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Multiresolution Quality
Inspection of Layerwise Builds for
Metal 3D Printer and Scanner

Automated optical inspection (AOI) is increasingly advocated for in situ quality monitoring
of additive manufacturing (AM) processes. The availability of layerwise imaging data
improves the information visibility during fabrication processes and is thus conducive to
performing online certification. However, few, if any, have investigated the high-speed
contact image sensors (CIS) (i.e., originally developed for document scanners and multi-
function printers) for AM quality monitoring. In addition, layerwise images show
complex patterns and often contain hidden information that cannot be revealed in a
single scale. A new and alternative approach will be to analyze these intrinsic patterns
with multiscale lenses. Therefore, the objective of this article is to design and develop an
AOI system with contact image sensors for multiresolution quality inspection of layerwise
builds in additive manufacturing. First, we retrofit the AOI system with contact image
sensors in industrially relevant 95 mm/s scanning speed to a laser-powder-bed-fusion
(LPBF) machines. Then, we design the experiments to fabricate nine parts under a
variety of factor levels (e.g., gas flow blockage, re-coater damage, laser power changes).
In each layer, the AOI system collects imaging data of both recoating powder beds
before the laser fusion and surface finishes after the laser fusion. Second, layerwise
images are pre-preprocessed for alignment, registration, and identification of regions of
interests (ROIs) of these nine parts. Then, we leverage the wavelet transformation to
analyze ROI images in multiple scales and further extract salient features that are sensitive
to process variations, instead of extraneous noises. Third, we perform the paired compar-
ison analysis to investigate how different levels of factors influence the distribution of
wavelet features. Finally, these features are shown to be effective in predicting the extent
of defects in the computed tomography (CT) data of layerwise AM builds. The proposed
Jframework of multiresolution quality inspection is evaluated and validated using real-
world AM imaging data. Experimental results demonstrated the effectiveness of the pro-
posed AOI system with contact image sensors for online quality inspection of layerwise
builds in AM processes. [DOI: 10.1115/1.4057013]
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systems for online certification of AM builds. Although there are
significant advances in the design of different AM sensing modali-
ties (e.g., DSLR camera, spectrometer, acoustic emission, melt-pool
sensing) in the state of the art, few, if any, have investigated the
high-speed scanning of both pre-fusion spread powder and post-
fusion lasered surfaces with contact image sensors (CIS) (i.e., orig-
inally developed for document scanners and multifunction printers)
for in situ quality monitoring of AM processes. Hence, we made an
attempt to retrofit the AOI system with CIS to a metal LPBF
machine. This contact image sensor is mounted on the re-coater
arm to collect in situ images from each layer of the AM process.
Realizing the full potential of imaging data depends highly on the
development of new analytical methods for layerwise quality inspec-
tion in the AOI system. Indeed, dealing with imaging data is a general
problem facing both next-generation innovation practices for quality
engineering in advanced manufacturing. Traditional statistical quality
control is more concerned about univariate monitoring of a single
feature or joint monitoring of multiple features, but is limited in the
ability to handle complex-structured imaging data. In addition, layer-
wise AM images show complex patterns and often contain hidden
information that cannot be revealed in a single scale. A new and alter-
native approach will be to analyze these intrinsic patterns with multi-
scale wavelet lenses. Multiresolution analysis is conducive to
improving the effectiveness of image-based quality inspection in

1 Introduction

Additive manufacturing (AM) offers an unparallel advantage to
fabricate complex builds directly from digital designs. This, in
turn, overcomes several production constraints (e.g., tooling cost,
long lead time, lack of customization) in traditional subtractive
and formative manufacturing. However, it is not uncommon that
process variations cause internal defects in AM builds, which
hamper the wide adoption of AM for safety critical industries
(e.g., aerospace, nuclear, and healthcare sectors). Therefore,
advanced imaging is increasingly invested to improve information
visibility during the fabrication processes and cope with complexity
in emergent AM technologies. For example, as shown in Fig. 1,
optical images from digital single-lens reflex (DSLR) cameras
were used to examine the recoating of powder beds, as well as
surface finishes after the laser fusion [1,2]. Thermal images (2D
and 3D) are captured to monitor the evolving dynamics of melt
pools, which are critical to the melting and solidification process
of laser fusion [3-5]. The postbuild computed tomography (CT)
scans help characterize and estimate the defects of an AM build
from the laser-powder-bed-fusion (LPBF) process.

The availability of layerwise imaging data has fueled increasing
interests to design and develop automated optical inspection (AOI)

€202 19quIanoN gz Uo BueA INH ‘ANsIeniun @1elS BIUBAASUUS By L Aq Jpd 400101~ 0L G¥ L NUBLY88Z.LOL/F00LOL/0L/SYL/Pd-aloie/eousiosBuLInoejnuBwW/BI0"aWSE UoKos||0o[elBipaLsey/:d)y WoJ) papeojumoq

!Corresponding author.
Manuscript received November 2, 2022; final manuscript received February 19,
2023; published online June 7, 2023. Assoc. Editor: Jaydeep Karandikar.

Journal of Manufacturing Science and Engineering

the AOI system. Complex imaging data can then be examined in mul-
tiple scales to extract salient features that are not directly observable
in a single scale.
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Fig. 1 Examples of high-dimensional imaging profiles in AM:
(a) optical image of an AM laywise build, (b) 2D visualization of
a melt pool with spatters, (c) 3D visualization of a melt pool,
and (d) CT scan

Therefore, this article presents the design and development of an
AOI system with CIS for multiresolution quality inspection of
layerwise builds in additive manufacturing. Our first contribution
is the retrofitting of contact image sensors to a LPBF machine
with attractive features such as (1) sufficiently high 1200 dpi reso-
Iution, (2) significant (184 mm) scanning width, and (3) industrially
relevant 95 mm/s scanning speed that does not need to reduce the
productivity of the printer. As shown in Fig. 2, this enables the col-
lection of rich layerwise images from pre-fusion recoating powder
beds, as well as post-fusion surface finishes. Then, we run a
design of experiments to fabricate nine parts in one build plate
under a variety of factor levels (e.g., gas flow blockage, re-coater
damage, laser power changes). Furthermore, layerwise images are
pre-preprocessed for alignment, registration, and identification of
regions of interests (ROIs) of these nine parts. Notably, we
propose the wavelet transformation to analyze ROI images in mul-
tiple scales and further extract salient features that are sensitive to
process variations, instead of extraneous noises. Finally, we
perform the paired comparison analysis to investigate how different
levels of factors influence the distribution of wavelet features. In
addition, these features are shown to be effective in predicting the
extent of defects in the CT data of layerwise AM builds. The pro-
posed framework of multiresolution quality inspection is evaluated
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and validated using real-world AM imaging data. Experimental
results demonstrated the effectiveness of the proposed AOI
system with contact image sensors for online certification of layer-
wise builds in AM processes.

2 Research Background

Quality assurance and quality control (QA/QC) are indispensable
in the development of new additive manufacturing technologies.
AM is well known for the layer-by-layer fabrication of complex
parts directly from digital designs. If a defect is not detected in a
layer during the AM process, it will be sealed inside the build as sub-
sequent layers are deposited. Although postbuild CT can effectively
identify such embedded defects, it will then be too late to make any
corrections. In situ sensing overcomes such drawbacks and provides
an opportunity to monitor and detect the defect on the fly [6]. There-
fore, the development and implementation of in situ sensing capabil-
ities for AM QA/QC have fueled increasing interests in the
community of AM researchers and machine providers.

For example, National Institute of Standards and Technology
(NIST) researchers developed the Additive Manufacturing Metrol-
ogy Testbed (AMMT) that integrates high-resolution cameras for
melt pool monitoring during the AM process [7,8]. CIMP-3D at
Penn State designed a multisensor monitoring system (i.e., includ-
ing high-resolution cameras, optical process emissions, acoustic
sensors, thermal imaging and melt-pool sensors) that can be retrofit
into a variety of commercial AM systems, e.g., EOS M280, 3D
Systems ProX 200, and GE M2 machines [9,10]. In addition,
Edison Welding Institute (EWI) developed an Open Architecture
LPBF platform that is instrumented with a variety of sensors such
as coaxial infrared thermal cameras, photodetector spectrometer,
digital cameras, acoustic sensors, and laser interferometer [11].
See more details on in situ AM sensing in recent review articles
by Yang et al. [12] and McCann et al. [13].

Although there are significant advances to develop in situ sensing
systems, few have investigated the high-speed scanning of both pre-
fusion spread powder and post-fusion lasered surfaces with CIS
(i.e., originally developed for document scanners and multifunction
printers) for AM quality monitoring. In the state of the art, Lu et al.
and Le and Seita have considered the use of consumer-grade CIS
sensors for in-line characterization of powder bed defects and pre-
diction of build density [14,15]. However, CIS sensors from con-
sumer grade flatbed scanner yield slow speeds, i.e., around 7 mm/
s for 1200 dpi images, and 0.2 mm/s for 4800 dpi. Thus, it takes
approximately 1min to acquire an image per layer. Little has
been done to investigate the high-speed CIS sensors with industri-
ally relevant 95 mm/s scanning speed that does not need to reduce
the productivity of the printer. Therefore, this article focuses on the
design and retrofitting of high-speed CIS sensors into a LPBF
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Fig. 2 Examples of imaging profiles collected by the contact image sensors from (a) pre-
fusion recoating powder beds and (b) post-fusion surface finishes at each layer of LPBF-AM
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Fig. 3 Multiresolution analysis of imaging data through mathematical transformations (i.e., scaling and convolution)

machine. Our objective is to evaluate the capability of high-speed
and high-resolution CIS sensing and data acquisition systems for
QA/QC in the AM processes.

With the increasing adoption of imaging sensors, large amounts
of layerwise imaging data are proliferated during AM processes.
Often, these images contain nonlinear, nonstationary, and irregular
patterns that provide hidden information pertinent to the progressive
formation of defects. Realizing the full potential of imaging data for
AM QA/QC depends on the design and development of new analyt-
ical methods and tools. As such, recent years have witnessed an
increasing amount of research works on image processing and
machine learning for AM defect prediction and statistical quality
monitoring. For example, Caggiano et al. investigated machine
learning approaches for image processing and online defect detec-
tion in metal-based AM processes [16]. Yao et al. performed a mul-
tifractal analysis of layerwise images for the characterization of
defect patterns in the LPBF-AM process [17,18]. Kan and Yang
derived the low-dimensional network representation of layerwise
images and then leveraged network metrics for anomaly detection
[19]. Deep neural networks are also used to learn the ROI of layer-
wise images for the prediction of AM defects [20,21]. Liu et al.
developed an additive Gaussian process model of layerwise-
dependent images and then constructed the statistical control
charts for monitoring the AM processes [22]. Yang et al. investi-
gated the tensor decomposition of melt-pool images into low-
dimensional profiles, and then leverage statistical control charts to
monitor melt-pool variations in the metal-based AM process [23].
Liu and Yang also simulated the emission of photons in the
LPBF process for statistical estimation and modeling of the multi-
modal probability distribution function of a melt pool [24].
However, most of existing works tend to focus on image processing
and analysis in a single scale. It is not uncommon that defect char-
acteristics are often buried in such a single-scale view. Little has
been done to investigate multiresolution analysis of layerwise
images for in situ characterization of defect patterns, as well as
in-process quality monitoring.

As shown in Fig. 3, porosity defects may not be discernible by
visual inspections in the original scale, but are more salient when
delineated in different resolutions. It is worth noting that multireso-
lution analysis is not just limited to magnification, but rather are
performed with a series of mathematical operations, e.g., scaling
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Fig. 4 Multiresolution quality monitoring of AM
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s(x) — s(x/a), translation s(x) — s(x — b), or convolution s(x) — s(x)
xy(x) [25]. For example, wavelet transform leverages scaling,
translation, and convolution with compact-supported waves to
delineate both spatial locations and frequency information for mul-
tiresolution analysis of hidden defects. Delineating such hidden
information helps to improve the effectiveness of defect identifica-
tion and statistical monitoring frameworks. Conventional frequency
analysis, e.g., Fourier transform, extracts frequency information in
the image but lacks spatial location information [26]. Wavelet trans-
form provides a better characterization of AM images by extracting
time-varying and spatially dependent spectral components across
different scales. Wavelet transform resolves the spatial-frequency
information using a set of compactly supported wavelet functions
[27], thereby providing a multiresolution representation for AM
process monitoring. As opposed to image learning and modeling
in the original scale, new multiresolution methods are urgently
needed to handle quality inspection of layerwise builds in AM.

3 Research Methodology

This article presents the integration of CIS sensors into a
LPBF-AM machine, and further develops a new multiresolution
inspection approach of in situ layerwise images for quality monitor-
ing of AM process, as opposed to the traditional inspection schemes
in a single scale. As shown in Fig. 4, the present investigation is
embodied with three components: (1) multiresolution transforma-
tion of layerwise images into wavelet scales S1, S2, ..., Sn; (2) mul-
tiscale feature extraction to characterize nonlinear and nonstationary
patterns in wavelet scales that are sensitive to the variations of
process factors; and (3) statistical analysis and defect prediction
for AM quality assurance. Principal component analysis (PCA) is
leveraged to reduce the dimensionality of wavelet features and
build a sparse linear mix-effects model that prevents the overfitting,
while maintaining the prediction performance. Postbuild CT scans
are utilized to quantify and measure the level of defects in the
AM parts, which serves as the response variable for the predictive
modeling. These components are eventually integrated into the
framework of multiresolution inspection to realize the full potential
of CIS sensors for in situ AM monitoring and quality assurance.

3.1 Retrofit the Contact Image Sensors Sensing System to
Aadditive Manufacturing Machines. The machine employed is
a SLM125 from SLM Solutions GmbH, with a 400 W laser and a
building platform of 125 x 125 mm. As shown in Fig. 5, the CIS
is mounted on the re-coater arm, which covers the 183 mm scan
width and supplies the layerwise images in the resolution of 1200
dpi (21 um/pixel). The focal distance of the sensor is 0.9 mm. Two-
sided RGB LED lighting is integrated on the CIS sensor unit. The
CIS is attached to the SLM 125 re-coater using brackets: both scan-
ning head and control electronics. Power and data signal are routed
through a sealed passthrough aperture in the back of the building
chamber. The CIS control electronics are connected to the principal
component (PC) using USB3.0. The recoating speed has been
adjusted to acquire an image with a 1:1 aspect ratio and match
with the scans in the high speed of 95 mm/s (i.e., relevant for indus-
trial scale 3D printing). The control PC is connected to the SLM125
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Fig. 5 Schematic diagram and CIS sensor integration for layerwise scanning in the SLM125

AM machine

CAN bus using a Kvaser interface for the data acquisition, reading
the re-coater position in real time and triggering the powder bed
scanning every time the recoating process takes place.

3.2 Image Registration and Region of Interest
Segmentation. CIS sensor is configured to scan the powder bed
before and after the laser fusion of each layer. Therefore, at each
layer, two images are collected, one is from the powder bed
before the laser fusion and the other is from surface finishes after
the laser fusion, as shown in Fig. 2. However, because CIS
sensors are moving back and forth, two images are 180 deg
flipped and not well aligned at each layer. Although the control
system is configured for 1:1 alignment, motors often cannot pre-
cisely move CIS sensors to the exact locations. Also, exact trigger-
ing of the system depends on the communication frequency of the
positioning messages in the CAN bus. These images are collected
under changing positions that vary the sensor perspective and the
scene angle. This leads to a small level of uncertainty across all
layers. Therefore, image registration cannot be uniformly done
(i.e., consistent shifts of x- and y-coordinates) to align the pre-
and post-fusion images at each layer. For example, Fig. 2(a)
shows the traces of circular parts from the previous layer in the pre-
fusion image, but their locations are misaligned with those parts in
the post-fusion image in Fig. 2(b).

Hence, the first step is to perform image registration to align pre-
and post-fusion images, which helps perform a joint analysis of
each layer. In this investigation, the post-fusion image is designated
as the reference image (or the fixed image) and the pre-fusion image
is the moving one. The objective of image registration is to apply
geometric transformations (e.g., translation, rotation, cropping,
resizing) to the moving image so that it can be well aligned with
the reference. Nonetheless, the challenge lies in the scene differ-
ences between these two images. Our experiments showed that tra-
ditional intensity-based registration algorithms cannot converge and
fail to effectively align these two images. Alternatively, we propose
to leverage the features (i.e., circular traces and objects available in
both images) to perform feature-based registration. This process
involves four steps: detect features, extract features, match features,
and then apply geometric transformations to align features and
images. As shown in Fig. 6, feature-based image registration effec-
tively handles the misalignment issue and combines both images to
create a composite view. Here, the pre-fusion image of powder layer
before solidification is substracted from post-fusion image to obtain
an enhanced contrast and improve the signal-to-noise ratio that is
otherwise difficult to obtain from a single image. As a result, we
can extract the ROIs for all parts from C1, C2, ..., to C10, which
will be used for wavelet analysis in the next section. Note that the
focus of this article is on the multiresolution quality inspection.
We used a standard feature-based registration process in this

101004-4 / Vol. 145, OCTOBER 2023

investigation, but this does not preclude others to focus on the
design and development of a new registration approach.

3.3 Multiresolution Analysis of Additive Manufacturing
Imaging Data. Advanced imaging provides abundant process
information, but calls upon an effective representation of image pro-
files to reveal the hidden defect patterns. Because defect character-
istics are often buried in a single-scale view, traditional methods
tend to be limited in the ability to handle multiscale patterns in
image profiles. Wavelet transform is an effective tool for multireso-
lution analysis, which can resolve this issue by highlighting hidden
information using mathematical transformations. However, few, if
any, of the previous approaches utilized wavelet transformation
for multiresolution inspection of layerwise AM contact images
and in situ characterization of defect patterns.

As shown in Fig. 7, an image profile s(x) shows complex-
structured patterns in the original scale, which pose significant chal-
lenges on the characterization and quantification of defects. Multi-
resolution analysis decomposes this image profile into various
scales with wavelet lenses (i.e., scaling and convolution functions).
In other words, each wavelet lens helps zoom into the image at a
different scale. The patterns in the original scale are then decom-
posed into different scales, e.g., transformed images in six

Fig. 6 lllustration of image registration and ROl segmentation
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Fig. 7

wavelet scales in Fig. 7. As a result, this greatly facilitates the filter-
ing and separation of low-frequency (i.e., steady trends), medium-
frequency, and high-frequency (i.e., transient and noisy behaviors)
patterns in the original image.

As opposed to the signal-scale analysis, wavelet transform pro-
vides a higher level of flexibility for multiresolution quality inspec-
tion. Therefore, this article presents multiresolution analysis of
layerwise contact images to reveal hidden defects that cannot be dis-
cerned in the original scale. Note that traditional single-resolution
analysis only uses the original images, while the multiresolution
analysis examines the original images from multiple scales. This
is different from the magnification into different scales. Single-
resolution is a subset (or a part) of multiresolution. In other
words, single resolution is included in the multiresolution analysis.
Therefore, multiresolution analysis is guaranteed to be no worse
than the single-resolution analysis.

In this investigation, 2D continuous wavelet transform (CWT) is
used to delineate the defect characteristics in various frequency
bands. The 2D CWT utilizes three mathematical operations—
scaling, translation, and convolution—to obtain a space-scale
representation of the image profile. The mother wavelet is a
locally supported prototype function. Figure 8 illustrates the 2D
Mexican hat function, which is defined as follows:
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5 ), oc.op €R (1)

w(x, y) = =270 +y°) exp(
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Transformed images in wavelet scales
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lllustration of 2D continuous wavelet transformation of an image profile

x is a 2D vector with real values (x, y), the image profile is
s(x) € L*(R%), aisa scaling factor that is a scalar, and b is the trans-
lating factor that is a 2D vector. A mother wavelet function can be
scaled as y(x) — w(x/a). If 0 <a< 1, then this is a contraction. If a >
1, then this becomes a dilation or expansion. In addition, the mother
wavelet function can be translated to a new location as
w(x) - w(x —b). As such, the mother wavelet at the scale a, at
the translated location of b is given as follows:

1 x—b
- 2
l//a,b(x) \/EW( p ) ( )
The 2D CWT of an AM image s(x) is defined as follows:

CWTY(a, b) = J SO (%) dx
RZ

1

B j st(x) Va v
In the L> space, an inner product is defined as
{(s(X), Wiam) X)) = f sy ,(x)dx. The wavelet transform is the
inner product of the image profile with the mother wavelet at the
scale a, at the translated location of b. The scale factor a represents
the extent to which we zoom-in or zoom-out an image. In other
words, the inverse of the scale can be treated as a frequency vari-
able. The translating factor b represents the location where we
perform the convolution or inner product between the image and
the wavelet function. As a result, 2-D CWT CWTY(a, b) is a space-
frequency representation that can be used to delineate the defect
characteristics in various frequency bands.

*(X;b)dx,aeR,x,beRz 3)

3.4 Feature Extraction and Linear Mixed-Effects Modeling
for Defect Prediction. As shown in Fig. 7, 2D CWT brings a series
of transformed images at six different wavelet scales. These images
show distinct and irregular patterns that capture transient, intermit-
tent, or steady variations in the original AM image. Next, it is
imperative to extract features to characterize and quantify the
wavelet-scaled patterns. In this investigation, we extract the mea-
sures of central tendency, dispersion, and distribution shapes in
each image, namely mean, min, max, standard deviation, kurtosis,
and skewness. In total, multiresolution analysis leads to a high-
dimensional feature space (i.e., 6 x 6 = 36 features when six features
are extracted in each of six wavelet scales). As such, there is a need
to avoid the issue of “curse of dimensionality” for the predictive
modeling. In other words, it is desirable to build a sparse model
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Fig. 9 Build layout and pictures of sample builds in the real-world case study

to predict the level of defects. Such a sparse model should include a
parsimonious set of parameters and prevents the overfitting, while
maintaining the prediction performance.

Therefore, we further leverage the PCA to reduce the dimension-
ality of features. Note that PCA orthogonalizes the set of features to
reduce mutual correlations, and orders the resulting PCs from the
largest variation to the smallest. The PC is a linear combination
of wavelet features. In this process, PCA does not discard some fea-
tures or retain other features, but rather identify the largest variance
or the second largest variance in the feature set. The set of raw fea-
tures is transformed into a sparse set of PCs by reducing mutual cor-
relations and projecting out redundant information. An effective
PCA transformation often provides a smaller set of PCs to
capture a large percentage of variances (>90%) in the feature data-
sets. These PCs are also more sensitive to AM process changes later
in the section of experimental results. Because these PCs are orthog-
onal and uncorrelated, this also facilitates the construction of linear
mixed-effects models for the prediction of defect levels.

In this investigation, contact images are collected from nine parts
in the same building plate. Each AM part is treated with different
levels of experimental factors (i.e., gas flow, laser power, re-coater
blade scratch). As a result, wavelet features are extracted and

Table 1
study

Factor levels for sample builds in the real-world case

Laser

Ajo#  power W Factor levels

C1 200 Nominal reference with a nearby C9

C2 200 Nominal reference (no nearby samples)

C3 100 Low laser power

C4 300 High laser power

C5 200 Scratches on re-coater blade

Co6 200 Scratches on re-coater blade

Cc7 200 Blocked gas flow

C8 200 Blocked gas flow

Cc9 200 None, just a dummy piece

C10 200 Blocked gas flow (and scratches on re-coater blade)

Note: Scanning speed is 800 mm/s, and hatch distance is 0.12 mm for all
parts.

101004-6 / Vol. 145, OCTOBER 2023

organized into nine groups (i.e., each AM part is a group). Tradi-
tional regression models overlook this grouping variable and
cannot adequately handle the feature datasets that are summarized
in groups. Linear mixed-effects models are commonly utilized to
handle grouped data, where model parameters are allowed to vary
with respect to grouping variables. Hence, we propose to develop
a linear mixed-effects model to predict the defects as follows:

y=Xp+2Zb+e @)

yimzxiTmﬂi+Z§nb,-m+€,~m,i=1,2,...,n;m=1,2,...,M 5)

where y is the dependent variable (i.e., the level of defects), n is the
total number of layers for nine parts, m is the grouping variable with
M levels (i.e., M=9), X is the fixed-effects variables (i.e., three PCs,
laser power, gas flow, re-coater damage), Z is the random-effects
variables (i.e., laser power), and € is random errors. Note that this
model is composed of two parts, fixed effects Xp, and random
effects Zb. Random effects are pertinent to nine AM parts, where
each part is an experimental unit. Random-effects coefficients b,
can vary with respect to the experimental unit (or a grouping vari-
able) and are independent from random errors €. This mixed-effects
models effectively handle the covariance structure pertaining to the
grouping of feature datasets.

4 Experimental Design

The proposed methodology is evaluated and validated with real-
world experimental data (i.e., CIS imaging data, CT scans) from
nine parts fabricated in a SLM125 machine. Figure 9(a) shows
the layout of nine parts in the build plate, each of which is treated
with a different combination of factor levels. Figure 9(b) shows
the picture of nine parts after the AM building process is completed.
Note that there are two horns in these parts, which are used for the
positioning purpose of layers in the CT scans. The horn angles and
locations are designed so that one-to-one correspondence can be
derived between CIS images and CT scans. As shown in
Fig. 9(a) and Table 1, experimental factors include changes in
laser power (i.e., 100 W, 200 W, and 300 W), scratches on the
re-coater blade, and the blockage of gas flows. The scanning
speed is holding constant as 800 mm/s, and hatch distance is 0.12
mm for all the nine parts. Argon was used as shielding gas, and
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the layer thickness was 30 ym for the build. The hypotheses to be
tested are as follows: (1) whether and how the changes of factor
levels lead to the quality issues in the final builds? (2) whether mul-
tiresolution analysis of CIS images is capable of capturing and pre-
dicting the quality variations in final builds? Addressing these
research questions is critical to designing a new sensor-based
approach for in situ quality monitoring of AM processes, thereby
mitigating scrap and rework rates and further increasing the high-
quality throughput of AM.

5 Experimental Results

5.1 Principal Component Analysis of Wavelet Features.
Multiresolution analysis provides an opportunity to zoom in and
out of a layerwise image to capture microlevel fine-grained details
and macrolevel approximations of surface finishes in each layer
of the AM build. On the other hand, this leads to multiple
zoom-in and zoom-out images with different wavelet lenses. As dis-
cussed in Sec. 3.4, we extract the statistical features of central ten-
dency, dispersion, distribution shapes in each image, namely, mean,
min, max, standard deviation, kurtosis, and skewness. In the present
article, multiresolution analysis is performed with six wavelet
lenses that lead to a total 6x6=236 features for each layer.
However, a predictive model with 36 features tends to be
complex and prone to overfitting. In contrast, we propose to
reduce the dimensionality of features into a sparse set of salient
principal components that preserve the information in the feature
space. PCA computes the variance—covariance structure underlying
the original data, and then performs eigen decomposition to identify
the directions of eigenvectors. As such, PCA facilitates the interpre-
tation of data along the eigenvector directions, each of which pro-
vides useful information about the data variances.

As shown in Fig. 10(a), the first two PCs capture approximately
80% variances in the feature datasets, while the first three PCs
capture roughly 91.06% variances. In other words, if only the first
three PCs are kept, we can approximately project out redundant
information and reconstruct 91.06% of original features. Note that
PCA does not discard some features or retain other features, but
rather transforms raw features into PCs along the directions of the
largest variations or the second largest variations. Therefore, we
will use the first two and/or three PCs in the following sections to
show how they are related to the changes of factor levels in the
experiments. Figure 10(b) shows the scatter plot of the first two
PCs for nine parts, each of which is represented with a different
colored marker. For example, blue upper triangles represent all
layers from the part C3 that is built with a low laser power 100
W. It may be noted that these blue triangles are away from clusters
of other parts. In particular, red circles denote the layers from the
part C4 that is built with a high laser power 300 W. Although C3
and C4 can be seen to be separated from other parts. There are
also other changes in the factor levels such as scratches on the
re-coater blade, gas flow blockage) mixed in the nine parts.
Hence, we will perform two-group or three-group comparison anal-
ysis in Sec. 5.2 to study whether and how wavelet features are sen-
sitive to AM process changes.

5.2 Paired Comparison Analysis. First, both parts C1 and C2
are nominal references, but their locations are different in the build
plate and C1 is next to a nearby dummy piece C9. This dummy
piece is designed to generate fumes to neighboring parts.
Figure 11(a) shows the 2D scatter plot of parts C1 and C2. Most
of the layers are mixed with each other, and there are no significant
separations from the parts C1 to C2. This is mainly due to the fact
that both parts are nominal pieces and are not treated with the
changes of factor levels as other parts. However, the 3D scatter
plot in Fig. 11(b) shows that these two parts are slightly separated
from each other, albeit not as significant as the change of laser
powers in parts C3 and C4. However, these slight differences
may be due to other factors (e.g., the fumes, locations) and can
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be used to further predict the incipient variations of quality (or
defect levels) in the final build.

Second, Fig. 12 shows that the part C3 is significantly separated
from C4 in both 2D and 3D scatter plots. This is mainly due to the
fact that C3 and C4 are treated with two different levels of laser
powers 100W and 300W, respectively. However, high laser
power 300 W on C4 is shown to cause more variations in the PCs
of wavelet features. Low laser power 100 W produces the layers
of C3 that are closely clustered in a smaller region. In order to
examine the differences from a nominal reference, we have also
added C2 into the 2D and 3D scatter plots, as shown in Fig. 13.
Note that C2 is treated with laser power 200 W and is shown in
the middle section between C3 and C4. Collectively, these figures
demonstrate that wavelet features from layerwise CIS images are
sensitive to the variations of laser powers.

Third, Fig. 14(a) shows the 2D scatter plot of the first two PCs for
parts C2, C5, and C6. Note that C5 and C6 are located in the area of
build plate where re-coater blade is damaged (i.e., artificially
created). The purpose to create distortions in the spread of
powders to C5 and C6. However, there are no significant separa-
tions for these three parts in the 2D plot. This is mainly due to
the fact that the damages to re-coater blade are not noticeable
when cut with a sharp knife after re-examining the re-coater. In
the experiments, it was found that there are not significant distor-
tions in the spread of powders over the C5 and C6 area. On the con-
trary, C5 and C6 yield approximately the same quality in the final
builds. In the future work, we plan to avoid this oversight and
create larger and more noticeable damages to the re-coater blade.
Despite this failure, the 3D scatter plot of the first three PCs
shows that C5 and C6 are closely mixed with each other, while
C2 is slightly away from them (also see Fig. 14(b)). Indeed, exper-
imental results showed that there are slight differences in the quality
(or defect levels) from the CT scans of final builds.

Finally, Fig. 15 shows the 2D and 3D scatter plots of PC features
for parts C2 (no gas flow blockage) versus C7, C8, and C10 (with
gas flow blockage). Similarly, it was expected that the blockage of
gas flows impacts the cooling and thermal distributions and the
extraction of fumes/spatters in the build plate area of C7, C8, and
C10. However, Fig. 15 shows that these parts are not significantly
separated from the nominal reference C2. After re-examining the
blockage, we found that gas flow nozzles on this areas are were
effectively blocked during the experiment. Nonetheless, SLM125
AM machine has a nominal building platform of 125 x 125 mm,
which is a relatively small area. As shown in Fig. 9, gas flows
from the upper 3/4 area can effectively circulate and spread to the
blocked 1/4 area of C7, C8, and C10. As such, parts C7, C8, and
C10 yield approximately the same quality as C2 in the final
builds. Overall, experimental results show that wavelet features
and PCs are salient and sensitive to AM process changes. This
investigation will further leverage the first three PCs to build a
sparse predictive model for the prediction of defect levels in the
final AM builds.

5.3 Computed Tomography Defect Quantification. In this
investigation, we also performed CT scans of all the nine parts
that are treated with different factor levels. GE Phoenix vltomelx
CT scanner was used, and CT data were acquired with 12 ym
voxel resolution. Because the part can be rotated, titled, or flipped
during the CT scanning, we design the horns on the top of each
cylindrical part to establish one-to-one correspondence between
CIS images and CT scans (i.e., also discussed in Sec. 4).

In order to characterize the defect level, each layer of the CT scan
is processed as follows: (1) Identify the circular ROI: As shown in
Fig. 16(a), each layer of the CT scan is a square-sized image, but the
cylindrical part is situated within a circular ROIL Thus, the first step
is to create a circular mask on the ROI because there are noises and
other nuances outside the ROL. (2) Binary masking: The second step
is to create a binarized mask, i.e., ones inside the ROI and zeros
outside the ROI. Then, we apply the binarized mask to the original
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CT scan to get the noise-free ROI, as shown in Fig. 16(b). Although
the regions outside the ROI seem to be the same as black as before
in Fig. 16(a), noises in low-intensity values are already cancelled.
(3) Stratified contours: In the third step, pixel values within
the ROI are stratified into ten contours, as shown in Fig. 16(c).
The idea behind is to characterize the level of darker pixels
within the circular ROIL. Note that defects tend to yield darker
pixel values than nondefects. As shown in Figs. 16(d)-16(f), a low-
quality layer with porosities tends to have more pixels distributed in
the bottom four contours. However, the high-quality layer has fewer
pixels in the bottom four contours. The top two layers approxi-
mately correspond to the cupping effect due to the beam hardening
of the x-ray. (4) CT defect characterization: In this investigation,
pixel values are stratified into ten contours within the ROI for
each layer of the CT scan. The defect level is characterized as the
ratio of pixels that fall into the bottom four contours. In other
words, the defect level is the percentage of darker pixels (i.e., in
the bottom four levels of contours) with respect to all pixels in
each layer of the CT scan. As such, the defect level is characterized
as a continuous variable (i.e., using the ratio as a general descriptor
of pixel irregularity in this case study), as opposed to a discrete var-
iable (i.e., defect or not, or low, medium, high). Therefore, predic-
tive modeling in the next section becomes a regression problem
instead of a classification problem.

5.4 Predictive Modeling. In situ contact images are collected
from nine parts in the same build plate. Each part serves as a group
variable of wavelet features, which are extracted from layerwise
images during the AM process. If this grouping variable is over-
looked, traditional regression models cannot adequately handle
the feature datasets that are summarized in groups. Therefore, as
discussed in Sec. 3.4, we propose linear mixed-effects models
to handle grouped data in this investigation, where random-effect
parameters are allowed to vary with respect to grouping variables.
Specifically, the response variable is the defect level which is

101004-10 / Vol. 145, OCTOBER 2023

quantified from CT scans. Each part serves as the grouping vari-
able, fixed-effects variables are three PCs, laser power, gas
flow, re-coater damage, and the random-effects variable is laser
power.

As shown in Fig. 17(a), there are a total of 2511 layerwise
images included for the in situ prediction of quality in nine
parts (i.e., marked as C1, C2, C3, ..., C10), each of which contains
279 layers. The idx numbering corresponds to the cumulative
layers for each of the parts, e.g., layer 280 corresponds to layer
1 of the second part. The defect levels from CT scans are
marked as gray data points, while predictions from linear
mixed-effects and fixed-effects models are marked as blue and
red lines, respectively. Note that linear mixed-effects models
yield better performance to predict the defect levels than the
fixed-effects models. This is mainly due to the fact that
mixed-effects models leverage the random-effect parameters to
account for different variances in each part. Figure 17(a) shows
that the variances of defect levels are different for each part. For
example, C2 as a nominal reference yields a smaller level of var-
iances across its 279 layers, but C3’s variances are much higher.
The fixed-effects models do not account for such differences in
variances for each part. Therefore, such variations are included
as a part of prediction results. This is also the reason why predic-
tions from fixed-effects models (red lines) tend to have higher
oscillations than mixed-effects models (blue lines) in Fig. 17(a).
Overall, we found that C3, C4, and C8 yield higher defect
levels than the rest of six parts.

Figure 17(b) shows the visualization of residuals versus fitted
values for the linear mixed-effects model. This residual plot pro-
vides the model diagnosis results, which show no systematic pat-
terns of linear or nonlinear trends left in the residuals and show
only parallel bands centered around zero. Figure 17(c) shows the
histogram plot of the residuals from the linear mixed-effects
model, which is normally distributed around zero. These results val-
idate the normality assumption of residuals. In addition, it should be
noted that the results of predictive models are consistent with the
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paired comparison analysis, showing that wavelet features and PCs
are salient and sensitive to AM process changes.

6 Conclusions

Additive manufacturing is strongly promised to revolutionize the
next generation of production paradigms and provide higher flexi-
bility in the supply chain configurations. Although there are signif-
icant advances to equip AM machines with in situ sensing systems,
few, if any, have investigated the capability of high-speed CIS
sensors (i.e., originally developed for document scanners and mul-
tifunction printers) for in situ quality inspection during the AM pro-
cesses. In this article, we develop a multiresolution quality
inspection framework toward an integrated metal 3D printer and
scanner. The layerwise scanning is realized by retrofitting a CIS
sensing and data acquisition system into the LPBF-AM machine.

This, in turn, brings large amounts of layerwise imaging data,
which are complex structured and often contain nonlinear, nonsta-
tionary, and irregular patterns. Most of the existing works tend to
focus on image processing and analysis in a single scale. It is not
uncommon that the progressive formation of defects is often
buried in such a single-scale view. Therefore, this paper focuses
on the development of an AOI system with CIS for multi-resolution
quality inspection of layerwise builds in additive manufacturing.
Experimental results of paired comparison analysis show that
wavelet transformation effectively captures microlevel fine-grained
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details and macrolevel approximations of ROI images in multiple
scales and further helps extract salient features that are sensitive
to process variations, instead of extraneous noises. Further, as
opposed to traditional regression models overlooking the grouping
effects, linear mixed-effects models effectively account for the
grouping variable in each part and yield better performance to
predict the defect levels than the fixed-effects models.
High-fidelity quality monitoring is critical to promoting wide-
spread applications of AM in the industry. The provision of new
sensor-based quality technologies to AM manufacturers increases
their competitive advantage in the global market. Sensor-based
quality monitoring is conducive to mitigating scrap and rework
rates and further ensuring economic viability of AM. As opposed
to traditional single-scale inspection, the proposed multiresolution
QA/QC has the potential to substantially improve repeatability
and reliability of functional integrity aspects in metal AM.
Finally, this investigation is aimed at building the predictive
model from CIS imaging data to defect measures in CT scans at
each layer of AM process. In the future work, it is worth investigat-
ing neighboring effects among adjacent layers. When defects occur,
sometimes they cannot be captured as soon as the laser scans over a
localized spot, but rather evolve dynamically to their size after
rescanning. Our previous studies have developed statistical
models of layerwise-dependent effects in the evolving dynamics
of defect formations, albeit from on-axis melt-pool images [22—
24]. In addition, it is worth investigating the link between the phys-
ical influence and changes with each experimental condition and the
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PCA analysis. There are also acoustic emission and melt-pool
signals collected simultaneously in the LPBF-AM process. Our
future work will focus on the investigation of physical influences,
as well as multisensor integration for AM process monitoring.
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