BESSEL MODELS FOR REAL UNITARY GROUPS:
THE TEMPERED CASE

HANG XUE

Abstract
We prove the local Gan—Gross—Prasad conjecture for tempered L-packets of real
unitary groups. The proof is based on theta lifts and is very simple.

1. Introduction

The goal of this paper is to prove the local Gan—Gross—Prasad (GGP) conjecture,
as stated in [3, Conjecture 17.3], for all tempered L-packets of real unitary groups
U(n + 2t + 1) x U(n). In the simplest case t = 0, the local GGP conjecture seeks to
characterize the nonvanishing of the space HomU(,,)(n ® 0,C), where 7 and o are
irreducible representations of (not necessarily compact) U(n + 1) and U(n), respec-
tively. When the unitary groups in question are indeed compact, the characterization
is given by Weyl’s celebrated branching rule in [22, Section 18.2, p. 391]. In this case,
irreducible representations of compact unitary groups are all finite-dimensional and
are parameterized by their highest weights. If 7 and the dual of o, respectively, have
highest weights

ay>--->dapq1, by > > by,

then Weyl’s branching rule states that Homygy) (m ® o, C) is at most 1-dimensional,
and it is 1-dimensional precisely when

ar>br>a,>by>--->by, >apy;.

In general, when the unitary groups are not necessarily compact, it is also known
that this Hom space is at most 1-dimensional (see [19]). The local GGP conjecture
roughly states that in each generic Vogan L-packet of U(n + 1) x U(n), there is a
unique pair (,0) such that Homyy) (7 ® o, C) # 0, and this pair can be specified
by the local root numbers. We prove this conjecture for all tempered L-packets. The
precise definitions and the statement of the theorem will be given below in Section 2.
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In a subsequent paper [23], we will prove this conjecture for real unitary groups in
general by reducing it to the tempered case. Because the techniques used in each paper
are so different in nature, we chose to separate the two.

The proof of the tempered case here is remarkably simple, both conceptually and
technically. Previously, Beuzart-Plessis [2], following the strategy of Waldspurger,
proved the “multiplicity one in a Vogan packet” part of the local GGP conjecture for
all tempered packets of U(n + 2¢ + 1) x U(n) (and the full local GGP conjecture for
tempered L-packets of p-adic unitary groups). The argument is based on local trace
formulas and is long and difficult, but has the advantage of being uniform for both real
and p-adic groups. Our proof follows a completely different approach and applies
exclusively to real unitary groups. The proof is based on theta lifts. Via theta lifts,
He [9] proved the local GGP conjecture for U(n + 1) x U(n) for square-integrable
representations, and Gan and Ichino [6] studied the relation between U(n + 1) x U(n)
and U(n) x U(n). Part of our argument is inspired by their work. One notable point
is that, contrary to the usual expectations, our argument is not based on the results in
[9] and it does not reduce the tempered case to the square-integrable case. An outline
of the proof will be given after the precise statement of the theorem. The reason
why the method applies to real unitary groups but not p-adic ones will be clear from
the discussion there. Some ideas in the proof have other applications, for example,
studying the local linear forms appearing in the Ichino-Ikeda conjecture (see [12]).
We will pursue these ideas in subsequent work.

Notation and conventions. Throughout this paper, we keep the following notation.
Let ¢ : R — C* be the additive character given by ¥ (x) = e~2"* and yC(z) =
¢27(=2) By a character of C* we mean a unitary character. If y is a character of
C*, then we put x“(z) = x(z). The character y is called conjugate self-dual of sign
+1 (resp., —1) if y|rx is trivial (resp., the sign character), or equivalently, y(z) =
(z/+/2Z)™ for an even (resp., odd) integer m.

We denote by 1, the n x n identity matrix, and by diag(xy,...,x,) the n X n
diagonal matrix with entries x1, ..., X;.

If V is a Hermitian or skew-Hermitian space, then the Hermitian or skew-
Hermitian form is denoted by Ay . If V' is Hermitian of signature (n — ¢, q), then we
define disc V = (—l)n(nz_ ”_q. If V is skew-Hermitian, then we let —i V' be the Her-
mitian space with the underline vector space V' and Hermitian form —i/y-. We denote

by L4, and L_; the positive and negative Hermitian lines, respectively; that is, the
underline vector spaces are C and the Hermitian forms are given by h(x,y) = xy
and h(x,y) = —xY, respectively.

Unless otherwise explicitly mentioned, by representation we always mean a uni-
tary Casselman—Wallach representation of finite length (Frechet representation of
moderate growth; see [21, Chapter XII]). The inner product on a representation is
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denoted by (—, —). Let 7 be a representation. We denote by 7" the space of continu-
ous linear functionals on = endowed with the strong topology (uniform convergence
on bounded subsets). The smooth dual of m, that is, the subspace of smooth vectors
in 7V, is identified with 77. By a tempered representation of a reductive group G, we
mean a (unitary) representation whose matrix coefficients are in L27¢(G/Z) for any
€ > 0, where Z stands for the center of G.

2. Restriction problems

2.1. Langlands—Vogan packets

As explained in [3, Section 8], a tempered L-parameter ¢ for a unitary group in n
variables is an n-dimensional conjugate self-dual semisimple continuous representa-
tion of C* of sign (—1)"~!. As C* is abelian, we can write

p=mip1 ® - S mpx, 2.1)

where my, ..., my are integers, my + -+ + my = n, and @1, ..., ¢ are distinct char-
acters of C*. The parameter ¢ being conjugate self-dual of sign (—1)"~! means the
following. If ¢; is conjugate self-dual of sign (—1)"~1, then m; is arbitrary. If ¢; is
conjugate self-dual of sign (—1)", then m; is even. If ¢; is not conjugate self-dual,
then there is an i’ so that d)ic 1= ¢ir and m; = mys. In particular, the number of
conjugate self-dual characters of sign (—1)"~! (counting multiplicity) has the same
parity with n.

A component group Ay is defined for each ¢ (see [3, Section 4]). In our case
it is isomorphic to (Z/27Z)", where r is the number of distinct conjugate self-dual
characters of sign (—1)"~! contained in ¢. By relabeling, we may assume that ¢; is
self-dual of sign (—1)"~1 precisely when 1 <i < r. We then label elements in 4 as

P z/22)a;. 2.2)

i=1

where a; is a symbol corresponding to ¢;. Without stating otherwise, we will follow
this convention of labeling characters in the L-parameter.

Let V' be a Hermitian space of dimension n. To each ¢, the Langlands correspon-
dence (see [3, Sections 9 and 10]) assigns a finite set Hg of irreducible tempered rep-
resentations of U(V) called the L-packet attached to ¢. The Vogan packet attached to
¢, denoted by Iy, is the (disjoint) union of all Hg as V ranges over all (isomorphism
classes of) Hermitian spaces of dimension #:

14
My= | J 1.
VidimV=n
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Attached to each representation 7w € Iy is a character  : Ay — (£1) defining a
bijection between I14 and all characters of Ag. This bijection IT4 — Hom(Ag, (£1))
depends on the choice of (an equivalence class of) Whittaker datum. When 7 is odd,
we choose it to be the unique Whittaker datum (up to equivalence) of U(V'), where

V is of signature (2FL, 2=1) When n is even as explained in [3, Section 10], this

is equivalent to choozsing 3 nontrivial additive character of C which is trivial on R.
Throughout this paper, we will take this additive character to be ¥C. This choice
agrees with the one used in [1], where the author picked the Whittaker datum toy in
his notation (see the last sentence of the paper; see also [1, p. 66] for the definition of
o for odd unitary groups, and [1, p. 67] for that of even unitary groups—his notation
is fy).

Let V'’ be the skew-Hermitian space, and let V = —i V’. The unitary groups U(V)
and U(V’) are physically the same. The use of —i instead of i is compatible with
the identifications in [1], [16], and [17]. In [16, Section 1.1] and [, Section 3.1],
the (skew-Hermitian) unitary group preserving skew-Hermitian form i diag(1,,—14)
is identified with a unitary group of signature (p,q). We have a similar Langlands
correspondence for U(V’) as in the case of U(V). The bijection between IT4 and
Hom(Ag, (£1)) again depends on the choice of a Whittaker datum. Following [3,
Section 12], we choose the Whittaker datum so that under the natural identification of
U(V) and U(V’), a representation of U(V') and hence U(V”) corresponds to the same
character of Ag.

Properties of the bijection I14 <> Hom(Ag, (+1)) have been summarized in [,
Theorem 2.1] and [3, Sections 9 and 10]. Those most frequently used are recalled in
the following proposition.

PROPOSITION 2.1

We have the following assertions.

(D) [1, Theorem 2.1(5)] Suppose that V. =X @ VoD Y, where X, Y are isotropic
lines and X ® Y is a 2-dimensional split Hermitian space perpendicular to
Vo. Let P = M N be the parabolic subgroup stabilizing X, and let M ~
C* x U(Vy) be the Levi subgroup. Let wy be an irreducible tempered rep-
resentation of U(Vy) whose Langlands—Vogan parameter is (¢o, ng), and let
£ be a character of C* that is not conjugate self-dual of sign (—1)"~1. Then
the parabolic induction

T = IndIIJ,(V) £ ® mo

is an irreducible tempered representation of U(V) whose Langlands—Vogan
parameter is (¢, n), where

p=goDEDET, Ap = Agy, n=no.
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2) [1, Theorem 2.1(8)] Suppose that 1 is an irreducible tempered representation
of U(V) with Langlands—Vogan parameter (¢, 1n). Then m @ det* has param-
eter (¢ ® x*, n), where yi(2) = (z/2)F = (z/v/22)**.

3) [1, Theorem 2.1(6)] If 7 is an irreducible tempered representation U(V') with
Langlands—Vogan parameter (¢, n), then the smooth dual of w, which has
been identified with ¢, has Langlands—Vogan parameter (¢ ,n"), where

¢V =migr @ dmpgrt,  Agv = Ay, nV(a) = (=D"""n(a).

4) [3, Section 10] Let w be an irreducible tempered representation of U(V),
where V is of signature (p, q) and 7 has Langlands—Vogan parameter ($, n).
Then

n(nfl)_q .
2 =disc V.

M@ + e+ ap) = (=)

Given any nontrivial additive character ¥’ of C, one can define the root number

€(¢p,¥"). We only record the following properties which will be used often and refer
readers to [3, Section 5] for a more detailed discussion. We have

€(@.y)) =detp(=De(¢p.¥'), €@, ¥ )e(p”.¥)) = 1. (2.3)

If ' is trivial on R, and § is a character of C*, then

ey )=clpdEDETY). (2.4)

We also note that the additive character ¥ satisfies the condition of being trivial
on R.

2.2. Bessel models

Let ¢ be a nonnegative integer. Let W C V be a pair of Hermitian spaces of dimen-
sions n and n + 2¢ + 1, respectively. We say that the pair (W, V) is relevant if
V =W @&+ Z and we can find a basis zg, z4;,i = 1,...,t of Z with

hy(ziizj) = (=1)"8;_j, i.j=0,%1,. .. *t.

Note that this definition is slightly more restrictive than the one in [3, Section 2],
where it is only required that Z be split. To study the restriction problem and prove
the local GGP conjecture, we however only need to consider the case at hand, because
if hy (zo,z0) = (—1)"*1, then we may analyze the restriction problem for the embed-
ding of groups U(—W) C U(—V) instead.

Let P be the parabolic subgroup of U(V) stabilizing the flag of completely
isotropic subspaces
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(z;) C{z¢,24—1) C - C{zs,...,21).

Let N be the unipotent radical of P, and let H = U(W) x N, which is a subgroup of
U(V'). We define a character of N as follows. Let u € N. We define a character

t—1
v) = (Trem Yy (zoict,uz)).
i=0

As v is invariant under the conjugation action of U(W), it admits a unique extension
to H which is trivial on U(W) and which we still denote by v.

Let 7 and o be representations of U(V') and U(W), respectively. We denote
by Homp (7 ® o,v) the space of continuous linear forms £ : 7 ® o — C with the
property that

Z(n(h)v ® a(h)w) =v(h){(v®w), foralhe Hyvemandw €o.

We put m(rr,0) = dimHomg (7 ® o, v). By [13] and [19], if 7 and o are irreducible,
then m(m,0) < 1.

If t =0, then H = U(W) and v is trivial. Then Homyw) (7 ® o, C) is the space
of U(W )-invariant continuous linear forms on 7 ® o.

Assume that 77 and o are irreducible and tempered. Let (¢, 1) and (¢, n5) be
the parameters of 7 and o, respectively. Write

G =m1)1 D D my xk, G =n1p1 D - Dy,

and
r s
Ao =D @/2D)ai. Ay, =D@/20)0;.
i=1 j=1

The following theorem is the main result of this article. It confirms the local GGP
conjecture for real unitary groups (see [3, Conjecture 17.3]).

THEOREM 2.2
Assume that w and o are irreducible and tempered. Then m(mw,c) = 1 if and only if

nﬂ(ai)ze(xi®¢0’5 l//lc)s nU(b])=€(¢ﬂ®/'L]31/fC)9
foralli=1,...,rand j =1,...,s.
2.3. Tempered intertwining
Let W C V be a relevant pair of Hermitian spaces of dimensions n and n + 2¢ + 1,

respectively. Let w and o be tempered representations of U(V') and U(W), respec-
tively. In [2, Section 7.2], an H x H bi-invariant continuous linear form
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is defined. We remark that it is not required in this definition that 7 and o be irre-
ducible. Assume now that ¢ = 0. Then when restricted to 7 @ m ® 0 ® 7, the linear
form £ is given by the more familiar integration of matrix coefficients (see [12])

Lrole e, v,v) :/ (m(h)e.e)o(h)v,v')dh. (2.5)
uw)

The integral is absolutely convergent (see [12]). In general, if # > 0, then a regular-

ization is needed in the definition (see [2, Section 7.1]), but we will not need the

expression of &£  in this case.

Let us recall two results from [2, Chapter 7] about &£ ;. In the local trace formula
approach, these results need to be established before one can analyze the spectral side.
It does not rely on any local trace formula argument.

In general (any ¢), it follows from the definition that if £, # O, then
m(m, o) # 0. The following result is [2, Theorem 7.2.1], which proves the converse.

PROPOSITION 2.3
If v and o are irreducible and tempered, then m(w,0) = 1 if and only if £ s # 0.

Let Wy = V @ (zg) with hw, (2§, 25) = (—1)" 1. Let X be the isotropic subspace
of W) spanned by
(zo+ 29,210+ -y Zt)s

and let Q be the parabolic subgroup of U(W)) stabilizing X. The Levi subgroup M
of Q is isomorphic to GL;+1(C) x U(W). Let t be a tempered representation of
GL;+1(C), and consider the induced representation

o1 = Indg(W‘) T ®o0.

We usually denote this induced representation by 7 X 0.
The following result is [2, Proposition 7.4.1]. Proposition 2.3 is deduced from it
by an argument using the Plancherel formula.

PROPOSITION 2.4
For any tempered representation t, we have £ o 7 0 if and only if £, » # 0.

Propositions 2.3 and 2.4 reduce Theorem 2.2 to the case t = 0.

COROLLARY 2.5
Theorem 2.2 in the case t = 0 implies all other cases t > 0.
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Proof

We keep the notation from Theorem 2.2. Let t be an irreducible principal series repre-
sentation of GL;(C), induced from the character £} ® --- ® &1 of (C*)' ™!, where
£1,...,& 41 are not conjugate self-dual. Then by Proposition 2.1(1), oy is irreducible
and the parameter of o is given by

¢01 = ¢a ©® 5;_1 @ éf’_l DD st+1 S %_tc_,{_—ll’ Aqﬁgl = Aqﬁo» Noy = No-

Therefore, by (2.4), we have €(y; ® ¢y, ¥C) = €(xi ® ¢po, ¥*). By Propositions 2.3
and 2.4, Theorem 2.2 for (7, o) follows from that for (o1, 7). O

2.4. Outline of the proof

We now outline the proof of Theorem 2.2 when ¢ = 0. Assume that ¢, contains a
conjugate self-dual characters of sign (—1)" and that ¢, contains b conjugate self-
dual characters of sign (—1)"~! (counting multiplicity). Note that @ has the same
parity as n + 1 and b has the same parity as n. Thus a + b is odd. The trick is to make
an induction on a + b, not on the size of the unitary group.

The base case is a + b = 1. In this case, both 7 and ¢ are irreducible prin-
cipal series representations. We have m(wr,0) = 1, and both 5, and 7, are trivial
characters. One in fact checks directly in this case that £, ; is not identically zero.
Theorem 2.2 thus holds when a + b = 1.

Now we assume that ¢ + b > 3 and proceed with induction. We should have
eithera >2or b > 2.

Assume first that a > 2. The key observation is that, up to twists by characters of
the form det* for some integer k, 7 can be constructed by a composition of two theta
lifts. More precisely we can find the following data:

. a Hermitian space Vj of dimension n — 1 and a skew-Hermitian space V' of
dimension 7;
. an irreducible tempered representation of o of U(V}) and an irreducible tem-
pered representation 7’ of U(V’);
with the property that 7’ ® det*’ is the theta lift of 7o and 7 ® det” is the theta lift
of 7t/ (the integers k and k’ depend on 7 and 7). In this case, via a familiar seesaw
argument, Theorem 2.2 for (,0) is reduced to that for (o9, 7g), where o (up to
twist) is an irreducible tempered representation in the same Vogan packet as o. The
L-parameter of o contains b conjugate self-dual characters of sign (—1)”~! and the
L-parameter of 7y contains a — 2 conjugate self-dual characters of sign (—1)" (see
the discussion of the relation between parameters and theta lifts in Section 3). Thus
we are done by induction.

Finally, assume that b > 2. Let W; be the (orthogonal) direct sum of W and

a hyperplane, and let P be the parabolic subgroup stabilizing an isotropic line in
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this hyperplane. Then the Levi subgroup is isomorphic to C* x U(W'). We choose a
character y that is not conjugate self-dual. Consider the induced representation o7 =
x % 0. Then o7 is irreducible and the L-parameter contains b conjugate self-dual
characters of sign (—1)"~!. We then apply the result in the case a > 2 to (07, ) and
prove Theorem 2.2 for (o1, 7). Using tempered intertwining, we see that Theorem 2.2
for (01, ) is equivalent to Theorem 2.2 for (7, 0). Then we are done.

The reason why the argument applies exclusively to real unitary groups is now
clear. An L-parameter of a real unitary group is a sum of characters and most of the
representations (up to twists) can be constructed via theta lifts from smaller unitary
groups. Of course, this is not true for p-adic unitary groups. For similar reasons, the
technique does not seem to work without modification for the local GGP conjecture
for orthogonal groups.

3. Theta lifts

3.1. Weil representations and theta lifts

Let V and V' be a Hermitian space and a skew-Hermitian space of dimensions n and
n’, respectively. Then U(V) x U(V’) is a dual pair in Sp(2rnn’,R) in the sense of
Howe. Let wy, be the Weil representation of Mp(2nn’, R) associated to the additive
character . The choice of Y agrees with the choices made in [16] and [17] by [I1,
Lemma 7.10]. It also agrees with the choice made in [1, p. 32]. In what follows, the
character v is always fixed and will be suppressed from the notation when there is no
confusion.

By choosing a conjugate self-dual character yy of sign (—1)"’ (resp., xy
of sign (—1)") of C*, we get a splitting U(V) — Mp(2nn’,R) (resp., U(V’) —
Mp(2nn’,R)) (see [1, Section 3.1]). We denote again by w the restriction of the Weil
representation to U(V) x U(V’). We remark that it is not a representation by our
convention as it is not of finite length. It is a continuous action of U(V) x U(V")
on some Schwartz space, and it is unitary. In particular, the underline space is a
nuclear Frechet space. We will describe realizations of the Weil representation on
mixed models below. If V' = L, ;, and we use a conjugate self-dual character u
of sign (—1) to split the metaplectic cover over U(V’), then we denote the Weil
representation of U(V’) by wy, . This is the Weil representation that will appear in
the Fourier—Jacobi model below.

Let 7 be an irreducible representation of U(V). Then U(V)-coinvariance (& &
T)y(v) is denoted by @ (). It is a (not necessarily unitary) Casselman—Wallach repre-
sentation of finite length of U(V”’) and its maximal semisimple quotient 8 () of ®(7r)
is irreducible (see [10, Theorem 1A]). If dim V' —dim V' = 0, &1 and 7 is tempered,
then it is expected that ® () is itself irreducible and hence unitary, and ® () = 6 ().
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The analogous result for p-adic unitary groups holds by the work of Gan and Ichino
[5, Appendix C]. A rigorous proof for real unitary groups is unfortunately missing in
the literature. If we had this, then we would be able to prove Theorem 2.2 and Propo-
sition 2.3 simultaneously by combining the seesaw argument in Section 3.4 below
and the abstract seesaw identity (see [1, Proposition 3.11]), without appealing to the
results of [2, Chapter 7].

We are going to deal with several theta lifts at the same time, so we add various
subscripts to 0(r) to distinguish them. When we need to specify them, for instance,
we denote the above 0(r) by v,y yy xy s, (7).

We now describe the realization of @ on a mixed model following [6, Sec-
tion 7.4], and use it to deduce an estimate of matrix coefficients of w. Though [6]
considers only non-Archimedean local fields, formulas for the Weil representation
presented there are valid for all local fields of characteristic zero. Let s be the Witt
index of V', and let Vj be the anisotropic kernel of V', dim Vy = ng = n — 2s. Choose
abasis {v;, v |i =1,...,5} of VOJ- sothatforalli,j =1,...,s,

(vi,vj) = (v, v}) =0, (vi,v}) =8y

Let P = M N be a minimal parabolic subgroup of U(V') stabilizing the flag
C{v1} c C{vy, v} C--- C C{vy,...,vs}.

Then M >~ (C*)* x U(Vp), and we let A ~ (R)* be the identity component of the
maximal split torus in M. Let A p be the roots of A in N, and let

At ={beA|la(b)|<1.VaecAp}={(b1.....by) |0 <by <---<by < 1}.

Similarly, let 7 be the Witt index of V’, and let V{j be the anisotropic kernel of V”,
dimVy = ny = n’ — 2r. Then we have a minimal parabolic subgroup P’ and the
identity component of a maximal split torus A’, and

A’+={a=(a1,...,ar)|0<a1§---§ar§1}.

To compare the notation with [6], the spaces V and W there are our V and V', respec-
tively, the dimensions m and n are our n and n’, respectively, and the Witt indices r
and s are our s and r, respectively.

The Weil representation w is realized on the mixed model. Let us first fix a real-
ization 8o of the Weil representation OV Vo of U(Vy) x U(Vp). The Weil represen-
tation Wy v of U(Vy) x U(V) is then realized on 8¢ = &(V3°) ® 890. Finally, the
Weil representation wy .y of U(V’) x U(V) is realizedon 8 = 8(V") ® 89. We view
elements in § as Schwartz functions on V" x V{* valued in 89o. We do not need the
fully detailed description of the action as in [0, Section 7.4], but only the following.
Leta = (ay,...,ay,) € A", leth = (by,...,by) € AT, and let ¢ € 8. Then
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wy,y(a,b)p(z,w)
= xv(@r---ap) gy (br-+-bs)(ar---a)"(by--bs)" "> $(b~'za, wh), (3.1)

where z € V7" (resp., w € V;®) is viewed as a row vector with entries in V' (resp., V),
and when multiplied from the right, a and b are viewed as diagonal matrices with
entries ay,...,a, and by, ..., bs, respectively.

We fix an inner product on §g¢. Then an inner product on & is given by

@)= [ (pw).¢ )z,

This makes sense since ¢, ¢’ are Schwartz. Define a function on Rx¢ by

T = {1_1 x <1,

X x>1.

LEMMA 3.1
There is a continuous seminorm v on 8 such that

(v b.ayp.¢') < [Tar [T07 > T[] Y@b;yvwi@),  (3.2)
i=1 j=1 i=1j=1

wherea = (ay,...,a,) € AT, b= (by,...,bs) € A™.

Proof

This is a slightly refined estimate of the one given in the proof of [5, Lemma D.1].
From the explicit formula (3.1) we see that we only need to prove the following more
general result. Let m be an integer, take ¢, ¢’ € 8(R™) ® 890, viewed as Schwartz
functions valued in &g, and let A = (A1,...,4;;) € (R~¢)™. Then there is a semi-
norm v on §(R™) & 8o such that

‘/Rm(¢(l1xl,...,/\mxm),¢(x1,_,_’xm))dxl,”dxm‘

<[Ix@a;Hvewe). (3.3)
i=1

By relabeling, we may assume that
Mzozhz1>Ap z 2 A

Make changes of variables x; — )ui_lxi, i =1,...,1. The left-hand side of (3.3) then
becomes (A ---A;)~! times
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‘/ ((pb(xla'--sxlvl,\'l-‘rlxl-‘rlv-"akmxm)v
Rm
¢ O X1 AT X X1 X)) ~~~dxm‘. (3.4)
Choose positive polynomial functions p(xy,...,x;) and p’(x;41,...,Xn) such that
/p(xl,-..,xz)_lp'(XIﬂ,...,xm)_ldxl---dxm
Rm

is convergent. Then we have that (3.4) is bounded by the product of this integral and

sup |(p(x1,...,xl)d)(xl,...,xl,kl+1x1+1,...,)mem),
X1 5eeesXim
P (Xix1se s Xm)@ (AT X1, . .,kl_lxl,xH_l, .. ,xm))|. (3.5)

The Cauchy—Schwarz inequality gives that

(3.5)< sup ”(p(xl,...,xl)qf)(xl, e XL A1 X s ,/\mxm)“

X15eesXm
X sup ||p/(x1+1,...,xm)gb/()kl_lxl,...,)tl_lxl,xlﬂ,...,xm)){,
X1seeesXm

where ||| is the norm induced by the inner product on §¢¢. Note that p does not con-
tain the variables x4 1,..., X, while p’ does not contain the variables x1,...,x;.
Thus both sup terms are independent of the A;’s. Both sup terms are continuous
seminorms on §(R™) ® 8¢ by the definition of the Frechet space structure of
8(R™) ® 890, and we can find another continuous seminorm v that dominates them.
The desired estimate (3.3) follows, since

[[re) =017

i=1

by our assumption. O

We now deduce from Lemma 3.1 several convergence lemmas which we need
later. First we fix some notation and recall some standard estimates from [2, Sec-
tion 1.5] and [12, Section 4]. Let G be a real reductive group, and let 29 be the
Harish-Chandra Xi function on G (see [2, Section 1.5]). We fix a logarithmic norm
¢g on G (see [2, Section 1.2]). Fix a maximal connected split torus A of G and a
minimal parabolic subgroup Py of G. Let A p, be the set of roots of A4 in Py, and let

AT ={aeA||a(@)|<1.VaeAp,}.

Fix a maximal compact subgroup K of G such that we have the Cartan decomposition
G = KAYK.Forany f € L'(G), we have the following integration formula:
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/ fg)dg = [ 0() f F(kyaks) dky dk da, (3.6)
G A+ KxK

where ¢(a) is a nonnegative function on A™ satisfying
¢(a) < C8p)(a), 3.7)

where C is a positive constant independent of a and §p, stands for the modulus
character of Py. Let 7 be an irreducible tempered representation of G, and let « be a
matrix coefficient of 7. Then there is a constant A4 such that |a(g)| < AZC (g) for all
g € G. The result of [18] is more precise. There is a seminorm v on 7 such that

[(m(g)v.v')| < 29 (@), v,v e (3.8)

Moreover, by [2, Proposition 1.5.1], there are constants B, C’ > 0 such thatif a € AT,
then we have

1
2%(a) < C'83, ()56 (@)®.

We now come back to our setup of unitary groups U(V') and U(V"). We keep the
notation prior to Lemma 3.1.

LEMMA 3.2
Assume that n > n’. Let ' be an irreducible tempered representation of U(V’). Take

v,v" € 7’ and ¢, ¢’ € 8. Then there are continuous seminorms vy on ' and vg on
& such that

| /U W (7 (@v. v)fw(g. )9.¢/)dg| < ver@)va (s @vs@).  (3.9)

Proof
To shorten notation, we write w(g), g € U(V’), instead of w(g,1). We write a =
(ai,...,ay) € AT, and we have

’
Y
5P(a) — l_[aIZn 4l+2.
i=1

Let us fix a maximal compact subgroup K of U(V’) such that we have the Cartan
decomposition U(V’) = KA'T K. By the integration formula (3.6), estimates (3.7)
and (3.8), and Lemma 3.1, the left-hand side of (3.9) is bounded by

r

_Lon/—ai r BT
/ Hai 5@2n 4z+2)(1_210gai) na?dxal"'dxar
0

<ar=w=arsl;_ i=1 i=1

X / [ Ve (7w (k) v) vz (7w (k") )Us (w(k)p) Vs (w(k'~ ")) dk dk’,
kJk
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where B is a positive constant, d*a; = ai_1 da; is a multiplicative measure on R,
and vy, (resp., Vg) is a continuous seminorm on 7 (resp., §). The first term simplifies
to

r

,
S B
fraea o T2 (1 L) e
0

<aj<-=ar=l1 i=1 i=1

Since n > n’, it is absolutely convergent. Since K is compact, the second term is
bounded by

(vol K)? sup Vy (7 (k)v) sup Vg (w(k)) sup Uy (m(k~")v') sup Tg (w(k~")g’).
keK keK keK keK
Each sup term defines a continuous seminorm on the corresponding space by the
uniform boundedness principle (see [20, Theorem 33.1]). The desired estimate (3.9)
then follows. U

LEMMA 3.3

Assume that V = L1 is a positive Hermitian line. Let ' and ¢’ be irreducible
tempered representations of U(V'), and let v,v' € 7/, e,e’ € 0’. Let ¢, ¢’ € 8. Then
there are seminorms vy, Vg, and vg on ', o', and 8, respectively, such that

/(;(V’)

< v (V) (Vv (€)vr ()5 (D) V5 (9).

(" (hyv,v')(o" (h)e. e wy,. (M), ¢)} dh

Proof

The argument is very similar to that of the previous lemma, so we will be brief. Using
the integration formula (3.6), and applying estimates (3.7), (3.8), and Lemma 3.1, the
left-hand side of the desired inequality is bounded by the product of

r
B
/ al---ar(l—ZIOgai) d*ay---d*a,
O<ay=-+=ar=1

i=1
and

sup U/ (7 (k)v) sup V(7' (k)v") sup Vo (07 (k)e)
keK keK kekK

x sup Vg’ (07 (k)e’) sup Vg (w'(k)¢) sup Vg (o' (k)¢'),
keK keK keK

where B is a positive constant and the D.’s are various continuous seminorms. The

convergence of the first integral is clear. The sup terms are continuous seminorms

again by the uniform boundedness principle. U
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In the following proposition, if o is a representation, then, by a dense subspace
of matrix coefficients of o, we mean a space of functions generated by (o (h)e,e’),
where e € U and ¢’ € U’ and U, U’ are dense subspaces of o.

PROPOSITION 3.4

Assume that either n =n' orn = n’ + 1. Let t’ be an irreducible tempered represen-
tation of U(V"). Take v,v' € n’ and ¢, ¢’ € 8.

(D The linear form

000,900 [ [ ot 0g.¢)dg

continuously extends to a linear formon '’ ® 1’ ® w ® . It is not identically
zero if and only if Oy y (n") # 0.
(2)  Assume that Oy y (1) # 0. The function

h (7' (g)v.v')w(g. h)gp.¢')dg
uw’)
defines a (possibly zero) matrix coefficient of Oy y (n'). When v, v’ range over
a dense subspace of @', and ¢, ¢’ range over a dense subspace of 8, functions
of this form generate a dense subspace of matrix coefficients of Oy y (z').

Proof

The absolute convergence and continuity follow from Lemma 3.2. The nonvanishing
is quite subtle. If n’ = n, then it is proved in [14, Proposition 5.2]; if n’ = n + 1, then
it is proved in [7, Proposition 11.5]. This proves the first assertion.

For the second assertion, the integral indeed defines some Hermitian form on
O,y (x'). The semipositivity of this Hermitian form follows from [8, Theorem 1.1].
It then defines an inner product on @y y (x')/ K, where K is the kernel of it. There-
fore ®y y(7')/ K must be semisimple, and thus coincides with the 6y y (n’). The
positivity of this pairing on @y~ y(x")/ K needs some explanation. In fact, it follows
from the following general fact. If U is a vector space and g is a nonzero semipositive
definite Hermitian form, and L the kernel of it, then g descends to an inner product
on U/L. To see this, if there is an x ¢ L such that ¢(x, x) = 0, then take some y € U
with ¢g(x,y) # 0 and consider g(ax + y,ax + y) for some a € C, which equals
q(y,y) +2Reaq(x,y). Since a is arbitrary and ¢ (x, y) # 0, it cannot be nonnega-
tive for all a.

Finally, we fix a surjective homomorphism p : 7/ ® w — Oy v (x'). The integral
in the lemma takes the form (fy: v (") p(v,¢), p(v', ¢’)), where this (—,—) is an
inner product on By (7’). The last assertion of the lemma then follows from the
surjectivity of p and the density of 7/ ® w in 7/ ® w. O
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3.2. Parameters of theta lifts
Let 7 be an irreducible tempered representation of U(V') with the parameter (¢, 7).
In the case n’ —n = 0, 1, the parameters of theta lifts can be described. We fix yy and
xv to split the metaplectic cover over U(V') and U(V"), respectively.

Let us write the parameter of 7 as

d=mip1 B D mrPx. (3.10)

where ¢1, ..., ¢, are self-dual characters of sign (—1)"~! while ¢, 1 1, ..., ¢y are not.
Then Ay = @;_,(Z/2Z)a; as in (2.2).

We first consider the equal rank case n = n’. There exists a unique skew-
Hermitian space V' with dim V" = n so that Oy,y7 4, 4, () # 0. Put

0(p) = xy' xv. (3.11)

Then Oy,y7 .y, () € Tg(g), which corresponds to the character 6(n) : Ay — (£1)
given by

0 (@) = €(¢i ® 13" YOm(a). (3.12)
The discriminants of V and V"’ are related by
disc V disc(—i V') = e(¢ ® 3", ¥O).

These results were proved by Paul and were stated in [ 16, Theorem 6.1] in a different
language. We will make a translation after Lemma 3.5 for the reader’s convenience.
We now consider the almost equal rank situation. Put

0(¢) = (¢ ® xv' xv) @ xv. (3.13)

There are two cases. If ¢ does not contain yy, then there are exactly two skew-
Hermitian spaces V' with dim V' =n" =n 4 1 such that 0y, 4, ., () is nonzero.
We have

Oy ay (M) €T Agig) = Ag @ (Z/2Z)ay,

where the extra copy of Z/27Z comes from yy-. The representation Oy,y7 y, x, . ()
corresponds to the character () : Ag(g) — (£1) such that

1
nn+ )_q
b

Omla, =n.  On(ay) =nla)---na)(=1) 2 (3.14)

where —i V' is of signature (p, ¢). In this case, the theta lift defines a bijection

V/
Mo |J Mg,
disc(—iV’)=e
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where € = +1 is a fixed sign and V' ranges over all (isomorphism classes of) skew-
Hermitian spaces with disc(—iV’) = €. If ¢ contains yy, then there is a unique V'
such that 0y,y7 y,, y,,(7r) # 0, and it corresponds to (6(¢), 6(n7)) where

Aoy =Ag, 0 =1. (3.15)
In this case, the theta lift defines a bijection
H¢ <> Hg(¢).

These results are due to Paul [17]. Again, it is not stated in this language in [17].
We will make the translation after Lemma 3.5.

One direct consequence of this description of the parameters is the following
lemma. It is easy but plays a crucial role in our argument.

LEMMA 3.5

Assume that n’ = n + 1. Let ' be an irreducible tempered representation of U(V")
with Langlands—Vogan parameter (¢n’, Ny'). Assume that ¢+ contains at least one
conjugate self-dual character of sign (—1)”/_1. Then there is an integer k, a Hermi-
tian space V with dim V = n, and an irreducible tempered representation 7 of U(V')
so that

Oy v oy (1) = 7' ® det* .

Proof

By assumption, we have ¢,» = ¥’ @ ¢}, where x'(z) = (z/+/zZ)" and m has the
same parity with n(= n’ — 1). Suppose that yy+ = (z/+/zZ)". Then v has the same
parity with m (and with n). Let yx be the character y(z) = (z/Z)¥. Then there is an
integer k such that ¥’ ® yx = xv, and hence by Proposition 2.1(2) the L-parameter
of 7' ® det* contains the character xv.Put ¢ =) ® yx @ )(V)(I_,}. Then ¢ is an
L-parameter of unitary groups in n variables, and Ay is a subgroup of index at most
two of Ay _,. Let n = nzs|a,. Then the representation 7 with the Langlands—Vogan
parameter (¢, 1) is an irreducible tempered representation of U(V') with dimV = n,
and Oy, yy, y,, (1) =71' ® det® by (3.13) and (3.14). O

So far we have considered only the theta lifts from U(V) to U(V’). We can
also consider the theta lifts from U(V”) to U(V). As groups, we have identifications
U(WV")=U(=iV')and U(V) = U V). Moreover, V' QV = (=i V') ® (i V) as skew-
Hermitian spaces so the Weil representation does not change. Furthermore, we picked
the Whittaker datum so that under the Langlands—Vogan parameterization a repre-
sentation of U(—iV’) (resp., U(iV)) and hence U(V’) (resp., U(V)) corresponds to
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the same Langlands—Vogan parameter. Therefore, the results described above do not
change.

The rest of the subsection is devoted to the translation of Paul’s results into the
language of Langlands—Vogan parameterization. This material will not be used in the
proof of the main theorem. Tempered representations are irreducible parabolic induc-
tions from limits of discrete series representations. By the Langlands—Vogan param-
eters of parabolic inductions (see Proposition 2.1(1)) and the induction principle of
theta lifts (see [16, Theorem 4.6.4]), the crux of the matter is the case when ¢ is an
L-parameter of a limit of discrete series representation. Assume from now on that this
is the case. Then the ¢;’s are all conjugate self-dual characters of sign (—1)"~!, in the
expression (3.10).

In [16] and [17], theta lifts are viewed as correspondences between genuine rep-
resentations of covers over unitary groups. Let [T(T//) and [/JE\I;//) be the inverse image
of U(V) and U(V’) in Mp(2nn’,R). Then by [16, Section 1.2], we have

U(V) = {(2,2) € U(V) x C* | (detg)"’ =22},

where v’ is an integer with the same parity as n’. Different choices of v’ give iso-
morphic groups, and do not affect the result of theta lifts on the covers. However, the
choice of v’ does affect how the identiﬁcati/(lrE of representations of U(V') and U(V)
are made. There is a genuine character of U(V') given by

detz :Ij_(\V/)—MCX, (g,2) > z.

Thus there is a natural identification of irreducible representations of U(V') and those

of Ij(\?) given by 7 < 7 ® det™ = . This choice is made so that the relation (3.16)
below holds. Similarly, we have

LT(‘7’/) ={(g.2) e U(V") x C* | (detg)” = z?}.

where v is an integer with the same parity as 7. Thus there is a natural identification of

irreducible representations of U(V’) and those of I?(\V/’) givenby 7’ < 7’ ® det™ 3.
The result of [10] in the setting of covers of unitary groups is the following. If T is

an irreducible genuine representation of U(V), then the maximal semisimple quotient

the U(V)-coinvariant (o ® 7)— is a genuine irreducible representation of U(V").

o uw)
We denote it by Oy, y/ (7).
Suppose that the splitting characters yy and yy- are, respectively, of the form

1y (@) = (J%)”/, we=(=)

Let 7 be an irreducible representation of U(V'). Then by [1, Proposition 3.5], we have
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OV, vy pps (1) ® det ™2 = By (7 ® det™ 7). (3.16)

Strictly speaking, (3.16) is not explicitly stated in [1], but the calculation in the proof
gives it.

Limits of discrete series representations of U(1') are parameterized by the pair
(A, W) in [16] and [17]. Here

A=A, Ay Ay A A A AR A)
NN )N L N S .
D1 Dk q1 dk
with
. Ahi€Z+" and Ay > Ay > > Ay,
. pi-qi =0, (pi.gi) # (0,0), and [p; —gi[ <1,
. (p,q) is the signature of V', where p =p1 +---+ px, g =q1 + - + gk,
and W is a set of positive roots (of the diagonal Cartan subalgebra) in gl,(C) =
Lie(U(V)) ® C satisfying certain properties. The set W can be specified by a real
diagonal matrix in gl,, (C). The conditions that W needs to satisfy are stated explicitly
in [11, Section 3]. o
Genuine limits of discrete series representations of U(V') are parameterized in
the same way, except that the A;’s are required to be in Z + % (resp.,in Z) if n’ —n
is even (resp., odd). If 7 is a limit of discrete series representations of U(V') with

4

the parameter (A, W), then the representation 7 ® det™z of IT(\V/) has the parameter
(A — "7,, U), where A — "7/ means subtracting "7/ from each entry of A.

For a limit of discrete series representation, the Langlands—Vogan parameteriza-
tion (¢, n) and the parametrization (A, ¥) are linked as follows. (This follows from
[15, Théoréme 1.1] and has been worked out in concrete terms in [ 11, Section 5.3.1].)
Write the L-parameter ¢ as y1 @ 2 @ --- ® yn, where yi(z) = (z/v/zZ kit We
may order these characters so that k1 >k, > --- > k. Define an elementary abelian
2-group

AS =(Z/2L)ey & (Z/2L)e, & - ® (Z/2L)en,

where e; corresponds to «;. Then Hom(Ag, (£1)) is identified with a subgroup of
Hom(A;r, (£1)) consisting of characters n with the property that n(e;) = n(e;) if
k; = k. Let n be a character of A4, and put
( ) (1,0) ifp(e;) = (=)',
pi-qi) = . .
0,1) ifn(e;) = (=1)".

If 7 is a representation of U(V) with Langlands—Vogan parameter (¢, ), then its
parameter in terms of (A, W) is given by
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1
A= —((/cl,...,/q,...,Kn,...,K,,;/q,...,Kl,...,/cn,...,/cn)—1—(1/,...,1/)),
2 —— —— —— ——— ——

D1 Dn q1 qn n

and the set W is given by the diagonal matrix

b
diag (X1, ..o X1y ooy Xy oo e s X3 X s oo s X1y enes Xy evos Xn),s
——— ——— —,—
p1 Pn q1 qn
with x1 > x5 > -+ > Xx,,.
Finally, we can now make the translation of Paul’s results. Consider the equal

rank case n = n’ first. In this case, the k;’s are odd integers. Suppose that we have
K1 ==Kk >0>kK141>+->kp. The parameter ()k W) of 7 is as described above.

The parameter of the representation 7 ® det™ 7 of U(V/ ) is then ()L V), where

1
—(K1yee e s Klyee e s K ye e s KL KT 1s e e e s KD f 15 oo s Ky e v e s K
N—— — — e ———— N——
p1 D DPi+1 Pn
KlyeuosKlyeuosKlyeoa s KLy KT f s ee s KIfls e sKnyenesKn)-
S——— N N —— e’ —
q1 qi qdl+1 dn

By [16, Theorem 6.1], the theta lift 9/1/;;(71 ® det_%) is a limit of discrete series

P

representation of U(V”) and the parameter is given by (I‘I, I'V), where

~ 1
TA=—(K1yeeosKlyeneesKly e s KTy Kl 1o e s KIb1s e ey KnseeesKns
e e N— —
P1 Pl qdi+1 dn
KlyewesKLsouesKlyerosKIaKIdTs oo s Klt1seesKnsenrsKn),
—— N —— ——
q1 q1 Di+1 Pn
and I' ¥ is given by the diagonal matrix
diag( X1, .oy X1y oo s X ee e s XLy X 1w e e s XD LsevsXnseensXn;
N——— S—— ————— N e’
pP1 P qi+1 dn
XlsooerXlnenosXlyuoes X1y X d1reoerXldlsenesXnseensXn).
S——— —_——— N———
q1 q1 Pi+1 Pn

The definition of I' W in [16, Section 5.2, (5.2.4b)] is given explicitly in terms of the
roots, which is equivalent to our description here. Then by the relation (3.16), we

conclude that Oy, y/ ., () is (CA,TW), where
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1
' = —((/cl,...,Iq,...,/cl,...,K],K1+1,...,/<1+1,...,/c,,,...,/cn;
2N —— ———— —— ——
D1 D qr1+1 qn
K1y KLy ee o s KL oo o KL KT e o s Kl 1s e e e Koo k) + (0,00 D)).
— —— —— ——— N——
q1 q1 Pi+1 Pn n

Now consider the representation with the Langlands—Vogan parameter (6(¢), 6(1n)).
The L-parameter is of the form x| @ x5 & -+ @ x,, where yi(z) = (z//zz)*i V.
By the relation (3.12), we have

O(n)(ei) = €(xi ® 1y, ¥C)n(er).

By definition, y; ® X[_/l is the character z > (z/+/zZ)*i. Then by [4, Proposition 2.1]
and (2.3), we have

o TE k> 0iie 1 <i <],
WELVI=N G oienl+1<i <.
By the definition of (p;,q;), the effect of multiplying €(y; ® X;I,W) to n(e;) is
equivalent to keeping (p;,¢;) intact when 1 <i </ and swapping (p;,q;) when [ +
1 <i <n. Comparing this with (I"'A, ' W), we conclude that the Langlands—Vogan
parameter of Oy %, () is precisely (6(¢), 8(n)), which is what we are after.
Let us move to the almost equal rank case n’ = n + 1. In this case, the «;’s are
all even integers. We assume that u, v are integers with |u —v| <l and k41 =--- =

k1,,, = 0 and hence

K12k =0="=0>Kkjfytos1 = > kn.

I)/

As in the equal rank case, the parameter (’;\J, W) of the representation 7 @ det™ 2 is

~ 1
A=—=(K1yeoosK1yeeosKly oo s K1, 0, 0o 0K gyt e e o s KT bsdvd s e s Koo v s Kt
2 ——— N e’ N e’
p1 V24 u Pl4u+v+1 Pn
L STRTNY STUUIY T RN '/ (SN ) S RV BUNIN (4 RIS TOURRY ¢ USRI
—— N e N e’
q1 qi v qI+u+v+1 qn

and the set W is again given by the diagonal matrix

diag( X1, oo X1, e s Xy e s Xp3 XLy e oo s X1 e e s Xy v e e s X)),
~——— ———— ——

p1 Pn q1 qn

with x; > x5 > -+ > x,,. We distinguish two cases.
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First, assume that ¥ = v = 0; that is, ¢ does not contain yy. By [17, Theo-
rem 3.4(c)], there are two Hermitian spaces V' such that Oy y (7 ® det_v?) # 0, and
the parameters are given, respectively, by

~ 1
TA==(K1,seoosK1yen oKy oo s K, 00K 1y e o K 15 e e Ky v o e s K
2 N—— —— —————

D1 y2i di+1 dn

KlyeuosKlyeoosKlyeoas KLy KIf s e s Kl flsoesKnsevnsKn),
e —_—— ——— —
q1 q Pl+1 Dn
. / .
T'W=diag(X1, ..o X1seee s Xlsee ey X1, X X b 1s e e s XI1 " s Xy v e s X
N—— —— S——
P1 P qi+1 an

X1oeeesXDnenosXloueey X1y X[ 1sneer X141 XnsevsXn),
N——— N N — e N e’

q1 q1 Pi+1 Pn
and
~ 1
TA=—(K1yeeesKlyeoesKly oo s KL K 1o e s KIb 1 e e s Ko e v s K
2 —— —_— ——
p1 pi q1+1 qn

KlseeorKlyeoosKlyeousKI 00KI41se e s Kitls e Kooy Kn),
N——— ~—_———— ~———
q1 q; Di+1 Dn
TW=diag(X1,. ... X1seee s Xlseee s X XI 1o e ey XIb1 " 2 Xpis e vr Xt
N—— N N — e’
P P qi+1 dn
li
XloeoesXDneuosXlouoos X1, X X 41 e e s XIb1 Xns e ey Xn).
N—— —— D e
q1 qi Di+1 Dn
Here in both cases, we have x; > xo > ---x; > x' > X741 > --- > X,,. Again, the
description of I'W is explicitly in terms of roots in [17, Definition 3.1], which is

~ 4 )
equivalent to our description. The representation Oy, (7 ® det_v?) ®det? of u)
then has parameter

' = —((/q,...,/q,...,lcl,...,K;,O,K1+1,...,K1+1,...,/cn,...,lcn;
2 —— ~———— — —_—

D1 D qi+1 qn
K1y KLsee o s Kl oo o KL KT e o s Kl 1a e e Koo oK) + (0,10, D)),
N—— S——— N —— — S——

q1 qi Di+1 Pn n+1

and
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1
T'A= —((Kl,...,IC],...,K[,...,KI,K[_H,...,K1+1,...,Kn,...,Kn;
2N —— —_——— ——
D1 D qi1+1 dn
Koo Kl oo Kl oo KL 00K 1o oK1 e e e Koo Kn) + (041, D)),
N e’ ————— ——— ——
q1 qi Pi+1 DPn n+1

respectively, and T'W = I'U. Now consider the representation of U(V’) whose
Langlands—Vogan parameterization is given by (6(¢),6(n)). We have 0(¢) =
11 @&, where

(z/VzR)aty  1<i<l,
X =1 (z/VzZ)" i=1+1,
(z/NzZ)i-1+Y 42 <i<n

Therefore, the fact that 6(n)|4,,, = 1 is equivalent to the fact that we are swap-

ping p; and ¢; when i > [ 4 1 in the parameters. The fact that 6(n)(ay’) = n(ay)---
nn+1)
n(a;)(=1) 2 ~9isequivalent to 6(n)(a; + +-- + a, + ay’) = disc V' (see Propo-

sition 2.1(4); recall that V"’ is of signature (p,q) and dim V' =n + 1).
Now assume that ¥ + v > 1; that is, ¢ contains yy. We make use of [17, The-

orem 3.4(b)]. In this case, there is a unique V' such that 5;,;(71 ® det_%) #£0. If

u>vorifu=wvand (p;+1,q1+1) = (0, 1), then the parameter of 9/1/,\1;(71 ®det_v7)
is

~ 1
FA==(K1,.o K1yenesKlyoon k1, 0,...,0,
2 N—— ———— ——
P1 V24 u
Kltut+v+1s-- s Kidutv+1,- - Knys oo Knj
ql+u+v+1 dn
KlseoosK1seeasKlyeok1,0,...,0,
N—— —— e N —
q1 q v+1
Kltutvt1s - KitutvdtseeosKnseoosKn),
Pl+utv+1 Pn
TV =diag(x1,..»X15 - s XIfutvs > Xltutuv
N—— —
P1 Pi4u+v
Xl4+u+v+1s s Xltutv+1 " s Xny -5 Xn;
di+u+v+1 dn
/
Xlyeoes Xlseoes Xldu+tvse-s XI+utv>X ,
N———

q1 dl+u+v
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Xl futv+1s s Xijutv1 " s Xns ooy Xn).

Dl4+utv+1 DPn

Ifu<vorifu=uvand (p;+1.91+1) = (1,0), then the parameter of G/VT[;(?T ®

}/
det_‘7) is

~ 1
I'’A=—=(k1,....K1,...,k1,...,k1,0,...,0,
2 —— —— ——
p1 pI u+1
Kltutv+1s s Kitutv+1- - Kns oo Knj
N——
dl4+u+v+1 dn
KlseoosKlsee-sKls... k1,0,...,0,
N——— N—— ——
q1 q v
Klfutv+1s s Kifutvt1s -« Kns oo Kn),
——
Pl+u+v+1 Pn
. i
TV =diag(X1, ..., X1, s XIbudvsr > Xltutv, X,
N—— —
P1 Pli+utv
Xl4utv+1s s Xltutv+1 """ Xn, -+ Xn;
N———
ql+u+v+1 dn
Xlseo s X1y ey X tu+vs - o5 Xl4utuvs
q1 qdl+u+v
Xl utv+1s s Xdudvdlsee s XnsooosXn).
Pi+utv+1 Pn

In both cases, we have x1 > X2 > -+ > Xj4y1p > X' > Xjayaps1 > 00 > Xy, Asin
the previous case, translating these results from U(V’) to U(V’) gives the desired
Langlands—Vogan parameter.

3.3. Fourier—Jacobi models

We will need an auxiliary model in our proof of Theorem 2.2. Let V’ be a skew-
Hermitian space of dimension n. Let 7’ and ¢’ be representations of U(V’). Let u
be a conjugate self-dual character of C* of sign (—1); for example, we may take
u(z) = Z(ZE)_%. Let wy.,, be the Weil representation of U(V’) (see Section 3.1).
We denote by Homy ) (7’ ® 0’ ® wy, .. C) the space of continuous U(V’)-invariant
linear forms on 7’ ® o’ ® @y, and by m(x’,0”’) its dimension. If 7’ and o’ are
irreducible, then m(z’,0’) <1 by [19].
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Define a linear form

xﬂ/,ﬂ'/,"#,l‘b . 7'[/ ® P @ OJ @F@ Cl)zp,u ® w]/f,,u - C,
I (3.17)
W e.e.b.d) > / (2 ()0, 00" (e ¢ Nargp (1) §) dh.
u)

By Lemma 3.3 the integral is absolutely convergent and the linear form indeed extends
continuously to the completed tensor product.

Assume that 7’ and ¢’ are both irreducible and tempered. Let (¢, 7,/) and
(¢ps7, no) be the parameters of 7’ and o’, respectively. Let us write

b =mi1 D O mi Yk, Por =1L D - Dy,

and

r N

Ay, =@P@/2D)ai. Ay, =P (@/22)b;.

i=1 j=1

following the convention in (2.2).

PROPOSITION 3.6
Assume that ©’ and o’ are irreducible and tempered. Then £ ' o ., 7 0 if and only

if
(@) = €(fi ® por @ WL YC),  nor(b;) =€l ® pt; @ w1, YC).

This proposition will be proved along with Theorem 2.2 later. The local GGP con-
jecture for U(n) x U(n) (see [3, Conjecture 17.3]) is a similar statement with £/ o #
0 replaced by m(n’,0’) = 1. Since £,/ 4 # 0 clearly implies that m(x’,0") # 0,
Proposition 3.6 proves half of this conjecture. There are two possible ways to prove
m(w’,0’) = 1if and only if £,/ 4 # 0. One is to mimic the argument of [2, Chap-
ter 7]. The other is to use theta lift. If we had ®(xr) = () for irreducible tempered
representations in the almost equal rank situation, we would have an explicit relation
between m(n’,0’) and m(w,0) when 7’ (resp., 0’) and 7 (resp., o) are connected
via theta lifts (see [1, Proposition 3.11]). In this way, we can prove £/ g/ 4, 7 0 if
and only if m(x’,0’) = 1 along with Theorem 2.2 and Proposition 3.6.

3.4. Seesaw

We now explain the relation between the tempered intertwining maps (2.5) and (3.17)
via theta lifts. We consider a Hermitian space V and a skew-Hermitian space V' and
the Weil representation of U(V') x U(V”). We fix the following choice of characters.
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. We fix the additive character i in the definition of theta lifts. We let u(z) =
1
z(zZ)™ 2 be a conjugate self-dual character of C* of sign (—1).
o If dim V = dim V'’ = n, then we use

v =u", v =u".
. IfdimV =dimV’ £+ 1=n £+ 1, then we use

awv=u".  qp=pttEY

o If V=L, dimV’ = n, then we use

xwv=u"  xy=pV"

With these choices of the characters, the Weil representation of U(V) x U(V’) is
denoted by wy,y. Let 7’ be an irreducible representation of U(V’). We denote by
Oy.v (x') the theta lift of 7’ to U(V'). Recall also that we have the Weil representation
wy of U(V').

Let us consider the following setup. Let W C V be a relevant pair of Hermitian
spaces of dimensions 7 and n + 1, respectively. Let L = W+ = L1yn.Let V' bea
skew-Hermitian space of dimension n. Let 7’ be an irreducible tempered representa-
tion of U(V”’), and let 7 = Oy y (x’). Let o be an irreducible tempered representation
of U(W). The next two lemmas exploit the following seesaw diagram:

UV’ x UV’ u)

>

U UW) x U(L)

LEMMA 3.7
Let o' be a matrix coefficient of ', let 8 be a matrix coefficient of o, and let ¢, ¢’ € §.
Then the integral

/ / o' (9)B(h)(w(g. h)¢.¢')| dhdg
uw) Ju(v)

is absolutely convergent.

Proof
Let us first record a simple calculus fact from which the lemma will eventually be
deduced.
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Fact. Let rq,...,ry and B be real numbers, and let r{ + --- 4+ r; > 0 for any
1 <i < N. The integral

N B
/ xp! ---xjr\,N<1—Zlogxi) d*x;---d*xn
0<x1<-=<xny<l1

i=1

is convergent.

Now back to the proof of the lemma. Fix minimal parabolic subgroups P C QO of
U(W) and U(V), respectively. Let s be the split rank of U(W), and we fix maximal
connected split tori Ay >~ (R~¢)’ C Ay of U(W) and U(V) contained in P and Q,
respectively. As the notation before Lemma 3.1, we have

Al ={(b1,....by) € Aw |0 <by <---<by<1}.

Fix a maximal compact subgroup K of U(W) such that we have the Cartan decompo-
sition U(W) = K A?i/ K. Similarly, assume that the split rank of U(V’) is r, and that
we have a minimal parabolic subgroup P’ of U(V"’), a maximal connected split torus
A"~ (Rs¢)" of U(V’) contained in P’, and

At ={@.....ap)e A |0<a; <---<a, < 1}.

Fix a maximal compact subgroup K’ of U(V’) such that we have the Cartan decom-
position U(V') = K’A'T K.

Using the integration formula (3.6), estimates (3.7) and (3.8), and Lemma 3.1,
we are reduced to prove that for any B > 0, the integral

r ) r B .S ) s B
— 1—2 — 1-2
e 1122 (1= Ytz L5712 (1= Y toe)
<e<bo< i=1 j=1 j=1

0<by<-<bg<li=1
r S r S
n+1 -2 —1\2 4% X X X
[Tait-TTo7 > - T][] Y@b;">d*ay---d*a, d*by ---d*bs
i=1 j=1 i=1j=1

is convergent. This simplifies to

4 4 B S . s B
[ 2j—1-2
/[)<a1<~~-<ar<1 na,-zl(l - E logai) | | bjf r(l - E logbj)
<w<bg< i=1 j:l j=1

0<b|<-<bg<1i=l
r R
l_[ 1_[T(aibfl)zdxalmdxardxbl...dxbs. (3.18)
i=1j=1

Let (p1,..., ps+1) be an (s + 1)-tuple of nonnegative integers with p; + --- +
ps+1=r.Define Sy, .. p ., tobethe regionin A"* x Ay}, defined by the inequalities

.....
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0<a <---<ap, <b; Sdpi+1 =" =dp,+p> <by

S S p petpy Shy S Ap gt ptt S0 Sap pipy S 1

The domain of integration is a finite union of the regions of the form Sp, 5 ;.

It is thus enough to show that the integral (3.18), with the domain of integration
replaced by Sy, ... p,» 18 convergent. Elementary computation gives that when the
a;’s and b;’s are in this region, we have

-1 -1 -2
1_[ T(aibj )=(ap;+1-""ap +ps)" (Ap +po+1°*"Ap +pr+p3)
i=1,...,r
j=1,...,s

—s pr—D1 _ pr—P1—D2 Fepp—e—
-~-(ap,+...+ps+1--.ar) .bl .b2 bs p Ds

We now check that the integration over Sy, . ., satisfies the condition of the

fact that we noted at the beginning of the proof. The sum of the exponents of the terms
Up to dpy gt p 4t (01 < pry1)is

2444+ 2(p14+ pr+t)—2py—4ps—---—2(1 — 1) p; =2t
+ 12 =27l +2(r —p1) + -+ 2(r = p1— = pp).

Here the first line is the sum of the exponents of @; and the second is the sum of the
exponents of b;. It simplifies to

(prt-+p+t=D+(pr++pr+1)>0.
Similarly, the sum of the exponents of the terms up to b; (I > 1) is
244+ +2(pr+--+p)—2p2—4ps—--=2(—-Dp
+ 1227l +2(r —p1) + - +2(0r — p1— - — p1).

Here again the first line is the sum of the exponents of a; and the second is the sum
of the exponents of b;. It simplifies to

(P14 p=D*+(pr+-+ p) >0

The convergence of the integral (3.18) is thus proved. O

LEMMA 3.8
We have £y o # 0 if and only if o' = O,y (0) #0and £, &7\, —vn —on #0.

Proof
Consider the Weil representation wy,» of U(V) x U(V’). By [16, Lemma 2.8], we
have
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oy, v luwyxuwy = ow,y @ oL,y

Let ¢, ¢’ € ww,y’ and ¢, ¢’ € w, . Then

(v (g ® 9. ® ¢') = (0w, (8. 1. ¢ )wL,v (W)e,¢')

if ge U(W)and h € U(V).
Let o’ (h) be a matrix coefficient of 7z’. Then by Proposition 3.4, the function

£ o o (W)|wvy (g M ® ¢, ¢' @ ¢')dh, geUV),
is a matrix coefficient of 7, and when «’ varies over all matrix coefficients of 7’
and ¢, ¢’, @, ¢’ vary over all elements in ww,y and wr,, 7, respectively, the matrix
coefficients of this form generate a dense subspace of all matrix coefficients of . It
follows the continuity of £, , that if £, # 0, then we can choose &', ¢, ¢', ¢, ¢,
and a matrix coefficient 8 of ¢ such that

/ o, PO / o &y (5.9 oLy (g ¢')dh) dg 20

As 7’ and o are both tempered, the double is absolutely convergent by Lemma 3.7.
We can then switch the order of integration and integrate over U(W) first. Then
by Proposition 3.4 again, the integral

his /U o, B@lowy (6.9 ) dg

defines a nonzero matrix coefficient of ¢’ = 6(7). In particular, 6’ # 0. Denote this
matrix coefficient by y (k). We conclude that

/ & (hyy (W{or.y (h)e.¢')dh £ 0.
uw’)

Note that as a representation of U(V'), wr, y is isomorphic to wy, ,, if n is even and
t0 Wy, = wy—1 -1 if n is odd (note that the splitting characters are different in these
two cases). Therefore, &£, =7 -1 - # 0.

Reversing the argument gives the converse implication. O

Now let V' be a skew-Hermitian space of dimension 7, and let Vo C Wy be a
relevant pair of Hermitian spaces of dimensions n — 1 and n, respectively. Let 7’
and ¢’ be irreducible tempered representations of U(V”). Assume that there is an
irreducible tempered representation o of U(Vp) so that 7" = Oy, y/ (o). Let 0p =
Oy wy(0).
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LEMMA 3.9
We have &£/ 1 y—vn —vn # 0 if and only if o9 # 0 and L5 7, # 0.

We omit the proof of this lemma, which exploits the following seesaw diagram
and is exactly the same as that of Lemma 3.8:

UV x U(V') U(Wo)

>

u’) U(Vo) x U(Vgh)

4. Proof of the main theorem

4.1. Setup
We prove Theorem 2.2 in the case t = 0 and Proposition 3.6 in this section. Let us
recall the setup.

U(n + 1) xU®).

. We have a relevant pair of Hermitian spaces W C V of dimensions n and
n 4+ 1, respectively.

. Let 7 and o be irreducible tempered representations of U(V) and U(W),
respectively. The parameters of 7= and o are (¢, n,) and (Pgs, ns), rESPEC-
tively.

U(n) x U(n).

. We have a skew-Hermitian space V' of dimension #.

. We fix the character u(z) = Z(Zf)_% of C*. We have a Weil representation
Wy, 1 of U(V’).

. Let 77’ and ¢’ be irreducible tempered representations of U(V’). The parame-

ters of 77’ and o’ are (¢, nx) and (¢g’, '), respectively.

Assume that ¢, contains a conjugate self-dual characters of sign (—1)" and that
¢, contains b conjugate self-dual characters of sign (—1)"~! (both counting multi-
plicity). We prove by induction on a + b = N. Note that a (resp., b) has the same
parity as n + 1 (resp., n), and thus N is odd.

The base case is @ + b = 1. In this case, 7 and o are both irreducible (tempered)
principal series representations. More precisely, assume that W C V are split relevant
Hermitian spaces, that is, their signatures are either (p, p), (p + 1,p) or (p,p —
1), (p, p). respectively. Let B, = T,U, be a Borel subgroup of U(V) with U, the
unipotent radical and 7, a maximal torus. Let By = T7U; be a Borel subgroup of
U(W) with U; the unipotent radical and 77 a maximal torus. We fix the following
data.
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. Assume that dimV =2p + 1. Let xi,..., xp be characters of C*, let xo
be a character of C!, and let y be a character of T, >~ (C*)? x C! given
by 1 ® - ® xp ® xo. Let /L;...,/Lp be characters of C*, and let u be a
character of T} >~ (C*)? givenby i1 @ --- ® . B

. Assume that dim V' = 2p. Let x1,..., xp be characters of C*, and let y be a
character of T, >~ (C*)? given by 1 ® --- ® xp. Let p1,.... lp—1 be char-
acters of C*, let uo be a character of C!, and let I be a character of 77 given
by 1 ® - ® pp—1 ® o.

In both cases, let 7 = Ind[é(zv) X and 0 = Ind

tions of U(V') and U(W), respectively.

g(lW) M be principal series representa-

LEMMA 4.1
We have £ s # 0. In particular, if w and o are both irreducible, then Theorem 2.2
holds for (r,0).

Proof

We prove £, 7 0 by inductionondimV =n + 1. The base case n = 0, dimV =1
is trivial. Assume now that dim V' > 2. Let Vy C W be relevant Hermitian spaces,
and let dimVy = n — 1. Then U(Vp) is quasisplit. Let wy be the principal series
representation of U(V}) defined as follows. By conjugating the Borel subgroup B,
suitably, we may assume that By = B, N U(V}) is a Borel subgroup of U(V}) and
that 7o = T N U(V}) is a maximal torus. Let yo be the character of 7 given by
XN® R Yp-1® yoifdimV =2p+1 andby71 ® - ® xp-1ifdimV =2p. Let
Ty = IndggVO) Xo be a principal series representation of U(Vp). Then 7 = y, x mo.
By the induction hypothesis, we have &£, 7, 7 0. Then Proposition 2.4 implies that
Lo #0.

Assume that 77 and o are irreducible, that is, none of the y;’s, i # 0, are conjugate
self-dual of sign (—1)%MmY =1 and none of the p;’s, j # 0 are conjugate self-dual of
sign (—=1)3mW =1 If dimV =2p + 1, then Ag, =7Z/2Z and Ay, = {1}. If dimV =
2p,then Ay, = {1} and Ay, = Z/27Z. In both cases, 1, and 1, are trivial characters.
We thus have m(mw,0) = 1 and 1, and 7, are both trivial characters. This follows
from our choice of the Whittaker datum in the Langlands—Vogan parameterization, as
we picked the Whittaker data for U(%, ”—;1) if n is odd. Therefore, Theorem 2.2
holds. O

From now on let us assume that a + b = N > 3 and that Theorem 2.2 has been
proved for all (;r,0) with a +b < N. This induction hypothesis is in effect throughout
this section.
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4.2. The case a > 2

We first look at the Fourier—Jacobi model. Assume that ¢,/ (resp., ¢,/) contains a’
(resp., b") conjugate self-dual characters of sign (—1)"~! (again both counting multi-
plicity).

LEMMA 4.2
Assume that a’ + b’ < N and a’ > 1. Then Proposition 3.6 holds for (', c").

Proof
We will be dealing with various theta lifts. We fix the choice of characters to split the
metaplectic cover as in Section 3.4.

Note first that &£/ o7 ., and the local root numbers in Proposition 3.6 will not
change if 7’ and ¢’ are replaced by 7’ ® det* and 0’ ® det™, respectively, for all
integers k. It follows that Proposition 3.6 holds for (z’,¢”) if and only if it holds for
(' ® det*. o’ ® det™* ). Because of the assumption that a’ > 1, by Lemma 3.5, we
may assume that there is a Hermitian space V of dimension n — 1 and an irreducible
tempered representation g of U(V}) so that 7" = 6y, y+ (o). The cases n being even
or odd differ slightly in notation. We will treat the case n being even and leave the
case n being odd to the interested reader.

Assume that n is even. Put Wy = Vo @ L_; and 09 = Oy, (0'). By Lemma 3.9,
we have £/ 5/ ., 7 0 if and only if 0 # 0 and £55,7, # 0.

Let us now compute the parameters. Since 7’ = Oy, v (19), by (3.13) and our
choice of the splitting characters in Section 3.4, the parameter ¢+ contains "1, We
write

b =mi1 D DMy Yk, Por =1L D - Dy,

where

. xi =p%, i =1,...,r, with o; distinct odd integers, o, = n + 1, and y;,
i > r, are not conjugate self-dual of sign (—1)"~1;

. W= whi i =1,... s, with B distinct odd integers, and i ;, j > s, are not
conjugate self-dual of sign (—1)"~1.

Then

r N

Ay, =P @/20)ai. Ay, =@(Z/22)b;.

i=1 j=1
By (3.13), we have
g =1 @B m pu T B (my — D B x

and
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boy = nll/«_ﬁl DD ”slu»_ﬂs @ *,

where * consists of characters that are not conjugate self-dual of sign (—1)" in ¢x,
and of sign (—1)"~! in ¢g,,, respectively.

Assume that £/ o7, 7 0. Then 0¢ # 0 and £55,7, 7 0 and hence £4,,7; 7# 0.
We distinguish two cases: m, > 1 and m, = 1.

Assume first that m, > 1. Then Ay , = Ay, and Ay, = Ag, . By the induction
hypothesis, we have

nno(ai) = nﬁ(al) = 6((150() ® /L—ai—i_l’ WC), Noo (b]) = 6(% &® “’_ﬂj b 1//C)

Here the first equality 7, = 17y follows from Proposition 2.1(3). Therefore again by
(3.15), we have

N (@) = Mg (@i) = €(doy ® w1 YC) = e(pe @' ¥C), i=1,....r,
and
Nor (b)) = —Noy (b))e(u P17 YC) = —€(¢pm, ® uP7 . YO)e(u P17 yC)
= (¢ @ pP7 71 Y O).

Here the minus sign is a result of ng5(b;) = —ng,(b;), which again follows from
Proposition 2.1(3). The last equality follows from the fact that ¢/ = (¢r, @ 1) B
w1 by (3.13) and the identity

(Pt YOye(u=Pim Y€ = phitn (1) = -1,

where the first equality follows from (2.3) and the second follows from the fact that
B, is odd and 7 is even. This proves that the parameters of 7" and ¢ are as described
in Proposition 3.6 when m, > 1.

Assume now that m, = 1. Then

r—1 K}
Ay =P @/2Z)ai. Ay, = Ay, = D(Z/27)b;.
i=1 j=1

The values nz/(a;),i =1,...,r—1landne/(b;), j =1,...,s can be computed in the
same way as in the case m, > 1. It remains to compute 7,(a,). Let us temporarily

assume that the signature of Wy is (p,q) and the signature of —i V"’ is (p’,q’). Then
nn—1) n(n—1)

disc(—iV’) = (=1)" z 7 and discWy = (1) 2z 7. By (3.14) and Proposi-
tion 2.1(4), we have

(=@ u ™™, ¥C) = disc Wodisc(—i V') = (=1)79 7.
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We also have
Nu(ar) = Npr(ay + -+ +ar—1 +ap)Nno(ay + -+ +ap—1)
— (_1)§_4'(_1)(%—1)—(q—1) _ (_1)_4/_q.
It follows that
N (ar) = €(por ® ™" Y C) = e(dor @ 1Y),

This proves that the parameters of 7’ and ¢’ are as described in Proposition 3.6 if
my = 1.
The converse implication can be proved by reversing this argument. O

LEMMA 4.3
Theorem 2.2 holds for (w,0) if a > 2.

Proof

We again note first that Theorem 2.2 holds for (,0) if and only if it holds for
(r® det*, o @ det ™% ) for any k. Thus we may assume that there is a skew-Hermitian
space V' of dimension n and an irreducible tempered representation 7’ such that
7 = Oyr,y (). By Proposition 2.3, m(mw,0) = 1 is equivalent to £, 7# 0. Thus
we are reduced to proving Theorem 2.2 with the condition m(w,0) = 1 replaced
by £r.0 # 0. Let 6/ = Oy y/(0). By Lemma 3.8, £, # 0 if and only if o’ =
Ow,v(0) # 0 and iﬂ,’y’w(_l)n e # 0. Assume that ¢, and ¢, contain @’ and
b’ conjugate self-dual characters of sign (—1)"~!, respectively. Then by (3.10) and
(3.13), wehavea’ =a—1>1and b’ =b,a’ + b’ = N — 1 < N. Therefore, Propo-
sition 3.6 holds for (x/,0”) by Lemma 4.2. The rest of the argument is to deduce
Theorem 2.2 for (7, 0) from Proposition 3.6 for (7/,0”). This does not differ much
from Lemma 4.2 and we omit the details. O

4.3. The case b >?2

LEMMA 4.4
Theorem 2.2 holds for (w,0) if b > 2.

Proof

Let y be any character of C* that is not conjugate self-dual of sign (—1)""1. Let
Wy =W et (z1,2—1), where z4, are isotropic vectors with hw, (z1,z—1) = 1. Let
01 = x x o be the induced representation of U(W;). Then o is irreducible and tem-
pered, and we have ¢o, = ¢ @ x & x7 1, Ag,, = Ag,, and 1o, = 1o. Note that
¢o, contains b conjugate self-dual characters of sign (—1)"*!, and ¢, contains a
conjugate self-dual characters of sign (—1)".
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Assume that m(x,0) = 1. Then m(oq,7) = 1 by Proposition 2.4. Now apply
Lemma 4.3 to (07, w). We conclude that the parameters of o1 and 7 are as specified
in Theorem 2.2. It then follows that the parameters of 7 and o are as specified in
Theorem 2.2.

Let us now assume that the parameters of w and o are given as in Theorem 2.2.
Then by our construction the parameters of o7 and 7 are given as in Theorem 2.2. It
follows from Lemma 4.3 that m(oq,w) = 1. Then m(m,0) = 1 by Propositions 2.3
and 2.4. O

4.4. End of the proof

We now prove Theorem 2.2 and Proposition 3.6. As a +b > 3, we have eithera > 2 or
b > 2. So we conclude by either Lemma 4.3 or 4.4. This completes the induction and
proves Theorem 2.2. Proposition 3.6 then follows from Theorem 2.2 by an argument
similar to that in Lemma 4.2.
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