would be to repeat the 
intercomparison of hyperspectral, drone, and satellite 
measurements during different landscape phenophases. An 
intercomparison of peak biomass conditions during the wet season 
would be valuable to assess whether the results from this study are 
reproduced at higher greenness levels. Additional studies at 
different times of the year would also address questions relating to 
the ability of drone and satellite sensors to 0 detect vegetation 
anomalies and capture temporal changes in these dryland 
ecosystems. 

In addition to nadir measurements such as those from the 
tramway, future work might also consider the suggestions 
of Wardley et al. (1987), who queried the spatial and 
spectral complexities of scene models over heterogeneous 
vegetation. They explain that information such as the 
threedimensional form of the spectral reflectance function 
(e.g., approximation of the bidirectional reflectance 
distribution function (i.e., more than nadir measurements)), 
and spatial information on the geometric arrangement of 
canopy components is required to build improved scene 
models. Furthermore, they suggest that temporal dynamics 
need to be captured, and spectral tramways such as the one 
used here offer an ideal vehicle from which to fill this 
knowledge gap. 

5. Conclusion 
Using radiometrically calibrated data from two 

multispectral drone sensors (MRE and PS) co-
located with a transect 

 syst.Appl. :  dx.doi .orq/10.1 139/dsa-2023-0003 

of hyperspectral measurements (tramway), we found that 
drone-based multispectral sensors capture data at the 
necessary fine spatial and spectral resolution to provide 
useful information characterising this dryland ecosystem in 
the dry season. We found that data collected by the same 
drone sensors had a strong spectral similarity, but that 
reflectance measurements and vegetation indices (NDVI, 
MTV12, MSAVI2, and SAVI) varied between field, drone, 
and satellite sensors. We conclude that investigators using 
data from different sensors need to account for biases in the 
spectral sensitivity of the sensors. Analysis of satellite 
image data at 3 m (PlanetScope) and 10 m (Sentinel-2) 
resolution showed that the spectral range in the data was 
reduced compared with drone data, and the variogram 
analysis of NDVI derived from the drone data found that 
ecological pattern information was lost at grains coarser 
than 1.8 m. These findings suggest that in the dry season in 
this dryland ecosystem, sensor spatial resolutions should be 
finer than 1.8 m to capture relevant ecological information. 

The intercomparison of hyperspectral, drone, and satellite 
data presented in this paper helps to interpret satellite data, 
such as those from PlanetScope and Sentinel-2, that have 
too coarse spatial resolutions for capturing important 
ecological patterns. We conclude that modelling spatial and 
spectral upscaling between drone and satellite data remains 
a complex yet important research priority for these 
heterogeneous chyland ecosystems. 
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