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ABSTRACT
Recovering credible cosmological parameter constraints in a weak lensing shear analysis requires an accurate model
that can be used to marginalize over nuisance parameters describing potential sources of systematic uncertainty,
such as the uncertainties on the sample redshift distribution n(z). Due to the challenge of running Markov Chain
Monte-Carlo (MCMC) in the high dimensional parameter spaces in which the n(z) uncertainties may be parameter-
ized, it is common practice to simplify the n(z) parameterization or combine MCMC chains that each have a fixed
n(z) resampled from the n(z) uncertainties. In this work, we propose a statistically-principled Bayesian resampling
approach for marginalizing over the n(z) uncertainty using multiple MCMC chains. We self-consistently compare the
new method to existing ones from the literature in the context of a forecasted cosmic shear analysis for the HSC
three-year shape catalog, and find that these methods recover statistically consistent errorbars for the cosmological
parameter constraints for predicted HSC three-year analysis, implying that using the most computationally efficient
of the approaches is appropriate. However, we find that for datasets with the constraining power of the full HSC
survey dataset (and, by implication, those upcoming surveys with even tighter constraints), the choice of method for
marginalizing over n(z) uncertainty among the several methods from the literature may modify the 1σ uncertainties
on Ωm − S8 constraints by ∼4%, and a careful model selection is needed to ensure credible parameter intervals.
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1 INTRODUCTION

Over the past decade, wide-field imaging surveys, e.g., the
Dark Energy Survey (DES; Dark Energy Survey Collabora-
tion et al. 2016), the Kilo-Degree Survey (KiDS; de Jong
et al. 2017), and the Hyper Suprime-Cam Subaru Strategic
Program (HSC SSP; Aihara et al. 2018), became increas-
ingly powerful, reaching fainter magnitudes and larger ar-
eas, and employing improved methods for controlling system-
atic biases and uncertainties (for a review, see Mandelbaum
2018). Future surveys such as the Vera C. Rubin Observa-
tory Legacy Survey of Space and Time (LSST; Ivezić et al.
2019; LSST Science Collaboration et al. 2009), the Nancy
Grace Roman Space Telescope High Latitude Imaging Survey
(Spergel et al. 2015; Akeson et al. 2019) and Euclid (Laureijs
et al. 2011) will provide even larger data volumes and re-
quire more stringent control of systematic errors. With these
developments, cosmic shear, the coherent weak gravitational
lensing effect on the light from the distant galaxies caused by
the large scale structure, becomes one of the most powerful
probes to test the standard model of cosmology (Hu 2002;
Huterer 2010; Hamana et al. 2020; Asgari et al. 2021; Amon
et al. 2022; Secco et al. 2022).

The prevalent method of cosmological parameter analysis
based on cosmic shear currently relies on tomographic bin-
ning (Hu 1999) and measuring the two-point correlation func-
tion (2PCF) of the source galaxy shapes (e.g., Hildebrandt
et al. 2020; Hamana et al. 2020; Amon et al. 2022; Secco et al.
2022). For this approach to cosmological analysis, the distri-
bution of the source galaxy distances along the line-of-sight,
commonly known as the sample redshift distribution n(z),
is an important quantity for forward modeling the auto- or
cross-2PCF of cosmic shear within or between tomographic
bins, respectively (e.g., Huterer et al. 2006).

Due to the expense of spectroscopic observations for galaxy
samples at the depths of current imaging surveys, weak lens-
ing measurements typically rely on multi-band photometric
redshifts as their initial source of redshift information, having
only limited and typically not representative training samples
with spectroscopic redshifts. There two primary categories of
photometric redshift estimation methods (for a review, see
Salvato et al. 2019) are as follows: (a) template fitting, which
is based on finding the best-fit spectral energy distributions
(SED) template by fitting to the broad-band photometry; and
(b) machine learning methods, which use the training sample
to learn a relationship between redshift, photometry, and po-
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tentially other information, e.g., morphological parameters.
The outputs of these photo-z methods are normally proba-
bility density functions for individual galaxies, which we will
call p(z).
Deriving the aforementioned sample redshift distributions

n(z) based on uncertain and potentially biased individual
galaxy p(z) is highly non-trivial (e.g., Malz 2021), as doing so
properly requires deconvolution of the uncertainties and cor-
rection for any biases. Methods for reconstructing properly
calibrated n(z) include direct calibration based on magnitude
re-weighting to match a reference sample with known red-
shifts (DIR; Cunha et al. 2009) and cross-correlating spectro-
scopic samples and photometric samples (CC; Newman 2008;
Sánchez & Bernstein 2019; Rau et al. 2020). Additionally,
some methods aim to estimate n(z) directly from photomet-
ric observables instead of using photometric redshifts (see,
e.g., Lima et al. 2008), with the latter branching into machine
learning and related approaches in recent years (Malz et al.
2018; Henghes et al. 2021). More recent work permits the
combination of the p(z) with a regularized deconvolution of
their uncertainty, in combination with the CC method (Rau
et al. 2022) – a method that is being applied in practice by
Rau et al., in prep. to data from the HSC survey.
Since the cosmic shear signal is sensitive to the sample red-

shift distribution, it is necessary to carefully model the un-
certainties on n(z) and marginalize over them for the current
and upcoming surveys (Malz & Hogg 2022). The marginaliza-
tion is not a trivial task, since the uncertainties on n(z) are
often modeled in a high dimensional space, making attempts
to run a full MCMC extremely computationally intensive.
Therefore, several methods have been used to approximately
marginalize over the redshift distribution uncertainties. This
includes allowing just a shift in the mean redshift of the n(z)
for each tomographic bin, a method that has been adopted in
many cosmology analyses (e.g., Hamana et al. 2020; Joudaki
et al. 2020; Amon et al. 2022; Secco et al. 2022). In other
cases, methods have been developed to marginalize over re-
alistic uncertainties on n(z), for example by (a) combining
750 MCMC chains each run with a different random real-
ization sampled from the prior for n(z) (Hildebrandt et al.
2017), (b) analytically approximating the likelihood function
on the redshift nuisance parameters (Hadzhiyska et al. 2020;
Stölzner et al. 2021), and (c) ranking n(z) realizations in a
lower dimensionality latent space to reduce the number of
nuisance parameters (Cordero et al. 2022).
In this study, we develop and apply methodology to sys-

tematically compare the performance of methods of n(z) un-
certainty marginalization for cosmic shear. Our goal is to
quantify tradeoffs such as systematic bias, credible uncer-
tainty estimation, and computational costs. For this purpose,
we start by presenting the new resampling approaches for
marginalizing over uncertainties in the sample redshift dis-
tribution n(z). We apply the new method and compare it
with several existing approaches in the literature, in the con-
text of cosmic shear with the three-year HSC shear catalog
(HSC Y3; Li et al. 2022). We consider the above-mentioned
tradeoffs and make a recommendation for methodology that
would be appropriate for cosmology analysis of the HSC Y3
shear catalog.
The structure of this paper is as follows. In Section 2, we

provide brief background on n(z) uncertainty modeling and
the tomographic 2PCF cosmological analysis of cosmic shear.

In Section 3, we outline the approaches we will explore for
marginalization over ensemble redshift uncertainties, includ-
ing the new method and several pre-existing methods in the
literature. We also explain the specific setup for the cosmo-
logical analysis we use for comparing these methods. In Sec-
tion 4, we show the results for the cosmological parameter
inference using multiple approaches for redshift uncertainty
marginalization. In Section 5, we summarize our findings in
this paper and discuss their practical implications.

2 BACKGROUND

In this section, we provide the background that motivates this
study. In Section 2.1, we introduce the weak lensing shear
analysis paradigm of this paper, and describe the model-
ing and marginalization of redshift distribution uncertainties
in previous shear analyses. Section 2.2 describes our flexible
parametrization for the sample redshift distribution and dis-
cusses our choice of prior on the associated sample redshift
distribution model parameters.

2.1 Weak Lensing Shear Analysis

In this work, we discuss marginalization over the n(z) un-
certainties in a tomographic weak lensing shear analysis (Hu
1999) based on the two-point correlation function (2PCF;e.g.,
Peebles 1980; Kaiser et al. 2000; Fu et al. 2008; Huff et al.
2014). In this section, we provide a brief background of this
analysis paradigm. We define terms, e.g., the data vector (ob-
servable) and its covariance matrix, and the forward model
that predicts the theoretical value of the observable given
cosmological and nuisance parameters. Among nuisance pa-
rameters, we emphasize the parameterization of the redshift
distribution uncertainties, which is the focus of this paper.
The goal of the weak lensing shear analysis is to extract

information about the cosmological model from the shear
2PCF. The cosmic shear observable that is commonly mea-
sured in real space analyses (e.g., Hamana et al. 2020; Joudaki
et al. 2020; Amon et al. 2022; Secco et al. 2022) is the corre-
lation functions of the observed galaxy shears ξij± (θ), where
θ is the angular separation of the galaxies, and i and j are
the indices of the tomographic bin pair. The data vector is
obtained by concatenating ξij± (θ) from different tomographic
bin pairs across all angular bins used for the measurement.
The observed data vector D is compared to the theoreti-

cal data vector T , which is predicted by a forward modeling
pipeline that considers the cosmological parameters and sys-
tematic biases and uncertainties, e.g., the uncertainties on the
redshift distribution, and the intrinsic alignment of galaxy
shapes due to gravitational tidal effects (IA; Croft & Met-
zler 2000; Heavens et al. 2000). The log-likelihood of a model
parameter vector Ω is computed by

log(L(Ω|D)) = (D − T (Ω))Σ−1(D − T (Ω))T , (1)

where Σ is the covariance matrix of D. MCMC samplers
such as MultiNest (Feroz & Hobson 2008; Feroz et al. 2009,
2019) are used to efficiently sample over the parameter space
and provide parameter inferences based on the likelihood in
Eq. (1) and the prior information on the parameters.
An important step to forward model the shear-shear 2PCF

in tomographic bin pairs is to project the 3-D matter power
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spectrum P (k, z) to the 2-D angular shear power spectrum
Cij` . Under the Limber approximation, the angular shear
power spectrum (Seljak 1998; Hu 1999) between bins i and j
is

Cij` =

∫
dχ

χ2
P (`/χ; z(χ))qi(χ)qj(χ), (2)

where P (`/χ; z(χ)) is the matter power spectrum at z. qi(χ)
and qj(χ) are the corresponding lensing efficiency function
for tomographic bins i and j. qi(χ) is directly determined by
the underlying redshift distribution ni(z):

qi(χ) =
3ΩmH

2
0

2c2
χ

a(χ)

∫ χh

χ

dχ′ni(χ′(z))
χ′ − χ
χ′

, (3)

where Ωm is the matter density parameter, H0 is the Hubble
constant, χ is the comoving radial distance, a is the scale fac-
tor, and c is the speed of light (e.g., Kilbinger 2015; Krause
& Eifler 2017). Here we have used the formalism for a flat
geometry. We can see that ni(z) is a key factor determining
the angular shear power spectrum, which itself directly de-
termines the shear-shear 2PCF ξij± (Bartelmann & Schneider
2001; Joachimi & Bridle 2010). Under the flat-sky approxi-
mation, ξij± is expressed as

ξij± (θ) =
1

2π

∫
d``Cij` J2∓2(`θ), (4)

where Jn is the n-th order Bessel function of the first kind.
This deep connection between the redshift distribution and
the cosmic shear observables is the reason why it is impor-
tant to marginalize over the uncertainties on n(z) to recover
credible cosmological parameter constraints.
The sample redshift distribution n(z) is often modeled as

arrays of histogram bin heights φnz, as is further described
in Sec. 2.2. Since sampling in high dimensional parameter
spaces is very computationally expensive, it may not be pos-
sible to model the sample redshift distribution uncertainties
in every redshift bin that n(z) is estimated on. A majority
of previous shear analysis (e.g., Hamana et al. 2020; Joudaki
et al. 2020; Amon et al. 2022; Secco et al. 2022) parameter-
ized the redshift distribution of bin i by allowing its mean
redshift to shift,

ni(z) = ni(z −∆zi). (5)

With the shift model, the number of free parameters is
equal to the number of the tomographic bins. The priors
on these parameters are determined by the prior distribu-
tions of the calibrated n(z). The shift model tremendously
reduces the number of parameters compared to use of all
histogram bin heights φnz, though it suffers from a limited
number of degrees of freedom compared to the realistic n(z)
uncertainties. With cosmic shear analysis becoming increas-
ingly systematics-dominated as the statistical uncertainties
become smaller, various methods have been introduced to
marginalize over a more realistic estimate of the n(z) prior.
In Hildebrandt et al. (2020), 750 realizations were drawn from
the n(z) prior, after which cosmic shear analyses were run on
each realization. The chains were then directly concatenated
to derive constraints on the cosmological parameters, includ-
ing their uncertainties. Stölzner et al. (2021) applied the
Laplace approximation to the prior of the redshift parameters
and assumed the likelihood function is a multivariate Gaus-
sian, thereby analytically marginalizing over the redshift pa-
rameter using the self-calibration algorithm. In Cordero et al.

(2022), realizations of n(z) were drawn from the prior distri-
bution, then mapped into a lower-dimensional latent space,
within which the likelihood function is smooth.
In this paper, we revisit some of the methods mentioned

above to marginalize over the n(z) uncertainties, carrying
out tests on mock cosmic shear analyses. We propose a new
method of marginalizing over the n(z) uncertainties based on
statistical principles. By comparing the new method to other
options, we aim to provide the optimal approach for the HSC
Y3 cosmic shear analysis.

2.2 Prior Specification on the Sample Redshift
Distribution

In this section, we briefly summarize how a prior on the sam-
ple redshift distribution was specified. For a discussion on the
n(z) inference methodology we refer to Rau et al. (in prep.).
As shown in Eq. (2), the sample redshift distribution enters

the modelling of two point functions via the transfer function
in Eq. (3). The entire redshift range is subdivided into Nbins

histogram bins, and the sample redshift distribution in the
i-th tomographic bin is parametrized as

ni(z;φinz) =

Nbins∑
k=1

φinz,k1(z ∈ [zkL, z
k
R]) , (6)

where [zkL, z
k
R] denotes the left/right edges of histogram bin k.

φinz,k is the k-th histogram bin height in the i-th tomographic
bin. 1 is the indicator function. The distinction between ‘his-
togram bin’ and tomographic bin is as follows: the former
denotes the bins of the histogram parametrization, the latter
denotes the selection bins of the tomography. Eq. 6 defines
the histogram heights vector φinz as the parameters of a lin-
ear basis function model for the sample redshift distribution
with tophat basis functions.
The prior p(φinz), i.e., uncertainties on the sample redshift

distribution histogram bin heights in the i-th tomographic
bin, is inferred using an extension of the methodology devel-
oped in Rau et al. (2022). It combines information from both
spatial cross-correlations of a reference sample with spectro-
scopic redshifts and a sample with photometric redshift in-
formation. We reiterate that a future publication will pro-
vide more details of the inference methodology (Rau, et al,
in prep.). The method utilizes the ‘S16A CAMIRA-LRG sam-
ple’ (Ishikawa et al. 2021a), a sample of Luminous Red Galax-
ies selected using the CAMIRA algorithm (Oguri 2014) from
the HSC data observed in the first observing season of 2016,
as a reference sample. This choice can be motivated by the
accurate photometric redshift estimates that are available for
the LRGs (relative to the photometric redshift errors in the
full HSC S16A sample), and a sufficiently high number den-
sity.
The spatial cross-correlation between the CAMIRA-LRG

sample (c) and a photometric sample (p) can be predicted as

wsc ∝ φnz,p bp bcwDM , (7)

where φnz,p denotes the parameters of the sample redshift
distribution, (bp/bc) denote the galaxy-dark matter bias pa-
rameters of the (photometric/CAMIRA-LRG) samples in
each redshift bin and wDM denotes the dark-matter con-
tribution to the cross-correlation signal. We present a sim-
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plified vector notation, where the elements in Eq. 7 corre-
spond to the cross-correlation measurements in each red-
shift bin, obtained by measuring the correlation amplitude
within a spatial annulus of physical distance as described
in Morrison et al. (2017). Using the auto-correlation of the
CAMIRA-LRG galaxies the method fits the linear bias model
bc(z) = b0(1 + z), where b0 = 1.06 ± 0.03, consistent with
previous measurements from Ishikawa et al. (2021b). The
covariance of the cross-correlation likelihoods is estimated
using bootstrap resampling and approximated to be diago-
nal. This is done for simplicity and can be an inaccurate ap-
proximation due to the high correlation of neighboring bins.
The method uses the-wizz1 (Morrison et al. 2017) for the
cross-correlation measurements, and selects a scale annulus
of 1.5− 5.0 Mpc in analogy to Gatti et al. (2021).
We include information from the photometry into the in-

ference by combining the individual galaxy redshift uncer-
tainties of a set of models. Our model set consists of a tem-
plate fitting code Mizuki (Tanaka 2015) that defines a like-
lihood, empirical codes MLZ2 (Carrasco Kind & Brunner
2013) and EPHOR (Tanaka et al. 2018) that define a con-
ditional probability density function obtained on a training
set and Franken-Z3 (Speagle et al. 2019) that uses a flux-
error weighted score function to map training set objects to
galaxies in the photometric dataset. We refer to Tanaka et al.
(2018) for a summary of the different methodologies that are
available to us. We note that the machine learning-based al-
gorithms do not produce likelihoods (unlike SED fitting tech-
niques). However we will treat their estimates as likelihoods
within this framework and refer to a future publication for a
description of the technical details.
Following the methodology developed in Rau et al. (2022),

we infer posteriors of sample redshift distributions as shown
in Fig. 1 using information from both the cross-correlation
data vector and the photometry of galaxies. The horizontal
axis shows the redshift, the vertical the normalized sample
redshift distribution. The legend lists the redshift ranges se-
lected on the best fitting redshift derived using the Mizuki
template fitting code that we use to define the tomographic
bins. The error contours correspond to the 68% confidence
intervals. The aforementioned posteriors of sample redshift
distributions constructed using the joint likelihood of spatial
cross-correlations and photometry is then used as the prior
distribution on the sample redshift distribution in the fol-
lowing analysis. We neglect here the covariance between the
spatial cross-correlations and the lensing observables.
In this work, we assume that the uncertainties in the en-

semble redshift distribution for the HSC three-year and full
analysis do not significantly decrease compared with those
for the first-year HSC analysis. Constraints on the sample
redshift distribution are limited by (a) practical issues such
as the redshift range of the LRG sample and our knowledge
of the galaxy-dark matter bias; (b) the model uncertainty be-
tween photometric redshift codes, estimated using the COS-
MOS2015 field (Laigle et al. 2016). The modeling uncertainty
is limited by the cosmic variance, and is independent of the
survey area, therefore will not decrease for the HSC three-

1 https://github.com/morriscb/The-wiZZ/
2 https://github.com/mgckind/MLZ
3 https://github.com/joshspeagle/frankenz

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
z

0

1

2

3

4

5

n
(z
)

z=0.3-0.6

z=0.6-0.9

z=0.6-1.2

z=1.2-1.5

Figure 1. The sample redshift distribution estimated by cross
correlation with 4 tomographic bins, for HSC S16A (Rau, et al., in
prep.) The shaded regions represent the 68% confidence intervals
of the distributions.

year analysis compared with the first-year analysis. As a re-
sult, the redshift uncertainties are expected to decrease much
more slowly than the cosmic shear covariance matrix as the
survey area grows.

3 METHODS

In this section, we describe the methods used to carry out
this work. In Section 3.1, we describe our parameter inference
pipeline, implemented using CosmoSIS (Zuntz et al. 2015). In
Section 3.2, we describe the methods to marginalize over the
n(z) uncertainties during the cosmological parameter infer-
ence. In addition to employing existing approaches from the
literature, we also propose a new method for marginalizing
n(z) uncertainties for cosmic shear analysis: a statistically
accurate formulation for sampling from the n(z) covariance.
The key terminology used for redshift distribution and sta-

tistical inference throughout this section, their mathematical
symbols, and description are listed in Table 1.

3.1 Cosmological forward modeling

In this section, we describe the cosmic shear forward model-
ing process, including the cosmological model, the astrophys-
ical model, and other nuisance parameters, for computing the
mock data vector and parameter inference. For an initial ex-
ploration, we considered a 2-parameter ΛCDM model that
only varies Ωm and σ8. We then considered a full analysis
with 5 ΛCDM parameters, 2 astrophysical nuisance parame-
ters,Ntomo = 4 multiplicative bias parameters and 2 PSF sys-
tematics parameters, for a total of 13 parameters. Ntomo = 4
additional parameters were added for marginalizing over n(z)
uncertainties for the shift model. The modeling pipeline used
CosmoSIS (Zuntz et al. 2015), which is a well-tested and val-
idated platform for cosmological inference (e.g., in Abbott
et al. 2022).
The cosmological model is described in Section 3.1.1, while
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Terminology Symbol Description
ni(z) prior P (φinz|αi) The prior on the ni(z) histogram bin heights in the i-th tomographic bin. Specif-

ically, we adapt the posterior in Rau et al. (in prep.) P (φinz|αi) parameterized
on the Dirichlet parameter αi for the i-th tomographic bin, as the prior, which
is described in Section 2.2. We sometimes refer to this as n(z) prior, when the
tomographic bin is not specified.

Average ni(z) 〈φinz〉 The average histogram bin heights for ni(z) in the i-th tomographic bin, averaged
over 10000 realizations of φinz sampled from the n(z) prior.

Mean redshift 〈zi〉 The mean redshift of the i-th tomographic bin, calculated by 〈zi〉 =∫
zP (φinz|αi)dz, where P (φinz|αi) is the ni(z) prior of the samples in the i-th

tomographic bin.

Data vector D Shear data vector D = [ξij+ , ξ
ij
− ], where ij is ordered in

[11, 12, 13, 14, 22, 23, 24, 33, 34, 44]. The generation of data vector is described
in Section 3.1.3.

Covariance (matrix) Σ Covariance matrix of the data vector D, Σij = 〈DiDj〉. The covariance matrix
used in this work is described in Section 3.1.4.

Inference posterior P (Ω|D) The posterior distribution on the cosmological and astrophysical parametersΩ after
marginalizing over the nuisance parameters. In this paper, we specifically consider
the n(z) parameters as the nuisance parameters.

Log evidence log(P (D|φnz,s)) The log-evidence of a particular realization of the φnz,s, expressed in Eq. (12).

Number of tomographic bins Ntomo The number of tomographic bins, which results in the number of nuisance param-
eters for the multiplicative bias and shift model. In this work, Ntomo = 4

Number of resampling φnz Nsample The number of realizations sampled from the n(z) prior for the direct and Bayesian
resampling methods, described in Sec. 3.2.2. For the full analyses in this work,
Nsample = 250.

Number of histogram bins N i
bins Number of histogram bin heights in the i-th tomographic bins. This is the same

as the length of φinz. In this work, N i
bins = 18(18, 25, 20) for tomographic bins

1(2,3,4), respectively.

Table 1. Table of the redshift distribution and statistics terminologies used for quantities throughout Section 3. We also provide a short
description of each quantity and the specific values used in this work or a reference to the section where they are described.

the astrophysical and other nuisance parameters are de-
scribed in Section 3.1.2. The analysis setup (tomographic
bins, angular scales, etc.) and mock data vector are described
in Section 3.1.3. The sampler and covariance matrices are de-
scribed in Section 3.1.4.

3.1.1 Cosmological Model

We adopted a ΛCDM cosmological model throughout this
work. We computed the linear matter power spectrum using
CAMB (Lewis et al. 2000; Lewis & Bridle 2002; Howlett et al.
2012), and the nonlinear matter power spectrum using the
updated halofit (Takahashi et al. 2012) from the original
version (Smith et al. 2003). The neutrino mass Ων was fixed
to zero, since the weak lensing shear is relatively insensitive
to it. The cosmological parameters in our model are provided
in Table 2, including their fiducial values, priors, and whether
they are varied or fixed in our analysis.

3.1.2 Astrophysical and Nuisance Parameters

Throughout the analysis, we used the nonlinear alignment
model (NLA Krause & Eifler 2017) to model the intrinsic

alignment (IA) signal (see also Hirata & Seljak 2004; Bridle
& King 2007, for the development and further extension of
the NLA model). In this paper, we adopted the NLA model
with an additional term that includes redshift evolution of
the alignment amplitude, namely,

A(z) = AIA

[
1 + z

1 + z0

]η
, (8)

where the fiducial values and priors of the parameters AIA, η,
and z0 are shown in Table 3. In practice, the redshift evolution
parameter may absorb some evolution of the source sample
properties with redshift, since intrinsic alignments depend on
galaxy properties.
Since the IA model in this work has redshift evolution, the

intrinsic alignment model parameters may have some degen-
eracy with the redshift distribution n(z), which motivates
marginalizing over the n(z) uncertainty in the analysis.
We computed the shear-shear angular power spectrum

from the matter power spectrum and the input n(z), using
the formalism in Section 2.1. We then added the NLA model
shear-IA and IA-IA angular power spectrum to the shear-
shear angular power spectrum. Next, we included a per-bin
multiplicative shear bias into the observed shear power spec-
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trum using

Ĉij` = (1 +mi +mj)Cij` , (9)

where mi and mj are the multiplicative biases of bins i and
j, respectively. We used Eq. (4) to compute the shear-shear
correlation function ξij± .
Finally, we employed a simple model for the additive shear

biases at the correlation function level. We included the PSF
leakage term α and PSF shape error term β, using the same
model as in Hamana et al. (2020). Our model of the shear-
shear correlation function with PSF systematics is

ξij,model
± = ξij±+α2〈ePSFePSF〉

+ αβ〈ePSFδePSF〉+ β2〈δePSFδePSF〉, (10)

where ePSF and δePSF are the PSF shape and the modeling
error of the PSF shape, respectively.
Table 3 lists the astrophysical and other nuisance parame-

ters, with their fiducial values, priors, and whether they are
varied or fixed in our analysis.

3.1.3 Analysis settings and mock data vector

In this work, we used 4 tomographic bins, resulting in 10
tomographic bin pairs. We adopted the angular binning used
in the real-space cosmic shear analysis of the first-year HSC
catalog (Hamana et al. 2020), i.e., 9 angular bins between 8.06
arcmin and 50.89 arcmin for ξ+, and 8 angular bins between
32.11 arcmin and 160.93 arcmin for ξ−. Our data vector D,
which includes ξ+ and ξ−, has a length of 170.
We generated mock data vectors using the forward mod-

eling pipeline described above. To be able to compare the
recovered parameter values with their true values, we did not
add noise to the data vectors.
We used the Planck results in Planck Collaboration et al.

(2020) for the fiducial cosmological parameters in Table 2.
For the IA parameters in Table 3, we adopted typical integer
values for the amplitude AIA and redshift power η, and z0 =
0.62 for the pivot redshift4 (Troxel et al. 2018; Hamana et al.
2020). We adopted the prior on α and β from Hamana et al.
(2020), and set the fiducial values to zero.
Our mock shear data vector was generated by averaging

the ξ± over 1000 realizations of n(z) sampled from its prior.
Note that the auto-correlation ξii±(〈n(z)〉) 6= 〈ξii±(n(z))〉, with
up to 0.75% difference, as is demonstrated in Appendix A.
Therefore, we cannot simply use the mean value of the n(z)
prior to generate the mock data vector.

3.1.4 Sampler and Covariance Matrices

We sampled the parameter space and estimate the Bayesian
evidence using MultiNest (Feroz & Hobson 2008; Feroz
et al. 2009, 2019), due to its rapid speed for relatively accurate
evidence evaluation in constant efficiency mode5. We fixed

4 We have used z0 = 0.62 for consistency with previous analysis.
However, as described in Longley et al. (2022), this choice does not
affect the results much; choosing the mean redshift for the HSC
survey gives consistent results.
5 In Lemos et al. (2022), it is shown that varying the efficiency
can bias the model evidence for MultiNest, therefore, we fixed
the efficiency of MultiNest to eliminate this bias and for its speed
over PolyChord (Handley et al. 2015a; Handley et al. 2015b)

Parameter Fiducial Prior 2-p full analysis
σ8 0.824 U [0.4, 1.2] X X
Ωb 0.0489 U [0.03, 0.07] X
ns 0.967 U [0.87, 1.07] X
h0 0.677 U [0.55, 0.9] X
Ωm 0.311 U [0.1, 0.8] X X
τ 0.0561 const.
Ων 0.0 const.
w −1.0 const.
wa 0.0 const.

Table 2. Fiducial values and priors of the cosmological parameters
used in this paper, along with whether or not they are varied (X)
or not (blank) in the two-parameter (2-p) and full analysis. U [a, b]

represents a uniform distribution from a to b.

Parameter Fiducial Prior 2-p full analysis
AIA 1.0 U [−5, 5] X
η 0.0 U [−5, 5] X
z0 0.62 const.

m1 0.0 N (0, 0.01) X
m2 0.0 N (0, 0.01) X
m3 0.0 N (0, 0.01) X
m4 0.0 N (0, 0.01) X

α 0.0 N (0, 0.01) X
β 0.0 N (0, 1.11) X

Table 3. Fiducial values and priors of the astrophysical and nui-
sance parameters used in this paper, along with whether or not
they are varied (X) or not (blank) in the two-parameter (2-p) and
full analysis. U [a, b] represents a uniform distribution from a to b,
while N (µ, σ) represents a Gaussian distribution with mean value
µ and standard deviation σ.

the efficiency to 0.1, which is the default value for Multi-
Nest, throughout this work. The log-likelihood of the model
is computed by Eq (1), with the corresponding covariance
matrices.
In this work, we carried out our analyses with two covari-

ance matrices: (a) We estimated the covariance matrix for
cosmic shear using the HSC three-year shear catalog. For
this purpose, we divided every element in the HSC first-year
covariance Σy1 (Hamana et al. 2020) by 3, since the survey
area is roughly 3 times larger. We denote this covariance ma-
trix as Σy3 = Σy1/3. (b) We estimated the covariance matrix
for cosmic shear with the full HSC survey, which is roughly
10 times the area of the first-year catalog. We denote this
covariance as Σfull = Σy1/10. There are several significant
limitations of this approximation to the future HSC analyses:
(a) We decreased the covariance by a factor of the increase
in survey area, without considering that the survey footprint
has become considerably more contiguous, so the survey edge
effects become less important. (b) We adopted the same an-
gular binning and scale cuts as for the HSC first-year analysis,
while those cuts are likely to be different for the upcoming
three-year analysis and future analyses.
However, we used the covariance matrix of the n(z) prior

from the first-year HSC shape catalog when analyzing the
three-year and full data vector. In the real analyses, the co-
variance of the n(z) for the three-year and full catalogs is
likely to decrease. However, it is a systematics-dominated
quantity, so its uncertainty will not decrease with area as

MNRAS 000, 1–16 (0000)



Photo-z error in shear analysis 7

0.5

0.0

0.5

n(
z)

Bin 1 Bin 2

0.0 0.5 1.0 1.5
z

0.5

0.0

0.5

n(
z)

Bin 3

0.0 0.5 1.0 1.5
z

Bin 4

Figure 2. The 68% confidence intervals of the ni(z) uncertainties
of the fiducial n(z) prior (light shaded regions) and the shift model
(dark shaded regions). The shift model generates an unrealistic
distribution of n(z) uncertainties, underestimating the uncertainty
at most redshifts but overestimating it around the edges of bins 2,
3 and 4.

rapidly as does the cosmic shear data vector. Our choice to
keep it fixed represents a conservative assumption regarding
our ability to understand and control systematic biases and
uncertainties in the photometric redshift estimation and the
cross-correlation calibration of n(z). As a result of this choice,
the impact of n(z) uncertainty on the cosmological parameter
constraints gets worse as the dataset grows.

3.2 Marginalizing over n(z) uncertainty

In this section, we introduce the different approaches for
marginalizing over uncertainty in the ensemble n(z) that are
implemented on the mock cosmic shear analysis described in
Section 3.1. In Section 3.2.1, we introduce the shift model’s
parameterization. In Section 3.2.2, we introduce the resam-
pling approach, i.e., marginalizing over the sample redshift
distribution uncertainties by running many chains with dif-
ferent realizations drawn from the n(z) prior. We propose a
new technique for weighting the chains when combining them,
based on model evidence, motivated by Bayes theorem.
The n(z) prior that is marginalized over in this work is

specified by the histogram bin heights φinz,k at the center
redshift of the histogram zk for tomographic bin i. respec-
tively, modeled by 4 independent Dirichlet distributions. The
Dirichlet distributions are parameterized by arrays αi, with
length equal to the number of histogram bins in the corre-
sponding tomographic bin, specified in Section 2.2.

3.2.1 Shift Model

The shift model is a simple and approximate model for rep-
resenting uncertainties in n(z). It allows the sample redshift
distribution to shift coherently in redshift space following
Eq. (5). It is used to marginalize over n(z) uncertainties in
many cosmic shear analysis (e.g., Hildebrandt et al. 2020;
Hamana et al. 2020; Amon et al. 2022; Secco et al. 2022). For
this model, we use the average histogram bin heights 〈φinz〉 as
the fiducial redshift distribution, specified in row 2 of Table 1.
We let the 〈φinz〉 of each tomographic bin shift individually.

Parameter Fiducial Prior
∆z1 0.0 N (0, 0.012)
∆z2 0.0 N (0, 0.01)

∆z3 0.0 N (0, 0.018)
∆z4 0.0 N (0, 0.021)

Table 4. Fiducial values and priors used for the shift model pa-
rameterization of n(z) uncertainties. The standard deviation of the
Gaussian prior is calculated from the σ of 〈zi〉 from 1000 draws
from the n(z) prior.

Therefore, using this model involves introducing Ntomo = 4
nuisance parameters. We determined the prior on the ∆zi

by computing the distribution of the mean redshift 〈zi〉 of
the tomographic bin i over 10000 realizations of histogram
bin heights drawn from the ni(z) prior. We used a Gaussian
distribution for the prior, with zero means and standard devi-
ations determined by the distributions of 〈zi〉. The priors on
the shift parameters for the four tomographic bins are listed
in Table 4.
In Fig. 2, we show a comparison of the n(z) uncertainty

included by the shift model (in dark shaded regions), ver-
sus the total uncertainty of the n(z) prior (in light shaded
regions). The uncertainty of the shift model is generated by
shifting 〈ni(z)〉 with ∆zi sampled from the prior listed in
Table 4. Compared to the full n(z) prior, the shift model
underestimates the uncertainties at most redshifts, especially
for redshifts where 〈ni(z)〉 is relatively flat. The shift model
also overestimates the uncertainties in the wings of the red-
shift distribution for some the tomographic bins. At the n(z)
level, the shift model is an inaccurate representation of the
real uncertainty.

3.2.2 Resampling Approaches

A different approach for marginalizing over the n(z) uncer-
tainty, with fewer approximations, is to sample many real-
izations of histogram bin heights from the n(z) prior, and
run the cosmological parameter estimation process on each
realization as if there are no n(z) uncertainties. To incor-
porate the n(z) uncertainties in the cosmological parameter
estimates, the final step is to combine the results from the
different MCMC chains. We refer to this approach as the
“resampling approach”.
In this work, we propose a resampling method that is based

on Bayes’ theorem to marginalize over the n(z) uncertainty.
We start by deriving the posterior on the cosmological and
astrophysical parameters, P (Ω|D), after marginalizing over
the uncertainty in the n(z) histogram bin heights, which we
denoted φnz. HereD is the observed cosmic shear data vector
D = [ξ+, ξ−], see row 4 of Table. 1. This posterior is as
follows:

P (Ω|D) =

∫
dφnzP (Ω,φnz|D) =

∫
dφnzP (Ω|D,φnz)P (φnz|D)

=
1

P (D)

∫
dφnzP (Ω|D,φnz)P (D|φnz)P (φnz).

(11)

The first line of the equation is based on conditional proba-
bility, and the second line is based on Bayes’ theorem. Here
P (Ω|D,φnz) is the posterior on Ω with a specific realisation
of the redshift distribution φnz. P (φnz) is the ni(z) prior, for
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which we chose to use P (φnz|α), the posterior probability
distribution for the redshift distribution derived using an ex-
tension of the methodology from Rau et al. (2022). P (D|φnz)
is the Bayesian evidence of the data given φnz, evaluated by
integrating the joint conditional probability over Ω,

P (D|φnz) =

∫
dΩP (D|Ω,φnz)P (Ω). (12)

We rely on the MultiNest estimation to the log-evidence,
which is shown to have a constant bias from the truth in
Lemos et al. (2022), if the efficiency is kept fixed. This is fine
for our purpose: the constant bias on the log-evidence results
in a constant factor in the evidence, which is normalized out
for the Bayesian weight ωs.
We now describe how we utilize the resampling approach

to estimate P (Ω|D) in Eq. (11). We sampled Nsample re-
alizations of the redshift distribution φnz,s, where s =
1 . . . Nsample, is the index of a particular realization from the
n(z) prior, i.e., P (φnz|α). We combined the inferred poste-
rior distributions for each one (as represented by the MCMC
chains), P (Ω|D,φnz,s). By doing so, we effectively evaluated
the integral of Eq. (11), which can be written the form of a
summation,

P (Ω|D) =
1

NsampleP (D)

N∑
s=1

P (Ω|D,φnz,s)P (D|φnz,s), (13)

where φnz,s is the sth sample of the redshift distribution.
Based on Eq. (13), we designed a Bayesian weight ωs for
combining the posteriors P (Ω|D,φnz,s) that satisfies the fol-
lowing two conditions:

ωs ∝ P (D|φnz,s) (14)
Nsample∑
s=1

ωs = 1. (15)

Finally, the marginalized posterior of Ω from the Bayesian
resampling can be expressed as

P (Ω|D) =

N∑
s=1

P (Ω|D,φnz,s)ωs. (16)

Note that the constant 1/(NsampleP (D)) in Eq. (11) is ab-
sorbed in ωs since summation of ωs is normalized to 1. This
weight ωs, which is proportional to the Bayesian evidence
shown in Eq (12), preserves Bayes’ theorem, effectively down-
weighting the n(z) realizations that are not likely to gener-
ate the cosmic shear data vector D. A similar resampling
approach was used in Hildebrandt et al. (2020); however,
the MCMC chains were concatenated with equal weights,
which does not preserve Bayes’ theorem. We therefore call our
approach “Bayesian resampling”, and call the method from
Hildebrandt et al. (2020) “direct resampling”, throughout the
paper.
In principle, with enough samples of the redshift distri-

bution, the Bayesian resampling approach should accurately
marginalize over the full prior on n(z) in the cosmic shear
analysis, giving more credible parameter constraints than
simplified parameterizations, e.g., the shift model. However,
it does have its drawbacks: (a) it is computationally inten-
sive to run the full analysis for Nsample times, where Nsample

is the number of redshift distribution samples, (b) it requires
the sample redshift distribution n(z) to have a well-defined

probability distribution from which samples can be drawn,
which might not be the case for some surveys depending on
how they infer the ensemble n(z).

3.2.3 Methods Summary

In this section, we briefly summarize the methods for
marginalizing over n(z) uncertainty in this work, including
the notation and terminology of the marginalization meth-
ods.

• No n(z) Uncertainty: We use the average histogram bin
height of the n(z) prior, 〈φinz〉, as the sample redshift dis-
tribution, without marginalizing over any n(z) uncertainties.
This is the baseline that other methods are compared to.
• Direct Resampling: We sample Nsample realizations of

φnz,s from the n(z) prior and run cosmological parameter
inference on each realization without explicitly accounting
for the evidence of the φnz,s. The chains for different φnz,s

are then combined with equal weights, implicitly incorporat-
ing the n(z) uncertainties into the resulting parameter con-
straints.
• Bayesian Resampling: This method begins as does direct

resampling, but the chains for different φnz,s are weighted by
their Bayesian evidence, as described in Section 3.2.2.
• Shift Model: The average histogram bin heights 〈φinz〉

is allowed to shift on redshift individually for each tomo-
graphic bins, resulting in Ntomo = 4 nuisance parameters for
marginalizing over redshift uncertainty, as described in Sec-
tion 3.2.1.

3.3 Probability Integral Transformation

In this section, we introduce our validation method for the
parameter inference results. We note that validating the prob-
ability calibration of inference results is an integral part of
testing novel inference methodology. Since the ‘true value’ of
a parameter of interest is viewed in the Bayesian picture as
a random variable, the posteriors derived using an inference
methodology have to present an accurate estimate of that
unknown distribution.
A necessary requirement is that our inference adheres to

Bayes theorem, which forms the basis of the statistical test
presented in the following. To test this, we perform a sta-
tistical test based on the probability integral transformation
(PIT; Casella et al. 2002; Schmidt et al. 2020) to test the
validity of the inference statistics. We perform PIT on the
cumulative density function (CDF) of S8, as it is the param-
eter that the cosmic shear constrains most precisely. The true
posterior of the inferred S8 can be yielded by Bayes’ theorem:

P (S8|D) =
P (D|S8)P (S8)

P (D)
. (17)

We define the CDF of S8 to be

FS8(S8) =

∫ S8

0

dS′8P (S′8|D). (18)

According to the PIT theorem, a random variable Y drawn
from the distribution of FS8(S8) in Eq. (18), has a range of
[0, 1], and the CDF of Y follows

FY (y) = y, (19)
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Figure 3. Parameter constraints for the full analyses, with the three-year covariance matrix Σy3 (left), and the full-data covariance
matrix Σfull (right), with parameters listed in Table 2 and 3, and with n(z) uncertainty marginalized using three different approaches.
The green contour shows the results using the average n(z) with no uncertainties, while the red and blue contours show the results using
the direct and Bayesian resampling approaches described in Section 3.2.2. The orange contours use the shift model parameterization, with
Ntomo = 4 nuisance shift model parameters, described in Section 3.2.1. The dashed lines are the true values used to generate data vector.
This plot is made using chainconsumer (Hinton 2016)

where y is a specific value of Y between [0, 1].
To test the credibility of our inference pipeline, we estimate

the CDF of S8, namely, F̂S8(y), by generating pairs of data
vectors Dµ and Sµ8 , where µ = 1, 2 . . . NPIT, and NPIT = 50.
For each µ, we sample a pair of (Ωµm, σ

µ
8 ) with the uniform

prior UΩm [0.2, 0.4] and Uσ8 [0.7, 1.0], and compute the cor-
responding Sµ8 = σµ8

√
Ωµm/0.3. We first produce a noiseless

data vector using the average n(z), and then add a random
noise realization generated using Σy3. The noisy data vector
is denoted Dµ.
We run the full inference pipeline on each pair of Dµ and

Sµ8 , which generates a posterior Pµ(S8|Dµ). For each µ, we
estimate

Ŷ µ = FµS8
(Sµ8 ), (20)

where FµS8
is the CDF of the S8 posterior for the µ-th sam-

ple. We compare the CDF of Ŷ with the expected uniform
distribution in Sec. 4.2.
By conducting the PIT test, we are checking that the pos-

terior distribution of the cosmological parameters inferred in
the inference pipeline is statistically consistent with the true
posterior given by Bayes’ theorem. This is a crucial valida-
tion test for the results of this work, since our conclusion that
compares marginalization methods relies on accurate poste-
rior errorbars of the inferred parameters. Crucially, this test
must be done using data vectors with noise added according
to the covariance matrix, since that noise is what broadens
the parameter distribution that we are trying to infer.

4 RESULTS

In this section, we show the results of forecasting cosmic shear
analyses with different marginalization approaches, following
the methods outlined in Sec. 3. In Section 4.1, we show re-
sults of the full analyses, where 5 cosmological parameters,
2 IA parameters, 4 multiplicative biases, 2 PSF systematics
parameters, and any parameters used to parametrize uncer-
tainty in n(z) are jointly fit. In Section 4.2, we show the PIT
validation on noisy data vectors. In Section 4.3, we compare
the results in this work to that of other work.

4.1 Full analysis

In this section, we show the results of the full cosmic shear
analysis on the noiseless mock data vector using the redshift
marginalization methods listed in Section 3.2.3. We consider
5 cosmological parameters, listed in Table 2 and explained
in Section 3.1.1. Additionally, we consider 2 IA parameters,
Ntomo = 4 multiplicative biases, and 2 PSF systematics pa-
rameters, listed in Table 3 and explained in Section 3.1.2.
We ran a baseline analysis with the average n(z) and no

marginalization for comparison, and three marginalization
approaches: the direct and Bayesian resampling, described in
Section 3.2.2, and the shift model, described in Section 3.2.1.
For the resampling approach, we ran Nsample = 250 chains for
both Σy3 and Σfull covariance matrices. There are Ntomo = 4
nuisance parameters for the shift model, for which the fiducial
values and priors are listed in Table 4.
In the top row of Fig. 3, we show the 2-d posterior con-

tours and their 1-d projections on the Ωm-S8 plane for all
four analyses, for the Σy3 covariance (left), and Σfull co-
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Figure 4. Top row: the distributions of the log-evidence
log(P (D|φnz,s)), defined in Eq. (12). Bottom row: the Bayesian
weight, ωs, defined in Eq. (16) and applied to the chains in the
Bayesian resampling approach. The vertical dashed line in the bot-
tom panel is the constant weight applied to each chain in the ‘direct
resampling’ method, ωc = 1/250. The distributions of log-evidence
and Bayesian weight are broader for Σfull than for Σy3, because
the same amount of n(z) uncertainty has a larger impact on the
more statistically powerful dataset, i.e., the full HSC dataset.

variance (right). For the three-year HSC analyses, the dif-
ferent methods of redshift marginalization do not make a
visible difference in the contour plot. However, the contours
are visibly different for the future full data set of HSC.
For Σy3, the number of resampling for both covariances are
Nsample,y3 = Nsample,full = 250.
In Fig. 4, we show the distribution of log-evidence

log(P (D|φnz,s)) and the Bayesian weight ωs, defined in
Eq. (12) and Eq. (16), of the chains in the resampling
approach. The direct resampling method applies uniform
weights, while the Bayesian resampling method applies the
Bayesian weights ωs. Since the HSC full data-set has a three-
times smaller covariance matrix than the three-year data-set,
the same n(z) uncertainty causes a more significant scatter in
both the log-evidence and Bayesian weight. This means that
Bayesian resampling will become increasingly favoured over
direct resampling as the dataset becomes more statistically
powerful. In practice, the Bayesian resampling approach is
assigning more weight to realizations of the n(z) that pro-
duce data vectors that are more consistent with the expected
one, while down-weighting realizations with less evident n(z).
In Fig. 5, we show the uncertainty for individual cosmo-

logical parameters from the full analysis chains in Fig. 3. We
used the mean parameter value as the point estimation and
the 68% confidence interval as the error bars of the “No n(z)
uncertainty" run for the reference. We also show the true

value of the parameters in dashed line, as a comparison. For
the three-year analyses, shown on the left, marginalizing over
the redshift distribution uncertainty does not noticably in-
crease the error bars on either Ωm and S8, except when using
the “Direct resampling" method. Since the Bayesian resam-
pling method provides a principled approach to incorporation
of redshift distribution uncertainties, we take the consistency
between that method and the no marginalization method as
a sign that the uncertainty in the cosmic shear data vec-
tor dominates the uncertainties on cosmological parameters.
Therefore, the “Direct resampling" may be introducing spu-
rious uncertainty by failing to down-weight n(z) realizations
that are inconsistent with the data vectors, and is not rec-
ommended. For the full HSC dataset analyses, shown on the
right, we can see that the conclusion of the three-year anal-
yses holds, though the differences between the methods are
more visible. The mean posteriors of the Ωm are systemati-
cally lower than the true input value across different methods.
We suspect that the banana-shaped Ωm−σ8 degeneracy that
occurs in the full analysis skews the projected distribution of
Ωm to the lower end, which also causes the underestimation
of Ωm in Fig. 7.
We further computed the Figure of Merit (FoM) in the

Ωm-S8 plane (or Ωm-S8-AIA space) to compare the methods,
defining the FoM as

FoM =
1√
|F−1|

, (21)

where F is the Fisher matrix of [Ωm, S8](or [Ωm, S8, AIA]). F
is calculated by taking the inverse of the covariance matrix
of [Ωm, S8] (or [Ωm, S8, AIA]), approximating the MultiNest
posterior as a 2(3)-d Gaussian distribution. This approxima-
tion effectively marginalizes over the other parameters that
are varied during the parameter inference. The FoM is pro-
portional to the reciprocal of the contour area. In Fig. 6, we
plot the FoM of all the marginalization methods, divided by
the FoM value of the “No n(z) Uncertainty". The two or-
anges lines correspond to the full analyses in this section.
Unsurprisingly, the direct resampling method provides more
conservative parameter constraints compared to the Bayesian
resampling method, since it does not downweight the outlier
n(z) realizations even though they are unlikely to produce the
observed shear data vector. The shift model is slightly con-
servative for Σfull, and slightly optimistic for Σy3, compared
to the Bayesian resampling. The errorbars on the FoM values
are obtained by bootstrapping the chains. As a cross-check
on our errorbars, we also ran 10 chains using the shift model
for the Y3 analysis, with different sampling seeds. The error-
bars obtained using the standard deviations of the inferred
cosmological parameters using these 10 chains is within 5% of
those from bootstrapping, which suggests that seeding noise
cannot explain the differences in FoM between the methods.
Additionally, we report the ratio of FoMs to the fiducial one

in the 3D Ωm-S8-AIA space using the full covariance matrix
Σfull. Since the amplitude of intrinsic alignment is also sen-
sitive to the redshift distribution, different marginalization
methods also impact its constraints. The FoM in the Ωm-
S8-AIA space (purple line) follows the same trend as the or-
ange dashed lines in Figure 6, however, the difference between
Bayesian resampling and shift model decreases from 3% to 1%
of 1-σ, while the difference between the Bayesian resampling
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and direct resampling decreases from 4% to 3.3% of 1-σ6.
This further strengthens the conclusion that the Bayesian re-
sampling method behaves comparably to the shift model in
HSC Y3 cosmic shear analyses, while direct resampling tends
to overestimate the uncertainty in the parameter constraints.

Finally, Fig. 6 also shows a FoM comparison for an analy-
sis with only two free cosmological parameters, σ8 and Ωm,
rather than with all cosmological parameters free. For more
details of this analysis, see Appendix B. For this more limited
analysis, the direct resampling method overestimates the un-
certainties in the (Ωm, S8) plane compared to the Bayesian re-
sampling, and therefore is not recommended. The shift model
is slightly conservative in this more limited analysis for the
full dataset, and slightly optimistic for the three year analy-
sis.
In Fig. 7, we show the 1-d mean posterior points of 250

chains in the resampling approach, run with Σfull. The color
of the points are coded by the Bayesian weight ωs of the chain,
which is proportional to the model evidence P (D|φnz). We
can see that drawing different samples from the n(z) posterior
introduces scatter in the mean values in the Ωm-S8 plane, but
generally the samples with mean closer to the centre of the
cluster receive a higher weight, while the n(z) samples that
generate outliers are down-weighted. This plot demonstrates
the necessity of considering whether a given n(z) sample is
likely to have generated the data vector that we are observing
during the resampling process – as is done in the Bayesian
resampling approach, but not direct resampling. We notice
that there are nzs samples that generate mean posterior at
the centre of the cluster, but receive a very low weight. There
are two possible explanations: (a) the realization nzs has a
best-fit data vector that is on average unbiased compared
to the mock data vector D, but for certain redshifts or θ
values there are significant deviations (with opposite signs,
so they compensate on average); (b) the best-fit data vector
deviated from that for the true cosmological parameters in
a way that is compensated by biases in other cosmological
parameters besides Ωm and S8. The mean values of the Ωm
are systematically lower than the true value of the input, as
we explained earlier in this section.
Following the above presentation of the analysis results, we

also compare the computational performance of each redshift
distribution marginalization method. In Table 5, we show the
MultiNest settings used for each method, and the computa-
tional expense of the full analysis in CPU-hours. The resam-
pling approaches are two orders of magnitude slower than the
shift model. While the Bayesian resampling and shift meth-
ods lead to comparable uncertainties, as is shown in Fig. 6,
the tremendous computational efficiency of the shift model
compared to the Bayesian resampling makes it the recom-
mended choice for the HSC three-year analyses.
For the full HSC three-year cosmic shear analysis, our re-

sults suggest that the shift model will produce uncertain-
ties on cosmological parameters that are consistent with the
principled Bayesian resampling method to within 3% of 1-σ.

6 ∆FoM/FoM0 is proportional to −2∆σ/σ0 for two parameters,
while ∆FoM/FoM0 is proportional to −3∆σ/σ0 for three param-
eters, where σ0 is the < 68% confidence range of ‘no marginaliza-
tion’

Considering that the orders of magnitude difference in com-
putational expense, we recommend the shift model as a well-
understood and sufficiently accurate approach for the HSC
three-year analysis.

4.2 Inference Validation

In this section, we present the inference validation by per-
forming the probability integral transformation (PIT), as de-
scribed in Sec. 3.3. We will focus our analysis on the shift
model since it represents the simplest methodology that is
appropriate for our data as described in the previous sec-
tions. While computationally more expensive, we could also
perform the same test for the Bayesian and direct Resampling
methods. Given that the three aforementioned methods per-
form similarly in the context of HSC Y3 analysis, we defer
a more detailed investigation to future work and concentrate
here on the shift model case.
We sample Npit = 50 Ωm-σ8 pairs, generate a correspond-

ing noisy data vector, obtain the marginalized S8 posterior
from the full inference with shift model, and compute the
CDF of the corresponding true S8 values.
In Fig. 8, we compare the CDF of Ŷ , the CDF of S8 eval-

uated at the true S8, with the CDF of an expected uniform
distribution, shown in the black dashed line. On visual in-
spection, the estimated CDF follows the expected y = x line
nicely. We also conduct an Kolmogorov–Smirnov (K-S) test,
which computes the maximum difference between the CDF
and the expected CDF. The K-S results is D = 0.094, with
a p-value of 0.737. This means that Ŷ is highly consistent
with the uniform distribution, which validates our inference
pipeline.

4.3 Literature Comparison

In this section, we compare our Y3 results with the re-
sults of marginalizing over n(z) uncertainties in other cosmic
shear analysis works. This comparison necessarily excludes
the Bayesian resampling approach outlined in this paper, as
to the authors’ knowledge it has not previously been applied.
In Hildebrandt et al. (2017), direct resampling marginal-

ization is tested using 3 different n(z) uncertainty distribu-
tions: weighted direct calibration (DIR; Lima et al. 2008),
angular cross-correlation calibration (CC; Newman 2008),
and a recalibration of p(z) estimated by bpz (BOR; Bordoloi
et al. 2010). Compared to ‘no n(z) marginalization’, the DIR,
CC, and BOR approaches increase the uncertainty on S8 by
14%, 90%, and 19% of 1-σ, respectively. In comparison, we
find that direct resampling increases the S8 errorbar by 5.8%
of 1-σ for Σy3 , and 15.3% of 1-σ for Σfull. This smaller in-
crease in uncertainty is likely due to the larger covariance
matrix and a tighter n(z) prior for the HSC Y3 analysis.
In Hamana et al. (2020), the shift model is adopted as the

fiducial approach to marginalizing over n(z) uncertainty, and
is compared with ‘no n(z) marginalization’. The uncertainty
on S8 increased by 1.4% of 1-σ after marginalizing over the
n(z) uncertainties with the shift model, with a wider prior
than the one in this work. In this work, the errorbar on S8

increased by 2.0% of 1-σ after marginalizing using the shift
model. Given that Hamana et al. (2020) has a larger covari-
ance on the shear data vector, as well as a larger prior on the
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Figure 5. The 68% confidence intervals (bars) and mean values (dots) of the 1-d projection for the n(z) marginalization approaches
compared to the ‘No n(z) uncertainty’ run, for the Σy3 covariance matrix (left), and Σfull covariance matrix (right), for the full analysis.
The solid reference lines and the shaded area are the mean values and the 68% confidence intervals of the “No n(z) uncertainty” run. The
dashed lines are the parameter truth in Table 2. We find that the mean values of Ωm are systematically lower than the true input across
different methods. The could be caused by the skewness of the posterior distribution.

Method Live Points Efficiency Tolerance # of chains CPU-hour/chain total CPU-hour
No n(z) uncertainty 500 0.1 0.2 1 1.76h*56 98.9h
Direct Resampling 200 0.1 0.2 250 1.05h*28 7350.0h
Bayesian Resampling 200 0.1 0.2 250 1.05h*28 7350.0h
Shift Model 500 0.1 0.2 1 1.77h*56 99.1h

Table 5. The MultiNest settings used in this work, and computational expense for different marginalization methods, for the full
analysis using Σy3. The chains are run on Vera, a dedicated server for the McWilliams Center for Cosmology. Each node is equipped
with 2 Intel Haswell (E5-2695 v3) CPUs, which have 14 cores per CPU. The resampling approaches, due to the need to run hundreds
of individual analyses, are two orders of magnitude slower than the shift model. All chains are ran in constant efficiency mode for more
accurate evidence estimation.

shift model parameters, the results should not agree exactly,
and there is no reason to believe they are inconsistent.

In Troxel et al. (2018), the shift model is compared with
‘no n(z) marginalization’. The prior on the shift model pa-
rameters are comparable to this work, while the covariance
matrix of Troxel et al. (2018) is smaller than this work. Troxel
et al. (2018) found a 4.4% of 1-σ increase in the S8 uncer-
tainty, which slightly larger than this work. Given the differ-
ences in the data covariance for the analyses, the fact that
marginalization had a greater impact in Troxel et al. (2018)
is consistent with expectations.

In Amon et al. (2022), the shift model is compared with a
more sophisticated n(z) marginalization method, called hy-
perrank (Cordero et al. 2022). The shift model is found to
be sufficient for cosmic shear analyses for DES Y3, as vali-
dated by hyperrank. The fact that a current survey found
the shift model to be sufficient is consistent with our finding
for HSC Y3.

In Stölzner et al. (2021), a self-calibrated method that mod-
els the histogram bin heights φnz as a series of comb Gaus-
sian functions is used to analytically marginalize over the
n(z) uncertainties. The results are compared to the analy-
sis in Wright et al. (2020), which uses a shift model. There
are only 1% differences in χ2 between the results from the
self-calibration method and the shift model, though there is
a 10% of 1-σ difference in the intrinsic alignment amplitude
AIA. This once again shows that the shift model is sufficient
for the current generation of cosmic shear analysis for the
purpose of cosmological parameter inference, which is consis-
tent with our conclusion.

4.4 Summary of results

Overall, our results show that the shift model is a computa-
tionally efficient and credible marginalization method for the
HSC three-year analysis. Therefore, we recommend that the
HSC three-year analysis adopt the shift model for marginal-
izing n(z) uncertainty.
For the resampling approaches, we find that using the di-

rect resampling approach consistently results in larger con-
tours compared to the Bayesian resampling, as expected.
Therefore, we suggest future cosmological analysis adopt the
Bayesian resampling method, if resampling is necessary.
For cosmic shear analyses with a substantial uncertainties

on the sample redshift distribution, we recommend compar-
ing any candidate marginalization methods for n(z) with the
results from the Bayesian resampling method, as the Bayesian
resampling method provide a statistically-principled poste-
rior on the marginalized parameters.

5 CONCLUSIONS

The goal of this work was to understand the performance of
methods for incorporating uncertainty in the ensemble red-
shift distribution in cosmological weak lensing shear analyses,
including their impact on computational expense and on the
estimated uncertainties on cosmological parameters.
We proposed a statistically-principled method, called

Bayesian resampling, for marginalizing over the uncertainties
of the sample redshift distribution n(z) in the cosmic shear
analysis. By adding a weight proportional to the model evi-
dence of each n(z) realization, Bayesian resampling effectively
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Figure 6. The Figure of Merit (FoM) comparison in the Ωm-S8

plane for each marginalization method. The uncertainties on the
FoM are computed by bootstrapping the MCMC chains 100 times.
All FoMs are divided by the FoM of the “No n(z) uncertainty" run.
The purple line shows FoM ratio for the 3D Ωm-S8-AIA space,
while other lines shows the FoM in the Ωm-S8 space. The direct re-
sampling method is clearly the most conservative method of those
tested in this work. The shift model shows similar performance to
the Bayesian resampling method. The errorbars on the FoM are
given by bootstrapping the chains, which matches the errorbars
given by running the analysis with different sampling seeds.

down-weights those realizations that are unlikely to generate
the observed cosmic shear data vector. The Bayesian resam-
pling method can be applied to any n(z) uncertainties that
can be modeled by a probability distribution, even if such
parameterization is at a high dimensionality that makes it
impossible to model in MCMC.
We ran mock analyses for the HSC three-year and full-data

cosmic shear, with 3 n(z) marginalization methods: (a) the
newly developed Bayesian resampling method; (b) the direct
resampling, for which the weights of all n(z) realizations are
the same; (c) the shift model, the most prevalent parameter-
ization used in cosmic shear analyses. Additionally, we ran
analyses without marginalizing over the n(z) as a compari-
son. Our mock data vector is the average cosmic shear signal
from the fiducial cosmology, and its covariance is estimated
by reducing the covariance compared to that in Hamana et al.
(2020) to account for survey area increases, for the three-year
analysis and full analysis correspondingly. Our full theoreti-
cal model consists 5 ΛCDM parameters, 2 intrinsic alignment
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Figure 7. A scatter plot showing the mean posterior values for
the Nsample = 250 chains with different samples drawn from the
n(z) prior, analyzed with all 17 parameters (using the shift model)
and with Σfull. The colors indicate the Bayesian weight ωs that
the chain receives, determined by its evidence P (D|φnz), defined
in Eq. (12). The solid line represents the mean statistics of the ‘No
n(z) uncertainties’ run, while the dashed line represents the true
input parameters.
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Figure 8. The CDF of Ŷ , defined in Sec. 3.3. If the statistical
inference preserves Bayes’ theorem, the CDF of Ŷ should follow
y = x, which is plotted as the black dashed line. This plot shows
a high level of consistency between the estimated and expected
distribution of Ŷ .
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parameters, 4 multiplicative biases and 2 PSF systematics pa-
rameters, plus the 4 redshift parameters when the shift model
is adopted.
We compared the 3 marginalization methods and the anal-

ysis without marginalization in terms of their impact on
the Ωm-S8 contours, their 1-d errorbars, the figure of merit
(FoM), and computational cost. Here is a high-level summary
of how the methods compared to each other.

• Marginalizing over n(z) uncertainties yields larger error-
bars on both Ωm and S8 for all methods.
• Bayesian resampling yields significant tighter errorbars

than direct resampling, implying that the direct resampling
is overly-conservative for marginalization.
• The shift model produces consistent errorbars to the

Bayesian resampling for HSC Y3. Given that the computa-
tional cost for the shift model is ∼ 100 times less, it is the
recommended method for the upcoming HSC Y3 cosmic shear
analyses. For the HSC full analysis, the shift model can yield
errorbars that differ by ∼ 3% of 1-σ compared to Bayesian
resampling, so it is unclear even in that case whether alter-
native methods are worthwhile.
• Although the differences between the marginalization

methods are statistically evident, the visual differences in
the parameter constraint contours are not particularly no-
ticeable.

To test the credibility of our inferred posterior probability
distributions of cosmological parameters, we conducted the
probability interval transformation (PIT) test on noisy data
vectors generated with a range of cosmological parameters,
to ensure the applicability of our results to real cosmic shear
analyses. We sampled 50 pairs of Ωm-σ8-D, and compare the
CDF distribution of S8 at the true Sµ8 values with a uniform
distribution. Our estimated CDF distribution passes the K-
S test, thus validating our inference pipeline using the shift
model.
These results have a few implications for future cosmic

shear analyses. First, our results suggest that the shift model
should be compared with Bayesian resampling for specific
survey scenarios (statistical constraining power, etc.) to as-
sess whether the shift model performs sufficiently well to be
usable, given its far lower computational expense. The shift
model is fundamentally a different n(z) uncertainty model
from the original n(z) distribution. Second, when using the
resampling approach to marginalizing over n(z) uncertainties
is necessary for a weak lensing measurement, the Bayesian
resampling approach is preferred over direct resampling, be-
cause of its consistency with Bayesian statistics. Moreover,
Bayesian resampling does require an accurate estimate of the
ratio of the Bayesian evidences between realizations of red-
shift distributions.
There are several caveats in this work. (a) We reach the

conclusion that a sophisticated marginalization method is go-
ing to be increasingly preferred based on the assumption that
lensing measurements become more powerful as survey area
increases, but the uncertainty on n(z) is presumed to be sys-
tematics dominated.The reason for this assumption is that
the n(z) uncertainties are limited by the cosmic variance of
the COSMOS2015 field, which we used to assess the model-
ing uncertainties. If this assumption changes, then the com-
parison needs to be revisited. This assumption is discussed in
detail in Section 2.2. (b) We use the same angular and tomo-

graphic binning for the mock analyses in this paper, though
the actual analyses of HSC Y3 and full data are likely to
have different binning strategies. We also make very simple
estimates of the covariance matrices in the mock analyses,
ignoring the evolving footprint shape of the HSC survey. (c)
The assumption in this work is that we can place a prior on
the source redshift distribution that is statistically indepen-
dent of our data vector. That was a good approximation in
this case, for n(z) calibration based on photometry and cross-
correlations, and for the data vector involving shear-shear
only. However, future analyses with more complex data vec-
tors (e.g., including large-scale structure clustering) and/or
n(z) posteriors may violate this assumption in our formalism,
which would require additional efforts to take into account.
We conclude by mentioning some avenues for future in-

vestigations. First, the cosmic shear data vector is sensitive
to the mean redshift of the tomographic bin, which is likely
the reason why the shift model is sufficient for current sur-
veys in practice. However, galaxy clustering is sensitive to
other statistics of the ensemble redshift distribution, such as
its width (e.g., Abbott et al. 2022). Therefore, the validity of
the shift model in galaxy-galaxy lensing, clustering and 3x2pt
analyses should be directly tested.
Finally, the resampling approach for the n(z) marginaliza-

tion requires thousands of CPU-hours. Importance sampling
methods can be added to the method to reduce the number
of realizations needed. However, importance sampling faces
other challenges: since n(z) distributions normally are pa-
rameterized with high dimensionality, the importance weights
are easily dominated by a few samples. It might also be ex-
tremely challenging to perform importance sampling on some
n(z) priors. It would be valuable to identify solutions to this
problem and demonstrate how to effectively accelerate n(z)
resampling approaches using importance sampling.
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redshift distribution, the cosmology inference and analysis
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APPENDIX A: IMPACT OF ξ±(〈φNZ〉)

In Figure A1, we demonstrate that generating the auto-
correlation of the mock data vector using the average n(z)
is different from the taking the average of data vectors gener-
ated by random draws from the posterior for n(z). Therefore,
for this work, in which the conclusion is sensitive to bias at
the sub-percentage level, we choose to use 〈ξii±(n(z))〉 from
1000 n(z) samples to generate the mock data vector in Sec-
tion 3.1.3.
The reason that only the auto-correlation is affected in Fig-

ure A1 can be explained by Eqs. (2) and (3). Since ni(χ(z)) is
independent of nj(χ(z)) if i 6= j, the transfer functions qi(χ)
and qj(χ) are thus independent. As a result, when i 6= j,

〈Cij` 〉 =

∫
dχ

χ2
P (`/χ; z(χ))〈qi(χ)〉〈qj(χ)〉. (A1)

Notice that Eq. (A1) only holds when ni(χ(z)) is independent
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Figure A1. The fractional error of the ξij± (〈n(z)〉) compared to
〈ξij± (n(z))〉. The x-axis is the index of the value in the data vector,
with 9 angular bins for each tomographic ξij+ bin pair, and 8 an-
gular bins for each ξij− bin pair. There is a statistically significant
sub-percent difference between the auto-correlations, which shows
that taking the average of n(z) does not commute with comput-
ing the 2PCF. Therefore 〈ξij± (n(z))〉 should be used to avoid sub-
percent bias when this level of precision matters. This fractional
difference is largest at low redshift because the uncertainties in the
mean redshifts are comparable in magnitude for all bins, but the
2PCF is lower at low redshift.

of nj(χ(z)). Otherwise, both auto- and cross-correlations in
the mock data vector will be affected by using the average
n(z). Also note that in the case that some overall source of
uncertainty were to lead to correlations between the uncer-
tainties in the redshift distributions for different bins, both
auto- and cross-correlations would be affected.

APPENDIX B: TWO-PARAMETER ANALYSES

In this work, we also carried out the cosmological parameter
inference for a case where only Ωm and σ8, along with n(z)
marginalization nuisance parameters, are freed. This scaled-
down test is initially designed for testing and sanity-checking
our inference and analysis software. The constant values for
other cosmological and nuisance parameters, and the priors
for Ωm and σ8, are listed in Tables 2 and 3.
We carried out cosmological parameter estimation for the

three marginalization methods in the 2-parameter cases,
along with the “no n(z) uncertainty” run for comparison. The
contour plots in the Ωm and S8 plane are well-behaved, and
the results lead to similar conclusions as for the full analy-
ses, so we do not show them in the paper. The Figure-of-
Merit ratio of the three marginalization methods to that of
“no n(z) uncertainty” is shown in green lines in Figure 6, and
the conclusion based on the 2-parameter cases is similar to
ones drawn from the full analyses.
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