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A proof of a conjecture of Shklyarov

Michael K. Brown and Mark E. Walker

Abstract. We prove a conjecture of Shklyarov concerning the relationship between K. Saito’s
higher residue pairing and a certain pairing on the periodic cyclic homology of matrix factor-
ization categories. Along the way, we give new proofs of a result of Shklyarov (Corollary 2 of
[Adv. Math. 292 (2016), 181-209]) and Polishchuk—Vaintrob’s Hirzebruch—Riemann—Roch for-
mula for matrix factorizations (Theorem 4.1.4 (i) of [Duke Math. J. 161 (2012), 1863-1926]).

1. Introduction

Let Q = C[xy,...,Xx,], and let mt denote the maximal ideal (x1,...,x,) € Q.Fix f € m,
and assume the only singular point of the associated morphism f : Spec(Q) — A(lc is m.
Let mf(Q, f) denote the differential Z /2-graded category of matrix factorizations of f;
see Section 3.1 for the definition of mf(Q, f). Shklyarov proves in [16, Theorem 1]
that a certain pairing on the periodic cyclic homology of mf(Q, f) coincides, up to a
constant factor ¢y (which possibly depends on f), with K. Saito’s higher residue pairing,
via the Hochschild—Kostant—Rosenberg (HKR) isomorphism. Shklyarov conjectures in
[16, Conjecture 3] that ¢y = (—1)"®*+1/2_ The main goal of this paper is to prove this
conjecture.
We begin by discussing Shklyarov’s conjecture in more detail.

1.1. Background on Shklyarov’s conjecture

Let HN(mf(Q, f)) denote the negative cyclic complex of mf(Q, f), and let
HN.(mf(Q, f)) denote its homology. See, for instance, [2, Section 3] for the definition
of the negative cyclic complex of a dg-category. The dg-category mf(Q, f) is proper,
i.e., each cohomology group of the (Z/2-graded) morphism complex of any two objects
is a finite dimensional C-vector space. As with any such dg-category, there is a canonical
pairing of Z /2-graded C-vector spaces,

Kyt HN«(mf(Q, ) x HN+(mf(Q. f)) — C[ull,

where u is an even degree variable. The pairing K, s is defined exactly as in [16, p. 184],
but with periodic cyclic homology H P, replaced with H N, and C((u)) replaced with
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C[[u]]. We note that K, is C[[u]]-sesquilinear; i.e., for any o, B € HN«(mf(Q, [f))
and g € C[[u]], we have

Kmp(gW) o, B) = g)Kms (. p) = Ky (. g(—u) - B).

It follows from the work of Segal [14, Corollary 3.4] and Polishchuk—Positselski [9,
Section 4.8] that there is a quasi-isomorphism

I HN(mf(Q. f)) — (Qpc[lull. ud — df). (1.1)

which generalizes the classical HKR theorem. The target of I is called the twisted de
Rham complex, and it is a Z /2-graded complex indexed by setting Q27 o/c to have (homo-
logical) degree m and u to have degree —2. (Since the twisted de Rham complex is
Z/2-graded, we could just as well say Q™ has degree —m and u has degree 2. Note
that the map ud has degree —1 whereas df has degree 1, but since this is regarded as a
Z/2-graded complex, there is no problem.) In particular, we have an isomorphism

>~

£ HNu(mf(Q. £)) = H*.

where on
Q /C [[u]]

(ud —df) - QQ/C[[”]].

In [13], K. Saito equips the C[[u]]-module Hf(o) with a pairing

H = Hy(Qy,cllu]l.ud — df) =

0 0
Kp: HO x H® — Clfu]]
known as the higher residue pairing. Shklyarov has proven the following result concerning
the relationship between the canonical pairing and the higher residue pairing under the
HKR isomorphism.

Theorem 1.2 ([16, Theorem 1]). For each polynomial f as above, there is a constant
¢y € C (possibly depending on f) such that the diagram

Na(mf (0. )2 —— (1)
(1.3)
cru Ky f Ky
Cllul]
commutes.

Moreover, Shklyarov makes the following prediction.

Conjecture 1.4 ([16, Conjecture 3]). Forany f, ¢y = (—1)"+/2,
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1.2. Outline of the proof of Conjecture 1.4

The constant cy can be determined from a related, but simpler, pairing on
HH.(mf(Q, f)), the Hochschild homology of mf(Q, f). We recall that, for any dg-
category €, there is a short exact sequence

0— HN(€) -5 HN(E€) - HH(€) — 0 (1.5)

of complexes. It follows, for instance from (1.1), that HN.(mf(Q, f)) and
HH,.(mf(Q, f)) are concentrated in degree n (mod 2). The long exact sequence in
homology induced by (1.5) therefore induces an isomorphism

HN.(mf(Q, f))/u- HN«(mf(Q, f)) — HH.(mf(Q, f)). (1.6)

The pairing K,y determines a well-defined pairing modulo u, which we write, via (1.6),
as

Nmy « HH(mf(Q, f)) x HHx(mf(Q. f)) — C.

The isomorphism [y is C[[u]]-linear and, upon setting ¥ = 0, it induces an isomorphism
Iy (0) : HHn(mf(Q, f)) — Hn(Qb/C,—df).
The higher residue pairing Ky has the form
Ky (a) + Z wjuj, o + Z w}uj) = (w, ®)esut™ + higher order terms,
j=>1 j=1

where (@, ®') s is the classical residue pairing determined by the partial derivatives of f.
It is defined algebraically as

h-dx dxn
(g-dxy---dxy, h-dxy---dxy)es = 1€S [%}
axl"‘.’axn

where the right-hand side is Grothendieck’s residue symbol.
Thus, upon dividing the maps in diagram (1.3) by u” and setting u = 0, we obtain the
commutative triangle

If(O)XIf(O) QnQ/(C QnQ/(C
HH,(mf(Q. [))xHHy,(mf(Q. f)) - — X —
= deQ"Q/}C deQ”Q/}C

(1.7)

C.

Since /7 (0) is an isomorphism, and the residue pairing is nonzero, the value of cy is
uniquely determined by the commutativity of (1.7).

In this paper, we re-establish the commutativity of diagram (1.7) using techniques that
differ from those used by Shklyarov. Our method results in an explicit calculation of cf.
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Theorem 1.8. Shklyarov’s conjecture holds: that is, for any f as above,

cr = (_])n(n-i-l)/z‘

In fact, we prove the commutativity of diagram (1.7), and Theorem 1.8, in the case
where Q is an essentially smooth algebra over a characteristic O field k, m is a k-rational
maximal ideal, and f € m is such that m is the only singularity of the morphism f :
Spec(Q) — A}c. The special case k = C, Q = C[xy,...,xy], and mt = (x1, ..., Xp)
yields Shklyarov’s conjecture.

The general outline of our proof is summarized by the diagram

17 (0)x17(0)
—

Hy(mf(Q. )< HHu(mf(Q. f))

lidx\ll lidx(—l)"

(mf(Q f))XHHn(mf(Q f)) H( 0/k> df)XHn(Q.Q/kvdf)

| L

HHop(mf™(Qm.0)) : H2nRTw (2, /i)

(M) res
k.
(1.9)

The map W is induced by taking Q-linear duals; * is induced by a Kiinneth map fol-
lowed by the tensor product of matrix factorizations; trace is defined in Section 4; res is
Grothendieck’s residue map; A is induced by exterior multiplication of differential forms,
using that the complexes (Q'Q e f) are supported on {mu}; and the map ¢ is an HKR-
type map. We prove that

Hy (92

ke df)xH(Q'Q/k, —df)

I (0)x1_z(0)
—

(1) the diagram commutes (Lemma 3.11, Lemma 3.14, Corollary 3.26, and Theorem
4.36),

(2) the composition along the left side of this diagram is the canonical pairing 7,, 5
(Lemma 4.23), and

(3) the composition along the right side of this diagram is the residue pairing (—, —)es
(Proposition 4.34).

Finally, in Section 5, we use some of our results to give a new proof Polishchuk—
Vaintrob’s Hirzebruch—Riemann—Roch theorem for matrix factorizations [10, Theorem
4.1.43)].

We note that a result closely related to the commutativity of (1.7) was also proven
by Polishchuk—Vaintrob [10, Corollary 4.1.3]. More precisely, they prove that the residue
pairing on H, (2% 0/k —df) x Hy (Q' ke df) and the canonical pairing on
HH,(mf(Q, f)) x HH,(mf(Q,—f)) co1nc1de up to multiplication by (—1)"—Dn/2
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via an isomorphism

y : HHy(mf(Q. f)) => Ha(Qy,x.df)

described in [10, (2.28)]. Combining this result of Polishchuk—Vaintrob with our Theo-
rem 1.8 and the nondegeneracy of the residue pairing, we conclude that, if «, o’ €

HHy(mf(Q. 1)),
(r(@). (@), = (Ir (0)(@), I (0) (&), (1.10)

If one could prove (1.10) directly, one could simply combine [10, Corollary 4.1.3] with the
commutativity of the top square of diagram (1.9) to quickly prove Shklyarov’s conjecture.
But we believe there is no way to prove (1.10) without going through Theorem 1.8.

2. Generalities on Hochschild homology for curved dg-categories

We review some background on Hochschild homology of curved dg-categories and estab-
lish some new results concerning pairings of such. Throughout this section, k is a field,
and “graded” means I'-graded for I € {Z, Z/2}. We will eventually focus on the case
r==2j2.

2.1. Hochschild homology of curved dg-categories

We refer the reader to [2, Section 2.1] for the definition of a curved differential I"-graded
category (henceforth referred to as a cdg-category). Recall that a cdg-category with just
one object is a curved differential I"-graded algebra (cdga).

For a cdg-category € whose objects form a set, define HH (€)Y to be the I'-graded
k-vector space given by the direct sum totalization of the Z — I'-bicomplex which, in
Z-degree n, is the I'-graded k-vector space

@ Hom(X1, Xo) ®x X Hom(X3, X;) ® -
Rr X Hom(X,, X,,—1) ® X Hom(Xy, Xy,).

When € is essentially small, so that the isomorphism classes of objects in the I'-graded
category underlying € form a set (see [9, Section 2.6]), we define H H (€)" by first replac-
ing € with a full subcategory consisting of a single object from each isomorphism class.
From now on, we will tacitly assume all of our cdg-categories are essentially small. Given
o; € Hom(X; 41, X;) fori =0,...,n (with X;, 41 = Xo), we write ag[aq] - - - |, ] for the
element ag ® sa; ® -+ @ say, of HH(‘€)”.

The Hochschild complex of €, denoted by H H(€), is the above graded k-vector space
equipped with the differential b := b, + by + by, where by, by, by are defined as in [2, Sec-
tion 3.1]. Roughly, b, is the classical Hochschild differential induced by the composition
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law in €, b; is induced by the differentials of €, and by is induced by the curvature ele-
ments of €. When € has just one object with trivial curvature, then € is a dga, and the
maps b, and b are the classical ones (and by = 0 in this case).

We will also need “Hochschild homology of the second kind,” as introduced by
Polishchuk—Positselski in [9] and by Caéldararu—Tu in [4]; the latter authors call this
theory “Borel-Moore Hochschild homology”. Define HH ! (€)! to be the I'-graded k-
vector space given as the direct product totalization of the above bicomplex. Equivalently,
HH!I(€)" is the completion of HH (€)" under the topology determined by the evident
filtration. Since b is continuous for this topology, it induces a differential on HH ! (€)",
which we also write as b, and we write HH ! (€) for the resulting chain complex.

2.2. The Kiinneth map for Hochschild homology of cdga’s
For a cdga A = (A,d4, hy), we have
HH(A)' = A ®; T(TA),

where, for any graded k-vector space V, T(V) = @nzo V@ Recall that T(V) is a
commutative k-algebra under the shuffle product:

01 ® - ®Vp) @ (Upy1 ® @ Up1g) = D EUo(t) &+ & Uo(pa)-
o

where o ranges over all (p, ¢)-shuffles. The sign is given by the usual rule for permuting
homogeneous elements in a product.

Since A is also an algebra, HH(A)" has an algebra structure, whose multiplication
rule will be written as

—x—: HH(A)! @ HH(A)" — HH(A)".
It is given explicitly as
x[ar] -+ lap] * ylapt1] -+ laprgl = Y Fxylaca)l -+ laopre)-
o
Note that the canonical inclusion T(XA) < HH(A)" lands in the center of HH(A)" for

the » multiplication.
If B = (B, dp, hp) is another cdga, the tensor product of + and B is defined to be

ARQp B=(AQ,r B, dsR®1+10dpg,ha®1+1Q hp).
We define the Kiinneth map
—%—: HH(A)' @ HH(B)" - HH(A Q) B)"

to be the composition of the tensor product of the maps induced by the canonical inclu-
sions HH(A)! < HH(A ® 8)"and HH(B)" — HH (A ® B)" with the » product for
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A ®j B. The » product on HH ()" can be recovered from the Kiinneth map by setting
B = A: the » product coincides with the composition

HH(MA" @ HH(A)' = HH(A ®f A)! 255 HH(A)!,

where
pr s (A®k A) @k T(Z(A® A)) > A Q@ T(SA)

is induced by the multiplicationmap u : A ® A — A.

It is important to note that, for an algebra A, the * product does not, in general, make
HH(A) into a dga, since b, is not a derivation for the » multiplication unless A4 is com-
mutative. But b, is a derivation for the Kiinneth map; see Lemma 2.6.

The » product does behave well with respect to b;. In detail, recall that the tensor alge-
bra functor 7'(—) sends I'-graded complexes of k-vector spaces to differential I"-graded
algebras under the shuffle product. Let d7 denote the differential on 7' (X A) induced from
the differential Xd on X A. Then (T (X A), e, dr) is a dga, where e is the shuffle product.
By examining the explicit formula for b1, we see that

by =dg®1+1®dr.
In other words, (HH (A)“, *,by) is a dga, and it is given as a tensor product of dga’s:
(HH(A)Y, %,b1) = (A,-,da) ® (T(ZA),e,dr),

where - is the multiplication rule for A4.
If z is an element of A of even degree, then we have

1[z] % aolas |+ lan] = Y (=D)eortletr=+al=ag[ay| - ja;|zlai 1] -+ lan].
i

In particular, the component bq of the differential in H H () is given by
bo = 1[h] x —. 2.1
Since 1[A] is a central element of (A ® T (X A), ) of odd degree, it follows that
bo(=) * — = bo(— % —) = £ — xbo(—). (2.2)

The * product extends to HH !/ since it is continuous for the topology on HH whose
completion gives HH !

2.3. Functoriality of HH ! using the shuffle product

We recall that a morphism A = (A4,d4,h4) — B = (B, dp, hp) of cdga’s is given by a
pair ¢ = (p, B), with p : A — B a morphism of I"-graded k-algebras and § € B a degree
1 element, such that

e p(d(a))—d' (p(a)) = [B, p(a)] forall a € A, and
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o plhy=H+dP)+p*
Such a morphism is called strict if 8 = 0.
A strict morphism ¢ induces maps

¢y HH(A) > HH(B) and ¢, : HH'T(A) > HH'1(B)
given by
P« (aolar] -+ lan]) = pao)[p(ar)|---|p(an)].

A nonstrict morphism ¢ does not, in general, induce a map on Hochschild homology, but
it does induce a map
¢ HH (A) > HH'I(B)

given by sending ag[ay|---|a,] to
Do (=R +’"P(ao)[ﬁ| ‘1B lp(ay)] ﬁl ‘1B Ip(az)] -+ p(an)| B -- Iﬁ] (2.3)
10--5in 20 l() copies 11 copies l,, copies

We next show how ¢, may also be defined using the * product. Suppose b € B is a
degree 1 element, and let exp(1[b]) denote the degree 0, central element of the algebra
(HH'(B)", ) given by evaluating the power series for the exponential function at 1[b]:

exp (1[p]) = 1 + 1[b] + = (l[b] = 1[b]) + !(l[b] * 1[b] = 1[b]) +
=1+1[b] + 1[b|b] + 1[b|b|b] +--- .
The signs are correct, since s(b) € T(X B) has even degree. We have

exp (1[b]) % (bolb1l-+-|bn]) = (bolb1]---|ba]) x exp (1[b])
> bo[ bl “|b|b1|b] -+ 1B |ba| -+ |bal b] -~ |b .
—— ——

105eeerin=>0

lo copies i1 copies in copies
By comparing formulas, we see that

¢« = exp (1[=B]) * pa- (2.4)
That is,

P« (aolar] - lan]) = exp (1[=B]) * p(ao)[p(ar)| -+ |p(an)]
= p(ao)[p(ar)|---|p(an)]  exp (1[-B]).

2.4. The Kiinneth map for Hochschild homology of cdg-categories

For a pair of cdg-categories € and D, we write € ®; D for the cdg-category whose
objects are ordered pairs (C, D) with C € € and D € D and such that

Hom ((C, D), (C’, D")) = Home(C, C') ® Homg (D, D'),
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with differentials given in the standard way for a tensor product. The composition rules
are the evident ones, and the curvature elements are defined by

h,py =hc ®idp +idc ® hp.

Note that, if A = (A, dy,hy) and B = (B, dp, hp) are cdga’s, then this construction
specializes to the construction given above as follows:

AQr B=(A®k B.dg®idp +idg ® dp.hg ® idp +id4 ® hp).
We define the Kiinneth map for the cdg-categories € and D to be the map
—%—: HH(€)" @) HH(D)"! - HH(E€ Q) D)"
given by

coler] -+ leml*doldi] -+ 1da] = D o ® dolea(r)] -+ [€otmtm)];
o

where o ranges over all (m, n)-shuffles, and

¢ ®id, if1 <i <m, and
e =
! id@dim, ifm+1<i<m-+n.
This map extends to HH ! (—)":
—s—:HH' &) or HH''(D)' - HH (¢ @ D)".

Remark 2.5. There does not seem to be an analogue of the x product for a general cdg-
category. The issue is that, in general, there is no “diagonal map”

€®k€_>€~

Lemma 2.6. For any two cdg-categories € and D, the diagram

HH(€)' ®; HH(D)! —— HH(€ @ D)'
lbi ®id+id®b; lbi
HHI (€)' @) HH(D)! —=s HH(E€ @i D)
commutes fori = 0,1, and 2, and similarly for HH'! (). In particular,
—x—: HH(€) ®x HH(D) - HH(€ ®; D)

and
—%—:HH"(¢) @9 HH'' (D) > HH'! (€ @1 D)

are chain maps.

Proof. This follows from the definitions by a routine check. ]
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2.5. Naturality of the Kiinneth map

We recall that a morphism A — B of cdg-categories is a pair ¢ = (F, B), where F :
A — B is a morphism of categories enriched in I"-graded k-vector spaces, and f is an
assignment to each object X of #4 a degree 1 element Bx € Endg(F (X)). The pair (F, 8)
is required to satisfy that

e forall X,Y € Ob(s) and f € Homyu (X, Y),

F(8(f)) =8(F(f)) + By o F(f) — (=DVIF(f) o Byx.

where § is the differential on Hom 4 (X, Y); and
e forall X € Ob(A),
F(hx) = hrx) + 8(Bx) + B
¢ is called strict if Bx = 0 forall X.
Lemma 2.7. Suppose A, A', B, B’ are curved differential T'-graded categories, and ¢ =
(F,B): A—> B, ¢’ = (F',B) : A — B’ are morphisms of such categories. Then

1) ¢pR¢  =(FQF,BR1+1Q B') is a morphism from A Qy A’ to B Qi B,
and, if ¢ and ¢' are strict morphisms, then so is ¢ ® ¢’;

(2) the diagram

HHT(A) @ HH!T (A) =229 yyil(8y e, HHI(B)

k k

HH (A @) A) ©@e9")- HH'(8 @ 8

commutes; and
(3) if ¢ and ¢’ are strict morphisms, the corresponding diagram involving ordinary

Hochschild homology commutes.

Proof. The proof of (1) is a routine check, and (3) is an immediate consequence of (2).
For (2), to simplify the notation, we assume the cdg-categories involved are cdg-algebras;
the proof of the general claim is notationally more complicated but essentially the same.

Write ¢ = (p, 8), ¢’ = (o', B'), so that, by (2.4),
¢x = exp (1[=B]) x px and ¢, = exp (1[-p]) * p}.
Lett: HH (A) — HH! (A ®; A) and ' : HHT(A') — HH (A ®; A') be
the canonical inclusions. We have
exp (1[—/3]); exp (1[—ﬂ’]) = exp (L(l[—ﬂ])) * exp (L’(l[—ﬂ’]))
=exp(lI[-B®1—-1Q p):
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the second equation holds since ¢ (1[—f]) and ¢/ (1[—f']) commute. Therefore, for elements
a € HH'  (A)and o' € HH'I(A'), using also the associativity of *, we get

(@)x(@)*(9)x (@) = (exp(1[-B]) * p(@))*(exp (1[-B]) * (@)
= (exp (1[=B)* exp (1[-B)) * (p(e)*0' (@)
= exp (1[—,3 R1—-1Q ,3’]) * (p ® p)(axa’)
= (¢ ® ¢')x(a¥a). u

3. Hochschild homology of matrix factorization categories
Let k be a field, and let Q be an essentially smooth k-algebra. Fix f € Q.

3.1. Matrix factorizations

The dg-category mf(Q, f) of matrix factorizations of f over Q is defined as follows.

e Objects are pairs (P, §p), where P is a finitely generated Z/2-graded projective Q-
module, and 8p is an odd degree endomorphism of P such that % = fidp.
e Homy,rg,r)((P.8p), (P',8p)) is the Z/2-graded complex Homg (P, P’) with dif-
ferential 0 given by
) = Spra — (=D asp
for o homogeneous. From now on, we will omit the subscript on
Homy 10, 1) (= —)-
We emphasize that f is allowed to be 0. The homotopy category of mf(Q, f), denoted by
[mf(Q, f)],is the Q-linear category with the same objects as m f(Q, f) and morphisms
given by Hompn (0, y)(— —) := H® Hom(—, -).
Let X,Y e mf(Q, f), and let g, ; € Hom(X, Y') be cocycles. We recall that g, o
are homotopic if there is an odd degree Q-linear map /& : X — Y such that

hdx +th =0y — (1.

This is just the usual notion of a homotopy between morphisms of a Z/2-graded com-
plex, adapted verbatim to the setting of matrix factorizations. An object X € mf(Q, f)
is contractible if idy is null-homotopic. Morphisms in m f(Q, f) that are cocycles are
homotopic if and only if they are equal in [mf(Q, f)].

Definition 3.1. Given X € mf(Q, f), the support of X is the set
supp(X) = {p € Spec(Q) | Xy is not a contractible object of mf(Qy, f)}.

For a closed subset Z of Spec(Q), let mf%(Q, f) denote the full dg-subcategory of
mf(Q, f) consisting of those X with supp(X) C Z.

We record the following.
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Proposition 3.2. Ler X e mf(Q, f).

(1) When f =0, supp(X) is the set of points at which the 7Z./2-complex X is not
exact. Therefore, when [ = 0, the notion of support defined above agrees with the
usual notion of support for a 7./2-graded complex.

(2) One has supp(X) < Spec(Q/f). When f is a nonzero-divisor, supp(X) C
Sing(Q/f).

Proof. (1) This is [1, Lemma 2.3]. (2) It is easy to check that any matrix factorization of
a unit is contractible. Suppose f is a nonzero-divisor. By [8, Theorem 3.9], the homotopy
category [mf(Q, f)] is equivalent to the singularity category of Q/ f, and the singularity
category is trivial when Q/ f is regular. L]

Remark 3.3. If f is a nonzero-divisor, so that the morphism of schemes f : Spec(Q) —
A}c is flat, then

Spec(Q/f) N Sing(f) = Sing(Q/f),

where Sing( /) denotes the set of points of Spec(Q) at which the morphism f : Spec(Q)—
A}c is not smooth.

Let R be another essentially smooth k-algebra, and let g € R. Given X € mf(Q, f)
and Y € mf(R, g), we form the tensor product

XRYemf(ORKR, fRI+1®g)

by adapting the notion of tensor product of Z/2-graded complexes to matrix factoriza-
tions. The tensor product gives a dg-functor

mf(Q. ) emf(R.g) >mf(Q®k R, f®1+1®g).

If Z and W are closed subsets of Spec(Q) and Spec(R), respectively, one has an induced
functor

mfZ(Q. /) @kmf" (R.g) > mfZV(Q &R f®1+1®2g).
If 0 = R, composing with multiplication in Q gives a functor
mfZ(Q. )@ mf"(Q,8) = mf*"™ (0, f +g).

We also have a duality functor D which determines an isomorphism of dg-categories

D :mf(Q, /)® = mf(Q,—f).

The functor D sends an object P = (P,8p) of mf(Q, f) to the object P* = (P*,—8})
of mf(Q,—f), and it sends an element @ of Hom(P,, P;)°® = Hom(P;, P,) to the ele-
ment a* of Hom(Py, P}"). Note that a*(y) = (=1)*I"ly o . If X € mfZ (X, £) for
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some closed Z C Spec(Q), then D(X) e mf4(X,—f).If X,Y e mf(Q, f), there is a
canonical isomorphism
Hom(X,Y) = D(X)®Y.

In particular, if X € mf4(Q, f)and Y e mfW (Q, f), we have

Hom(X,Y) e mf%2"%(0,0). (3.4)

3.2. The HKR map

Assume for the rest of Section 3 that char(k) = 0. Given a Z-graded complex (C*®, d)
of k-vector spaces, its Z/2-folding is the Z/2-graded complex whose even (resp., odd)
component is ;5 C 21 (resp., Dz C 2i+1y and whose differential is given by d.

Let Q'Q /i denote the Z./2-graded commutative Q-algebra given by the Z /2-folding
of the exterior algebra over 2 IQ k That is,

even __ 2j odd __ 2j+1
ok =Dy, ad Q. =Py
i F

We write (Q‘Q ke —df) for the Z/2-graded complex of Q-modules with underlying
graded Q-module Q’Q Jk and with differential given by left multiplication by —df € Q é k-
Let Z be a closed subset of Spec(Q/f). The goal of the rest of this section is to study,

for each triple (Q, f. Z), an HKR-type map,
£9.5z - HH(mf?(Q. f)) > RTz(Qy . —df ). (3.5)

Here, RI'z is the right adjoint of the inclusion functor Dg/z(Q) C Dz/2(0Q), where
Dz,/>(Q) denotes the derived category of Z/2-graded Q-modules, and D% /2(Q) C
Dz/>(Q) the subcategory spanned by complexes with support contained in Z. It will
be convenient for us to use the following Cech model for RI'z. Choose g1,...,8m € Q
such that Z = V(g1,...,8gm), and let

€="2€1....am) = Q (2 — Qll/&])

J

be the (Z/2-folding of the) augmented Cech complex. It is well known that € ®o M
models RI'z (M) forany M € Dz;»(Q); i.e., the functor

€ ®g —: Dz/2(Q) > DZ,,(0)

is right adjoint to the inclusion. From now on, given g1,..., g, € Q such that V(gq,...,
gm) = Z, we will tacitly identify RI'z (M) with € ® o M . Note that, for any Z /2-graded
complex M of Q-modules that is supported in Z, the natural morphism of complexes

CQoM—>M (3.6)
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given by the tensor product of the augmentation map € — Q with idys is a quasi-
isomorphism.

HKR maps for matrix factorization categories have been widely studied. Segal and
Cildararu—Tu give such an HKR map, involving Hochschild homology of the second kind
and without a support condition, in [14, Corollary 3.4] and [4, Theorem 4.2], respectively;
Efimov generalizes this result to the nonaffine setting in [6, Proposition 3.21]; and Preygel
gives a map just as in (3.5) (but also in the not-necessarily-affine setting), and proves it
is a quasi-isomorphism, in [11, Theorem 8.2.6 (iv)]. But [11] does not contain a concrete
formula for where the HKR map (3.5) sends an element of the bar complex computing
HH(mf%(Q, f)), and we will need such a formula later on. So, we develop our own
version of (3.5).

3.2.1. Quasi-matrix factorizations. Define a curved dg-category gmf(Q, f), the cate-
gory of quasi-matrix factorizations, in the following way.

e Objects (P, §p) are defined in the same way as those of m f(Q, f), except we remove
the requirement that 2 is given by multiplication by f.

e Morphisms are defined in the same way as in mf(Q, f).
e The curvature element of Endg .70, r) (P, dp) is 8}% - f.

mf(Q, f) is precisely the full subcategory of ¢gm f(Q, f) spanned by objects with triv-
ial curvature. Let gmf(Q, f)° denote the full subcategory of gmf(Q, f) spanned by
those objects (P, 5p) such that 6p = 0. Note that the curvature element of an object in
gmf(Q, f)°is — f. The pair (Q, 0) determines an object of gm f(Q, f)°, and its endo-
morphisms form the curved differential Z /2-graded algebra (Q, 0, — f). That is, we have
inclusions

mf(Q. f) = qmf(Q.f) <> qmf(Q, f)° < (0.0, f).

These functors are all pseudo-equivalences, in the language of [9, Section 1.5], and so, by
[9, Lemma A, p. 5319], the induced maps

HH' (mf (0. 1))
— HH''(qmf(Q. f)) «— HH" (qmf(Q. f)°) «<— HH''(0.0.—f)

are all quasi-isomorphisms.
A key point is that there is a (nonstrict) cdg-functor

(F.B):qmf(Q, f) = qmf(Q, f)°
given by F(P,8p) = (P,0) and B(p,s,) = Sp. The induced map

(F.B)x: HH' (qmf(Q. [)) — HH (qmf(Q. /)°)
sends gl |-+ |an], where o; € Hom((P;+1,8i+1), (P;,8;)), to

. . —_—— —_——— ——
Z (—1)10+m+l”()l()[81| |51 |051|52| |52 | |an| 80| |50]

i0,eersin>0
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3.2.2. The supertrace. Given a Z/2-graded finitely generated projective Q-module P,
define the supertrace map
str: Endg(P) — Q

as the composition

®
Endg(P) = P* @p P 222777, 4

for homogeneous elements y, p. Equivalently, for « € Endg (P) we have

tr(ag : Pg = Po) —tr(a; : Py — P1), if o has degree 0, and

, if o has degree 1.

str(a) = {

Here, tr is the classical trace of an endomorphism of a projective module. We extend str
to a map

str ®id

Endge (P ®9 Qi) = Endp(P) ®0 Q3 — Qg

Q/k

which we also write as str.
3.2.3. The HKR map without supports.

Definition 3.7. A connection on an object (P,8p) € gmf(Q, f) is a k-linear map
VP —>Qp, QP

of odd degree such that V(gp) = dgq ® p + ¢V (p), i.e., a superconnection, in the lan-
guage of [12]. Notice that the definition does not involve §p.

Choose a connection Vp on each object (P,0) € gmf(Q, f)°; we stipulate that the

connection chosen for Q € gmf(Q, f)° is the canonical one given by the de Rham dif-

ferential, d : Q — QIQ /- Define

& HH (qmf(Q. 1)) — Q0/k
by

1
¥ (olar |-+ lam]) = p str (crgery -+ - aryy ),

where, for « : (P1,0) — (P,,0), we seta’ = Vp, oo — (=D)¥lg o Vp,. By [2, Theo-
rem 5.18], £ gives a chain map

HH" (qmf(Q. )°) = (¢ —df )-

Then the composition

eC: HH' (0.0~ f) S HH (gmf(Q. 1)°) > (.~ ).
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where the first map is induced by inclusion, is given by the classical HKR map

qodqy---dq
e2(qola1++Ign]) = Z— " € Q.

In particular, £° is a quasi-isomorphism. (F, B) is also a quasi-isomorphism, since

amf(Q. £)° > qmf (0. ) L2 gmp0. £)°

is the identity.
We define the HKR map

eo,r  HH(mf(Q, f)) = (Qp,x. —df)
to be the composition

can

HH(mf(Q, ) = HH'" (mf(Q, f)) = HH' (qmf(Q. f))

LB HHI (gmf (0. £)°) 2> (10 —df ).

where “can” denotes the canonical map. A more explicit formula for g,  is given as
follows. Given objects (Py, &), - .., (Pn, 8y) of mf(Q, f) and maps
Py pp & 2 p, & p,
set V; = Vp,. Then
g0, f(aolar] -+ |on])
(_1)i0+~~~+in

L vt th

10yeeerin=>0

str (o (87)0er) -+ (8,)" ", (8)™).

where, just as above,
of =Vjoa; — (~1)®laj 0 Vjyy  (with Vayy = Vo),

and

Note that the sum in this formula is finite, since Qéz =0 for j > dim(Q).
Summarizing, we have a commutative diagram

HH(mf(Q, [)—HH" (mf(Q. )=HH" (gmf(Q. [))

:l(F,ﬂ)*
HH (gmf(Q. f)°)&HH'(0,0,—f)
:lgo /
(Rg/k,—df).
(3.8)
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Notice that this implies that g  is independent, up to natural isomorphism in the derived
category, of the choices of connections. In particular, the map on homology induced by
€9, s is independent of such choices.

We include the following result, although it will not be needed in this paper.

Proposition 3.9. If the only critical value of f : Spec(Q) — Al is 0, €9, s Is a quasi-
isomorphism.

Proof. By [9, Section 4.8, Corollary A], the canonical map
HH (mf(Q. f)) - HH' (mf(Q. f))

is a quasi-isomorphism. The statement therefore follows from the commutativity of dia-
gram (3.8). ]

3.2.4. The HKR map with supports. We now define the HKR map for a general closed
subset Z of Spec(Q). Composing ¢,y with the natural map induced by the inclusion

mf%(Q, f) Smf(Q, f) gives amap
HH(mf?(Q. f)) = (Q . —df )- (3.10)

By Proposition 3.2 (1) and (3.4), if X,Y e mf4(Q, f), Hom(X,Y) is a complex of Q-
modules whose support is contained in Z. (When f is a nonzero-divisor, this complex
is in fact supported on Z N Sing(Q/f).) It follows that each row of the bicomplex used
to define HH(mf%(Q, f)) is supported on Z. Since HH(mf?(Q, f)) is the direct
sum totalization of this bicomplex, we have that HH(mfZ4(Q, f)) is supported on Z.
Adjointness thus gives a canonical isomorphism

£g.nz - HH(mf?(Q. f)) = RI'z(Qy . —df)
in D(Q). In other words, g¢, 7,z is represented in D(Q) by the diagram

HH(mf?(Q. f)) <= RTzHH(mf%(Q. £)) > RT7(Rp,;. ~df ).

We will sometimes refer to eg, 7,z as just &, if no confusion can arise.

3.3. Relationship between the HKR map and the map I, (0)

When Q = C[xy,...,x,] and mt = (X1, ..., Xy) is the only singular point of the map
[ AL — Aéj, Shklyarov defines in [16, Section 4.1] an isomorphism

1;(0) : HH.(mf(Q. f)) —> Hu(Qp, . —df )

as follows. Let 47 be the endomorphism dga of the following matrix factorization (P, dp)
which represents the residue field Q /m in the singularity category of Q/f: choose poly-
nomials yq,...,y, € Q sothat f =), x;y;, let P be the Z/2-graded exterior algebra
over Q on generators ey, .. ., e,, and define a differential on P given by

Sp = inef + yie;.
3
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Here, e/ is the Q-linear derivation of P determined by e/ (e;) = §;;. By a theorem of
Dyckerhoff [5, Theorem 5.2(3)], the inclusion

LAy > mf(0, f)

is a Morita equivalence. Since Hochschild homology is Morita invariant, the induced map

it HHy(As) = HH(mf(Q, )

is an isomorphism.
From now on, we identify P with Q ®c A, where A = Ac(er,...,e,), and Af with
0O ®c Endc(A). Shklyarov defines a quasi-isomorphism

@ HH(Af) — (/1. —df)
as the composition

exp(—1[8 g
HH (A 200 gyt Ay 25 (@80 —df),

where

(_1)21' odd i |

&' (g0 ® ao[g1 ® 1|+ |gn @ ) = str(otg -+ - &tn)qodqn - -+ dn.

n!

Finally, /¢ (0) is the composition

HH.(mf(Q. f)) ~— HHy (A7) 2> Ho(RYr. —df).

Lemma 3.11. The map €' coincides with the map € s restricted to HH (End(P)) for the
choice of connection Vp defined as Vp(q @ a) = dq @ a. Thus, 17 (0) = gg, 7.

Proof. We have
£0,1(q0 ® @olqr ® a1] -+ |gn ® atn])

1
= —str ((go ® o) (dq1 ® @1) -+~ (dgn ® ay))

(—1)Xi tle]
I — str(eto + - @n)qodq1 - - dgn
(_I)Ziodd o |
= str(ao - -+ &n)qodq1 -+ - dgn. L]

3.4. Compatibility of the HKR map with taking duals

Shklyarov proves in [15, Proposition 3.2] that, for any differential Z /2-graded algebra -4,
there is a canonical isomorphism of complexes

@ : HH(A) —> HH(A®) (3.12)
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given by
aolai] - an] — (_1)H+Z1§i<jsn(lai\—1)(|aj|—1)agp[azp| |a<1>p]7

where, for a € 4, a°® denotes a regarded as an element of A°P. The same formula gives
an isomorphism

HH(E€) => HH(E™)

for any curved differential I'-graded category €, where I' € {Z,Z/2}.
Composing ® and D, where D is the dualization functor defined in Section 3.1, we
obtain the isomorphism of complexes

W HH(mf?(Q, f)) — HH(mf?(Q,—f)) (3.13)
given explicitly by
\p(ao[a1| |an]) — (_1)n+215i<j5n(|ai|_1)(|a/’|_1)a3[a;’;| |a>lk]_

Lemma 3.14. The diagram

HH(mfZ(Q. ) ~22% RT2 (Y. —df)

| |

HH(mf?(Q.~f)) 2% RT (R, df )

commutes in D(Q), where y is RT'z applied to the map whose restriction to QJQ /k is
multiplication by (—1)7 for all j.
Proof. The map ¢¢_ r,7 factors as
€o.f .
HH(mf?(Q, f)) = R[zHH (mf(Q, f)) — (Qpx.—df )

where the first map is the canonical one. £g _ 7, 7 factors similarly. Since the diagram

HH(mf?(Q. f)) —— RTzHH (mf(Q. f))
l\lf lRFz(‘l’)
HH(mf?(Q,~f)) —— RTzHH (mf(Q,—f))

evidently commutes, we may assume Z = Spec(Q).
Recall from (3.8) that g ¢ fits into a commutative diagram

HH(mf(Q, f)) —2= HH' (gmf(Q. f)°) <2 HH'1(0,0,~f)
2}0 = (3.15)

o, f )
(Q%k—df),
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where
O(colon| -+ lon]) = Y (=D Firag[8 oy |8 -+ Jen 85 ].
105eeesin=>0
i
. ——
Here, &' stands for §|--- |8.

The map ¥ extends to a map

W HH (gmf(Q, )°) — HH' (qmf(Q,—1)°)
using the same formula, and this map in turn restricts to a map
W HH'(0,0.—f) — HH'' (0.0, f)
given by

W(qolg1|-+-1ga)) = (1" O golgnl -+ Ig1].

We claim that the diagram

HH(mf(Q, f)) —2— HH'I (qmf(Q, f)°) <2~ HH'I(0.0.~f)

B ! e

HH(mf(Q,~f)) —2—= HH'I (qmf(Q,~)°) +— HH'1(0,0, f)

commutes. This is evident for the right square. As for the left, the element og[oy | - - oty ]
is mapped via W o 6 to

T () (a0 D g (53 0 |(83) e (57

10yeeerin=>0

where I = iy + - -+ + i,. The sign is correct since |§;| — 1 is even for all i. The map 6 o ¥
sends agfay |-+ o] to

Z (_1)1(_1)n+215i<j5n(|05i‘—1)(|05j|_1)a8‘ [(_88‘)]0|a:| v |(_8;)j"_1 |a;k|(_8{")*]’

JOseees Jn=0

where J = jo + --- + j,. The reason for the minus sign in (—81’-")" is that the differential
of (P,d)* is —d*. Since these two expressions are equal, the left square commutes.

Using the commutativity of the diagrams (3.15) and (3.16), it suffices to prove that the
square

HH'1(0,0,—f) —X— HH'1(0,0, f)

( 0/k —df) — (Qb/kvdf)
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commutes. This holds since Q'Q Jk is graded commutative, so that

n

2(qolq1]-++1gn]) = qodq1 -+ dqy
"+(2)
Lqoa’qrn ~dq1
= ngIJ(¢Io[¢11| - +1gn]). m

3.5. Multiplicativity of the HKR map

Let (Q, f,Z) and (R, g, W) be triples consisting of an essentially smooth k-algebra,
an element of the algebra, and a closed subset of the spectrum of the algebra. The tensor
product of matrix factorizations (Section 3.1), along with the Kiinneth map for Hochschild
homology of dg-categories (Section 2.4), gives a pairing

—HH(mf?(Q, f)) @ HH(mf" (R, g))
- HHmf>"(Q &k R, f®1+1®g)). (3.17)

Write f + g for the element f ® 1 + 1 ® g € Q ®; R. Multiplication in Q%
defines a pairing of complexes of Q ®; R-modules

— A= (Qyk—df) @k (k- —dg) = (e, vk —4f —dg).

We compose this with the canonical maps ]RFZ(Q'Q/k, —df) — (QQ/k’ —df) and
RTW(Q;/,C, —dg) — (Q;e/k’ —dg) to obtain the map

O®rR/k

]Rl"z( .Q/kv —df) Rk RFW(Q;Q/k, —dg) - (Q.Q@)kR/k’ —df — dg).
The source of this map is supported on the closed subset Z x W of Spec(Q ®x R) =
Spec(Q) xx Spec(R). Thus, by adjointness, we obtain a pairing
- er( .Q/k’_df) Ro Rrw( R/k* dg)
— RTzxw (Ry e, r/k —4f —dg). (3.18)

A key fact is that the pairings (3.17) and (3.18) are compatible via the HKR maps.
Proposition 3.19. The diagram

H(mfZ(0. 1)) & HH(mfY (R, g) —2L22 " R (@2, —df) @k RTw (@ 4. —d2)

EQ®y R.f+8,ZxW
HH(mf?Y(Q @k R, f + 2)) - RTZzw (g, gyi —df — dg)

in D(Q ®i R) commutes.
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Proof. 1t is enough to show the diagrams

HH(mf?(Q, )@ HH(mfY (R, g)) — RTzHH (m[(Q., f)) @ RTw HH (mf (R, g))

g -]

HH(mf?W(Q®k R, f+8) ————— RTzxwHH(mf(Q & R. f +¢))
(3.20)
and

RTzHH (mf(Q, ))@xRIw HH (mf(R,g)) — RIz(Qy;, —df ) ®xRTw (2. —dsg)

RIzxw HH (mf(Q ®k R. [ +8)) ————— RTzuxw (R g, g5 —df — dg)

(3.21D)
commute. Here, the right-most vertical map in (3.20) (which coincides with the left-most
vertical map in (3.21)) is defined in a manner similar to the map (3.18), and the horizontal
maps in (3.20) are the canonical ones. The commutativity of (3.20) is clear. As for (3.21),
it suffices to show the diagram

HH (mf(Q. f)) ® HH (mf(R.8) — 21" (% . ~df ) @k (2. ~ds)

HH (mf(Q ® R. f +8)) A (e, r/k—df —dg)

in D(Q ®x R) commutes. Factoring the HKR maps as in diagram (3.8), it suffices to
show the squares

HH(mf(Q. f)) @ HH(mf(R,g)) —— HH" (qgmf°(Q, f)) ® HH" (gmf°(R, g))

| |

HH(mf(Q®k R, f +8) ———— > HH (qmf°(Q ®« R. f + 8))
(3.22)
and

Qe

HH'" (gmf(Q. f)) ® HH'! (qm[ (R, g)) ——— (- —df) @k (/- —d2)
HHII(qu(Q Qr R, [+ g)) E—o) (Q.Q®kR/k’_df —dg)
commute. It follows immediately from Lemma 2.7 that (3.22) commutes. The square

HH"(Q,—f) ® HH'I(R,—g) ——— HH" (qmf(Q, f)) ® HH'! (gmf(R,g))

l_;_ _;_l (3.24)

HH'(Q ®¢ R.—f —g) ————————— HH'I (qmf(Q ® R. f + g))
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evidently commutes, and concatenating this diagram with (3.23) gives a commutative dia-
gram. It follows that (3.23) commutes. [

For an essentially smooth k-algebra Q, any element f € Q, and any pair of closed
subsets Z and W of Spec(Q), there is a pairing

HH(mf%(Q. f)) x HH(mf" (0, - 1)) BN HH(mf*"(Q.,0)) (3.25)

defined by composing the Kiinneth map
HH(mf?(Q. f)) x HH(mf"(Q.~))
S HHmf>Y Q@ 0. f ®1-18 f))

with the map
HH(mfZ"(Q & 0. f ®1-1® f)) - HH(mf%"(Q.0))

induced by the multiplication map Q ® Q — Q. The previous result, along with the
functoriality of the HKR map, yields the following corollary.

Corollary 3.26. The diagram

HH(mfZ(Q, 1)) @ HH(mf" (Q,~f)) ~2L222 2 Ry (@3, —df) ®k RTw (4. df)

| I

. £€0,0,znw
HH (mf#""(0.0)) RTzaw QY

in D(Q ®i Q) commutes.

We will be especially interested in the case where Z N W = {w}.

4. Proof of Shklyarov’s conjecture

Throughout this section, we assume
e kisafield,
e (Q isaregular k-algebra, and

e 1w is ak-rational maximal ideal of Q; i.e. the canonical map k — Q/wm is an isomor-
phism.

Let us review our progress on the proof of Conjecture 1.4. Recall from the introduction
that, to prove the conjecture, it suffices to show that diagram (1.9) commutes, the compo-
sition along the left side of this diagram computes the pairing 7., s, and the composition
along the right side computes the residue pairing. So far, we have shown the two interior
squares of (1.9) commute: this follows from Lemma 3.11, Lemma 3.14, and Corollary
3.26. In this section, we show the left side of the diagram gives the canonical pairing 1,
(Lemma 4.23), the right side of the diagram gives the residue pairing (Proposition 4.34),
and the bottom triangle commutes (Theorem 4.36).



M. K. Brown and M. E. Walker 1502

4.1. Computing HH(mf™ (0, 0))

We carry out a calculation of the Hochschild homology of the dg-category m f ™ (Q, 0) that
we will use repeatedly throughout the rest of the paper. Let n denote the Krull dimension

of Q. We recall that a sequence xi,...,x, € m is called a system of parameters if
X1,...,Xp generate an m-primary ideal, and a system of parameters is called regular if
the elements generate 1.

Fix a regular system of parameters xy,. . ., x, for O, and set K = Kosg,, (x1,...,Xz)

e mf™(Qmu,0), the Z/2-folded Koszul complex on the x;’s. Explicitly, K is the dif-
ferential Z /2-graded algebra whose underlying algebra is the exterior algebra over Q4
generated by ey, ..., e, with dX(e;) = x;. The differential Z/2-graded Q-algebra
& :=End,, rm(p,,,0)(K) is generated by odd degree elements ey, ..., e, €7, ..., e, satis-
fyinge? = 0 = (¢f)?, [ei,¢;] = 0 = [e]", e}], and [¢;, e}] = &;; and the differential de€is
determined by the equations d € (¢;) = x; and d € (e]) = 0. Let A be the dg-k-subalgebra
of & generated by the . So, A is an exterior algebra over kK on n generators, with triv-
ial differential. The inclusion A C & is a quasi-isomorphism of differential Z /2-graded
k-algebras. Since A is graded commutative, HH.(A) is a k-algebra under the shuffle
product, and, by a standard calculation, there is an isomorphism

A @k k[V1s. ... vn] — HHy(A), 4.1

of k-algebras, where e/ ® 1 = e/[], and 1 ® y; — 1[e/]. Here, and throughout the paper,
we use the notation o[] to denote an element of a Hochschild complex of the form
aplay] - |ay] withn = 0.

Lemma 4.2. The canonical morphisms

€ = mf™(Qum.0) 4.3)

and
mf™(Q,0) = mf™(Qm,0) “4.4)

of dg-categories are Morita equivalences. In particular, one has canonical quasi-
isomorphisms

HH(A) = HH(mf™(Qu,0)) < HH(mf™(Q,0)). 4.5)

Proof. To prove (4.3) is a Morita equivalence, we prove the thick closure of K in the
homotopy category [m f ™ (Qw,0)] is all of [mf™(Qn, 0)]. Let D denote the derived cat-
egory of all Z/2-complexes of finitely generated Q,-modules whose homology groups
are finite dimensional over k. Since Q. is regular, it follows from [1, Proposition 3.4]
that the canonical functor

[mf™(Qw.0)] — D

is an equivalence. It therefore suffices to show Thick(K) = D; in fact, we need only show
every object in  with free components is in Thick(K).
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Let X be an object of £ with free components. We may assume that X is minimal,

i.e., thatk ®¢,, X is a direct sum of copies of k and Xk. The isomorphism K SkinDd
induces an isomorphism

K ®g, X = k®g, X,
and therefore K ® g,, X € Thick(k). It thus suffices to prove X € Thick(K ®¢,, X).

Since
K ®Qm X = KOSQm (X]) ®Qm Tt ®Qm KOSQm (xn) ®Qm X’

it suffices to show that, for every ¥ € £ whose components are free Q,-modules, and
every x € m \ {0}, Y € Thick(Y/xY). Using induction and the exact sequence

0—Y/x" 'Y 5 Y/x"Y — Y/xY — 0,

we get Y /x"Y € Thick(Y/xY) for all n. Observing that Endg (Y )[1/x] = 0, choose n >
0 such that multiplication by x” on Y determines the zero map in . The distinguished
triangle

Y S5 Y 5> Y/x" > XY
in O therefore splits, implying that ¥ is a summand of Y /x". Thus, ¥ € Thick(Y/x") C
Thick(Y/xY).
As for (4.4), the functor [mf™(Q, 0)] — [mf™(Qm, 0)] is fully faithful, since
Homy, fm(g,0)(X, ¥) is supported in {m} for any X, Y. It follows that the induced map

[mf™(Q,0]“™ = [mf™(Qum,0)]*" (4.6)

on idempotent completions is fully faithful, so we need only to show that (4.6) is essen-
tially surjective. By the above argument, it suffices to show that X is in the essential image
of (4.6). Choose a Q-free resolution F of k; Fy, is homotopy equivalent to the Koszul
complex on the x;’s, and so the Z /2-folding of Fy, is isomorphic to K in [mf™(Qm, 0)].

(]

Remark 4.7. Let @ denote the nt-adic completion of Q. Letting @ play the role of Q in
Lemma 4.2 implies that the inclusion

Endmfm(’Q\’O) (K ® Q0w Q) — mfm(Q’O)

is a Morita equivalence. The same proof that shows the map (4.4) in Lemma 4.2 is a Morita
equivalence shows the canonical map

mf™(Q,0) — mf™(Q,0)

is a Morita equivalence.
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4.2. The trace map

We define an even degree map
trace : HH,(mf™(0Q.0)) —> k

of Z/2-graded k-vector spaces, with k concentrated in even degree, as follows. Let
Perfz,, (k) denote the dg-category of Z/2-graded complexes of (not necessarily finitely
dimensional) k-vector spaces having finite dimensional homology. There is a dg-functor
mf™(Q,0) — Perfz,, (k) induced by restriction of scalars along the structural map k —
Q that induces a map

u: HHy(mf™(Q,0)) - HH,(Perfz,,(k)),
and there is a canonical isomorphism
v:k —> HH,(Perfz,(k))

given by a + a[]. Here, k is considered as a Z /2-graded complex concentrated in even
degree, and, on the right, a is regarded as an endomorphism of this complex. We define

trace := v lu.

In the rest of this subsection, we establish several technical properties of the trace map
that we will need later on.

Given an object (P,8p)em f™(Q,0), there is a canonical map of complexes End(P)—
HH(mf™(Q,0)) given by @ — «[] and hence an induced map

H,(End(P)) — HH.(mf™(Q,0)). (4.8)

Proposition 4.9. If (P,8p) € mf™(Q,0), and «a is an even degree endomorphism of P,
the composition

trace

Ho(End(P)) 5 HHo(mf™(Q.0)) = k
sends « to the supertrace of the endomorphism of H.(P) induced by «:

trace («[]) = str (H« () : He(P) — H«(P))
= tr (Ho(e) : Ho(P) — Ho(P)) —tr (Hi () : H{(P) — Hi(P)).
In particular,

trace (idp[]) = dimyg Ho(P) — dimy H;(P).

Proof. Let Vectz,» (k) denote the subcategory of Perfz,, (k) spanned by finite-dimensional
Z/2-graded vector spaces with trivial differential. It is well known that the inclusion
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Vectz»(k) < Perfz,(k) induces a quasi-isomorphism on Hochschild homology. Com-
posing the map End(H«(P)) — HH.(Vectz,»(k)) given by a — «[] with the canonical
map Hy(End(P)) — End(H«(P)) gives a map

H.(End(P)) — HH,(Vectz(k)). (4.10)

We first show that the square

H, (End(P)) — HH,(mf™(Q.0))

1(4.10) lu 4.11)

HH, (Vectzs(k)) —=— HH,(Perfz,(k))

commutes. Let 8 be an even degree cycle in End(P), and let H.(B) denote the induced
endomorphism of H«(P). We must show the cycles B[] and H.(B)[] coincide in
H H(Perfz,,(k)). To see this, choose even degree k-linear chain maps

t:Hy(P)—> P, mw:P — H.(P)

such that
e mot=idgy,(p),and

e (o7 is homotopic to idp via a (Z/2-graded) homotopy 4, i.e.,
tox —idp =8poh+hodp.
Applying the Hochschild differential b to
7[B o] € Hom (P, H«(P)) ® Hom (H.(P), P) € HH (Perfz,(k)),
we get

b(rlpod) = (b2 +bi)(w[Bou]) = ba(n[B o) = (wopo]—(onop)]
= Hu(B)[] = (Lom o B)[].

Next, observe that

(b2 + b1)((h o B)I1) = bi((ho P)I]) = (Lom o p—PII.

It follows that diagram (4.11) commutes.
The isomorphism

vk = HH,(Perfz, (k)

factors as

k = HH.(k) = HH.,(Vectzy(k)) — HH,(Perfz,(k)),
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where each map is the evident canonical one. There is a chain map H H (Vectz,(k)) —
HH (k) given by the generalized trace map described in [14, Section 2.3.1] and an evident
isomorphism HH, (k) — k. It follows from [14, Lemma 2.12] that composing these
maps gives the inverse of

k => HH.(k) = HH.(Vectz,(k)).

As discussed in [14, P. 872], the generalized trace sends a class of the form og[] to
str(ag)[]. The statement now follows from the commutativity of (4.11). L]

Remark 4.12. If Z and W are closed subsets of Sing(Q/f) that satisfy Z N W = {wm},
then, from (3.25), we obtain the pairing

HH.(mf%(Q. £)) x HHx(mf" (Q, = f)) = HH.(mf™(Q,0)).
By Proposition 4.9, given X € mf%(Q, f)and Y € mf" (Q,—f), the composition

Hy(End(X)) x Hy(End(Y)) — HH\(mf%(Q, f)) x HHy(mf" (0.~ f))

X HH (mf™(Q,0)) —> k

sends a pair of endomorphisms («, ) to tr(Ho (e ® B)) — tr(Hy (@ ® B)). In particular, it
sends (idy, idy) to

0(X,Y) := dimy Ho(X ® Y) —dimg H1 (X ® Y).

Recall from Subsection 4.1 the folded Koszul complex K and the exterior algebra
A € Endy, fm(g,,,0)(K). Denote by n : A — k the augmentation map that sends e* to 0.

Proposition 4.13. The composition

HHL(A) 25 HHy(mf™(Qu. 0) = k (4.14)
coincides with
HH, =
HH.(A) 22 il ) Ss k. 4.15)

where the second map in (4.15) is the canonical isomorphism. In particular, if
aolor] - -+ |an] is a cycle in HH(A), where n > 0, the map (4.14) sends agloy| -+ |otn]
10 0.

Proof. 1f C is a Z-graded complex, denote its Z/2-folding by Fold(C). Similarly, given
a differential Z-graded category €, define a differential Z /2-graded category Fold(€)
with the same objects as € and morphism complexes given by taking the Z /2-foldings
of the morphism complexes of €. In this proof, we use the notation HHZ(—) (resp.,
HHZ/2(—)) to denote the Hochschild complex of a differential Z-graded (resp., Z/2-
graded) category. We observe that, if € is a differential Z-graded category,

Fold (HHZ(€)) = HHZ/?(Fold(€)). (4.16)
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Let Perf™ (Q) denote the dg-category of perfect complexes of Q-modules with support
in {m}, and let Perfz (k) denote the differential Z-graded category of complexes of (not
necessarily finite dimensional) k-vector spaces with finite dimensional total homology. As
in the Z /2-graded case, there is an isomorphism

Tk = HHE (Perfz(k)),

where k is concentrated in degree 0, given by a — a[].

Let K denote the Z-graded Koszul complex on the regular system of parameters
X1, ..., Xy for Qu chosen in Subsection 4.1, so that the Z /2-folding of K is K. Sim-
ilarly, denote by A the subalgebra (with trivial differential) of End(%), defined in the
same way as A, so that the Z /2-folding of A is A. Notice that every ¢; appearing in our
cycle apforq| - - - |y ] can be considered as an element of A.

We consider the composition

HHZ(A) - HHZ(End(K)) — HHZ (Perf™(Q))

’v"—l
— HHE (Perfz(k)) SOy (4.17)

of maps of Z-graded k-vector spaces. We claim (4.17) coincides with the composition
HHZQR) — HHZ(k) = k, (4.18)

where the first map is induced by the augmentation map A — k. We need only check this
in degree 0. H HOZ (K) is a 1-dimensional k-vector space generated by idg[]. The map
(4.18) sends idg[] to 1, and, by (the Z-graded version of) Lemma 4.9, the map (4.17)
does as well.

Applying Fold(—) to (4.17), and using (4.16), we arrive at a composition

HHZ2(A) — HHE/?(Fold (Perf™(Q))) — k

of maps of Z/2-graded complexes of k-vector spaces, which may be augmented to a
commutative diagram

HHZ?(A) —— HHZ?(Fold (Perf™(Q))) k

R l trace (4.19)

HH?(mf™(0.0)).

On the other hand, applying Fold(—) to (4.18), and once again applying (4.16), we get the
map (4.15). [

Lemma 4.20. Suppose Q and Q' are regular k-algebras, and m C Q, m/ C Q' are k-
rational maximal ideals. Let g : Q — Q' be a k-algebra map such that g~ (m’) = m,
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the induced map Qw — Q. is flat, and g(m)Q; , = m' Q" ,. Then g induces a quasi-
isomorphism

gx  HH(mf™(Qum.0)) — HH(mf™ (Q.0)),
and
traceQ/n/ ogx« = traceg,, -

Proof. Let @ (resp., /Q\’) denote the m-adic (resp., m’-adic) completion of Q (resp., Q).
The assumptions on g imply that it induces an isomorphism @ = /Q\’ The first assertion
follows since the canonical maps

HH.(mf™(Qw,0)) — HH«(mf™(0,0))

and
HHy (mf™ (Qly, 0)) — HH,(mf™(Q',0))
are isomorphisms by Remark 4.7.

As for the second assertion, let n = dim(Q+, ), choose a regular system of parameters
X1,...,Xn of O, and construct the exterior algebra A using this system of parameters,
as in Subsection 4.1. The hypotheses ensure that g(x;), ..., g(x,) form a regular sys-
tem of parameters for Q! ,, and we let A’ be the associated exterior algebra. We have a
commutative diagram

/7
m’?

HH.(A) = HH.(A\)

F F

HH, (mf™(Qm.0)) —— HH.(mf™ (0. 0)),

m'’

where the vertical isomorphisms are as in Lemma 4.2. By Proposition 4.13, it now suffices
to observe that the composition

HH,.(A) = HH,(A)) — k,

where the second map is induced by the augmentation A" — k, coincides with the map
induced by the augmentation A — k. ]

Lemma 4.21. Suppose Q, Q are essentially smooth k-algebras and m/ C Q', m” C Q"
are k-rational maximal ideals. Set Q = Q' @i Q" and m = m’ Q@ Q" + Q' ®; m”.
Then Q is an essentially smooth k-algebra, w is a k-rational maximal ideal of Q, and
the diagram

HH, (mf™ (Q/y,0)) ®k HHy(mf™ (QL1,0)) —— HHy(mf™(Qu, 0))

m// £

trace ® tracel lt.race

k ®x k k

IR

commutes.
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Proof. The first two assertions are standard facts. As for the final one, let n” and n”” denote

s s !/ "
the dimensions of Q7 , and Q7 ,, resp. Choose regular systems of parameters X, .. ., X’
and yq,..., ypr of Q;n, and Q;’n,,, resp., so that xi, ..., Xy, V1, ..., ypr form a regular

system of parameters of Q. As in the proof of Lemma 4.20, let A, A’, and A” be exterior
algebras associated to these systems of parameters, as constructed in Subsection 4.1. By
Lemma 2.7, we have a commutative square

HH(A') ® HH(N") —— HH,(mf™ (Q’.,,0)) ® HH.(mf™ (Q”,.0))

HH.(A) HH(mf™(Qw.0)),

where the horizontal isomorphisms are as in Lemma 4.2. By Proposition 4.13, it now
suffices to observe that the composition

IR

A S N ey A >k,

where the second map is the tensor product of the augmentations, coincides with the aug-
mentation A — k. u

4.3. The canonical pairing on Hochschild homology

A k-linear differential Z /2-graded category € is called proper if, for all pairs of objects
(X,Y),dimg H; Home(X,Y) < oo fori =0, 1.

Definition 4.22. For a proper differential Z /2-graded category €, the canonical pairing
for Hochschild homology is the map

ne(—,—): HH.(€) @x HH.(€) — k

given by the composition

HH.(€) @ HH.(€) 2225 HH,.(€) ®; HH.(C®) > HH,(€ @ €™)
HH((X,Y)~Home (Y, X))

HH,(Perfz5(k)) <— k,
where @ is the map defined in (3.12).
When Sing(Q/ f) = {m}, mf(Q, f) is proper, so we have the canonical pairing
g+ HHo(mf(Q. 1)) @k HHL(mf(Q. f)) — k.

Lemma 4.23. When Sing(Q/f) = {m}, nyys coincides with the pairing given by the
composition

HH.(mf(Q. f)) ® HHx(mf(Q. f))

1O HH.(mf(Q. £)) ®k HH.(mf(Q.—f)) <> HH.(mf™(Q.0)) = k.

where WV is defined in (3.13).
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Proof. By Lemma 2.7, there is a commutative square

HH((d)®HH(D)
_—

HH,(mf(Q. f)) ® HHx(mf(Q. f)™) HH,(mf(Q. /) & HHx(mf(Q.~f))

K |-

HH.(mf(Q, f) @k mf(Q, f)) HHWSD) HH, (mf(Q. f) @ mf(Q.—f).

where D is the dg-functor defined in Subsection 3.4. Therefore, it suffices to show the
composition

HH(mf(Q. f) &k mf(Q. 1)) 225 HH,(mf(Q. ) &k mf(Q.— 1))

can

—_— HH*(mfm(Q, 0))

Forget

——> HH, (Pel’fz/z(k))
coincides with the map induced by the dg-functor

mf(Q, f) ®x mf(Q, ) — Perfz» (k)

given by (X, Y) — Hom,, (Y, X), and this is clear. ]

4.4. The residue map

Assume that Q is an essentially smooth k-algebra and m is a k-rational maximal ideal
of Q. Let n be the Krull dimension of Q.. In this subsection, we recall the definition of
Grothendieck’s residue map

res® : H Q0 /¢) =

and some of its properties. Recall from Subsection 3.2 that for any system of parameters
X1,...,Xy of O, we have a canonical isomorphism

Hy (%, 1) = H'(€(x1,..., X0) ®0,0 QB /1)- (4.24)

We will temporarily use Z-gradings and index things cohomologically, using superscripts.
In particular, SZ'Qm Ik is a graded Qy-module with Qém Jk declared to have cohomologi-
cal degree j .

We introduce some notation that will be convenient when computing with the aug-
mented Cech complex. First form the exterior algebra over Qw[1/x1. . ..,1/x,] on (coho-
mological) degree 1 generators oy, ..., &y, and make it a complex with differential given
as left multiplication by the degree 1 element ) ; o;. We identify €(x1, ..., x,) as the
subcomplex whose degree j component is

1
@ Qm - ail"'aij~
'xil ---xl'

i <---<ij J
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Define | 1
X1,...,1/x
E(xl,u-,xn) = Qm[ / 1 A/ n] )
2 OQull/x1,. o 1/x5, .00 1/ X]
Since x, ..., X, is a regular sequence, there is an isomorphism

E(x1,...,Xn) = H"(€(x1,...,xp))

sending g to gay --- o, for g € Qw[l/x1,...,1/x,]. Using that Q'ém/k is a flat Q-
module, we obtain the isomorphism

H”(‘G(xl, coXn) Q0 Q’ém/k) = E(X1,...,%Xn) ®0p Q'ém/k. (4.25)
Every element of E(x1,...,X,) ®0,, Qan/k is a sum of terms of the form
1
—ai_ _an X w
xl ---xn

witha; > landw € Q”Qm ke and this element corresponds to

a -..a
—ar——ar ®w € H"(E(x1,....xn) ®0, 1) (4.26)
n

x?l .o x
under the isomorphism (4.25).

Definition 4.27. Given a system of parameters Xy, ..., X, for Oy, integers a; > 1 for
eachl <i <np,and an n-form w € Q’ém /K the generalized fraction

@ n n
|:x’1“, N } c Hm(QQm/k)
is the class corresponding to the element in (4.26) under the canonical isomorphism (4.24).

To define Grothendieck’s residue map, we now assume that xi, ..., x, is a regular
system of parameters. Since tu is k-rational, the mi-adic completion Q of Q is isomorphic
to the ring of formal power series k[[x1, ..., X,]], and a basis for E(xy,...,x,) as a k-

. 1 ) n ;
vector space is given by the set { ey | a; > 1}. We also have that Ow/k 182 free

QO y-module of rank one spanned by dx - - - dx,. It follows that the set
dxy---dx
X1 e Xg"

Definition 4.28. Grothendieck’s residue map res% : H{;(Q”Q / «) — k is the unique k-
linear map such that, if xy, ..., x, is a regular system of parameters of Qy,, then

is a k-basis of H{;(Q'ém/k).

(4.29)

al a
X1 e, Xn"

res@ [ dox; --- dx } _ |1 ifa; = 1foralli,and
0 otherwise.



M. K. Brown and M. E. Walker 1512

See [7, Theorem 5.2] for a proof that this definition is independent of the choice of
X1y, Xn.

We now revert to the Z /2-grading used throughout most of this paper. In particular, we
regard SZ'Qm Jpasa Z/2-graded Qy,-module with Qém /i located in degree j (mod 2),
and we use subscripts to indicate degrees.

Definition 4.30. The residue map for the Z /2-graded Qy,-module Qbm Jk is the map
res = resQ m Hz,,RFm(Q'Qm/k) — k,

defined as the composition

resG

HpnRTw (R, /x) = HanRTw (E7"Q%, 1) = Hi (5, /1) — k.
where the first map is induced by the canonical projection Q'Qm k> DI Q"Qm k-
We will need the following two properties of the residue map.

Lemma 4.31. Suppose Q and Q' are essentially smooth k-algebras and m € Q, m' € Q'
are k-rational maximal ideals. Let g © Q — Q' be a k-algebra map such that g~ (m’) =
m, the induced map Quw — Q. is flat, and g(m)Q'., = m' Q. ,. Then Qu and Q'
have the same Krull dimension, say n, g induces an isomorphism

8x . HanFm (Q.Qm/k) i) HanFm,(Q.Q;n,/k)
of k-vector spaces; and one has

€SO/ m/ Ogx = T€SQ 1 -

Proof. Letxy,..., X, be aregular system of parameters for Q, and set x; = g(x;). The
assumptions on g give that x, ..., x, form a regular system of parameters for Q ,, and
hence the induced map on completions is an isomorphism. The first two assertions follow.

The map E(x1,....%,) @0y, Qan/k — E(x},...,x}) ®g Q’é,m//k induced by g

sends % ® dxy ---dx, to the expression obtained by substituting x; for x;, and thus
s
dxy---dxy _ dx---dx),
S ST R N TN A T |
The equation res g’y 08« = resg, m follows from (4.29). ]

Lemma 4.32. Ler (Q', ), (Q”,m”), and (Q,m) = (Q' ® Q" m' @ Q0" + Q' ®y
wm”) be as in Lemma 4.21. Set m = dim(Q") and n = dim(Q"). The diagram

HZmRFm (Q.Q/m//k) Rk HZnRFm”(Q.Q;/“”/k) % H2m+2nRFm (Q.Qm/k)

res o/ ! ®resQ//,m//l lresg’m

k ®x k k

IR

commutes up to the sign (—1)™",
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Proof. Tt suffices to prove that the analogous diagram given by replacing Q°%,  and

QQ/, K with QQ, Ik and QQ,, commutes. Let x7,...,x,, and x{,...,x} be regular
systems of parameters for Qv and Q- Then, upon identifying x/ and x; with the
elements x; ® 1 and 1 ® x’ of O, the sequence x}, ..., x,,,x{,...,x; forms a regular

system of parameters for Q.. We use these three regular systems of parameters to identify

HypRTw (7, ) with Hpp (€(x1, ..., X;,) Qg SZ’S, /k) and similarly for Q” and
w//k b m/

Q. Under these identifications, the map labeled A in the diagram sends

! ! . l/

a "'C{ a
S Qdx} - dx, ® — . ~@dxy---dx,
luv-xm 'xl . n
to Y
oo o
mn 1 ’ " "
-1 @ dx| - dxpdxy - dxy,,

cexh xf e xlh
with the sign arising since the dx]’s and a” ’s have odd degree. The result now follows

from Definition 4.27 and (4.29). [

4.5. The residue pairing

We assume Q, k, and m are as in Subsection 4.4. All gradings in this section are 7 /2-
gradings. Fix f € Q, and assume Sing( f : Spec(Q) — Al) = {m}. Then the canonical
map

(Q%k-—df) = (2%, k- —df)

is a quasi-isomorphism, and the only nonzero homology module is

Qo owk

df NQ L T df AQ

located in degree n := dim(Qy,). Choose a regular system of parameters
X1seeor Xp € Q.
Then dxq,...,dx, forms a Q,-basis for Q ke and we write

01,...,0, € Derg(Qm) = Homg,, (QlQm/k’ Qm)

for the associated dual basis. Set f; = 0;(f). The sequence fi,..., f, forms a system of
parameters for Q. For example, when Qw = k[x1,...,Xs](x,,... x,)» Wehave d; = 3/0x;,

so that f; = df/0x;.

.....

Definition 4.33. With the notation of the previous paragraph, the residue pairing is the

map

Q" Q7

. Q/k Q/k
N TNy BTN T
0/k 0/k

ghdx - dx,,]

that sends a pair (gdxy ---dx,, hdxy ---dx,) to resC [ g~
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Proposition 4.34. The residue pairing coincides with the composition

QnQ/k Q'z?/k — H, ( df)XH ( . df)
k> k»—
df AQUIE " df AQI L o/ o/

= H, (QY,. k> —4f ) x Ha (R, /x> —df)
idx(—1)"

H"(QYy, e —df) x H (Y, /- df)
< H,RT, (R, /5 —df) x Ha(Qy,, /5 df)

Kunneth HZn(RF ( Ow/k> df) ®Qm (Q'Qm/k’df))

res
— k

In particular, it is well defined and independent of the choice of regular system of param-
eters.

Proof. We need a formula for the inverse of the canonical isomorphism
H,RTw (R, /5 —df) = H, (Y, k> —4f). (4.35)

Since the isomorphism is Q,-linear, we just need to know where the inverse sends dx; A

-+ A dxy. Note that €(x1, ..., X,) Qg Q'Qm Jk is a graded-commutative Q,-algebra
(but not a dga), and the differential is left multiplication by ) ; o; — f;dx;. Observe that
the element

a)::( f1a1+dx1)(—%a2+dx2)---( fnan—i-dx,,)

= (=" Iy (a1 — fidx1)(az — fadxz) - (an — fodxy)
et ®Qm (QQm/k’ _df)

is a cocycle, and it maps to dx1 A --- A dx, € H, (2%
the composition

Ow/k’ —df’) via (4.35). Therefore,

Q7 Q" ~

0/k o/k = . .
— Ha(QY 5o —df) x Hy(Q%, 1. —d

df AQ% L df AQG L n(Q0 ko —af) X Ha (R, /5 —df )

idx(—1)"

Hn( .Q /k’ df)XH( Qm/k’df)
< Hy (€ ®g,, (W, /5 —df)) x Ha(Q, /& df)

Kunneh ° .
l HZ"(€®Qn1( Qm/k’_df)®Qm (QQm/k’df))
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sends (gdxy---dx,, hdxy---dx,) to
gl_[( — +dx,)®(—1)”hdx1/\~-'/\dxn.

Under the composition

2”(6 QO ( [0) I/k’_df) Q0w (Q.Qm/k’df))
A H2n ('6 ®Qm (Q.Qm/k’o)) i E ®Qm Q,ém/k’

this element maps to
gh
fie fu

which is sent to res® [w

Qdxi A Ndxy,

] € k by the residue map. |

......

4.6. Relating the trace and residue maps
Our goal in this subsection is to prove the following theorem.

Theorem 4.36. Let k be a field of characteristic 0, Q an essentially smooth k-algebra,
and w a k-rational maximal ideal of Q. Then the diagram

HHO mfm(QmO) —> Hz,,RFm

(- 1)n(nm /

commutes, where n = dim(Qy,).

Q /k)

Our strategy for proving this theorem is to reduce it to the very special case when
Q = k[x] and m = (x) and then to prove it in that case via an explicit calculation.

Lemma 4.37. Given a pair (Q, m) and (Q’, w') satisfying the hypotheses of Theorem
4.36, suppose there is a k-algebramap g : QO — Q' such that g~ (m') = m, the induced
map Qu — Q. is flat, and m Q. , = m’ Q" ,. Then

(1) Theorem 4.36 holds for (Q, m) if and only if it holds for (Q', w');

(2) Theorem 4.36 holds provided it holds in the special case where Q = klt1, ..., ;]
and m = (t1,...,1t,).

Proof. (1) follows from Lemmas 4.20 and 4.31 and the naturality of the HKR map ¢. As
for (2), for (Q, m) as in Theorem 4.36, applying (1) to the map g : Q — Q, allows us
to reduce to the case when Q is local. In this case, let xy, ..., x, be a regular system of
parameters for Q, define g : k[t1,...,t,] — O to be the k-algebra map sending #; to x;,
and apply (1) to g. ]
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Lemma 4.38. Suppose Q', Q" are essentially smooth k-algebras, and m/ C Q', m” C Q"
are k-rational maximal ideals. Let Q = Q' ®; Q" and m = wm/ @ Q" + Q' @ m”. If
Theorem 4.36 holds for each of (Q', W) and (Q", "), then it also holds for (Q,m). In
particular, the theorem holds in general if it holds for the special case Q = k[x], m = (x).

Proof. For brevity, let HH' = HHo(mf™ (Q',,0)), HH" = HHy(mf™' (Q”.,.0)),

m’’ m’?

and HHy = HHo(mf™(Qw.0)), and similarly RI"" = H;n (o ,)Rl"m/(Qb, /k)’ etc.
We consider the diagram "

k®rk — kQ®rk

&'®¢"

HH' ®; HH" 2255 RT' @4 RT”

IR
(_
*1
<_
>

IR

)

where the diagonal maps are the appropriate trace or residue maps. The left and right
trapezoids commute by Lemmas 4.21 and 4.32, the middle square commutes by Propo-
sition 3.19, the top trapezoid commutes by assumption, and the outer square obviously
commutes. It follows from (4.1) and Lemma 4.2 that HH'®; HH” 2 HH is an iso-
morphism. A diagram chase now shows that the bottom trapezoid commutes, which gives
the first assertion. The second assertion is an immediate consequence of the first assertion
and Lemma 4.37. ]

Proof of Theorem 4.36. By Lemma 4.38, we need only to show that
resoe = —trace

in the case where Q =k [x] and mu = (x). Let K be the Koszul complex on x, considered as
a differential Z /2-graded algebra, as in Section 4.1, and let & =End,, s (k[x] (X),o)(K x))-
Recall from Section 4.1 that & is the differential Z/2-graded Q-algebra generated by
odd degree elements e, e* satisfying the relations e = 0 = (¢*)? and [e, e*] = 1, and
the differential d€ is given by d€(e) = x and d€(e*) = 0. By Lemma 4.2, we have an
isomorphism

k] = HHo(mf ™ (k[x]x). 0)).

where
y + idgle*] € HH(&) € HH (mf ™ (k[x](),0)),

and, more generally,

. —
y/ > jlidg[e*|---|e*]. for j = 0.
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As usual, we identify HoRT (o) (.. /) With %}E";” & Bkl Dby, Where
|| = 1. Theorem 4.36 follows from the calculations

(1) res(f ® dx) =1,

(2) res(5r ® dx) = Oforalli > 1,

(3) trace(y?) =1,

) trace(yj) =O0forall j > 1, and

(5) e(y?) = —j !N ® dx) forall j > 0.
In fact, (1) and (2) follow from the definition of the residue map, and (3) and (4) follow

from Propositions 4.9 and 4.13, so it remains only to establish (5).
Recall that the map ¢ is induced by the diagram

= = RT (&’ .
kly] — HHo(&) «— H>RI'()HH(E) —— HZRF(X)(Qk[x](x)/k)’ (4.39)

where &’ denotes the composition

(d,dg)« 11,008 & e
HH(E&) — HH'' (&§") — Qk[x](x)/k‘

Here, &° is the same as &, but with trivial differential, (id, dx) is a morphism & — 89 of
curved dga’s (with trivial curvature), and € is as defined in 3.2.3.

We need to calculate the inverse of the isomorphism H,RI' () HH(&) = H Hy(8)
occurring in (4.39). As usual, we make the identification

R HH(E) = HH(E) ® HH(E)[1/x] - a.

The differential on the right is d := b + «, where « denotes left multiplication by «; note
that @2 = 0. So, for a class y + y'a, we have

Ay +ay’) =b(y) —b(y)a + ya.

With this notation, the quasi-isomorphism RI'(x) HH (&) = HH (&) is given by setting
a=0.
For j > 0, we define

J terms

5 DL SR Serrpe 3
y= = idg[e*|e*] -+ |e* ]

and
J terms

——
wj = e[ e*le*]---|e* ] € HH(E)[1/x].

Then, for j > 0, we have
b(w;) = xy(]) _ y(]_l),
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where y~1 := 0, from which we get

1 1 1 )
b()_cwj + ;a)j—l + -+ Wwo) = y(”.

It follows that, for each j > 0, the class

v daf Lo+ Loy o — g
YT 2% YRS

is a cycle in RI')HH (&) that maps to y) e HH(&) under the canonical map
R (HH(E)) — HH(&). We conclude that the inverse of

HyRT (o HH(E) = HHo(€) = k[y]
maps y” to the class of
nj =yl + j!a(le + szj—l ot L600)
X X xJ+1
for each j > 0, and hence

e(y’) = RE (e (1))-
Recall that ¢’ sends 6y[0;]---|6,] € HH(E) to

Z(_1)10+ +Jnm str (Qo(d;()joei ---9,/,(d;()f"),

where the derivatives are computed relative to any specified flat connection on K. Using
the Levi-Civita connection associated to the basis {1, e} of K, we gete’ =0, (e*)' =0,
and hence dy, = —e*dx. It follows that

g(wj)=0 forj>1,

&' (wo) = str(e) + str(ee*dx),
g(yY) =0 forj >1,and
¢ (@) = str(idg) + str(e*dx).

It is easy to see that str(ee™) = —1, str(e*) = 0, str(e) = 0, and str(idg) = 0, so that
&'(wo) = —dx, ¢'(w;) = O forall j > 0,and &'(y/) = 0 for all j. We obtain

, . o
) = BTG ) = =11 s )

for all j > 0, as needed. ]
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4.7. Proof of the conjecture

Let Q =CJxy,...,xy]and f € m = (x1,...,X,) C Q, and assume m is the only singular
point of the morphism f : Spec(Q) — A'. As discussed in the introduction, a result of
Shklyarov [16, Corollary 2] states that there is a commutative diagram

Ir (o)xlf(o) Q5 /x )XZ

Hy(mf(Q. 1) (7 e

(4.40)
Crms Ae

for some constant ¢y which possibly depends on f".

Theorem 4.41. Let k be a field of characteristic 0, Q an essentially smooth k-algebra,
w a k-rational maximal ideal, and f an element of m such that w is the only singularity
of the morphism f : Spec(Q) — A}(. Then the diagram

X2
X 0/k
Hynf Q) 2 (= Qg/k)

(n+1)/2
o Mmf %es

Proof. Consider the diagram

commutes.

HHy,(mf(Q, /) xHHy(mf(Q, f) === Hn(Qy, —df ) x Hn (R, —df )

lidx\l' lidx(l)”

HHy(mf(Q, /) x HHny(mf(Q,—f)) == Hn(Qy, —df ) x Hn(Qy. df )

l* IA (4.42)

HHap(mf™(Qm,0)) : HnRTw(RY, )

(_l)n(n+1)/2 trace res
k.

The top square commutes by Lemma 3.14, the square in the middle commutes by Corol-
lary 3.26, and the triangle at the bottom commutes by Theorem 4.36. By Lemma 4.23, the
map

Hy(mf(Q. f)) x HHy(mf(Q, f)) — k
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obtained by composing the maps along the left edge of (4.42) is (—1)"("+1)/2r)mf. By
Proposition 4.34, the map

Lo\ 2
ok ) (@Y. —df)? >k
(df A Q’é_/}c) (@0, ~df)"~

obtained by composing the maps along the right edge of (4.42) is (—, —)es. |

Corollary 4.43. Conjecture 1.4 holds. That is, for f € m = (x1,...,Xx,) € Q =
Clx1, ..., Xn] such that w is the only singularity of the morphism f : Spec(Q) — A}c,
the unique constant cy that makes diagram (1.3) commute is (=) +D/2 ) 4s predicted
by Shklyarov.

Proof. Under these assumptions, & = I7(0) by Lemma 3.11. Theorem 4.41 thus implies
that the value ¢y = (—1)""+1/2 causes the diagram (4.40) to commute. As discussed
in the introduction, this uniquely determines the value of ¢y, and the unique constant ¢y
which makes diagram (4.40) commute is the same as that which makes diagram (1.3)
commute. |

5. Recovering Polishchuk—Vaintrob’s Hirzebruch-Riemann-Roch
formula for matrix factorizations

Assume k, Q, m, and f are as in the statement of Theorem 4.41. We recall that, given
objects X, Y e mf(Q, f), the Euler pairing applied to the pair (X, Y) is given by

x(X,Y) = dimy HyHom(X,Y) — dim; H; Hom(X,Y).

In this final section, we give a new proof of a theorem due to Polishchuk—Vaintrob that
relates the Euler pairing to the residue pairing via the Chern character map.

The following is an immediate consequence of the commutativity of diagram (4.42)
in the proof of Theorem 4.41.

Corollary 5.1. Let k, Q, m, and [ be as in the statement of Theorem 4.41, and assume
n = dim(Qyy,) is even. Then the triangle

Qe Q7 QnQ/k
HHo(mf(Q. f)) @& HHo(mf(Q.~f)) : i @ —
NGk df/\QQ/k

‘A
k

commutes, where the left diagonal map is (—1)"®+t1D/2 trace o(— » —), and & denotes the

Lok

composition of the HKR map and the isomorphism Hy (Q’Q/k, +df) it TFAQT
Q/k
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Let X e mf(Q, f). We recall that the Chern character of X

ch(X) € HHo(mf(Q. f))

is the class represented by

idx[] € End(X) € HH (mf(Q, f)).

Assume now that n is even. The isomorphism

=] QnQ/k
e: HHo(mf(Q. f)) — m

sends ch(X) to the class
1
—str ((63)"),

where 8% = [V, dx] for any choice of connection V on X. Abusing notation, we also

denote this element of y fsi%/,g_/}( as ch(X).

For example, if the components of X are free, then, upon choosing bases, we may
represent 5y as a pair of square matrices (A, B) satisfying AB = fI, = BA. Using the
Levi-Civita connection associated to this choice of basis, we have

n factors

2 e e
ch(X) = ~tr(dAdB - dAdB). (5.2)

Recall from Remark 4.12 that, for X e mf(Q, f)and Y e mf(Q,—f), 0(X,Y) is
given by
dimg Ho(X ® Y) —dimy H1(X ® Y),

and we have
6(X.Y) = trace (ch(X) * ch(Y)). (5.3)

Corollary 5.4. Under the assumptions of Corollary 5.1,
) if X emf(Q, flandY e mf(Q,—f), then

8(X,Y) = (=1)®){ch(X), ch(Y))

res’

2) ifX,Y emf(Q, f), then

2(X,Y) = (1)) (ch(X), ch(Y))

res”

Remark 5.5. Corollary 5.4 (2) is Polishchuk—Vaintrob’s Hirzebruch-Riemann—Roch for-
mula for matrix factorizations [10, Theorem 4.1.4 (i)].
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Proof. (1) is immediate from Corollary 5.1 and (5.3). We now prove (2). Without loss of
generality, we may assume Q is local, so that the underlying Z /2-graded Q-modules of
X and Y are free. Given a matrix factorization (P, 8p) € mf(Q, f) written in terms of
its Z,/2-graded components as

(61 : Py — Py, 8 : Py — Py),
we define a matrix factorization N(P,8p) € mf(Q,— f) with components
(61 : Pr— Po,—60: Po = Py).
We have

(ch(X),ch (N(Y))). = () O(X, N(Y)) = x(X.Y).

The first equality follows from (1), and the second equality follows from [3, Corollary 8.5]
and [1, Proposition 3.18]; note that (—1)(;) = (—1)"/2, since n is even, and also that the
notation y in [1, Proposition 3.18] has a different meaning than it does here. It suffices to
show ch(N(Y)) = (—=1)2ch(Y), and this is clear by (5.2). |
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