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We determine the image of the 2—primary tmf Hurewicz homomorphism, where tmf is
the spectrum of topological modular forms. We do this by lifting elements of tmf to
the homotopy groups of the generalized Moore spectrum M (8, vf) using a modified
form of the Adams spectral sequence and the tmf resolution, and then proving the
existence of a v32—self-map on M (8, v¥) to generate 192-periodic families in the
stable homotopy groups of spheres.
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1 Introduction

The Hurewicz theorem implies that the Hurewicz homomorphism
h: s (S™) — Hy(S™,Z)
is an isomorphism for * = n, implying the well-known result that the 0 stable stem is

given by
ny = 2.
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2764 Mark Behrens, Mark Mahowald and J D Quigley

Adams [1] studied the Hurewicz homomorphism for real K—theory
hxo: my — m:KO = KO~ *(pt).

The computation of the real K—theory of a point (the homotopy groups of the spectrum
KO representing real K—theory) is a consequence of the Bott periodicity theorem [11]:
these groups are given by the following 8—fold periodic pattern:

nmod8 |0 1 2 3 4 56 7
KO | Z Z/2 Z/2 0 Z 0 0 0

The map /iko is an isomorphism in degree 0, and Adams showed that Aigg is surjective
in degrees * = 1,2 mod 8. He did this by constructing what is now known as a
v1—self-map

v ZEM(2) — M(2),

where M (2) denotes the mod 2 Moore spectrum, and considering the projections

I8j+1+e € Tgjy 1 1e
of the elements
4j~
(1.1) e vy’ € mgj 121 M(2)
to the top cell of M(2). Here 7 denotes a lift of n € 7§ to the top cell of M (2) and
€ € {0, 1}. Because we have
7iQ =0
for * > 0, the homomorphism /g is necessarily trivial in positive degrees * = 0 mod 4.

Goerss, Hopkins and Miller constructed the spectrum tmf of topological modular
forms [16] as a higher analog of the real K—theory spectrum.! The homotopy groups
of tmf are 576—periodic. The goal of this paper is to determine the image of the 2—local
tmf—Hurewicz homomorphism

hime: w5 — matmf(yy.

The 3—primary Hurewicz image has recently been determined by Belmont and Shi-
momura [9]. Since m«tmf(,) has no torsion for p > 5, the p—primary tmf—Hurewicz
image is trivial in positive degrees for these primes. Henceforth, everything in this
paper is implicitly 2—local.

2-Locally, the homotopy groups of tmf are merely 192—periodic. These homotopy
groups were originally computed by Hopkins and Mahowald [19] (see also Bauer [3])

THere, tmf denotes connective topological modular forms.
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Figure 1: The homotopy groups of tmf.
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where (A", T°!!) is the elliptic curve Hopf algebroid. These homotopy groups are

displayed in Figure 1. In this figure:
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2766 Mark Behrens, Mark Mahowald and J D Quigley

o A series of i black dots joined by vertical lines corresponds to a factor of Z /2¢
which is annihilated by some power of c4.

¢ An open circle corresponds to a factor of Z/2 which is not annihilated by a
power of c4.

* A box indicates a factor of Z ;) which is not annihilated by a power of c4.
¢ The nonvertical lines indicate multiplication by 1 and v.

¢ A pattern with a dotted box around it and an arrow emanating from the right
face indicates this pattern continues indefinitely to the right by c4—multiplication
(ie tensor the pattern with Z ,)[c4]).

¢ The vertical arrangement of the chart is arbitrary.

The homotopy groups m«tmf are given by tensoring the pattern depicted in Figure 1
with Z(z)[AS], where A% € 7719,tmf. Our choice of names for generators in Figure 1 is
motivated by the fact that the elements

n, v, € Kk, kK, ¢, U, W

in the stable stems map to the corresponding elements in «tmf under the tmf—Hurewicz
homomorphism. The other indecomposable multiplicative generators are named based
on the names of elements which detect them in the E,—term of the descent spectral
sequence. There is thus some ambiguity in the naming of some of these elements
coming from the filtration associated to the descent spectral sequence.

For definiteness we fix ¢4 € mgtmf to be the unique element detected by ¢4 in the
descent spectral sequence of Adams filtration 4. Note that the c4—torsion in w4«tmf does
not have c4—exponent 1. Indeed, on c4—torsion classes, multiplication by ¢4 is equal
to multiplication by € — see Bruner and Rognes [14, Section 9.5] — so, for example,
c4k = €k # 0. However, all c4—torsion has c4—exponent 2; see loc. cit. and Behrens,
Hill, Hopkins and Mahowald [7, Proposition 6.1].

The main theorem of this paper is the following:

Theorem 1.2 The tmf—Hurewicz image is the subgroup of m.tmf generated by

(1) all the elements of w<3(tmf),
(2) the elements cfm and ci n?,

(3) all the elements of ms«tmf annihilated by a power of ¢4 except those in 754 +3tmf.

Geometry & Topology, Volume 27 (2023)



The 2—primary Hurewicz image of tmf 2767

Remark 1.3 The reader will note from Figure 1 that the subgroup of 4 (tmf) generated
by the elements of type (3) above form a self-dual pattern centered in dimension 85.
This is discussed in [14, Chapter 10].

Besides representing an advance in our understanding of v,—periodic homotopy at
the prime 2, Theorem 1.2 also has applications to smooth structures on spheres, as
explained in [7]. Specifically, Hill, Hopkins and the first two authors consider the
following question:

Question 1.4 In which dimensions 7 do there exist exotic smooth structures on the
n—sphere?

Such spheres with exotic smooth structures are called exotic spheres. The work of
Kervaire and Milnor [26] relates the existence of exotic spheres to the triviality of the
Kervaire homomorphism

Tk 42— Z)2

and the nontriviality of the cokernel of the J—-homomorphism
J:74SO — 7).
Specifically, they prove that exotic spheres exist in dimensions 7 for which:

n=4k n > 8 and there exists a nontrivial element of coker J.

n =4k +1 There exists a nontrivial element of coker J, or there does not exist an
element of Kervaire invariant 1 in dimension n + 1.

n =4k 4+ 2 There exists a nontrivial element of coker J with Kervaire invariant 0.
n=4k+3 n>17.
Combining this with the work of Moise [35], Browder [12], Barratt, Jones and Ma-

howald [2], Hill, Hopkins and Ravenel [18], and Wang and Xu [36], Question 1.4 has
been answered completely for n odd:

The only odd dimensions n for which there do not exist exotic spheres are
n=1,3,5and 61.

For n even, the case of n = 4 is unresolved. For other even 7, by the previous discussion,
the question boils down to the existence of nontrivial elements of coker J (with Kervaire
invariant 0). It is shown in [7]:

The only even dimensions 4 # n < 140 for which there do not exist exotic
spheres aren = 2, 6, 12 and 56.

Geometry & Topology, Volume 27 (2023)
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In the case of n = 8k +2 > 10, Adams’ elements jtg 4+, With nontrivial KO-Hurewicz
image are not in the image of J and have trivial Kervaire invariant. It thus follows that:

There exist exotic spheres in all dimensions n = 8k + 2 > 10.

As is explained in [7], many of the 192—periodic families of elements of Theorem 1.2
also are not in the image of J and have trivial Kervaire invariant. Theorem 1.2 therefore
has the following corollary:?

Corollary 1.5 There exist exotic spheres in the following congruence classes of even
dimensions n > 8 modulo 192:

2,6,8,10, 14,18, 20,22, 26, 28, 32, 34,40, 42,46, 50, 52, 54, 58, 60, 66, 68,
70,74, 80, 82,90,98,100,102,104,106,110,114,116,118,122,124,128,
130, 136,138,142, 146, 148, 150, 154,156, 162,164,170, 178, 186.

(This accounts for over half of the even dimensions.)

We will prove Theorem 1.2 by first showing (Theorem 6.1) that the subgroup of s tmf
described by Theorem 1.2 is contained in the Hurewicz image. This will be a relatively
straightforward consequence of some v;—periodic computations. The elements of
Theorem 1.2(1) are already established to be in the Hurewicz image by the preceding
discussion, and the elements of (2) are in the Hurewicz image because they are the
images of the elements f1g; 4 ;. We are left to show that the elements of type (3) lift
to r{. This is the main task of this paper.

In [14], Bruner and Rognes give a systematic and careful study of the Adams spectral
sequence for tmf, and in particular they have independently established the Hurewicz
image in many low-dimensional cases. Specifically, they prove Theorem 1.2 for degrees
% < 101 and also show that wk?, w2k, wk*, 2A%k and 4A%v? (in dimensions 105,
110, 125, 130 and 150) are in the Hurewicz image. Also, they use a different technique
(Anderson duality) to prove that the Hurewicz image is contained in the subgroup
of tmfy described in Theorem 1.2.

Our strategy to lift elements from m4«tmf to 77 is to use the methods of [7]. We
summarize that strategy here. We recall the following from [7, Proposition 6.1]:

2In fact, the vgz—self-map of Theorem 1.8 which is used to construct the periodic families of Theorem 1.2
also immediately implies the existence of some elements not in the image of the J—homomorphism which
are in the kernel of the tmf~Hurewicz homomorphism, such as the beta elements 83, /3. However, we
will not concern ourselves here with the few additional dimensions such considerations add to the list of
Corollary 1.5.

Geometry & Topology, Volume 27 (2023)
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Proposition 1.6 [7] Every c4—torsion element x € mytmf is 8—torsion and ¢ Z —torsion.

Let M (2%) denote the cofiber of 2¢, and let M (2, v{ ) denote the cofiber of a v{—self-
map (see Davis and Mahowald [15, Proposition 2.3])

v/ 2H M - M2,
Corollary 1.7 Every c4—torsion element x € m(tmf) lifts to an element
¥ € tmfyy 13 M(8,v})

so that the projection to the top cell maps X to x.

Given a cy—torsion element x € w95 (tmf), Proposition 1.6 implies it lifts to an

element

¥ € tmf, M(8,v})
so that the projection to the top cell maps X to x. We will then show that X lifts to an
element

yemeM(8, vf).
Then the image

yem;

given by projecting j to the top cell is an element whose image under the tmf—Hurewicz
homomorphism is x.

32k

Every c4—torsion element x” € > 19,tmf is of the form vy 7 x for x € m<19ptmf. We

will prove the following theorem:
Theorem 1.8 There exists a vgz—self—map
v32: 212 M (8, v8) — M(8,v)).
If X e tmf, M (8, vf) is alift of x, and y € w4« M (8, vf) is a lift of X, as in the discussion
above, then the resulting element
v;2k)7 € M (8, vf),

obtained by composing with the k—fold iterate of the vgz—self—map, projects to an
element )’ € 7{ which maps to x’ under the tmf-Hurewicz homomorphism.

As in [7], the analysis above rests on a systematic analysis of the homotopy groups
M8, vf). This will be based on computations using the modified Adams spectral
sequence (MASS). The E,—term of the modified Adams spectral sequence will be

Geometry & Topology, Volume 27 (2023)



2770 Mark Behrens, Mark Mahowald and J D Quigley

analyzed in a region near its vanishing line by means of another spectral sequence, the
algebraic tmf resolution.

The work of [7] was hampered by the fact that all of the algebraic tmf resolution
computations were performed on the level of the E£{—term of the algebraic tmf resolution.
In this paper, we will show that the weight spectral sequence, used in the context of
bo resolutions by Lellmann and Mahowald [28] and Beaudry, Behrens, Bhattacharya,
Culver and Xu [4], can be used to analyze the E,—term of the algebraic tmf resolution,
greatly simplifying the computations.

Conventions
¢ Homology will be implicitly taken with mod 2 coefficients.

e We let A4 denote the dual Steenrod algebra, A4//A(2)« denote the dual of the
Hopf algebra quotient 4 // A(2), and, for an A,—comodule M (or more generally
an object of the stable homotopy category of A,—comodules; see Hovey [21]),
we let

Ext} (M)
denote the group Extiii (Fy, M).
* Given a Hopf algebroid (B, T") and a comodule M, we will let C:(M') denote

the associated normalized cobar complex.

e For a spectrum E, we let E denote its homotopy groups m« E.

Outline of the paper

In Section 2, we recall the modified Adams spectral sequence (MASS), which takes
the form

maSEE* — Exty, (He X ® H(8,0%)) = ma(X A M(8,0}))

for a certain object H (8, vf) in the stable homotopy category of 4x—comodules. We
recall how the E,—term of the MASS can be studied using the algebraic tmf resolution,
which is a spectral sequence that takes the form

SME(M)** = Ext (M)

for any M in the stable category of A.—comodules. We then recall how the E{—term
of the algebraic tmf resolution decomposes as a sum of Ext groups involving tensor

Geometry & Topology, Volume 27 (2023)



The 2—primary Hurewicz image of tmf 2771

powers of bo Brown—Gitler comodules, and also summarize an inductive method to
compute these Ext groups.

In Section 3, we study the dq—differential in the algebraic tmf resolution for 5, and
introduce a tool, the weight spectral sequence (WSS)

tmf __ WSS tmf
algE1 - E0:>algE2’

which serves as an analog of the May spectral sequence and converges to the E,—term of
the algebraic tmf resolution. The Ey—page of the vyo—localized weight spectral sequence
is identified with the cobar complex of a primitively generated Hopf algebra, and this
allows us to give “names” to the vg—torsion-free classes of g{gE 1. We include many
charts of summands of glrgE 1(F,) corresponding to tensor powers of bo Brown—Gitler
comodules which illustrate this naming convention, and provide the essential data for
the rest of the computations in this paper. Finally, we study the g—local WSS? using
recent work of Bhattacharya, Bobkova and Thomas [10], and show that many classes
are killed in the g—local WSS by d—differentials. This is the key fact we will use to

systematically remove obstructions for lifting classes from tmf, X to 74 X.

In Section 4 we study the structure of the MASS for M (8, vf). We recall the structure
of the MASS for tmf M (8, vf), and we explain how to adapt the Ext charts of Section 3
to give the corresponding computations of ;’ng 1(H (8, vf)). We then explain how to

translate the computations of the g—localized algebraic tmf resolution of Section 3 to
the case of H (8, vf).

Section 5 is dedicated to the proof of Theorem 1.8. We recall the work of Davis,
Mahowald and Rezk, who discovered topological attaching maps between the first two
bo Brown-Gitler spectra which constitute tmf A tmf, which give extra differentials in
the Adams spectral sequence of tmf A tmf that kill some g—torsion-free classes. We
then prove a technical lemma (Lemma 5.5) which lifts differentials from the MASS
for tmf® A M (8, vf) to the MASS for M (8, vf). We prove Theorem 1.8 by listing all
elements in g{gE 1(H (8, vf)) which could detect a nontrivial differential d, (vgz) in the
MASS for M (8, vf), and then we systematically eliminate these possibilities. Most of
these classes are g—torsion-free, and are eliminated in the WSS or by using Lemma 5.5.

In Section 6, we explain how v{—periodic computations give an upper bound on the
Hurewicz image.

3Here, g € EXti{?(Fz) is the element corresponding to the element hg | in the May spectral sequence
which detects k in the Adams spectral sequence for the sphere.

Geometry & Topology, Volume 27 (2023)
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Section 7 is devoted to showing this upper bound is sharp, by producing lifts of the
remaining elements of m,tmf to the sphere. We begin by identifying multiplicative
generators of the Hurewicz image in dimensions less than 192, so that it suffices for us to
lift these. We then lift these elements by producing elements in the MASS for M (8, vf)
which we show are permanent cycles, and detect elements of 7, M (8, vf) which
project to the desired elements on the top cell. These elements are then propagated to
v; 2_periodic families using the self-map, thus proving Theorem 1.2 in all dimensions.
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2 Preliminaries

The techniques and methods of this paper closely follow those of [7]. In this section
we recall some spectral sequences used in that paper.

The modified Adams spectral sequence

Our computations of .M (8, vf) and tmf, M (8, vf) will be performed using the
modified Adams spectral sequence (MASS). We refer the reader to [7, Section 6] for a
complete account of the construction of the MASS and summarize the form it takes here.
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Let St 4, denote Hovey’s stable homotopy category of As«—comodules [21]. For objects
M and N of Sty,, we define the group

Ext)} (M, N) =Sty (S' M, N[s))

as a group of maps in the stable homotopy category. Here X! M denotes the /—fold shift
with respect to the internal grading of M, and N [s] denotes the s—fold shift with respect
to the triangulated structure of St4,. This reduces to the usual definition of Ext 4,
when M and N are Ay—comodules.

Define H(8) to be the cofiber of the map

3
2.1) 3, [—3] 20 T,
in the stable homotopy category of A,—comodules. Define H (8, vf) € St4, to be the
cofiber
8
2.2) 24 H(8)[—8] = H(8) — H(8,v}).

For a spectrum X, the MASS takes the form
MSESH(M (8, v) A X) = Ext’] (H(8,v}) ® HiX) = m—sM(8,v]) A X.
Recall the following from [7, Proposition 7.1]:

Proposition 2.3 M (8, vf) is a weak homotopy ring spectrum.*

It follows that, if X is a ring spectrum, the MASS above is a spectral sequence of
(nonassociative) algebras.

We recall the following key theorem of Mathew:

Theorem 2.4 (Mathew [34]) We have
Hotmf = A/ A(2)«
as an algebra in Ax—comodules.
Taking X = tmf A Y for some Y and applying a change-of-rings theorem, the MASS
takes the form

mSES (tmfA M (8, v AY) = Extiit(z)* (H(8,v})® HyY) = tmfy—s(M (8, v})AY).

4By this, we mean a spectrum with a possibly nonassociative product and a two-sided unit in the stable
homotopy category.

Geometry & Topology, Volume 27 (2023)
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The algebraic tmf resolution

The E,—page of the MASS for M (8, vf) will be analyzed using an algebraic analog of
the tmf resolution (as in [7, Section 6]).

The (topological) tmf resolution of a space X is the Adams spectral sequence based on
the spectrum tmf:
tme“lv’t = mitmf Atmf A X = 7 X.

Here, tmf is the cofiber of the unit
S — tmf — tmf
and tmf® = tmf"* denotes its s—fold smash power.

The algebraic tmf resolution is an algebraic analog. Namely, let M be an object of the
stable homotopy category of As—comodules and let A//A(2)« denote the cokernel of
the unit

0—>F, > AJAQ)x — AJ/A(2)x — 0

(note that Hytmf = A//A(2)s). The algebraic tmf resolution of M is a spectral
sequence of the form

tmei,tJl (M) — Eth’t

wle ) (ATARS" ® M) = Ext ™ (M),

bo Brown-Gitler comodules

We recall some material on bo Brown—Gitler comodules. These are 4 s—comodules
which are the homology of the bo Brown—Gitler spectra constructed by [17]. Mahowald
used integral Brown—Gitler spectra to analyze the bo resolution [30]. The bo Brown—
Gitler comodules play a similar role in the algebraic tmf resolution [6; 31; 15; 8; 7].

Endow the mod 2 homology of the connective real K—theory spectrum
Hiy(bo) = A/ A(1)x = Fa[¢}. 2. 85, ]

with a multiplicative grading by declaring the weight of {; to be

(2.5) wt(g) =271

The i™ bo Brown—Gitler comodule is the subcomodule

bo; = Fy; A/JA(1)x C A//A(1)«

Geometry & Topology, Volume 27 (2023)



The 2—primary Hurewicz image of tmf 27175

spanned by monomials of weight less than or equal to 4i. It is isomorphic as an
Ax—comodule to the homology of the i bo Brown—Gitler spectrum bo;.

The analysis of the E{—page of the algebraic tmf resolution is simplified via the
decomposition of A4(2)«—comodules

AJAQ)« = P =¥bo;
i>0
of [6, Corollary 5.5]. We therefore have a decomposition of the E;—page of the
algebraic tmf resolution for M given by

26) WET(M)= @ Extj, (@b, ®---®boi, ® M).

115eees in>0

For any M, the computation of

EXtiit(z)* (28(i1+"'+i”)@i1 ®---®bo;, @ M)

can be inductively determined from Ext 4(3), (@i@k ® M) by means of a set of exact
sequences of A(2)«—comodules, which relate the bo; [6, Section 7] (see also [8]),

27 00— Z¥bo; = boy; — A(2)JA(D) s @tmf;_; — =80, | — 0,

(28) 0 — %boj ®boy = bosj+1 — AQ2)/A(1)x @ tmf;—; — 0.

Here tmf; is the j t tmf-Brown-Gitler comodule — it is the subcomodule of
Hy(tmf) = AJ/AQ2)x = Fa[¢8, 82,82, L]

spanned by monomials of weight less than or equal to 8.

The exact sequences (2.7) and (2.8) can be reexpressed as resolutions in the stable
homotopy category of A(2).—comodules

8j+9 8j
boyj = A(2)/A(1)x @ tmf; 1 — £¥* bo; 1 - Z%bo;[2],
bozj+1 = A2Q)JA(1)x ®tmf;_ = =¥ bo; ® boy[l],
STechnically speaking, as is addressed in [6, Section 7], the comodules 4(2) // A (1)« @tmf j—1 in the above
exact sequences have to be given a slightly different A(2)«—comodule structure from the standard one

arising from the tensor product. However, this different comodule structure ends up being Ext—isomorphic
to the standard one. As we are only interested in Ext groups, the reader can safely ignore this subtlety.

Geometry & Topology, Volume 27 (2023)
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which give rise to spectral sequences

Exti?l)*(tln_fj_l ®M), n :0,
Ext’} ) (Z%+%b0;_1 ® M[-1]), n =1,
e [ = B oz 040
Ext’;(y, (E%bo; ® M), n=2,
2.9) 0, n>2
EXtiit(l)*(m:j_l ®M), n=20,

EP = Extiit(z)*(ESj@j ®bo; ® M), n=1,p = Ext]j,) (bosj1® M).
0, n>1

These spectral sequences have been observed to collapse in low degrees (see [8]) but it

is not known if they collapse in general. They inductively build Ext 4(,), (bo; ® M)

out of Ext4(z), (00®* ® M) and Ext 4y, (tmf; ® M).

3 Analysis of the algebraic tmf resolution

In this section we will compute the d;—differential in the algebraic tmf resolution, and
will introduce a tool, the weight spectral sequence (WSS), which is a variant of the May
spectral sequence that converges to the E,—page of the algebraic tmf resolution.

The d—differential in the algebraic tmf resolution

Our approach to understanding the d;—differential in the algebraic tmf resolution will
be to compute it on vo—torsion-free classes, and then infer its effect on vg—torsion
classes by means of linearity over Ext 4, (F»).

Consider the algebraic BP(2) and algebraic BP resolutions

PP ES = Extyly (AJERIP") = Ext™ (E2).

WESSN = Bxty (AJE®") = Ext[ ™ (Fy).

Here E[2] = E[Q¢, O1, O>] and E = E[Q¢, O1, O, ...] denote subalgebras of the
Steenrod algebra, where Q; are the Milnor generators dual to &1 € Ax.

The dq—differential in the algebraic tmf resolution may be studied by means of the

zigzag

tmf g%, %% BP(2) ok %% BP %, %, %
3.1) algE1 — algEl <_a1gE1 .
Note that

BP ¥, %.n
algET o =F2[v0,v1,vz,...]®F2[§2,§§,...]®",

Geometry & Topology, Volume 27 (2023)
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where F,[¢ 12 ¢ % ... ] denotes the cokernel of the unit
Fy — Fo[¢, 85, ... ].
The Adams spectral sequences
as B\ = AE2 (BP ABP") = Cip pp(BP4)
collapse, where CB’"P*BP is the normalized cobar complex for BP«BP, and
§12 € A//_E* detects t; € BP+BP.

We conclude:

Lemma 3.2 The d;—differential in the algebraic BP resolution is the associated graded
of the differential in the cobar complex for BP«BP with respect to Adams filtration.

The weight spectral sequence

Endow the normalized cobar complex
C*(Ax, A%, F2)
with a decreasing filtration by weight by defining
wiaolar |-+ | as]) = wt(ar) + - - + wi(as).

Applying Ext4, (F,, —) to the resulting filtered Ax—comodule produces a variant of
the May spectral sequence, which we will call the modified May spectral sequence
(MMSS),6

(3.3) MSESS = Chy , (Fp) = Bxt] ().
Since E° A, is primitively generated, we have
MOSEF = Folhij i > 1, j = 0]
The map tmf — H induces an inclusion
®: Hy(tmf Atmf") > Hy(H A H") = C" (A4, A4, F,).
Under this inclusion, the weight filtration restricts to a decreasing filtration on
Hy(tmf Atmf") 2 A/ A(2) ® A AQ2)E"

The authors of [29] construct a similar modified May spectral sequence, but with a slightly different
filtration.
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by A.—subcomodules. Because the weights of all of the generators of 4// A(2)« are
divisible by 8, we actually work with weights divided by 8. Applying Ext 4(2), (IF2, —)
and taking cohomology, we get the weight spectral sequence (WSS)
YEST = D Ext,, (boi, ® -+ ®boj,) = IES.
i1 ++ip=w
The WSS serves as an analog of the May spectral sequence for the algebraic tmf

resolution.

The map ® above induces a map of spectral sequences

wss [ W,h,0,¢ s, tmf n,0,t
EO algEO

34 ml lcp*

mmssngJlJ . EXtZii (]FZ)

The vo—localized algebraic tmf resolution

Observe that we have

(3.5) vy VExt 42y, (F2) = Fy[vFE, v}, v3].

Note that c4,c6 € (tmfy)g are detected in the vo—localized ASS by vf and vg v%,
respectively.

‘We recall from [8] that

(3.6) vy ' Extlyly) (4//A(2)x) = Fafvg, v, v3]I¢}, £3]

and that there is an isomorphism

3.7 vy Extuca), (bor) = Falog™, vf, w361 63" imirsir.

We will now compute the localized Ej—page v, Iwssp, . The following is immediate
from the computation of the cobar differential (modulo terms of higher Adams filtration)
on the elements g“f and Cg, using (3.6), (3.7) and (3.1):

Proposition 3.8 There is an isomorphism of differential graded algebras

vg MEG T = Falo, v} v ® G s sy
where IF;[¢ f ¢ g | is regarded as a primitively generated Hopf algebra.

Corollary 3.9 There is an isomorphism

vy "YSEy =Falvy, vl 031 @ Falhy s, hig. ... hap has.. ]
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Charts

For the convenience of the reader we include some charts of Ext 4(2), (@’1‘ Yfor0<k <3
as well as Ext 4(,), (bo2).

Ext 4(2), (F2) (see Figure 2) All the elements are ¢4 = vf—periodic and vg —periodic.
Exactly one vf—multiple of each element is displayed with the e replaced by a o.
Observe the wedge pattern beginning in # —s = 35. This pattern is infinite, propagated
horizontally by /1, j—multiplication and vertically by v;—multiplication. Here /5 ; is
the name of the generator in the May spectral sequence of bidegree (t — s, ) = (5, 1),
and h3,1 =g.

Ext4(2), (ll)‘f’k )for k=1,2,3 (Figure 3) Every element is vg—periodic. However,
unlike Ext 4(2), (IF2), not every element of these Ext groups is v‘l‘—periodic. Rather, it is
the case that an element x € Ext 4(2), (@?k ) either satisfies v‘l‘x =0oris v‘l‘—periodic.
The vf—periodic elements fit into families which look like shifted and truncated copies
of Ext4(1), (IF2) and are labeled with a o. We have only included the beginning of
these vf—periodic patterns in the chart. The other generators are labeled with a e.
A D indicates a polynomial algebra 5[/, ;].

Ext4(2), (boz) (Figure 4) Via the spectral sequence (2.9), this Ext chart is assembled
out of Ext 4(1), (F2), Ext4(2), (£8bo1) and Ext4(2), (27 F2[—1]).

h, 1—towers

Our computations of the MASS for M (8, vf) will rely on a detailed understanding of
this spectral sequence near its vanishing line. Since M (8, vf) is a type 2 complex, the
Hopkins—Smith periodicity theorem [20] implies that the E,—page of this MASS has a
vanishing line of slope 1/|v,| = %. However, g = h;’l is not nilpotent in the modified
Ext groups Ext4, (H (8, vf)), and /1, ;—multiplication has slope % The goal of this
subsection is to show that many of the /1, —towers in the E|—page of the algebraic tmf
resolution actually kill each other off by the E,—page of the algebraic tmf resolution.
We will then identify specific /1, ;—periodic elements of Ext 4, (IF;) that some of these

remaining /1 j—towers detect.
Consider the quotient Hopf algebra Cy := F»[{3]/(¢ g ) of A(2)«, with

EXtZ’:(Fz) = IFa[v1, ha 1]

Geometry & Topology, Volume 27 (2023)
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Lemma 3.10 Let C (vg) be the cofiber of the map
vy 20T, [-8] - T,
in the stable homotopy category St 4(z), . For any M € St 4(,), there is an isomorphism
g7 Exty), (M ® C(v5)) = h3 | Bxtc, (M).

Proof Since the element vg € Ext4(2), (IF2) maps to zero in Extc, (IF), it follows that

there is a factorization
F, —— A(2)// Cx
T

C(vg) .
in St 4(2),.. Explicit computation reveals
g Exty(a), (F2) =Fa[v5. v1. h3 ]
and it follows that the map
g7ICW) » g 142/ G
induces an isomorphism on Ext 4(,), , and is hence an equivalence. The result follows. O

Corollary 3.11 Forany M € St4(y),, there is a vg —Bockstein spectral sequence

h3 | Exte, (M) @ Fa[ud] = ¢ 7! Ext42), (M).

Bhattacharya, Bobkova and Thomas [10] computed the P21 —Margolis homology of
the tmf resolution, and in the process computed the structure of 4 //A(2)®" as Cy—
comodules. From this one can read off the Ext groups

hy )y Exte, (A AQ)Z").
which in turn determines the g—local algebraic tmf resolution by Corollary 3.11 (the
spectral sequence in this corollary will collapse in the cases we consider it).

To state the results of [10], we will need to introduce some notation. The coaction
of Fz[fz]/fg is encoded in the dual action of the algebra E[Q1, P21] on A)/A(2)%".
Define elements

Xij=1® - ®1® {13 ®l®-®1, fi;=18--018 {6 e -0l
—— ——
J J
in A//A(2)®". The weight filtration on A//A(2)s induces a multiweight filtration
on A//A(2)®" indexed by n—tuples of weights. The generators x;,j and f; j have
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multiweight
,...,0, 2172 0,...,0).
\T-J
J
For sets of multi-indices
I={G1, j1)s- G i)y I =G ) G i)}
with I NI =@, let
xrtp € AffAQ2)«

denote the corresponding monomial. The action of the algebra E[Q1, le] on the
IF,—submodule of 4//A(2)®" spanned by such monomials is given by

Q1(X1117) = ) XI—((i0, i} I ULlie.jo)}
V4

1
PY(XIU) = ) XI—{lig.jo)lier je VT Ulliejo) Gier o}
<t/

For an ordered set
J = (1. J1), . (ks Ji))
of multi-indices, let
|J|:=k

denote the number of pairs of indices it contains. Define linearly independent sets of
elements

Tr CAJAQR)E"
inductively as follows. Define
T j) = 1xij 3
For J as above with |J| odd, define
Tr.G.j) =12 Xi,j}zeTs

T1.G.)).",j") =101z - Xi,j)Xi,jr }zemy ULQ1(Z - Xir jr)Xi,j }zeT -
Let

Ny CAfAQR)F"
denote the F,—subspace with basis

0175 :={01(2)}zeT;-
While the set 7y depends on the ordering of J, the subspace Ny does not.

Finally, for a set of pairs of indices

S =101 J0)s - Gk Ji)}
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as before, define
XJby = Xiy,jbiy,jy o Xigeyjuc Lo jic -

The following is the main theorem of [10]:7

Theorem 3.12 (Bhattacharya, Bobkova and Thomas) As modules over Fz[hfl, v1],
we have

B EXG, (A AP

= Falh3,]® (FZ[UI]{XJ’ZJ/}J’ & P Nilxstrtin=o
|J| odd

& P Flie NJ{xJ/zJ/}mJ/:@),
| J|#0 even

where J and J' range over the subsets of
{G,j):1<i,1<j<n}

and vy acts trivially on Ny for |J| odd. The summand

-1 *, %
hz’] EXtE[Ql,PZI](b_O“ ® Tt ® b_Oln)
is spanned by those monomials of multiweight (8iy, ..., 8iy).

In light of Lemma 3.10 and Corollary 3.11, we may refer to elements of the g—local
algebraic tmf resolution as vgj z, where z is an element of the /1, j-localized Ext groups
described in the theorem above.

Lemma 3.13 The WSS dy—differential on the element

*,%

X111 €8 " Exty,), (bo2)
is given by
dyS(x11t1,1) = Q1(x1,1x1,2) € Extg(a), (002?).
Proof We use the map of spectral sequences
WssEO _ g_IWSSE().

"The main theorem of [10] is a computation of P21 —Margolis homology, but the actual content of the paper
is a decomposition of 4 // A(2)x in the stable module category of E[Q1, P21 ]
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By explicit computation of g~! Ext A4(2). (b02), under the map

Extq(2), (b02) — ¢~ ' Ext(2), (bo2)
we have
vy 038783 > ha Xt
In the WSS, we have
3.14) d(‘)"ss(valvgffg)zvalv§[§f,§g].
Again, by explicit computation of g—local Ext groups, under the map
Ext(2), (b0P?) — g7! Exty(a), (boP?)

we have
—1.2[+8 w4
vy V5[81, 851 ha 1 Q1(x1,1X1,2). O

Proposition 3.15 In g~ !VE, all of the h ;—towers coming from Ext A(2)+ (@?k )
for k > 2 either support nontrivial dy—differentials or are the target of dy—differentials.

Proof By Lemma 3.10 and Theorem 3.12, the /1, j—towers coming from
Ext4(2), (bo®%)

are supported by the elements 7(q 1)
surjection for k = 2,

(1,k)}- By Lemma 3.13, the WSS dj induces a

.....

dy™: Falhyy, vi, v3lxratr,1} = Falhy g, v1, v31/07 ® Nyriy,a1,2))-
For k > 2, observe that
T(l,l) ..... (1,k) = Ql(xl,lxl,Z)T(l,B) ..... 1,k Y Ql(x1,2X1,3)77{(1,1),(1,4) ..... (1,k)}-
For k > 2 even, the WSS d gives isomorphisms
dy™: Fz[hil, 1, v3]/vF ® x11t1,1 Ni(1.2)....(1 k—1))
=5 Folhy 1.1, v81/vT ® O1(x1,1x1,2) Ng(1,3),....(1.6)3-

dy™: Falhs 1, vi, v31/0] ® X120 2 Ny(1,1),(1,3),...(1 k= 1))

=5 Folhy 1. 1. v31/v7 ® Q1(x1,2%1,3) Ne(1,1),(1,4),....(1,6)}

and, for k > 2 odd, the WSS d gives isomorphisms

.....

.....

= Fz[hzi,pvzg] ® Q1(x1,2X1,3)N(1,1),(1,4),...,(1,k)}- O
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We shall denote the elements of the Mahowald-Tangora wedge [32] in Ext 4, (F,) by®
v’ihg’lgz, i>0,j>0.
Recall that the Mahowald operator
M = (g2, h3.—)
leads to an infinite collection of wedges
M*@Wih] | g%) € Exty, (Fy)
with nonzero image in
Extp, (F2) = Ext4(2), (F2)[vs],
where B is the quotient algebra
(3.16) By :=TFslt1. 6.6, Gal/ (68,83, 83.60)
of A [33; 23]. The existence of the element A?g? € Ext 4, (IF,) gives elements
g
Azka(v’Ihéj "g2) € Exty, (IF,).
These elements are all linearly independent, since they project to linearly independent
elements of Extp, (IF,).
The following proposition gives the elements of Ext 4(2), that some of the remaining

hy 1—towers in Ext 4(2), detect in the algebraic tmf resolution:

Proposition 3.17 The following table lists, fori > 0,m > 0 and j > 4, an A(2)«—
comodule M, an h, j—tower in g~ 1 Ext A(2). (M), the corresponding h; —tower in
Ext4(2), (M), and an hy 1—tower in Ext4, (IF) that it detects in the algebraic tmf
resolution (assuming the latter is nonzero):

-1
M g Exty), (M) Ext4(2), (M) Exty, (F2)
2m i ,J +8m+8 2m, i, J+8m 2 2m, i, Jj+8m 2
I, A U1h2,1 A v1h2,1 g A v1h2,1 g
om . j+8m+4 ompJ+8mta .y 2mp,Jj+8m
ll)l A mhz,l Ql(xl,l) A mhz,l é‘z A mhz,l n
2my,Jj+8m+6 2my,Jj+8m+1 —2.2¢16 2my.Jj+8m
bo, A mhz’l Q1(x2,1) A mhz,l g(ha,1vy7v3¢,°) A mh2,1 0>
- 2m, i+2pj+8m+11 2m, i+2pJ+8m+2 2 —1 2854 2m i 7,J+8m 2
A" h2,1 Xp1t,1 AT h2,1 g (vy 3878 A U1hz,1 Mg

8This notation is slightly misleading, as there are a few wedge elements for which the P operator does not
take the element we are denoting by v’1 x to the element we are denoting by v’1+4x, but we justify this

notation by the fact that the wedge elements map to elements with such names in Ext 4(3), (F2).

Geometry & Topology, Volume 27 (2023)



2788 Mark Behrens, Mark Mahowald and J D Quigley

(Note that the notation Q, in the above table refers to the name of the generator of
Ext2i7+7(ﬂ72), and not the Milnor generator Q, € A4.)

Proof The classes corresponding to A2mv’ih’2‘ , are clear, because they are in the
image of the map
EXtA* (Fz) — EXtA(z)* (Fz)

In the case of the classes corresponding to Azmhé‘ 1 and Azmhé‘ 1 @2, we consider
the hé ,—multiples of n and Q5 € Exty, (F») for j > 4:

gn, gt, rn, mn, gzn? cee gQ2’ gCO’ rQZ’ mQZ’ ngZ’

It suffices to show that
n, t, Qi G

are detected in the algebraic tmf resolution by
4 54 5 +4 6 ,,—2,2516 7 .,—2,2¢16
where ga; = ro; = ma; = 0.

Examination of a computer calculation of Ext 4, (A4// A(2)%?) reveals that none of the
elements n, ¢, 0, and Cy are in the image of the map

(3.19) Ext’;* (A A(2)2?) — Bxt’ ().

Since the elements 7, ¢, O, and Cy map to zero in Ext 4(2), (F2), they must therefore
be detected on the 1-line of the algebraic tmf resolution. Examination of the relevant
Ext charts reveals the only possibility is for the elements to be detected by classes of
the form (3.18).

If we consider the class M g € Ext4, (IF,), one can check both that it is not in the image
of (3.19), and that the only class in Ext 4(2), (4// A(2)«) which can detect it is the class

e (vg 'v3¢783) € Exty(a), (boy).
It follows from the multiplicative structure of the wedge and the fact that
geg =vihy 8%,
that the elements v’ihé,lM g? € Exty, (IFy) are detected by
viT2h) 32 6% (vg ' v3ETE3) € Ext gz, (boo)

fori >0and j > 4. O
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4 The MASS for M(8, v%)

In this and the following sections, we shall use the notation
x[k]
to denote an element of Ext 4(2), (M ® H(8, vf)) detected by an element
X € Exty(2), (M)
on the k—cell of H(8,vY) for k € {0,1,17,18}.

The MASS for tmf, M (8, v})

The computation of Ext 4(2), (H (8, vf)) is depicted in Figure 5. In this figure, solid dots
correspond to classes carried by the “O—cell” of H(8, vf), and open circles correspond
to classes carried by the “l1—cell” of H (S, vf). The large solid circles correspond to
ho—torsion-free classes of Ext 4(2), (IF2) on the O—cell of H (8, vf). The classes with
solid boxes around them support /15 j—towers. Everything is vg—periodic.

Figure 6 depicts the differentials in the MASS for tmf A M (8, vlg) through the same
range; the complete computation of this MASS can be similarly accomplished. An
explanation of how to determine these differentials can be found in [7].

The algebraic tmf resolution for H (8, vf)

The following lemma explains that, in our H (8, vf) computations, we may disregard
terms coming from Ext 4(1), in the sequence of spectral sequences (2.9):

Lemma 4.1 [7, Lemma 8.8] In the algebraic tmf resolution for M = H (8, Uf), the
terms
Ext 4(1), (something)

in (2.9) do not contribute to Exts/it* (H(, vf)) if
s>1@—s)+ 32
Forn >0andiq,...,i, > 0, the terms
EXtiit(z)* (@il ®---®boj, ® H(s, v?))

that are the terms in the algebraic tmf resolution for H (8, vf) are in some sense less
complicated than Ext 4(2), (H (8, vf)).
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o

Figure 5: The groups Ext4(2), (H(8,v})).

Geometry & Topology, Volume 27 (2023)



The 2—primary Hurewicz image of tmf 2791

I I I I
Figure 6: The MASS for tmf A M (8, vf).
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Most of the features of these computations can already be seen in the computation
of Ext4(2), (bo; ® H (8, vf)), which is displayed in Figure 7. This computation was
performed by taking the computation of Ext (), (boj) (see for example [6]) and
running the long exact sequences in Ext associated to the cofiber sequences

3
23boy[~3] 20> bo; — bo; ® H(S),
8
=2*bo; ® H(8)[~8] —> bo; ® H(8) — bo; ® H(8.v}).
In Figure 7, as before, solid dots represent generators carried by the O—cell of H (8, vf)
and open circles are carried by the 1—cell. Unlike the case of Ext 4(2), (H(8)), there is
vf—torsion in Ext 4(2), (bo; ® H(8)). This results in classes in Ext 4(2), (bo; ® H (8, vf))
carried by the 17—cell and the 18—cell of H(8, v?), which are represented by solid

triangles and open triangles, respectively. A box around a generator indicates that it
actually carries a copy of [F5[/1;5 1]. As before, everything is vg—periodic.

One can similarly compute
Exta(), (bof* ® H(8,v}))

for larger values of k& by applying the same method to the corresponding computations
of
Extaca), (bo)

in [6]. We do not bother to record the complete results of these computations for small
values of k, but will freely use them in what follows. The spectral sequences (2.9)
imply these computations control Ext 4(2), (boy).

h, 1—towers in the algebraic tmf resolution for H (8, vf)

Theorem 3.12 has the following implication for the g—local algebraic tmf resolution of
H(8, vf):

WA X, py (AN AP ® H(S,v)

=F2[/1§C,1]®(F2[v1]/vf®H(8){XJ/IJ/}J'@ P NroHB V) xstrtinr=o
|J| odd

® @ IF2[1)1]/0%@91\71®H(&Ui;){XJffJ’}JmJ/=@),
| J|#0 even

where J and J' range over the subsets of

{G.j):1<i,1<j<n}.
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This leads to the following twist in the analog of Proposition 3.15:

Proposition 4.2 In g7 '"SEo(H (8, vY)), all of the h, j—towers coming from
Exta(), (bof* @ H(8,v}))

for k > 3 are either the source of a nontrivial dy—differential or the target of a dy—
differential. For k = 2, the h, j—towers

vfhé,l O1(x1,1x1,2)[n]

are killed for e € {0, 1} and n € {0, 1} (but the corresponding towers with n € {17, 18}
are not killed).

Proof Everything is identical to the proof of Proposition 3.15, except that the differ-
entials

dy™ :Falvr, hy g 1/vix 101} ® H®) — Falvr, hy 1 1/vi{Q1(x1,1x12)} ® H(8, vf)

now have nontrivial kernel and cokernel. O

We now give elements of Ext 4, (H(8, vf)) which these remaining /4, j—towers detect
in the algebraic tmf resolution. Note that, as pointed out in [33], the Mahowald operator

satisfies
hy M(x) =0,

which implies that, for any x € Ext4_(IF,), there exists a lift
M (x)[1] € Exty, (H(8))

and thus an element M (x)[1] € Ext 4, (H(8, v?)). Furthermore, the element A% = vg
exists in Ext 4, (H (8, vf)) (see Lemma 5.1 below). We conclude that, for 0 <i <7,

j.k,l >0and e € {0, 1}, the wedge elements
vih] | A M g?le] € Exty, (H(8,v}))
exist, and we see they are linearly independent by mapping to Extp, (H (8, vf)) (where

By is as defined in (3.16)).

Proposition 4.3 The following table lists, form > 0, 0 < i <7, 0 < i’ <5,
Jj=4,ke{0,1,17,18} and €, €’ € {0, 1}, an A(2)x—comodule M, an h, ;—tower in
g ! Ext4(2), (M ®H (8, v?)), the corresponding hy 1—tower in Ext 4(), (M ® H (8, vf))
and an h, | —tower in Ext 4, (H (8, vf)) that it detects in the algebraic tmf resolution:
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M g7 Exty,(M®HE.VY)  Extge), (M®HE.WY)  Exta,(H(.vY)

F, APyt *8e] Ayt | g?e] APyt | g?[e]
bor  AMhIH04(x,0)K] Ampd A k) A nfk]
AR (o)) AP g (ha v 03Ok ARy | Os[K]
. ; 2m i’ +27J+2 o
D02 pzmyiH2 g AT ey Ay hd M g2e]
g% (v 'v38763)[e] ’
€ A2mypJj+11 2m €’ 1, J+2 ;.
bo®> vy A hy ATy AT R M g?e]

O1(ex)[17+e] g2 vy v3lLT. DT +é]

Proof The cases of

NV Ry g, AR nle],  ARL  Qslel, ARy MgPle]
follow immediately from Proposition 3.17 since all of these elements are annihilated
by vg.
The elements

» »
48 € Bxtyy), (bor).  h34°C1® € Bxty(y), (bos)

lift to elements e
W07 + €] € Extyqa), (bor @ H(8,vY)),

5510117 + €] € Exty), (bos ® H(8,v)).

(44)

One can explicitly check that the lifts (4.4) are permanent cycles in the algebraic tmf
resolution. Therefore they detect the desired elements

RS {17+ €l b} Qa[17 + €] € Ext, (H(8, v})).

Applying case (5) of the geometric boundary theorem [5, Lemma A.4.1] to the triangle

8

H(8,v})[—1] — 24 H(8)[-8] 2> H(8) — H(8,v})
and the differential
/L i42 _ ) —
dy(§ 1332 (g o3eted)) = vf g e (vg '3l 63))
in the algebraic tmf resolution for £2* H(8)[—8] (3.14), we find that the images of the

elements
iR, M(g%)[€] € Exty, (H(8))
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under the map
Exty4, (H(8)) — Exty, (H(8,v}))

are detected by the elements
rLi42 _
v hyy % (g V3T G5DI1T + €]

in the algebraic tmf resolution for H (8, vf). a

32 8
5 The v;"—self-map on M (8, v})
We now endeavor to prove Theorem 1.8. We first recall the following lemma:

Lemma 5.1 [7, Lemma 7.6] The element

8,48+8
v§ € Bxtly iy S (H(8,v}))

is a permanent cycle in the algebraic tmf resolution, and gives rise to an element

vs € Bxty T (H(8,v})).
It follows from the Leibniz rule that vgz persists to the E4—page of the MASS for
M (8, vf). Our task will then be reduced to showing that dr(vgz) =0 forr > 4. We
will do this by identifying the potential targets of such a differential, and show that they

are either the source or target of shorter differentials. This will necessitate lifting certain
differentials from the MASS for tmf A tmf” A M (8, v¥) to the MASS for M (8, v}).

As explained in [8, Section 7.4], work of the second author, Davis and Rezk [31; 15]
implies that the algebraic map

Ext4(2)(2°boy @ £'°bos) — Exty(z), (4/A(2)+)
realizes to a map
5.2) tmf A tmf, — tmf A tmf,

where tmf A tmf, is a spectrum built out of tmf A >8bo; and tmf A £1%bo,. They
furthermore show that there is a map

(5.3) 32 tmf — tmf A tmf,,
which geometrically realizes the inclusion of the direct summand (2.9),

EX'[A(Z)* (233]1?2[—1]) — EXtA(z)*(Emll)z) C EXtA(z)*(Egb_Ol ® 216@2).
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The attaching map from tmf A bo, to tmf A bo; in the spectrum tmf A tmf, induces
dz—differentials from the /1, ;—towers in bo, to the /15 j—towers in bo; in the ASS for
tmf A tmf under the map (5.2). Furthermore, there are differentials in the ASSs for
tmf Aboq, tmf Abo, and tmf, which induce differentials in the ASS for tmf Atmf under
the maps (5.2) and (5.3). We wish to study when these differentials (and more generally
differentials in the ASS for tmf A tmf™) lift via the tmf resolution to differentials in the
ASS for the sphere.

To this end we consider the partial totalizations
T" := Tot" (tmf* 1)
of the cosimplicial tmf resolution of the sphere, so that we have
S>~limT "

n
and fiber sequences

S7"tmf A tmf* — T" — 771,
The spectrum 7" is a ring spectrum, and in particular has a unit

S —>T7T".
We let

(5.4) T" =Tot"(4//A(2)E* 1)

denote the corresponding construction in the stable homotopy category of A.—co-
modules. There is a MASS

Exty"(T" @ H8.v})) = T/ M(8.v})

and the algebraic tmf resolution for H (8, vf) truncates to give an algebraic tmf resolu-
tion

@Ext*A’g‘z)*(A//A(z);@" ® H(8,v})) = Exty, (I" ® H(8,vY)).
i=0
The following lemma will be our key to lifting the desired differentials:

Lemma 5.5 Suppose x is an element of Ext 4, (H(8, vf)) which is detected in the
n-line of the algebraic tmf resolution for H (8, Uf) by an element

x" € Exty(a), (AJAQ2)2" ® H(8,v})).
Furthermore, suppose that, in the MASS for tmfAtmf” A M (8, vf), there is a differential

dmaSS(x/) — y/
P
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and that, for 2 <r’ < r, we have
dy"(x) =0
in the MASS for the M (8, v¥). Then either
(1) the differential
A (x)
in the ASS for M (8, vf) is detected by y’ in the algebraic tmf resolution; or

(2) the element )’ is the target of a differential in the algebraic tmf resolution for
H(8, vf), or, in the algebraic tmf resolution for T" ® H (8, vf), y' detects an
element of Ext4, (T" ® H(8, vf)) which is zero in ™SE, (T" A M (8, v?)).

Proof Consider the maps of algebraic tmf resolutions and MASSs induced from the
zigzag
M(8,v8) 5 T A M(8,v8) <2 S 7tmf A tmE" A M (8, 08).
Define
¥ 1= ax(x) € Exty, (T" ® H(8,v}))

Then X is detected by x’, regarded as an element of the algebraic tmf resolution for
T" A M8, vf). In particular, this means that

X = Ba(x")
Therefore, the differential
dmaSS(x/) — y/
,
in the MASS for tmf A tmf” A M (8, vf) maps to a differential

d (%) =y 1= B ()")
in the MASS for 7" A M (8, v%). In particular, either

(1) y is nonzero in ™SE, (T" A M (8, vf)) and is detected by )’ in the algebraic
tmf resolution for 7" ® H(8,v}), or

(2) either y = 0 in ™E,.(T" A M (8, Uf)) or y’ is killed in the algebraic tmf
resolution for 7" ® H(8, vls).

If the latter is true, then y’ is killed in the algebraic tmf resolution for H (8, vf), since
the algebraic tmf resolution for 7" ® H (8, vf) is a truncation of the algebraic tmf
resolution for H (8, vf).
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If we are in case (2), we are done. If we are in case (1), consider the differential
yi=d®(x)
in the MASS for M (8, vf) (which is defined by hypothesis). We must have

ax(y) =

Therefore, d}"(x) is detected by )’ in the algebraic tmf resolution. m|

Remark 5.6 We will primarily be applying Lemma 5.5 to the following two cases:

Casel (x = Azmhil 0,lk]) Suppose that we can prove
3 (A" | Osfk]) = 0
in the MASS for M (8, vf). The element Azmhé 1 Q2[k] is detected by
N ) g (2,105 20361 k] € Bxtya), (boa @ H(8,v}))

in the algebraic tmf resolution, and it is proven in [8] that, in the ASS for tmf A tmlf,
there is a differential

daSS(Azmh] g(hZIUO vz 16))
= Azmhj g(h2,183) + e(m) A"~ 4h]+20 g(h2,1v5%v31°),

where 1 ifm=2mod4.

0 otherwise.

e€(m) = {

Lifting this differential to tmf A tmf A M (8, vf), Lemma 5.5 implies that either the
target of the differential d aSS(Azm hJ 2.1 0,lk]) in the MASS for M (8, v8) is detected by

N e (hy 183 k] + €0m) A4 1) 20 g (hy 1vg 20361 ©)[K]
in the algebraic tmf resolution, or
N5 g (hy, 1 83)k] + €(m) A2 ~* 1) 20 (i, 1ug 203 E{ ©)[K]

is the target of a differential in the algebraic tmf resolution or detects an element of
Exty, (T'® H(S, vS)) which is zero on the E3—page of the MASS for T1 A M (8, vf).

Case2 (x=MA>v ’lhéts[e]foree{o,1}and0§i§4) TheelementMsz’ihéJgS[e]
is detected by
10, —
AZ l+2h]+ 1 2 é‘z)[]
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in the algebraic tmf resolution for H (8, v?), and the map (5.3) implies there is a
differential

i j+10, — j +19 , —
d3 (8020 (0g o3 g EDle) = v R (v T3 e e
in the MASS for tmf A tmf A M (8, v%).

Then Lemma 5.5 implies that either d}*** (M sz’ihgts[e]) is detected by

[+3,7+19, —1. 284
Ull h2,1 (vo U2§1§2)[€]

in the algebraic tmf resolution, or v’i+3h£j19(va ! v%@ fé‘ g )[€] is killed in the tmf reso-
lution for H (8, vf) or it detects an element which is zero in the E,—term of the MASS
for TV A M8, vf). However, the element

M ) T e] € Bxty, (H(8,v)))

is nonzero, and is detected by v’1+3h£j19(valv§§f§g)[e] in the algebraic tmf res-
olution for H (8, vf). We conclude that vi+3héj19(v51v§§‘f g)[e] is not killed in
the algebraic tmf resolution for H (8, vf). Since the algebraic tmf resolution for
T'® H(S, vf) is a truncation of the algebraic tmf resolution for H (8, vf), we conclude
that v’1+3h£j19(va 1v§§‘ fé‘g )[€] detects a nontrivial element of the E,—page of the
MASS for T1 A M (8, vf). We conclude that

s i Jj+8
d5s (M Aoy 1) le])
is nontrivial in the MASS for M (8, vf), and is detected in the algebraic tmf resolution
i j+19, _
by vi Ry (v 3§ e el
Proof of Theorem 1.8 By Proposition 2.3, it suffices to prove that
v3? € Exty, (H(8,v}))

is a permanent cycle in the MASS. Furthermore, since vg € MaSE, (M (8, vf)), the
Leibniz rule implies that vgz eMSE, (M (8, vf)). We therefore are left with eliminating
possible targets of d;nass(vgz) for r > 4.

Suppose that d, (vgz) is nontrivial for r > 4. We successively consider terms in
the algebraic tmf resolution which could detect d, (vgz), and then eliminate these
possibilities one by one.
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The only terms in the algebraic tmf resolution E{—page which can contribute to
Extiiigl-"s(H(S, v¥)) for s > 36 are

. EXtA(z)*(ll)i@s) for 0 <s <6, and

s Exty(), (bo® ®bo,) for 0 <s <2.
Furthermore, @?s only contributes /1, j—towers in this range for s = 5, 6. We list

these contributions below, except we do not list elements in /1, j—towers coming from

@?s for s > 2 which are zero in the WSS E;—term (see Proposition 4.2). Also, since

vgz is a permanent cycle in the MASS for tmf A M (8, Uf), we can disregard any terms

coming from Ext 4(2), (IF2) (the O-line of the algebraic tmf resolution). Finally, we do
not include any terms which can be eliminated through the application of Case 2 of
Remark 5.6.

We now eliminate these possibilities one by one. We will consider the terms in order
of reverse algebraic tmf filtration.

@?4 In the modified May spectral sequence (3.3), there is a differential

dg"™ (b ph3) = 3

which lifts under the map ®, of (3.4) to a nontrivial differential

Y (G187 16 16D =17 167187167187
in the WSS for [, and this implies a nontrivial differential

dy™ (i AR 167165 1311D) = v ASKRLET 167 167 17 1 6101
in the WSS for H(8, v¥).
ll)fz ® bo, In the cobar complex for [F5[¢ ? ¢ g ], we find
d((67.6311¢7¢3) and  dQT (1913 |15 415 115 |1}

are linearly independent, and

ded, eeded et g =o.
However,

d(&3e5 16383 =165, 0311680 + ¢3 a3 1188, 631,

The elements are thus eliminated by multiplying the computations above with v~
and lifting them to the top cell of H(8, vf).

24722
vzhz,l
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@?3 Note that

Extl, " T4 (1) = 0.

We conclude that the class

vicoht (vy 'v3¢8¢3) € Exty(a), (b02)

must either support or be the target of a differential in the algebraic tmf resolution,

for otherwise it would give a nonzero element of Extz(l’10+48(1[4'2). However, by

. . . . . 4 —-1.2 4
examination, there are no classes in Ext 4(2), (F2) which can kill v{co/(vy v5¢ fg‘ )
in the algebraic tmf resolution, so there must be a nontrivial differential

dr(vicohy (vy 'w328¢3))

in the algebraic tmf resolution for IF,. Since the target of this differential must be
hq—torsion, there is only one possibility:

dy(vicoh (vg ' v3¢783)) = viATvigT 1¢7 1635,
It follows that we have
dy(vico(vy 'v38763)) = vim 3T |67 185,
This differential lifts to a differential
dy(vico(vy 'w3¢TENN]) = vihv3ET [ 185(1]
in the algebraic tmf resolution for H (8, vf). Multiplying by AS, we have
dy(Avieo(vg w381 eI = A% A1 v3ET €Y | 63110
bo; ® bo, There is a differential
do™ (6% =153, 43)]
in the WSS for IF, which lifts to a differential
dy™(vih3)18(vg ' v35,%) = vih3) g (vg V3185, 63D

We therefore only have to consider one of the two potential elements. In the modified
May spectral sequence (3.3), there is a differential

dg"™(h2,3) = h13h1 4
which lifts to a differential
Ay (5 =7 16°.
using the map @ of (3.3), and gives a differential

Ay 18y =g el ele.
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The elements
v1g(vy 0385 1 £5) € Exty(z), (boj ® boy)
and
v1g(vy 'v3es 148 1£1°) € Exty(a), (00®% ® bos)

support /15 j—towers which are nontrivial in ¥**E . Therefore, we have a nontrivial
differential

dy* (i3} g (vg 1385 189)) = vihs g (vg ' v3gs 167 1419).
This differential lifts to the top cell of H (8, vf) to give
Y™ (vih3} g (vg 0383 [EI8]) = vih3] g (vg ' v3E5 147 1€ )18
in the WSS for H(8, v¥).

ll)f’z The element

h3 1 Aig (g ' v3LEY, D8]
detects the element
A*- MPARGeo[18]

in the algebraic tmf resolution for H (8, v?). Regarding this element as an element in
the MASS for tmf A bo%, there is a nontrivial differential

d;nass(hg’lA4U1g(valv§[§§’ é‘;’])[lg]) = h%ﬁmg(valv%[ﬁ’ ;g])[lg]

By applying (—)"=? to the map of tmf-modules (5.2), we may consider the composite

(5.7) tmf A bo? < (tmf A tmf,)" ™% — tmf A tmf?.

The differential above maps to a nontrivial differential between elements of the same
name in the MASS for tmf A tmf2. We wish to apply Lemma 5.5. We must have

A3 (A*- MPARGeo[18]) = 0

in the MASS for M (8, vf), since there are no elements in the algebraic tmf resolution
for H(8, vf) which could detect a target for this differential. Thus Lemma 5.5 implies
that either

dS(A* - MPAhZeo[18])

is nontrivial and detected by h§41 vlg(val vg[éf, {g])[lS], or

3% vig(vg ' v3gs, E3DI18]
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is killed in the algebraic tmf resolution for H (8, vf), or detects an element which is
killed in the MASS for T2 A M (8, v¥). The only such possibility is for

Ah3 55117]

to detect the source of a d,—differential in the MASS for 72 A M (8, vf) to do such a
killing. Projecting onto the top Moore space of M (8, vf), this would imply

Ah3h &3
detects an element in the algebraic tmf resolution for the sphere which supports a
nontrivial d,—differential in the ASS for the sphere. However, Azhgi ¢ g detects
A? g5 -Ahscq
in the ASS for the sphere, and there is a differential
d3S(A2g° - Ahyey) = d3¥(A2g?) - g - Ahyey = A’h3g2eq - g° - Ahgey.
However, A2h§e0 «Ahycr = 0 in Exty, (F2) [13], so this d3* is zero.

We now turn our attention to the other potential target coming from @?2,

hyl A% (vg v 47, 3DI18).

This element detects

A*g*viha, M g*[0]
in the algebraic tmf resolution for M (8, vf). However, in the ASS for the sphere,
vfhz,l g3 is a dr—cycle, and so there is a differential
A3 (N vihy 1 8%) = d3(A2¢%) Sha 1g° = Mh3gPey v§ha,g® = v]h3% g2,
Applying M (=) = (—, hg, g>) and mapping under the inclusion of the bottom cell
of M (8, vf), we get a nontrivial differential

dy™ (Ng? - vihy Mg [0]) = v{h3? M g*[0].
bo; The element
hiflg(hz,léé‘)

detects
g*n € Exty, (F2)

in the algebraic tmf resolution for IF, (Proposition 3.17). This element can be eliminated
by Case 1 of Remark 5.6, but we can also handle it manually using low-dimensional
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calculations in the ASS for the sphere. There is a differential

d3(mQs) = g’n
in the ASS for the sphere [24], from which it follows that g¥n is zero on the E4—page

of the ASS of the sphere, and hence g®n[0] is zero on the E4—page of the MASS
for M (8, vf).

For the element
R3S A g (ha 1G],

we wish to employ Case 1 of Remark 5.6, using the differential
d;f;nass(hfl A g(hy vy 03¢ O[17]) = héi A g(hy 1 8)[17]
in the MASS for tmf A tmf A M (8, v¥). Note that
hy A% g (ha 105?03 O)[17]

detects the element
C// . A2g2[17]

in the algebraic tmf resolution. Observe [25; 13] that we have
dy(C"-N?g?) = C"-dy(A?g?) = g*-C"Ah3eg = g* -0 =0.
It follows that d»(C” - A2g?[17)]) is in the image of the map
Extg, (H(8)) — Exty, (H (8, v})),

but a check of the algebraic tmf resolution for H(8, v?) reveals there are no possible
targets in this bidegree. We therefore have

d,(C"- A*g?[17]) = 0.
Therefore, the hypotheses of Lemma 5.5 are satisfied. It follows that
b A g (ha, EDI1T)

either is killed in the algebraic tmf resolution for H (8, vf), or detects an element in
the MASS which is killed by d3(C” - A2g?[17]), or detects an element which killed by
a d,—differential in the MASS for 71 A M (8, vf). We just need to eliminate this last
possibility.

Any possible source for such a d,—differential would necessarily be detected on the
0-line of the algebraic tmf resolution and would not support a nontrivial d, in the
MASS for tmf A M (8, vf). The only such possibility is

AR
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However, we can express this element as the Hurewicz image of the element
gm-A*-g*[1]
in the MASS for M (8, vf). This element is therefore necessarily a d,—cycle, since it
is a product of dy—cycles.
bo, We begin with the element
h3 At (ha,1v5 2038 ©)[18]
which detects the element
A*g0,[18]

in the MASS for M (8, vf). We are in Case 1 of Remark 5.6. An elementary check
using the charts of [25] reveals that the element g Q5 in the ASS for the sphere lifts to
a dy—cycle

g0»[18]

supported by the top cell of H (8, vf). Since A*is a d,—cycle in the MASS for M (8, vf),
we deduce that

A*g 0,[18]
is a dy—cycle. We therefore deduce that
dy** (A*g 0[18])
either is detected by
A g (ha  EDIIST+ h34 g (ha, v 203 1®)
in the algebraic tmf resolution for H (8, Uf), or
A*hS g (ha 18IS+ h3Y g (ha,1vg 0381

is killed in the algebraic tmf resolution for H (8, v?) or detects an element which is
killed in the MASS for T'! A M (8, vf). The only possible sources of such algebraic
tmf resolution differentials are wedge elements coming from Ext 4(2), (H (8, vf)), and
we know these all must be permanent cycles in the algebraic tmf resolution because
they detect the corresponding wedge elements of Ext 4 (H (8, vf)). The only elements
of the algebraic tmf resolution which can detect an element which could support a
dy—differential killing

A*hS g (ha 188+ h3Y g (ha,1vg?v3E1°)
in the MASS for 7' A M (8, vf) are the elements
(5.8) Av§h3[0] and  APvR34[10.
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However, using the map of spectral sequences
MASEXF(TT A M(8, 7)) = ™SE]* (tmf A M(8,v1)),

we can eliminate these possibilities on the basis that the elements (5.8) support nontrivial
d,differentials in the MASS for M (8, v¥).

We are left with eliminating
vih3h (v w3 EOI]

as possibly detecting dg“ass(vgz) in the MASS for M (8, vls). This is the trickiest
obstruction to eliminate. In the MASS for tmf A tmf A M (8, v}), there is a differential

dy™ (Nv1h37% (vg 3G ED]) = w3y (vg 'w3ET e
The problem is that, in the WSS for H (8, vf), there is a nontrivial differential

dy™ (80 3% (v "3 6T EDITD = A%vi k3% (vg ' v3Ig E3DIL-

Sublemma 5.9 The element vg’z is a permanent cycle in the MASS for T1 A M (8, vf).

bo; h%,llg(hZ,l;;)[O]

h3% A2g(hy 1 EHI17]

h3 A g (ha,1 51 0)[18]

vin3! (v 'w2EE e

bo®? h3 | Atvyg(vg 1 v2[es . CAD18]
hi% A2 g (vg2[ed, ¢S]

vih3! g (vy 'v3lEs, E3DI18]

vih3! g (vyv3lEs, E3DI18]

boj VA (2E8 | ¢8| Eh1]

vihi¥ g (vg?vslet, 6311 EFE18]

boP2 ®@boy vihi% g(ugv (et 1¢5ed |8t + ¢ 1E8ed 18
vih3® g(ug2vseses | (65, E3D18]

bot viAShIEE 167 163 1631

00,

bo,

Table 1: List of potential targets of d**(v3?) for r > 4.
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Proof The elements of the algebraic tmf resolution which could possibly detect the
target of a differential
A W33, =4,

in the MASS for 7! A M(8, vf) consist of those terms in Table 1 coming from bo;
and bo,.

Using (5.3), there is a map
¥ mf A M(8,v}) - 27 tmf A tmf — T'!
and we therefore have a differential
A5 (A1 h3% (vg  vRETEDIND) = vihs ! (vg w3 ¢ )]

in the MASS for 7! A M (8, v?). Therefore, vfh;’ll (vo_1 v%(fzg)[l] cannot be the target
of a differential d‘s"ass(vgz) in the MASS for 71 A M (8, vf).

Our previous arguments eliminate all the other possibilities. |

Suppose now for the purpose of generating a contradiction that the differential
dmass (U 3 2)
5 2

in the MASS for M (8, vf) is nontrivial and detected by vlzhg,l1 (v(j1 v%{ffg)[l] in the
algebraic tmf resolution for H (8, vf). Consider the fiber sequence

S72mf? A M(8.0%) — M8, v%) — T' A M(8,08) L5 S~ Ttmf?.

We have proven that v;z exists in n192T1 AM(S, vf), and, because our assumption
implies that vgz does not lift to 719, M (8, vf), we must have

0 # (v3%) € 191 2 tmf> A M (8, v}).

Sublemma 5.10 There exists a choice of vgz emoa T A M8, vf) such that 8(1);2)
has modified Adams filtration 34.

Proof Let X denote the k™ modified Adams cover of X —so that the MASS
for X %) is the truncation of the MASS for X obtained by only considering terms in
massE;J(X ) for s > k —and let X% denote the cofiber

X(k+1) — X — X(k)
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Then we have fiber sequences
M@, vy = (T AMB,v)) gy = (7 Htmf> A M(8,0})) (k-2

Define M (k) to be the homotopy pullback

~

M(k) — > T! AM(S, vf)
M(8, vf)(k) —_— (T1 AN M(8, vf))(k)

Then the algebraic tmf resolution for M (k) 1s the truncation of the algebraic tmf
resolution for M (8, vls) obtained by omitting, for n > 2, all terms of

Ext4(2), (boj; ® -+ ®bo;, ® H(8,1}))

of cohomological degree greater than k — n. It follows from the map of algebraic tmf
resolutions and MASSs associated to the map

M(& U?) — M(k)
that there is a differential
47 0f) = o3 05

in the MASS for M, (k)- This differential is nontrivial in the MASS for M (36), because
it is nontrivial in the MASS for M (8, vf), and any intervening differentials killing
the target in the algebraic tmf resolution or MASS for M (36) would lift to M (8, vf)
because the spectral sequences are isomorphic in the relevant range. The same is not
true in the case of M (35)» Where

dy™ (N1 h3% (vg ' v3ETEN]) = 0
and therefore szlhgzl (v(j1 vgfffg)[l] persists to the E,—term of the MASS
A3 (NP h3? (v 3TN = vih3] (vg 03 E T eI

Therefore, the proof of Sublemma 5.9 goes through with 71 A M (8, vf) replaced
by M35y to show that there exists an element

—_—~

32 T
v, S 7T192M(35)
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which is detected by v;z in the MASS. Consider the diagram

>~ limf?

] o

Mzey —— T' AM(8,0}) — (=7 'tmf? A M(8,v8)) 34)

| |

Mizsy —— TP A M(8,0%) — (Z~"mf2 A M(8,v8)) (33

—~

where the rows are cofiber sequences. The element v;z € 71192]\7(3 5) maps to an
element vgz eTAMS, vf) with

3" (v3%) = 0.

However, since d;“ass(vgz) is nontrivial in the MASS for M(%), the element vgz €
m19oTV A M8, vf) cannot lift to M(3¢), and therefore

¥ (v3%) #£0.

It follows that 8(v;2) has modified Adams filtration 34. |

However, we have:

Sublemma 5.11 There are no elements of w191 X~ 2tmf> A M (8, vf) of modified
Adams filtration 34.

Proof The only possible elements in the algebraic tmf resolution for tmf? A M (8, vf)
which could contribute to modified Adams filtration 34 in this degree are

(5.12) APvih3? (vg 3187, 3DI1] € Extaga), (o ® H (8, v}))

and the elements of Table 1 of algebraic tmf filtration greater than 1 in the appropriate
modified Adams filtration. However, the previous arguments eliminate all of the
candidates coming from Table 1, so we are left with eliminating (5.12). We wish to lift
the differential

dgna“(A6v1hg,1 (valvg[é‘f, é‘g])[]]) = szlh%’zl (valvg[é'?» f;])[l]

in the MASS for tmf Atmf? A M (8, v¥) to a differential in the MASS for tmf2 A M (8, v¥).
We therefore must argue that

d;na“(A%thJ (valvg[g“f, C;])[l]) =0
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in the MASS for tmf? A M (8, vf). We will therefore argue there are no elements in the
algebraic tmf resolution for tmf? A M (8, vf) which could detect the target of such a .
Ignoring any possibilities which are eliminated by Proposition 4.2, the only possibilities
r
- Avthyg 3T 1187 63 ASuihgET (6. 631167 1 61O
ASvuthyvg 'o3le} 11T, ASuhged |67 18T, 6311 ¢7(0],
Auhgley 1T 16T 161101 ASuthget 167 167 1167 63000,
However, these are killed by the respective WSS differentials
do™ Avihivg vyly |GG d ACVIRGET €8y 167 1¢70].
dy™ Avihivg 3G G dg™ ATuihgly 16716783 1¢710]
dy™ ATRGETE 167 1ET11ET10),  dg™ ASuihgey 167 167 16765101, O

Thus we have arrived at a contradiction, as we have produced an element of modified
Adams filtration 34, and subsequently showed no such elements exist. We conclude that
our supposition, that the differential d gnass(v;z) in the MASS for M (8, vf) is nontrivial

2h31

and detected by vih; ",

(v(;1 v%{ffg)[l] in the algebraic tmf resolution, is false. m|

6 Determination of elements not in the tmf Hurewicz image

Theorem 6.1 The elements of tmf, not in the subgroup described in Theorem 1.2 are
not in the Hurewicz image.

We first recall some well-known K-theory computations. Recall that 7,KO is given
by the v?—periodic pattern

n? v

n nvy

1 2v% 2vf

CH
Let
MQ2%°) = h_r)n M(2")

4

denote the Moore spectrum for Z/2%°.
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Consider the diagram of cofiber sequences

S~1KO A M(2) —2— KO —2 5 KO — 2+ KO A M(2)
(6.2) -2—1l H Iz—l Iz—l
=7IKO A M(2%) —— KO KOg —— KO A M(2%)
o

The groups KO, M (2) are well known to be given by the v;‘—periodic pattern

02?7 ®2;°
7 7

where we denote lifts of elements of KO, along the map p of diagram (6.2) with a
tilde, and the images of the map (- ) with a bar. It then follows easily from the map of
long exact sequences coming from the above diagram that KO, M (2°°) is given by the
v;‘—periodic pattern

5-1 72 214 76

where again we denote lifts over the map p with a tilde, and images under the map ()
with a bar. The infinite sequences of dots going down represent the elements 2~/ in

Z7.]2%° = Q/Zy).
Proof of Theorem 6.1 Recall [27, Corollary 3] that we have an equivalence
¢ 'tmf ~ KO[; ],

1

where j7' = A/ ci’ . Applying m to this equivalence, we have a commutative diagram

S — KO

|

tmf —— c4_1tmf7> KO[j ]
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Consider the diagram

xS L i1 M(2%®) —— KOy M(2%)

i
hl hl \
tmfy ¢ tmfyp M(2%®) —2 ¢ tmfy g M (2%°) == KO, 41 M (2%)[j ]
14
(:4_1tmf,.<

Suppose that x € tmf- o has nontrivial image in L(x) € c;ltmf* and that x = ().
Since y is torsion, it lifts over p to an element

The commutativity of the diagram implies that

0# L(x)eIm(p'oi)
and this implies that
L(x)e{ckn 1k=0,1€{1,2}}.

Now consider elements of the form
x =aAky e tmf

with & # 0 mod 8. Suppose that x = /(y). Lift y to an element
J € Muy 1 M(2%).

Then we have - -
Lh(y) = %OtAkU% = %avll2k+2j_k 40,
But the commutativity of the diagram implies that L/(y) is in the image of i, which

implies that k£ = 0. m|

7 Lifting the remaining elements of tmf, to x}

Multiplicative generators of the Hurewicz image below the 192-stem

In this section, we determine a set of elements which multiplicatively generate the tmf
Hurewicz image below the 192—stem. The results in this subsection drastically reduce
the number of classes which we must lift in the sequel.
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Lemma 7.1 The Hurewicz map S — tmf is a map of ring spectra. In particular, it
preserves multiplication.

Corollary 7.2 Suppose « = By is a product of elements f,y € m«(tmf) with lifts
B,V € m«(S). Then By € m+(S) must be a lift of «.

With this in mind, it suffices to find a subset of the Hurewicz image which generates
the entire Hurewicz image up to the 192—stem under products. Our desired generating
subset is given in Corollary 7.16. We will obtain our generating set by listing generators
in lemmas and then recording their products in corollaries, until we have exhausted the
tmf Hurewicz image up to stem 192.

Lemma 7.3 The classes nn € m1(tmf), v € m3(tmf), € € mg(tmf), k¥ € m4(tmf),
K € myo(tmf), u € m39(tmf) and w € 745 (tmf) are in the Hurewicz image.

Proof The elements 7, v, €, k, k, u and w are all well-known elements of 73, detected
in the Adams spectral sequence by /1, hy, co, do, g, Ah1dy and Ahyg [22, Table 8].
These elements have nontrivial images under the map of Adams spectral sequences
induced by the unit map S — tmf. The lemma is therefore somewhat tautological, as
the corresponding elements in tmf were defined in Section 1 to be the Hurewicz images
of these elements. O

Lemma 7.4 The class g € 3, (tmf) is in the Hurewicz image.
Proof See the proof of Lemma 7.18(1). O

Corollary 7.5 The classes n?> € m,(tmf), v? € 7g(tmf), v? = € € mo(tmf), kn €
m15(tmf), kv € 17 (tmf), Kn € 721 (tmf), Kn? = K€ € ma, (tmf), Ke = k2 € mag(tmf),
qn € ms3(tmf), Kk € mw34(tmf), Kkn € m35(tmf), K2 € m40(tmf), K2y € w4 (tmf),
2n% =3 € 4o (tmf), wn € w46 (tmf), Kq € 755 (tmf), Kgn € w53 (tmf), K2k € 754 (tmf),
Ku € mso(tmf), k3 € mgo(tmf), Kw € mgs(tmf), kwn € mee(tmf), k* € mwgo(tmf),
K2w € mgs(tmf), w? € moo(tmf), K7 € 190 (tmf), K3 w € 1195 (tmf), kw? € 7110 (tmf),
K*w € 5 (tmf) and kK>w? € 730 (tmf) are in the Hurewicz image.

Lemma 7.6 The classes {VA?}v € ms4(tmf), {vA2}k € mgs(tmf) and {n?A?}k €
770 (tmf) are in the Hurewicz image.

Proof See Lemma 7.21. O

Corollary 7.7 The classes {vA2}v? € ms7(tmf) and {vA?}kv € mgg(tmf) are in the
Hurewicz image.
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Lemma 7.8 The classes {vA*}v € 19, (tmf), {e A*} € 194 (tmf), {KA*} € 77110 (tmf),
2A*K € m116(tmf) and {nA*}k € 7y 17(tmf) are in the Hurewicz image.

Proof See Lemmas 7.22 and 7.23. O

Corollary 7.9 The classes {e A*}n € mos(tmf), {kA*}n € my11(tmf), {kKA*}v €
w113 (tmf), {kA*}v? € 1116 (tmf), {nA*}in € 7115 (tmf), {kA*}ic € 7124(tmf), {kA*}ic €
m130(tmf), {kA*}cn € 7131 (tmf), {nA*}k? € 7137 (tmf) and {nA*}k*n € 735 (tmf)
are in the Hurewicz image.

Lemma 7.10 The class {gA*} € 1,3 (tmf) is in the Hurewicz image.
Proof See Lemma 7.24. |

Corollary 7.11 The classes {gA*}n € mia9(tmf), {gA*}k = wnA* € 714 (tmf),
{gAM Kk € mi45(tmf), {gA*}kn € mi49(tmf) and {gA*}kn? € mys0(tmf) are in the
Hurewicz image.

Lemma 7.12 The class A*u € my35(tmf) is in the Hurewicz image.
Proof See Lemma 7.25. |

Corollary 7.13 The classes A*un € my36(tmf) and A*uk € my55(tmf) are in the
Hurewicz image.

Lemma 7.14 The classes {vA®}v € my59(tmf) and {vA®}k € 716 (tmf) are in the
Hurewicz image.

Proof See Lemma 7.26. O

Corollary 7.15 The classes {vA®}v? € 7153, {vAS W3 € 7156, {VAS}kn) € 7165 (tmf)
and {vA®}kv € 1y ¢4(tmf) are in the Hurewicz image.

Thus our calculation of the Hurewicz image up to dimension 192 has been reduced to
showing that the following list of elements is in the Hurewicz image:

Corollary 7.16 Up to dimension 192, the Hurewicz image is generated under multipli-

cation by

v, e, k.5, qu,w, VA2, {vAZ e, {n* APYie, (v A%y, {e A}, kA, 2A%,
A, (gAY, Atu, v Ay, (A},
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Lifting generators

We will now describe our method for lifting generators. Given an element x € tmfy, we
want to lift it to an element y € 7§. To this end, we consider the diagram of (M)ASSs

Ext(), (H(8,v%)) tmfyt 15 M (8, v)
Extq, (H(8,v%)) 18 M (8, 0F)
|
Ext 4(2), (F2) tmf,
/
Extq, (F5) v

First, we identify an element
x' e Ext4(2), (F2)
which detects the element x in the ASS for tmf, and then we identify an element
%' € Ext(z), (H(8,v1))

which maps to it. This element X’ can be regarded as an element of the 0-line of the
algebraic tmf resolution for Ext 4, (H (8, vf)). We will show that the element X’ is a
permanent cycle in the algebraic tmf resolution, and thus lifts to an element

7' € Extg, (H(8,vY)).

We will then show that the element ' is a permanent cycle in the MASS for M (8, v?),
and hence detects an element

yemeM(8, vf).

Let y € r} be the projection of J to the top cell. It then follows that the image of y in
tmf,.< equals x, modulo terms of higher Adams filtration (AF). Furthermore, using the
2 2_self-map on M (8, v ) we deduce that the element

32ky € mM(8, vg)

projects on the top cell to an element v32k y € m3 whose image in tmfy is A8k x
modulo terms of higher Adams filtration. Finally, Theorem 6.1 eliminates the potential
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ambiguity caused by elements of higher Adams filtration, since the elements of higher
Adams filtration are vf—periodic.

We will show all of the generators of Corollary 7.16 except for 5, v and € actually
come from the top cell of M (8, vf), and thus vgz—periodicity extends our work below
dimension 192 to all dimensions. It turns out that v2 and € do not come from the top
cell of M (8, vf). In order to show that the elements

Agkvz, A8ke e Txtmf
are in the Hurewicz image for k > 0, we will instead show that A%v? and A%e come

from the top cell of M (8, vf) (Lemma 7.27).

Lemma 7.17 The following classes lift to the top cell of M (8, vf):

(1) Kk € m14(tmf).
(2) K € my(tmf).

Proof We will check that each element lifts using the AHSS:

(1) Since « is 2—torsion (and thus 8—torsion), it lifts to «[1] € mw15(M(8)). Inspection
of [25, page 3] in stems 31 and 32 and AF > 12 reveals that there are no classes which
could detect vf/c[l]. Therefore k[1] lifts to x[18] € w3, (M (8, vf)).

(2) Since k is 8—torsion, it lifts to k[1] € w1 (M (8)). Inspection of [25, page 3] in
stems 36 and 37 and AF > 12 reveals that there are no classes which could detect va[l].
Therefore k[1] lifts to k[18] € mw35(M (8, vf)). m|

Lemma 7.18 The following classes lift to the top cell of M (8, vf):

(1) g € m3;(tmf).

(2) u € m3q9(tmf).

(3) w € mys5(tmf).
Proof We will check that each element lifts using the Atiyah—Hirzebruch spectral
sequence (AHSS).

(1) We begin with ¢ € 73, (tmf), which we will define to be the unique nontrivial
c4—torsion class detected by the element

4 7,7+32
V5o € EXtA(Z)* ()
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in the ASS for tmf. The element vjco does not lift to Ext4, . Nevertheless, we claim
that there is an element® § € 3, detected by the element

Ahyhs € Ext$ 22 (F,)

in the ASS for the sphere, which maps to ¢ under the tmf Hurewicz homomorphism.
Our strategy will be to argue that ¢ and ¢ lift to

gl18] € msoM(8,v%) and ¢[18] € tmfso M (8, v}),

respectively, and that the element which detects ¢[18] in the MASS for M (8, vf) maps
to the element which detects ¢[18] in the MASS for tmf A M (8, vf) under the map

(7.19) Extg4, (H(8,v})) — Ext4(2), (H(8,v})).

Inspection of [25, page 3] in stem 32 and AF > 7 reveals that ¢ is 2—torsion (and thus
8—torsion), so ¢ lifts to g[1] € w33 (M (8)). Inspection of [25, page 3] in stems 48 and 49
and AF > 14 reveals that there are no classes which could detect vfé[l]. Therefore g[1]
lifts to g[18] € wso(M (8, vf)). A similar but easier analysis reveals that the lift ¢[18]
exists.

The elements Ah1hs € Exty, (F,) and vg co € Ext 4(2), (IF2) are ho—torsion, and hence
lift to elements

Ahyhs1] € Exta, (H(8)),  vjcoll] € Exta), (H(8))

which detect g[1] € w33 M (8) and ¢[1] € tmf;3 M (8), respectively, in the MASS. To
identify the elements which detect ¢[18] and ¢[18] in the MASS, we make use of the
geometric boundary theorem [5, Appendix A].!® The differentials

d3(vha,1g°(1]) = vi Ahshy[1],  da(viha18%[1]) = viv3co[l]
in the MASSs for M (8) and tmf A M (8), respectively, imply that §[18] € 759 M (8, vf)
and ¢[18] € tmfso M (8, vf) are detected by
vihy,18°[1] € Exty, (H(8,v})), viha1g%[1] € Extya), (H(8,0}))

in the MASSs for M (8, vf) and tmf A M (8, v?), respectively, and the former maps to
the latter under the map (7.19).

The element we are calling § € ng , is traditionally called ¢, but we add the tilde to distinguish it from
the element we are calling ¢ in 73, tmf.

10We are specifically using case (5) of the geometric boundary theorem since the relevant class (denoted
by p«(p) in the theorem statement) is a permanent cycle. We will be using this argument repeatedly in
subsequent proofs in this section, and for brevity will simply say “by the geometric boundary theorem ...”
in these subsequent instances.
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(2) Since u € m3qtmf is detected by an element of Ext 4(), in the image of the map
(7.20) Ext4, (F,) — Exty4 2)« (),

we immediately see that the element u € m39(S) maps to it. We are left with lifting
u € m3, to the top cell of M(8, vf). Inspection of [25, page 3] in stem 39 and
AF > 10 reveals that u is 2—torsion (and thus 8—torsion), so u lifts to u[1] € m40(M (8)).
Inspection of [25, page 3] in stems 55 and 56 and AF > 17 reveals that there are no
classes which could detect vfu[l]. Therefore u[1] lifts to u[18] € w57 (M (8, vf)).

(3) The element w € m4stmf is detected by an element which is in the image of the
map (7.20), and thus we deduce that w € m45(S) maps to it. A similar argument to the
case above shows that w lifts to w[18] € g3 (M (8, vf)). |

Lemma 7.21 The following classes lift to the top cell of M (8, vf):

(1) A*V? € ms4(tmf).

(2) A*kv € mgs(tmf).

(3) A*n’k € mo(tmf).
Proof We follow the proof of [7, Theorem 11.1] (which builds on [7, Example 9.5
and Proposition 10.1]).
(1) We begin with A2v? € 754 (tmf). This class lifts to an element

A?v?[1] € tmfss (M (8))

which is detected by
vih3[1] € Ext) 2 (H(8))
in the MASS for tmf A M (8). Let
A?v?[18] € tmf, (M (8, v}))
be a lift of A>v2[1]. In the MASS for tmf A M (8), there is a differential

dy (3 v haho[1]) = v3uiA3[1].

Since véov;‘hzho[l] is a permanent cycle in the MASS for tmf A M (8, vls), it follows
from the geometric boundary theorem that A2v2[18] is detected by v%ov?hzho[l] in
the MASS for tmf A M (8, vf). In particular, we see that AZv2[18] has modified Adams
filtration (MAF) 18 and stem 72.
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We now check that véov;‘hzho[l] is a permanent cycle in the algebraic tmf resolution
for H(8, v?). Its relative position!! is # —s = 65 and AF = 17, its relative position
in Ext 4(2), (@?2 ® H(8, vls)) is t —s = 58 and AF = 16, and its relative position in
Ext4(2). (13_0?3 ® H(8, vf)) is t —s = 51 and AF = 15, the last of which lies above
the vanishing line. Inspection of the relevant charts shows that véovi‘hzho[l] cannot
support a nontrivial d;—differential since the target bidegrees are zero. Therefore
véov‘l‘hzho[l] is a permanent cycle in the algebraic tmf resolution for H (8, vf) and
therefore it detects an element {véov?hzho[l]} in Ext 4, (H(8, vf)).

Finally, inspection of the same algebraic tmf resolution charts reveals that there are
no possible targets for a nontrivial differential supported by {véovfhzho[l]} in the
MASS for M (8, vf). Therefore {véovfhzho[l]} is a permanent cycle which detects a
lift of A%v2.

(2) The class A%kv € mgs(tmf) lifts to an element

A%k v[1] € tmfgg (M (8))
which is detected by

v8hadol1] € Extf(’;)iHS(H(S))

in the MASS for tmf A M (8). Lift A%k v[1] to an element
A?kv[18] € tmfg3 (M (8, vY)).
In the MASS for tmf A M (8), there is a differential
da(vy°vidohol[1]) = v3v¥h,do[1].

By the geometric boundary theorem, vglcv[l 8] is detected by v%o v;‘doho[l] in the MASS
for tmf A M (8, vf). In particular, we see that A%« v[18] has MAF 21 and stem 83.

We now check that véov;‘doho[l] is a permanent cycle in the algebraic tmf resolution for
H(8,v}). Its relative position in Ext 4(2), (bo; ® H(8,v})) is # —s = 76 and AF = 20,
its relative position in Ext 4(2), (@?2 ® H(8, vls)) ist—s =69 and AF = 19, and its
relative position in ExtA(z)*(@?3 ® H(8, vlg)) is t —s = 62 and AF = 18, the last of
which has targets only above the vanishing line. Inspection of the relevant charts shows

1 we will say that x € Ext4(2), (H(8, vf)) has relative position (t — s, s) in Ext4(2),. (boy ® H (8, vf)) if
the image of a differential supported by x in the algebraic tmf resolution lies in Extil"zzl)’i (bo;y ® H(8, vf)),
and the image of a differential supported by x in the MASS could be detected in the algebraic tmf
resolution by an element in Extff(;il*_r +1 (boy ® H(8, vf)). In other words, if you were to pretend x is
an element in Extii’ 2), (bo;y ® H(8, vf)), then d,—differentials in the algebraic tmf resolution “look” like

Adams d’s, and d,—differentials in the MASS “look” like Adams d, ’s.
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that véov;‘doho[l] cannot support a nontrivial d;—differential since the target bidegrees
are zero. Therefore v%ov;‘doho[l] is a permanent cycle in the algebraic tmf resolution
for H(8, vf) and detects an element {v%ovfdoho[l]} in Ext 4, (H(8, vf)).

Finally, inspection of the same charts reveals that there are no possible targets for a non-
trivial differential supported by {v%ov;‘doho[l]} in the MASS for M (8, vf). Therefore
{v%ov;‘doho[l]} is a permanent cycle.

(3) The class A?n?k € m70(tmf) lifts to an element

A*n*[1] € tmfy; (M (8))
which is detected by
g2h [l e Ext}f(’;)iﬂﬁ(H(S))

in the MASS for tmf A M (8). Lift A>5?k[1] to an element
A?n*K[18] € tmfgg (M (8, vY)).
In the MASS for tmf A M (8), there is a differential
dy(v3vidoeo[1]) = g*vih3 | [1].
By the geometric boundary theorem, A25?i[18] is detected by v§ vfdoeo[l] in the MASS
for tmf A M (8, vf). In particular, we see that A?;?«[18] has MAF 24 and stem 88.

We now check that vgvf'do eo[1] is a permanent cycle in the algebraic tmf resolution for
H(8, vf). Its relative position in Ext 4(2), (bo; ® H(8, v?)) ist—s =81 and AF =23
and its relative position in Ext 4(2), (b_O?2 ® H(8, vf)) ist —s = 74 and AF = 22, the
latter of which lies above the vanishing line. Inspection of the relevant charts shows
that vg v;‘doeo[l] cannot support a nontrivial differential in the algebraic tmf resolution
for H(8, vf) since the target bidegrees are zero. Therefore vgvfdoeo[l] is a permanent
cycle in the algebraic tmf resolution for H (8, vf) and therefore lifts to an element
{vgv;‘doeo[l]} in Ext 4, (H(8, vf)).

Finally, inspection of the same charts reveals that there are no possible targets for a
nontrivial differential supported by {vég vfdo ep[1]} in the MASS for M (8, vf). Therefore
{vgv?doeo[l]} is a permanent cycle in the MASS for M (8, vf). |
Lemma 7.22 The following classes lift to the top cell of M (8, vf):

(D A2 e ]T]()z(tmf), A*e € n104(tmf), Ak € mlo(tmf).

(2) A*2K € mq1¢(tmf).
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Proof (1) These classes were lifted in [7, Theorem 11.1].
(2) The class A*2k € 116 (tmf) lifts to an element

A*2K([1] € tmf; 17 (M (8))
which is detected by

vyShogll] € Ext’y) T (H(8))

in the MASS for tmf A M (8). Lift A*2k[1] to an element
A*2K[18] € tmfy34(M (8, vY)).
In the MASS for tmf A M (8), there is a differential
dy(va¥vidohy[1]) = vi®vlhogll].

By the geometric boundary theorem, A*2k[18] is detected by v%s vfdohz[l] in the MASS
for tmf A M (8, v¥). In particular, we see that A*2i[18] has MAF 29 and stem 134.

We now check that v; 8 v;‘dohz[l] is a permanent cycle in the algebraic tmf resolution for
H(8,v}). Its relative position in Ext 4(2), (boy ® H(8,vY)) is r —s = 127 and AF = 28,
its relative position in ExtA(z)*(b_O?2 ® H(8, vf)) is t —s = 120 and AF = 27, and
its relative position in Ext,‘l(z)*(li)i@3 ® H(8, vf)) is t —s = 113 and AF = 26, the
last of which lies above the vanishing line. Inspection of the relevant charts shows
that vé62E[18] cannot support a nontrivial d;—differential since the target bidegrees
are zero. Therefore v562E[18] is a permanent cycle in the algebraic tmf resolution for
H(S, Uf) and lifts to an element v;62E[18] in Ext 4, (H(8, vf)).

Finally, inspection of the same charts reveals that there are no possible targets for a
nontrivial differential supported by v562E[1 8] in the MASS for M (8, vf). Therefore
v562E[18] is a permanent cycle. m|

Contrary to the previous cases, there are several potential obstructions to lifting A*kn €
7117(tmf) to the top cell of M (8, v?) which are tricky to resolve. However, since this
element is 2—torsion and v;‘—torsion, we may instead attempt to lift it to the top cell of
the generalized Moore spectrum M (2, vf) of [6], where the potential obstructions are
much simpler to analyze. It then follows from the fact that the composite

And
SEMQ2.vh) 2 M8, 08) — 518

is projection onto the top cell of M (2, vf) that A*xn does lift to the top cell of M (8, vf).
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Lemma 7.23 The class A*in € 17 (tmf) lifts to the top cell of M (2, vf).

Proof The class A*ni € mry17(tmf) lifts to an element
A*ni[1] € tmfy15(M(2))
which is detected by
U;6h1g[1] c EXt21’1 18421 (H(2))
in the MASS for tmf A M (2). Lift A*ni[1] to an element
A*ni[10] € tmfy27(M (2, v})).
In the MASS for tmf A M (2), there is a differential
d3(v3°h3[1]) = vy SvTh g[1].

It follows from the geometric boundary theorem that A*ni[10] is detected by v%ohg[l]
in the MASS for tmf A M (2, vf). In particular, we see that A*nk[10] has MAF 24 and
stem 127.

We now check that v%ohé[l] is a permanent cycle in the algebraic tmf resolution for
H(2, vf). Its relative position in Ext 4(2), (bo; ® H(2, v;‘)) ist—s =120 and AF =23,
its relative position in Ext 4(2), (@?2 ® H(2, vf)) ist—s =113 and AF =22, and its
relative position in Ext 4(2), (@?3 ® H(2, v‘f)) ist —s =106 and AF = 21. Inspection
of the relevant charts [6, Figures 6.4—6.5] shows that there is potentially a nontrivial

differential
dy (v3°h3[1]) = x119,24,

in the algebraic tmf resolution, where

X119,24 € EXt?(’zl)ingM(@l ® H(2,v7)),

2
2

(compare with the proof of [7, Proposition 10.1]). Therefore v%ohg[l] is a permanent

but, since v%oh [1] is v%6—divisible and x119,24 is not, this differential cannot occur

cycle in the algebraic tmf resolution for H(2, v‘f) and therefore lifts to an element
{v3°h2[1]} in Extg, (H(2,v})).

Finally, inspection of the same charts reveals that there are no possible nontrivial
differentials supported by {v%ohg[l]} in the MASS for M (2, v;‘). Therefore {v%ohg[l]}
is a permanent cycle in the MASS for M (2, v‘l‘). m|

Lemma 7.24 The class A*q € 15 (tmf) lifts to the top cell of M (8, v}).

Proof The class A*g € 1,5 (tmf) lifts to an element

A*q[1] € tmf9(M (8))
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which is detected by
v30co[1] € Ext’y T2 (H(3))
in the MASS for tmf A M (8). Lift A*g[1] to an element
A*q[18] € tmfy46(M (8, v})).
In the MASS for tmf A M (8), there is a differential

ds(v,°g% s 1v3[1]) = v3%Sco[1].

By the geometric boundary theorem, A*g[18] is detected by vé6 gzhzylv%[l] in the
MASS for tmf A M (8, vf). In particular, we see that A*¢[18] has MAF 29 and stem 146.

We now check that U;6 g2h2,1 vf[l] is a permanent cycle in the algebraic tmf resolution
for H (8, vf). Its relative position in Ext4(,), (boy ® H(8, vf)) ist—s =139 and
AF = 28, its relative position in Ext 4(), (b0®* ® H (8, v¥)) ist —s = 132 and AF =27,
and its relative position in ExtA(z)*(@i@z’ ® H(8, v?)) is t —s = 125 and AF = 26.

The proof of Lemma 7.18(1) implies that the element
g%hy 1v3[1] € Ext4(), (H (8, v3))

is a permanent cycle in the algebraic tmf resolution for H (8, vf). It follows from
Lemma 5.1 that
U56g2h2,1vf[1]

is a permanent cycle in the algebraic tmf resolution for H (8, vf), and detects an element
0% {8%h2,10{1]} € Exta, (H(8.v1)
which persists to the E3;—page of the MASS for M (8, v?).

The only possibility for this element to support a nontrivial MASS differential is for it
to support a d;—differential whose target to by detected by the element

vihy’ (vg 'W3[EY. E3DI18] € Ext gz, (boP? ® H(8.vY))
in the algebraic tmf resolution for H (8, vf).

We wish to use Lemma 5.5 to argue that the element vlh?l (vy 1 v%[{ f {g DI18] detects

an element in Ext4, (H (8, vf)) which is zero in the E3;—page of the MASS. In the
MASS for bof A M8, v?), there is a differential

dy (05 hy% (vg '3 [8T, E3DII8]) = vihy)y (vg ' v31ET, E3DI1S].
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Using the map
2 8tmf A bof A M (8, v¥) < tmf Atmf* A M(8,v])
we get the same differential in the MASS for tmf Atmf2 A M (8, v¥). By Proposition 4.3,

8,10 (,—1,2
the element UZhZ’l(v0 v;

tion for H (8, v?), detecting the element

A*v8 M (g)[1] € Exty, (H(8,v})).

[¢ f ¢ g D[18] is a permanent cycle in the algebraic tmf resolu-

Therefore the hypotheses of Lemma 5.5 are satisfied, and we deduce that

vihyy (vg ' 3[8T, 3DI18]
detects an element which is zero in the E3;—page of the MASS, and hence cannot be
the target of a nontrivial d3—differential in the MASS. O

Lemma 7.25 The class A*u € 7135 (tmf) lifts to the top cell of M (8, vf).

Proof The class A*u € my35(tmf) lifts to an element

A*u[l] € tmfy36(M(8))
which is detected by
vySvxas(l] € Exty O T (H(8))
in the MASS for tmf A M (8). Lift A*u[1] to an element
A*u[18] € tmfys3(M (8, vY)).
There is a differential in the MASS for tmf A M (8),

da(v3vih3  g2[1]) = vi®u!Ox3s[1],

50, by the geometric boundary theorem, A*u[18] is detected by v;%fh% . g?[1] in the
MASS for tmf A M (8, vls). In particular, A*u[18] has MAF 31 and stem 153.

We now check that v;%fh%’lgz[l] is a permanent cycle in the algebraic tmf resolution
for H(8, vf). Note that vfh% 1g2[1] detects u[18] in the MASS for tmf A M (8, v?). In
Lemma 7.18, we established that u[18] lifts to M (8, vf), and therefore vfh% 1gz[l] is
a permanent cycle in the algebraic tmf resolution and it detects a permaneni cycle in
the MASS for M (8, vls). It follows from Lemma 5.1 that

16,32 2
v, v1h2’1g [1]
is a permanent cycle in the algebraic tmf resolution and detects an element

v {vih3 1 g°[1]} € Exty, (H(8.0})).
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Inspection of the relevant charts shows that the only possible nontrivial MASS differ-
entials supported by this element would be

dy(v3° - {vih3  g*[11}) = {3hy° E3[18]}.
However, we have

dy(v® - {vih3 1 g*[11}) =0,

since it is a product of dp—cycles. a

Lemma 7.26 The following classes lift to the top cell of M (8, vf):
(1) ASv? € my50(tmf).
(2) Abkv € w6 (tmf).

Proof (1) The class A%v? € 50 (tmf) lifts to an element

ASv?[1] € tmfy 51 (M (8))

which is detected by

v3*h3ll] € ExCy) TR (H(®))
in the MASS for tmf A M (8). Lift ASv2[1] to an element

ASV2[18] € tmf 65 (M (8, v})).
In the MASS for tmf A M (8), there is a differential

dy (V3% haho[1]) = v3*viR3(1].

By the geometric boundary theorem, A®v2[18] is detected by v26v;‘h2h0[1] in the MASS
for tmf A M (8, vf). In particular, we see that A°v2[18] has MAF 34 and stem 168.

In Lemma 7.21(1), we showed that véovfh 2ho[1] is a permanent cycle in the algebraic
tmf resolution, detecting an element

{0,  hahol1]} € Extq, (H(8.v}))

in the algebraic tmf resolution for H(8, vf). By Lemma 5.1, this is also true of

v3%vhaho[l].

Lemma 5.1 implies that dz(v ) = 0 in the MASS for M (8, vg) By Lemma 7.21(1),
it follows that
da (3% - {v3%vThaho[1]}) = 0.

Inspection of the algebraic tmf resolution charts reveals that there are no possible targets
of a longer MASS differential supported by v26 {v10 4h 2ho[1]}-
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(2) The class A®kv € 714 (tmf) lifts to an element

A%k v[1] € tmfy 62 (M (8))
which is detected by
v¥dohy[1] € Extf;(’;)il“l (H(8))

in the MASS for tmf A M (8). Lift AS«v[1] to an element
ASkcv[18] € tmfy79(M (8, vY)).
In the MASS for tmf A M (8), there is a differential
da(v3%vThodo[1]) = v3*vdhydp[1].

By the geometric boundary theorem, ASkv[18] is detected by v§6v‘1‘h0d0[1] in the
MASS for tmf A M (8, v?). In particular, we see that A®xv[18] has MAF 37 and
stem 179.

We showed in Lemma 7.21 that véovfhodo[l] is a permanent cycle in the algebraic
tmf resolution. By Lemma 5.1, it follows that v%%i‘hodo[l] is a permanent cycle in
the algebraic tmf resolution for H (8, vf) and lifts to an element {v%%fhodo[l]} in
Exty4, (H(8,v})).

Finally, inspection of the algebraic tmf resolution charts reveals that there are no pos-
sible nontrivial differentials on {v%ﬁvfhodo[l]} in the MASS for M (8, vf). Therefore
{v%%fhodo[l]} is a permanent cycle. a

Lemma 7.27 The classes A8v? € miggtmf and A8e € mygotmf lift to the top cell of
M8, v}).
Proof The classes A8v? € my9g(tmf) and Ade € m,potmf lift to elements
ABV2[1] € tmfy99(M (8)), ABe[l] € tmfag; (M(8))
which are detected by
v32h3[1] e ExtiG(’zl)igHG(H(S)), v32¢o[l] € Extfj{jﬁ””(}]@))

in the MASS for tmf A M (8). Lift A3v?[1] and A8¢[1] to elements

ABV2[18] € tmfy o (M (8,v8)),  ABe[18] € tmfy (M (8, vY)).
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In the MASS for tmf A M (8), there are differentials
da(v32vthohava[1]) = v32uiR3[1],  d3(v3*vieo[l]) = v3*vico[l].

By the geometric boundary theorem, A%v?[18] is detected by v;“ v‘l‘hghz[l] and A3¢[18]
is detected by vgzv;‘eo[l] in the MASS for tmf A M (8, vf).

In [7, Theorem 11.1] the classes A*v2[18] € 120 M (8, vf) and A*e[18] €22 M (8, vf)
were produced by showing that the elements

vi8vdnon,y[1] ExtiG(’zl)iOJr%(H(S, v8)),  wivteo[l] € Ex tiﬁ(’;)i”%(H(s, I5))
detect via the algebraic tmf resolution elements
vyt vihoha[11} € Ext120T20(H(8,08)),  {v3%viel1]} e Ext) 122720 (H (8, v)),
which are permanent cycles in the MASS for M (8, vf).

Since the element v%6 € Exty, (H(8, vf)) is the square of the element vg, we have
d> (vé6) = 0. We deduce that the elements

v3S- (itvfhoha[1]} € Ext20 20T 20 (H (8, 0)),
vi® - {uiSuteo[l]} € ExC2E 12220 (H (8, v}))

persist to the E3;—page of the MASS for M (8, vf). If we can show they are permanent
cycles, we are done.

We begin with {v34 4h0h2[1]} Examination of the algebraic tmf resolution for
M8, vf) reveals that the only possibility of a nontrivial differential in the MASS
supported by this element would be a d4 ({vg“v;‘hoh »[1]}), which would be detected
by

h3v1vg 'w31EY. E31118] € Exty(a), (boP? ® H(8,v})).

In the MASS for tmf A bof2 there is a differential
dy™ (N h3 vy ' 3[e] . G318 = A3’ vivg '3 [eT. G318,

Using the map (5.7) we deduce that there is a corresponding differential in the MASS
for tmf A tmf"2. The elements

h3%vivg w367 GM8L ARG, vivg T u3lgy, EFI18]
respectively detect

vih3) Mg?[1] € Exty, (H(8.v})), A*v{hyY Mg?[1] € Exty, (H(8.vY))
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in the algebraic tmf resolution for M (8, vf). We therefore deduce from Lemma 5.5
that v] 723 M g?[1] is killed by

dy™S (A v hyY M g?[1])

in the MASS for M (8, vf). Therefore it cannot be the target of a nontrivial d;™*.

We now consider {vgzv‘l‘eo[l]}. Examination of the algebraic tmf resolution for

M (8, vf) reveals that the only possibility of a nontrivial differential in the MASS
supported by this element would be a d4 ({vgzvfeo[l]}), which would be detected by

N h38 £3118] € Exta), (boy ® H(8,v}))

in the algebraic tmf resolution for M (8, vf). To eliminate this possibility we wish to
employ Case 1 of Remark 5.6, using the differential

A5 (A2h3% g 0361 118) = AP £318]

in the MASS for tmf A tmf A M (8, vf). The element Azhésl vgz v§§116[18] detects the
element

A2hy® 02[18] € Ext 4, (H(8,v}))

in the algebraic tmf resolution for M (8, vf). We just need to check that there is no
possibility for A2k ;’91 0>[18] to support a nontrivial d;*** in the MASS for M (8, vf).
However, examination of the algebraic tmf resolution for M (8, vf) reveals there are
no classes which could detect the target of such a nontrivial d'**. O
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