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ABSTRACT. We describe the distribution of infinite groups within the RO(G)-
graded stable homotopy groups of spheres for a finite group G.
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1. INTRODUCTION

1.1. Overview. In ordinary stable homotopy theory, one of the most basic the-
orems is Serre’s Finiteness Theorem [Ser53] stating that the n-th stable homo-
topy group of the sphere, m,(S?), is finite for n > 0. Since we understand that
7o(S°) = Z, this means that rationally the structure of stable homotopy is very
simple, and attention is quickly focused on torsion. Equivariantly, it is still true
that rationalisation is a massive simplification, but the residual structure in the
rationalisation is worth some attention.

Let G be a finite group. If V is a real orthogonal G-representation, its one-
point compactification SV is a sphere with G-action and one can define the V-th
G-equivariant homotopy group of the sphere 7T‘C/; (X) by considering equivariant
homotopy classes of maps out of SV. Taking X = S° and stabilising yields the
RO(G)-graded stable homotopy groups of the sphere [May96, Ch. IX]. The purpose
of this note is to identify the crudest feature of these groups: their ranks as abelian
groups. This is a straightforward deduction from well-known results, but some
interesting features emerge by giving a systematic account.

Example. Let G = C3 be the cyclic group of order two. Then
RO(Cy) = 2{1,0},
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where 1 is the one-dimensional trivial representation and o is the one-dimensional
sign representation. Computations of Araki-Iriye [AIS2] show that 7$2(S) is infi-
nite if

a€eZ{2(1—-o0)}UZ{o}.
Our results recover this observation, and show that these are the only degrees for
which 7¢2(S9) is infinite.

Using rational equivariant stable homotopy theory, we prove the following:

Theorem A (Theorem 2.3). Let G be a finite group and o € RO(G). Then
7d(57) @ Q@ =[5, 8% © Q = [] Homuwe ) (mo(5°"), Q).

(H)

where the Wa(H)-module Q has trivial action, and the product is taken over con-
jugacy classes of subgroups H < G. Thus 75 (S°) ® Q is a rational vector space of
dimension 1, where

To = {(H) | o™ =0 and Wg(H) acts trivially on WO(SO‘H)}\.

We lay the groundwork for applying Theorem [A]lin Section [8l We then compute
the ranks of the RO(G)-graded stable homotopy groups of spheres for various G in
Section [B

In Section 4] we discuss two natural variations where the same techniques give
information. Since the sphere is rationally an Eilenberg-MacLane spectrum for the
Burnside Mackey functor, S° ~g HA, we may view our methods as a calculation
of the rationalisation of H}(S% A) (where x denotes RO(G)-grading). The same
methods apply to give a calculation of the rationalisation of H (S M) for any
Mackey functor M. For the second variation, we may consider the Picard-graded
stable homotopy groups of spheres: invertible objects are again characterised in
terms of orientations and dimension functions (see [FLMO1]).

Finally, we note that our results provide a basis for understanding other large-
scale phenomena in the RO(G)-graded stable homotopy groups of spheres. For
example, Iriye [Iri83] showed that Nishida’s nilpotence theorem [Nis73| holds equiv-
ariantly: an element 7&(S%) is torsion if and only if it is nilpotent. Theorem [A]
therefore explicitly describes the regions of 7¢(S°) in which elements can be nilpo-
tent and non-nilpotent.

1.2. Finite generation. For most of the paper we will work rationally, but we
would like to draw conclusions about the integral situation. For completeness we
include the proofs of the basic finiteness statements that permit this deduction.

Lemma 1.1. For any o € RO(G), the sphere S is a finite G-cell spectrum.

Proof. For an actual representation V', the sphere SV is a smooth compact manifold
and hence admits the structure of a finite G-CW-complex. By exactness of Spanier—
Whitehead duality, DSV ~ S~V is also a finite G-CW spectrum (since by the
Wirthmiiller isomorphism DG/H, ~ G/H,). Nowifa =V -W, %~ SV AS~W/
so the result follows. O

The following consequence fails for infinite compact Lie groups.

Lemma 1.2. For any o € RO(G) the abelian group 75 (S°) is finitely generated.
Consequently 75 (S°) is finite if and only if 7¢(S°) ® Q = 0.
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Proof. From the Segal-tom Dieck splitting theorem [D75], we see that 75 (S°) is
a finitely generated abelian group. By Lemma [T} it follows that 7&(S°) is finitely
generated. ([l

Theorem [Aldescribes the RO(G)-graded rational homotopy groups of the sphere.
By Lemmal[L.2} this determines precisely those degrees a € RO(G) for which 7&(S°)
is finite.

1.3. Conventions. Henceforth everything is rational. We write G for a finite
group, H for a subgroup of G, and Wg(H) = Ng(H)/H for the Weyl group of
H. We use * to denote Z-graded groups and * to denote RO(G)-graded groups. If
V € RO(G), then |V| denotes its (virtual) dimension.

2. RATIONAL STABLE HOMOTOPY

For finite groups, it is easy to give a complete model of rational G-spectra [GM95,
App. A]. We do not need the full strength of this description, so we describe what
we want in a convenient form.

First, note that for any X and Y, passage to geometric fixed points gives a map

o . [X,Y]¢ — [0 X, oHY].

The codomain admits an action of the Weyl group W¢ (H) by conjugation, and &%
takes values in the W (H )-equivariant maps.

Theorem 2.1. If X and Y are rational, the maps ®F give an isomorphism

[Xv Y}f = @HO(WG’(H); [q)Hxv(I)HY]*)a
(H)

where the sum is taken over conjugacy classes of subgroups H < G. Furthermore,
passage to homotopy groups gives isomorphisms

H(We(H); [@7 X, @"Y].) = Homy,, (g (7. (@7 X), 7. (27Y)).
Proof. Filtering EG by skeleta gives a spectral sequence
H*(G;[X,Y].) = [EG4 A X,Y]¢
for (integral) stable maps. When Y is rational, this collapses to an isomorphism
HY(G;[X,Y],) = [EG4 A X, Y]C.
We may combine this with the splitting S° ~ \/(H) er S° using the idempotents ey
of the rational Burnside ring to give the first stated isomorphism, since
lerS° AX,Y]C = [en SO A X, YNeWD) = [¢/,80 A @ X, @Hy]We(H)
= [EWg(H), AN®H X, oHy|WelH),
The second isomorphism comes from the classical version of Serre’s Theorem [Ser53].

O

Remark 2.2. An alternative approach is to use [GM95]. We observe that X ~
[1,, X"Hzx%(X) and then use the fact that all rational Mackey functors are projec-
tive and injective to deduce

oy

(X, V]9 = [[Hom(z$ (X), 5 (YV)).

3
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Now we use the structure of Mackey functors to deduce

Hom(x (X), 78 (V) 2 [ [ Homu, () (m (8 X), 7 (@5Y)),
(1)

as claimed.

Since G acts trivially on S°, W (H) acts trivially on mo(SY) = Q. We then have
the following consequence of Theorem [2.1}

Theorem 2.3. Let G be a finite group and o € RO(G). Then

75 (8%) = [, 8% = [ Homu s (mo(S°7), Q),
(H)

where the product is taken over conjugacy classes of subgroups H < G. Thus w5 (S)
is a rational vector space of dimension T, where

ro = |[{(H) | o™ =0 and W (H) acts trivially on WO(SQH)}\.
3. GEOMETRY OF THE RANKS OF THE RO(G)-GRADED STABLE STEMS

To make the answer in Theorem [2.3] explicit there are now two ingredients: (a)
the dimension of the fixed points and (b) the orientations.

3.1. Virtual representations of fixed point dimension zero. If we list the
simple real representations Si, Sa, ..., S, of G, we may identify RO(G) = Z". Now,
for each subgroup H < G we have a dimension vector

dyg = (dim(SF), ..., dim(SH)),
and the space of virtual representations a with ol =0 is
NHZ{,T‘JJ'dH:O},

which is isomorphic to Z"~! as an abelian group. The only a for which 75 (S%) can
be infinite are those lying in some Ny, and the maximum rank of 7¢(S%) is the
number of conjugacy classes of H with a € Ng.

When H = G, the Weyl group W¢(H) is trivial, and we immediately draw a
useful conclusion.

Corollary 3.1. IfV is a virtual representation with VE = 0 then
rk 7 (S%) > 1.

Remark 3.2. One special case is when V' is a multiple of the reduced regular rep-
resentation p. This was observed to the second author by Bert Guillou, who noted
that it follows from the fact that ®%(S°) ~ S° and that geometric fixed points are
given by inverting the Euler class of the reduced regular representation.

On this same theme, if V is a representation with V¢ = 0, the inclusion of the
origin gives a map ay : S° — SV whose G-fixed points generate my(S°). The
element ay is thus of infinite order in 7%, (S°). The G-component of the map
ay will not usually be invertible integrally. However, by Theorem 2.1] there is a
rational map a}, € 7% (S°) whose G-component is the inverse of ay. The problem
of finding the smallest positive multiple of af, that is integral is of considerable
interest; the case of the group of order 2 was studied classically by Landweber
[Lan69], but is now best treated using motivic homotopy theory [BGI21lIGI20]. For
the group of odd prime order p, it was studied by Iriye [Iri89].
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3.2. Orientability. For any real representation V' the group G acts on H\y| (SY),
giving a homomorphism

oy : G — Aut(Z) = us.
In view of the Kiinneth isomorphism

Hy((SY) @ Hyw (S") — Hyy 1w (S7EY),
this gives the orientation character, a homomorphism
0: RO(G) — Hom(G, p2).

Elements of the kernel ROT(G) of o are orientable virtual representations.

Example 3.3. Clearly 2« is orientable for any . More generally, the image
of any complex representation is orientable, as is any element in the image of

RSO(G) — RO(G).

Remark 3.4. It is clear that an orientable representation p : G — O(n) is one that
takes values in representations of determinant 1, so that it comes from RSO(G).
However, this is not true of virtual representations. For example, if G = X3, then
V — o — 1 is orientable (where V is the reduced regular representation and o is the
sign representation). However, only even multiples of o or V' come from RSO(X3).

If W (H) is of odd order, then all the gradings in Ny give infinite groups. In
general, on each such null space Ny we have an orientation character

OH : NH — HOm(WG(H)7‘[L2)

defined by considering the action of W (H) on H)gvym|((SV)H) for V € Ny. As
noted above, the kernel NE contains all even vectors of Ny and the image of all
complex representations.

The set of a for which 75(S°) is infinite is J Nj;. The rank 7, of 75(S°) is
the number of conjugacy classes H with « € N;.

3.3. Bases. If we choose a subgroup H giving an associated fixed point vector dg,
we note that the component of the trivial representation S; is always 1, so that
Ny has basis Sy — dg(2), 55 — du(3),...,S, —dg(r). The orientation og is thus
described by the homomorphisms

OH(2),OH(3), ceey OH(T‘) : Wg(H) — M2,

where o (i) = o (S; — dg(i)). Since W (H) always acts trivially on the trivial
representation, the orientation og (S; — dg (i) = om(S;), and og(4) is the determi-
nant of SH. Since oy is a homomorphism, this determines its values throughout.
All the homomorphisms factor through the largest elementary abelian 2-quotient
Ey(H) of Wg(H) (i.e., we factor out commutators and squares).

4. THE TWO VARIATIONS
In effect, our calculation in Theorem [2.3] was of
o (8 @ Q=[5 59 2Q =[5, HA] ® Q = H&(5%A) @ Q.
We point out that the same methods allow us to calculate

[$*, HM]® ® Q = Hg(S*; M) ® Q
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for any invertible spectrum S¢ and rational G-Mackey functor M. Indeed we still
have

(5, HM]® © Q = [ Homyy s (Ho (S ), M°™),
(H)
where M corresponds to { M}y under the equivalence
G-MackeyFunctors/Q ~ H QWe(H)-modules.
(H)
More explicitly, M¢? = M(G/H)/(proper transfers). In other words,
tk[S*, HM]® @ Q = ZZH -m(a, H),
(H)
where zg = 1 if aff = 0 and zy = 0 otherwise, and where m(a, H) is the multi-
plicity of the simple QW (H)-representation HO(SQH) in MeH,
The only M which can possibly give infinite groups are those with summands
coming from a homomorphism We(H) — ps. Since the sphere corresponds to the

Burnside Mackey functor A with A% = Q (with trivial action), it has almost as
many RO(G)-gradings which are infinite as is possible.

5. EXAMPLES

We conclude by explicitly calculating the ranks of the RO(G)-graded stable
homotopy groups of spheres for groups G with small subgroup lattices.

5.1. Cyclic group of order two. We have
RO(Cs) = Z{1,0},

where 1 is the 1-dimensional trivial representation and o is the sign representation.
Then

N.=2Z{1 -0}, Ne¢, =2Z{c}.
Since We, (Cs) = e, we have
N = N¢, = Z{o}.
On the other hand, We, (e) = Cy/e =2 Cy acts by (—1) on 1 — o, so
N =7{2(1-0)}.
Each representation V € N, UN; satisfies rk 7$2(8°%) > 1. Since N¢ NNS = {0},
we also have rk 7§?(S%) = 2. Altogether, we find:

Proposition 5.1. We have

2 if V=0,
k7?2 (8% = {1 if Ve (Z{oc} UZ{2(1—0)}) \ {0},
0 otherwise.

Remark 5.2. The fact that 7$?(S°) is infinite for V € Z{c} UZ{2(1 — o)} appears
in [AI82, Thm. 7.6]. A proof that these are the only degrees for which 7T€2 (89)
is infinite using the Cs-equivariant Adams spectral sequence was communicated to
the second author by Bert Guillou and Dan Isaksen.
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FIGURE 1. Degrees in RO(C2) where 7r€2 (S9) has infinite rank.
A black e indicates a copy of Z arising from N&; and a blue o
indicates a copy of Z arising from N} .

5.2. Cyclic group of odd prime order. Let ¢ = p;—l. We have
RO(CP) = Z{17 ¢la o 7¢q}7

where 1 is the 1-dimensional trivial representation and ¢; : C, — Aut(R?) =
Aut(C) sends the generator of C,, to -€>™*/P. Then

Ne 2 Z{2—¢1,...,2 = ¢}, Ne, 2Z{¢1,..., ¢}
Since W¢, (e) = Cp and W¢, (Cp) = e necessarily act trivially on Z, we have
NF =N, N(jcp =~ Ng,.
Finally, we have
NI NNE 2 Z{¢1 — da, ... 61 — by}

Proposition 5.3. We have
2 ifVeZ{¢1_¢27"'7¢l_¢q}v

C /a0 ifVe(Z{2—¢1,....,2— ¢} UZ{p1,...,04})
rkm,”(S7) =
\Z{¢1 _¢25"'a¢1 _¢q}7
0 otherwise.
Remark 5.4. We note that ¢1,..., ¢, have similar behaviour. Thus we are consid-

ering RO(C,) = Z ® N¢, and the same picture as for C, but now the vertical line

represents N¢, and the antidiagonal N, represents another subspace isomorphic to
Ng.
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FIGURE 2. Degrees in RO(C3) where 7{?(S%) has infinite rank.
A black e indicates a copy of Z arising from NCJCS and a blue o
indicates a copy of Z arising from N .

. . n_q
5.3. Cyclic groups of odd prime power order. Let ¢ = “—. Then

RO(Cpn) 2 Z{1, 1, ..., ¢4} = 29T
For all 0 < m < n, we have

N& . = Noyn 2242 — i :p™ | i} @ Z{e; : p™ 1 j}-

n—m .
Indeed, let v denote a generator of Cpyn, so P is a generator for C)m. Since
271
¢’i Ty ert,
n—m 2mipn ™ 2mi

o P e T = .er™,

Therefore ¢; pulls back to a trivial Cpm-representation if and only if p™ | 4.
Describing the intersections of these subspaces gets complicated quickly. For
example, if 0 < k < m < n, then

NE NG, = 2{2—¢;: p™ | (}&L{¢; : p" § FSL{ by —0 + £ > p*, p" [ £, p™ 1 £},
Here, we use that p™ | i implies p* | i, and similarly, p* { j implies p™ 1 j.
5.4. Klein four group. Let K = Cy x Cy = {e,i,j,k}. We have

RO(K) = 7Z{1,0;,05,0%},

where 1 is the 1-dimensional trivial representation, o; is the 1-dimensional repre-
sentation on which e and ¢ act trivially and j and & act by (—1), and similarly for
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o; and 0. Then
Ne=2Z{l1 —-0;,1—-0j,1— o4},
N<i> > 7{1 - O'i,Uj,Uk},
N<]> = Z{O’i, 1-— O'j,O'k},
N(k} = Z{O’i,Uj, 1-— O'k},
Nig = Z{0;,0j,01}.
The Weyl group Wk (e) = K acts nontrivially on o;, 0, and oy, so we have
NF=7{2(1 -0;),0; — 0j,0i — Ok}

The Weyl group Wik ((i)) = K/(i) = (j) = (k) acts nontrivially on o; but trivially
on o; and oy, so we have

Ny = 2{2(1 - 0y), 05,01},
and similarly,

N<+. = 7Z{0i,2(1 —0;),01},

NJr = 7Z{0;,05,2(1 —ox)}.
Finally, since Wi (K) 2 e must act trivially on Z, we have

N;g = Ng = Z{oi,0j,0%}.

To determine the ranks of 7$(S?), we now compute intersections. In the following,
we let a € {3, j, k}, o’ € {4, j,k} \ {a}, and a” € {i,7,k} \ {a,a’}. Then we have

Ne+ N N(t,) = 2{2(1 - Ua)uoa’ - Ua”}u

NI NN 2 Z{o; —0;,0, — o},
Ny ONGy Z2{2(1 — 00 — 04), 0ar},
NZF> n N;g > Z{ca, 04},

NN N<+> n N{",> ~7{2(1 — 0, — 00 + 0ar},

NGy NG NN = Z{oa},
Ne+ n N(JZ> ON;% = Z{Ua/ — O'a//},
Nay OV Nary VW Ny 2 Z{2(1 = 04 = 0 = 0ar)},
and all 4- and 5-fold intersections are {0}.

Proposition 5.5. With a,d’,a” as above, we have

if V=0,

ifVe(Z{og—0a}UZ{cy }UZ{2(1—04—04 £ 047)}) \ {0},
ifVelUnzn NENNg)\ (Unzmrzr2m Ny ONg NN,
if Vel Ni)\ (UH;&H’ NjNNg),

otherwise.

ki (8°) =

S = N W ot
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5.5. Dihedral groups of order 2p, p odd. We have
RO(Dqp) 2 Z{1,0,¢1,...,Pq}s

where 1 is the trivial representation, o is the sign representation, and ¢; : Dy, —
Aut(R?) 2 Aut(C) sends the generator of C, C Dy, to -€?™*/? and the generator
of Cy C Dy, to reflection across the real axis. Then

N.2Z{l—0,2—¢1,....2 — ¢},
Ne, 2 Z{1—0,1—6q,...,1— ¢},
Neg, 2 Z{1 —0,¢1,...,04},
Np,, 2 Z{0o,¢1,...,¢q}.
Since Wp,,(C2) = e = Wp,, (Dsp), we have Néfz = N¢, and N,J52P = Np,,. On the
other hand, Wp,, (e) = Dy, and Wp, (Cp) = Ca, so
NS =Z{2(1 = 0),1+ 0 — ¢1,¢1 — ba, ..., P1 — By},
ng = 7{2(1 = 0),2¢1,01 — P2, ..., 01 — Pg}-
We now compute intersections:
NI NNE = 2{2(1—0),¢1 — ¢2,....d1 — ¢q},
NFNNG 2 Z{2(1 - 0),¢1 — b2, ... 1 — g},
NFNNp, =7{40 —2¢1,61 — d2,..., 61 — dg},
NE, NNE 2 Z{2(1 — 0),d1 — ¢2,- -, b1 — g}
N&, NN = 7{o = ¢1,¢1 — b2, d1 — g},
N& NND, = Z{2¢1,61 — 2, .., $1 — by},
NFNNE NG 2 Z{2(1 = 0),d1 — 2, .., b1 — g},
NIONE, NN, 2 Z{¢1 — ba,...,¢1 — &g},
NINNE ONS, 2 Z{g1 — 2. d1 — g},
NE, NNE NNE 2 Z{¢1 — ¢z, ¢1 — bg},
NS NNE, NG NN, = Z{61 — ¢a,...,d1 — b}
Proposition 5.6. We have

4 WfVEL{pr — b2, P01 — D}

if VeUnusn NENNE)\ Unzrrzmmzm NENNG NN,
if VeUy N\ (UH;EH/ NENNG),

otherwise.

rk 71'52’7 (SO) =

S =N

5.6. Quaternion group. Let Q = Qg denote the quaternion group of order 8. We
have

RO(Q) = Z{lv 0iy04,0k, h}a

where 1, 0, 0, 0y, are the pullbacks of the K-representations of the same name along
the quotient map @ — Q/Cy = K, and h is the unique irreducible 4-dimensional
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representation of (). Then with a, a’, and @’ as in our analysis of K,
N.=Z{1-0;,1-0;,1—0y,4—h},
Ne, 22Z{1 —0;,1—0j,1 — o}, h},
Ny 2 Z{1 — 04,04,047, h},
Ng = Z{o;,04,04, h},
and
N 27{2(1—0;),0; — 0j,0; — o), 4 — h},
Ngz = 7Z{2(1 —0y),0; — 0,0, — ok, h},
NZ;> > 7{2(1 — 04),04:,047, R},
Ng ~Z{oi,0j,0k,h}.
The 2-fold intersections are as follows:
NN Né; =7Z{2(1 — 0;),0; — 0j,0; — Ok},
NN N(Z} > 7{2(1 — 04),00 — g, h — 404},
NN Ng = Z{o, — 05,0, — o, 40; — h},
N, NNE 2 Z{2(1 — 04),00 — 0ar, h},
Na N Ng = Z{o, — 05,0, — o, h},
NGy NN 2 2{2(1 — 04 — 04), 007, h},
N<t> N Ng = Z{04,047,h}.
The 3-fold intersections are as follows:
NN Né; N N&Lw > 7{2(1 — 04),04 — O},
NI NNg N Ng = 7Z{0; —0j,0; — Ok},
NFnN N;;> N Ng =7Z{0q —ogr,h — 404},
NI N N<J;> N N;;,> 2Z{2(1 — 04— 0g +0gv),h — 4oy},
N&, NN NNE = Z{oy — our, b},
N&, NANG AN, 2 Z2{2(1 = 04 — 0w + 0ar), b},
N&y NGy NNG = Z{og, hY,
NE ONL ONE, 2 2{2(1 = 04 — 0w — gar), b}
The 4-fold intersections are as follows:
NSNNG NNE NNG = Z{ow — oar},

(a)
NS ONGONE NNE, 2 Z{2(1 - 0, — 00 + 04)},
+ + +
NFNNLONE,

NNG.
+ + +
N&, ONG ANE,

NNG = Z{h},
+ + + + o~
N, NNy NNy NNy = ZEhY,

+ + + + o~
Nt ONE ONE, NG = Z{h}.

) = Z{2(1 — O0q — Oq/ — O'a//) + h},

111
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The 5-fold intersections are as follows:

ijNgQrwN@mN(Z,)mN*%{o},
NS NN ONG NNy NN = {0},
NF mN;;) N N<Tz'> mN;gM N NG = {0},
N&, NNE NNEL ONE, NG = Z{h}.

For completeness, the unique 6-fold intersection is

ijNgQmNgl)mNg,)mN&,,)mNg%{o}.

Proposition 5.7. With a, o/, @' as above, we have
) 2’ b

ki (S0) =

6 ifV =0,
5 ifVez{h}\ {0},
4 if Ve (Z{oy —oar Y UZ{2(1 — 04 — 04 + 04)}
DZ{2(1 = 0 — s — ) + )\ Z{1},
#V € Ug oo Nis 0N 0N
\ Un, g im0 Neeqa,mr m gy Np),
2 ifV e (Ugpn Ny ONg)\ (g g e N O N 0 Nira),

Ve Uu N\ Unzm Nig N Nip),
0 otherwise.
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