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Landslide susceptibility modeling by interpretable
neural network
K. Youssef1,5,6, K. Shao2,6, S. Moon2✉ & L.-S. Bouchard 1,3,4✉

Landslides are notoriously difficult to predict because numerous spatially and temporally

varying factors contribute to slope stability. Artificial neural networks (ANN) have been shown

to improve prediction accuracy but are largely uninterpretable. Here we introduce an additive

ANN optimization framework to assess landslide susceptibility, as well as dataset division and

outcome interpretation techniques. We refer to our approach, which features full interpret-

ability, high accuracy, high generalizability and low model complexity, as superposable neural

network (SNN) optimization. We validate our approach by training models on landslide

inventories from three different easternmost Himalaya regions. Our SNN outperformed

physically-based and statistical models and achieved similar performance to state-of-the-art

deep neural networks. The SNN models found the product of slope and precipitation and

hillslope aspect to be important primary contributors to high landslide susceptibility, which

highlights the importance of strong slope-climate couplings, along with microclimates, on

landslide occurrences.
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Landslides are a major natural hazard that cause billions of
dollars in direct damages and thousands of deaths globally
each year1,2. Landslides can also cause various secondary

hazards, such as damming and flooding, which often leave a
region prone to subsequent damage following the initial event3.
Additionally, landslide debris may cause instability by perturbing
river sedimentation and disrupting ecosystems3,4. As landslide
hazards are expected to increase due to climate change, scientists
have sought to more accurately assess landslide susceptibility5–10,
an estimate of the probability that a landslide may occur in a
specific area, with the goal of mitigating the impact of landslides
on the economy, public safety, and local ecosystems.

Landslide occurrences are influenced by various factors
including physical attributes of the terrain, such as slope, relief,
and drainage areas, and material properties such as the density
and strength of soil and bedrock11–14. Also, environmental
conditions such as climate, hydrology, ecology, and ground
motion due to earthquakes may contribute to slope
instability15–17. Landslide susceptibility is calculated from these
various controlling factors either through physically-based
models12,13,16,18, data-driven approaches utilizing statistical
analysis19,20, or machine learning techniques (ML), including
random forest, support vector machines, and deep neural net-
works (DNN)6,21–26.

While substantial work has been devoted to assessing sus-
ceptibility, each model has shortcomings. Physically- or
mechanistically-based approaches, based on the equilibrium
between driving and resisting forces, have been widely applied to
assess slope stability11–13,27. However, mechanistic models have
limitations, including a limited number of variables, simplified
assumptions of landslide geometry and certain environmental
conditions (e.g., antecedent moisture, bedrock structure), and the
high cost of geotechnical exploration necessary to estimate and
calibrate for accurate subsurface properties (e.g., cohesive
strength, pore pressure, weathering profile)15. Alternatively, data-
driven approaches, including statistical and ML methods, can
handle a large number of controls to assess susceptibility. Sta-
tistical methods such as logistic regression and likelihood
ratios19,20,28 can utilize a multitude of landslide controls as
inputs. Scientists using these data-driven approaches have
obtained a measurable degree of success in determining areas
susceptible to landslides6,19,20. However, these data-driven mod-
els also rely on the expert’s choices, preconditions, and classifi-
cations of input variables. The outcome of these models’ results,
the landslide susceptibility map, does not decouple individual
feature contributions to landslide susceptibility nor account for
their interdependencies due to the limited computational cap-
abilities in conventional approaches28.

Machine learning approaches, such as fuzzy logic algorithms,
support vector machines, and DNNs, have been applied to land-
slide studies for mapping landslide susceptibility22,24,29. DNNs
have achieved improved performance compared to both statistical
methods and other ML approaches due to their use of non-
linearities, complex interdependencies of interlayer connections, as
well as internal representations of data21–24,30–32. However, the
black box nature of DNNs has been a major hurdle for their
adoption in practice and research, making it difficult for experts to
understand and trust their outcomes. With DNNs, it is nearly
impossible to determine the exact relation between individual
inputs and outputs30–32. Lack of interpretability is a weakness of
DNNs and a fundamental drawback for high-stakes applications
such as landslide mitigation where decisions impact lives and result
in untold costs of insurance and reconstruction2,3,33. Interpret-
ability would ideally provide decision-makers with a list of con-
tributing factors ranked in order of importance, as well as any
possible interplay between these factors.

The DNN’s lack of interpretability has prompted the Defense
Advanced Research Projects Agency’s (DARPA) third wave of AI
call in 2017 and the European Union’s 2018 General Data Pro-
tection Regulation, which grants a right to an explanation, for
algorithmic decisions that are made34. Next-generation AI sys-
tems refer to the so-called explainable or interpretable AI (XAI)
models. The latter must be able to construct explanatory models
for classes of real-world phenomena that can be communicated to
humans32. Various XAI categories have since been defined in the
literature based on factors such as application and methodology,
where each category is further divided into subclasses35. Although
the use of XAI in research is expanding, existing approaches
aimed at explaining black box models exhibit a trade-off between
accuracy and interpretability, resulting in a large gap in perfor-
mance (e.g. ref. 36). Recently, Rudin30 showed that with proper
feature engineering, and a shift from explaining existing black box
models to creating methods with inherently interpretable models,
the trade-off between accuracy and interpretability can be
circumvented.

To this end, we propose a framework that bridges the gap
between explainability and accuracy for landslide susceptibility
models. This framework utilizes a hybrid of model extraction
methods and feature-based methods to generate a fully inter-
pretable additive ANN model while simultaneously pruning
features and feature interdependencies that are redundant or
suboptimal to model performance and generalizability. Additive
ANN are a type of generalized additive models (GAM) that have
been recently gaining popularity37–40. They combine separate
ANNs, each specializing in a single feature, to optimize a com-
mon outcome. Unlike other additive XAI methods such as
Shapley additive explanations (SHAP) that aim to explain the
local behavior of a black box model41, additive neural networks
are inherently interpretable models with both local and global
interpretability. Model extraction methods aim to train an
explainable “student” model to mimic the behavior of a “teacher”
model, and feature-based methods aim to analyze and quantify
the influence or the importance of each input feature35. Our
optimization framework possesses full interpretability, high
accuracy, high generalizability, and low model complexity. Most
notably, toy problems included in the Supplementary Note 1
demonstrate the capability of our framework to generate fully
interpretable additive ANNs with controlled complexity and
accuracy that can match state-of-the-art DNNs, as well as find
globally optimal unique solutions. Furthermore, we utilize dataset
division and outcome interpretation techniques uniquely suitable
for landslide susceptibility modeling applications with spatially
dependent data structures. We refer to the approach as super-
posable neural network (SNN) optimization in reference to the
automated way of incrementally generating the additive ANN
model and determining the contributing features. Our approach
is different from the more commonly followed approach of
designing a fixed network architecture with a fixed set of
manually selected input features where the entire network is
jointly trained in an end-to-end fashion40.

In this study, we model three different regions of the east-
ernmost Himalaya using SNNs. For comparison, we include
results from a physically-based slope stability model (SHAL-
STAB), two statistical methods (logistic regression and likelihood
ratios), in addition to state-of-the-art DNN teacher models.
Finally, we examine the SNN-determined relationship and rela-
tive importance of each feature’s contribution to landslide sus-
ceptibility and discuss how information extracted from the SNN
can provide insights into the physical controls of landslides in our
studied regions. Our results highlight underappreciated, impor-
tant controls such as the product of slope and precipitation and
hillslope aspects in the studied region. Controls that consist of
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products of input features can help unveil the influences from
feature interactions.

Superposable neural networks. SNNs are an additive ANN
architecture that enforces no interconnections between inputs
(Fig. 1). The lack of interconnections between features is the key to
explainability. Unlike DNNs where interdependencies between
features are embedded in layers of network connections, inter-
dependencies in SNNs are explicitly created as a product function
of more than one original input feature. We refer to these products
as “composite features” (see “Methods” for details). Important
interdependencies between features are automatically determined
by isolating composite features contributing to the desired out-
come. Contributing composite features are explicitly added as
independent inputs to the model, while non-contributing compo-
site features are discarded (see SNN training flow diagram in Fig. 2
as well as “Methods”). Furthermore, we label SNNs according to
the highest level of composite features used in training the model,
which refers to the maximum number of features allowed in
multivariate interactions. For example, a Level-3 SNN can include
Level-1, Level-2 and Level-3 composite features. Using composite
features, SNNs can approximate any continuous function for
inputs within a specific range as a polynomial expansion to any
desired precision. This ability allows SNNs to retain a level of
accuracy on par with state-of-the-art DNNs.

The SNN is represented mathematically by the function
(Eq. (1)):

StðfχjgÞ ¼ ∑
j

∑
k
wj;ke

�ðaj;kχjþbj;kÞ2 þ cj

� �
: ð1Þ

It contains only two hidden layers of neurons with radial basis
activation functions in the first layer and linear activation functions
in the second layer. The choice of radial basis activation functions
allows the user to minimize the number of neurons in the model,
maximizing the efficiency of our method. Each input χj is
exclusively connected to a group of neurons to form an

independent function Sj ¼ ∑kwj;ke
�ðaj;kχjþbj;kÞ2 þ cj and the SNN

output St=∑jSj is the sum of all independent functions, where j =
1 : number of features (M), k = 1 : number of neurons per feature
(v), and χj is the jth composite feature. In addition to determining
the features and interdependencies between features that contribute
to the outcome, the SNN architecture enables the quantification of
their exact contributions to the output.

The model simplicity and lack of connections between neurons
associated with different features makes our model fully inter-
pretable and mathematically analyzable. However, this aspect also
makes the model highly constrained, which poses challenges on its
training. Jointly training the model with commonly used gradient
descent-based optimizers proved to be extremely difficult to

converge, especially as the number of features increases. Our
optimization approach enables the separate training of individual
neural networks by utilizing several state-of-the-art ML techniques
(multi stage training, knowledge distillation, second order
optimization42–47) to deliver a model that is optimal in terms of
performance and remarkably simple in terms of architecture. The
reduction in model complexity, while maintaining an accuracy that
rivals that of DNNs, which are orders of magnitude more complex
in terms of number of parameters and redundancies in
interconnectivities, presents a substantial advance.

A validation of our approach using toy models is included in
Supplementary Note 1.1 and 1.2. In the first application, we create a
synthetic dataset by adding known functions of composite features
and test the ability of the SNN to find the contributing features and
extract their functions from the data. The second application
incorporates up to Level-4 feature interactions and demonstrates the
impressive ability to extract boolean relationships from synthetic
data. Boolean inference tasks are notoriously difficult because of the
high degree of stiffness and nonlinearity between input and output.
The SNN optimization algorithm is described in “Methods”.

Landslides in the easternmost Himalaya. Asia holds the
majority of human losses due to landslides globally, with a high
concentration in the Himalayan Arc1,2. In particular, the east-
ernmost Himalaya has a high susceptibility to numerous land-
slides from steep slopes, extreme precipitation events, flooding,
and frequent earthquakes48–52 (Fig. 3 and Supplementary Fig. 1).
We generated a landslide inventory of the easternmost Himalaya
by combining the manual delineation of landslide areas with a
semi-automatic detection algorithm53,54 (Fig. 4a–c; a flowchart
diagram in Supplementary Fig. 2, exemplary landslides in Sup-
plementary Fig. 3). Within the entire study area of 4.19 × 109 m2,
the total number of mapped landslides is 2289, and their areas
range from 900 to 1.96 × 106 m2 (Supplementary Table 1, Sup-
plementary Fig. 4)55. Landslide densities calculated over a 2.25
km2 window are generally high in the range front (max 0.121)
and low in the hinterland (~0.039).

Within the easternmost Himalaya, we selected three regions (the
Dibang, Lohit, and range front regions) with varying ranges of
landslide controls to test the performance and application of the
SNNmodel (Fig. 3). Hereafter, we refer to Dibang, Lohit, and range
front regions as the N-S, E-W, and NW-SE regions, respectively.
Testing the SNN over these three regions with varying environ-
mental conditions will allow us to examine the following: (1)
whether the SNN can identify universal or distinctly different
controls of landslides, and (2) whether SNN-determined functions
of feature contributions to susceptibility, Sj, are similar or different
across these three regions. We used 15 single features in the SNN
model (Supplementary Fig. 5, Supplementary Table 2). The

Fig. 1 Conventional DNN architecture vs SNN architecture. In a conventional DNN, features are interconnected and interdependencies are embedded in
the network, making them virtually impossible to separate. In a SNN, features and feature interdependencies that contribute to the output are found in
advance and explicitly added as independent inputs. Radial basis (Gaussian) activation functions are used in the SNN, where each neuron is connected to
one input only. The x1, x2, . . . xn refer to a set of n original features, and χ1, χ2, . . . χM refer to a set of M composite features. y and St refers to DNN and SNN
outcomes of total susceptibility, respectively. The symbols in this figure are defined and explained in the main text, Eq. (1).
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15 single features include aspect (Asp), mean curvature (CurvM),
planform curvature, profile curvature, total curvature, discharge,
distance to channel (DistC), distance to faults (DistF), distance to
the Main Frontal Thrust and suture zone (DistMFT), drainage area,
elevation (Elev), local relief (Relief), mean annual precipitation
(MAP), number of extreme rainfall events (NEE) and slope. The
inclusion of these variables is based on previous studies that
examined landslide controls in the Himalayan region20,56–58. The
details of study area, landslide inventory, input data sources and
calculation are presented in “Methods”.

Results and discussion
SNN Implementation. We modeled landslide susceptibility of
the easternmost Himalaya using Level-1, 2 and 3 SNN models.
We find that the Level-3 SNN is able to achieve over 99% of the

accuracy of the state-of-the-art teacher DNN, and the Level-2
SNN is able to achieve over 98%. Given the small difference, we
assume the explainability of the Level-2 SNN to be sufficient for
our analysis. Due to the nature of this application, a special data
partitioning method was devised to partition each region into
roughly 70% for training and 30% for validation, which utilizes
Pythagorean tiling to partition the regions in a spatially repre-
sentative manner (Fig. 5) (see “Methods” for details).

A threshold value of St is used as a binary classifier to predict
landslides and compare them with observed landslides from our
inventory. We selected a threshold susceptibility corresponding to
the closest point to a perfect classifying model with 100% true
positive rate and 0% false positive rate on a receiver operating
characteristic (ROC) curve. Areas with St greater and lower than
this threshold are classified as landslide (ld) and non-landslide
(nld) areas, respectively, in the model (Fig. 4d–f).

Fig. 2 Superposable neural network training flow diagram. The flow diagram shows the methods used in our study, which include the feature-selection
model and multistage training. Our feature-selection model based on multivariate polynomial expansion and tournament ranking allows for the exploration
of multiple combinations of parameters without relying on an expert’s choices, precondition, or classification of input features and identify a set of optimal
composite features that are relevant to the landslide susceptibility. Then, multiple steps of knowledge distillation are used to quantify each control’s
contribution to susceptibility (Sj, where j corresponds to single layer network). By superposing Sj, we create an additive, superposable neural network
(SNN) model for total landslide susceptibility. The details of each methodology are explained in “Methods”.
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Comparison with traditional landslide susceptibility modeling.
In addition to the comparison against the state-of-the-art DNN
teacher model, we provide comparisons of Level-1 and Level-2
SNN performance to a number of traditional methods, all applied
to the same regions and using the same inventory data. Com-
parison of different models on the same area is needed since
model performance cannot be directly compared to model per-
formance published in other papers, since those papers focused
on different regions.

First, we investigated each of the 15 single features as
individual classifiers for landslide occurrences. Second, we applied
a physically-based slope stability model (SHALSTAB) for soil
landslides12,27,59 that couples infinite slope stability and steady-
state hydrology for cohesionless material. Considering that most
landslides in our inventory are soil landslides (Methods),
SHALSTAB was assumed to be suitable for our analysis. We
modified SHALSTAB and calculated a metric called the failure
index (FI), as the ratio of driving to resisting forces on a hillslope.
FI is equivalent to the inverse of the factor-of-safety, which
represents the propensity for landslide occurrence. Third, we used
two commonly used statistical models, logistic regression and
likelihood ratios, to model landslide susceptibility28,60,61. Logistic
regression (hereafter, LogR) is based on a multivariate regression
between a binary response of landslide occurrence and a set of
predicting features that are continuous, discrete, or a combination
of both types60. Likelihood ratios (LR) are calculated as the ratio
of the percentage of landslide pixels relative to total landslide
pixels divided by the percentage of pixels relative to the total area
within a specific range of feature values60,61. Previous studies have
quantified the ratio of the probability of landslide occurrences to
the probability of non-occurrences or all-occurrences within a

range of feature values and referred to it as the likelihood ratio,
frequency ratio, or probability ratio28,60,61. A ratio of 1, >1, or <1
indicates an average, above-average, or below-average likelihood
of landslide occurrence, respectively, within the feature range
compared to that of the study area. Landslide susceptibility for
each pixel is calculated as the sum of the corresponding LR from
each feature’s value. A threshold value of modeled landslide
susceptibility from LogR and LR can be used as a binary classifier
to predict landslides following a similar procedure that we used
for the SNN.

We assessed model performance based on various metrics
including area under the receiver operating characteristic curve
(AUROC). In addition, we calculated the statistical measures of
accuracy, sensitivity (probability of detection, POD), specificity
(probability of false detection, POFD), and POD-POFD. We also
calculated the 95% confidence interval of mean AUROC from the
statistical and neural network model outputs based on a 10-fold
cross validation. The 95% confidence intervals of mean AUROC
can be used to determine whether model performances are
statistically different (model and method details in Supplemen-
tary Note 2).

We show that the SNN model’s performance is comparable to
that of the teacher, second-order-optimized DNN, while provid-
ing a statistically significant improvement over commonly used
physically-based and statistical models. AUROCs of Level-1 and
Level-2 SNNs are 0.856 and 0.890, respectively, calculated as the
averages from the three study regions. The value for each region
is presented in Supplementary Table 3. The Level-2 SNNs
captured over 98% of the teacher model (MST) performance
across all three study regions. The Level-2 SNN is optimal in the
sense that it provides high accuracy (comparable to deep nets)
and relatively simple model complexity (hereafter, SNN refers to
Level-2 SNN).

The SNN achieved ~ 21% average improvement in AUROC
over the top performing single original features (i.e., MAP or
slope, AUROC = 0.737), ~22% over a physically-based model
(SHALSTAB) (AUROC = 0.727), and ~5–8% over logistic
regression (AUROC = 0.848) and likelihood ratios (AUROC =
0.823) in our three study regions. The 95% confidence intervals of
the mean AUROC of the SNN lie above and do not overlap with
those of the statistical models (Supplementary Table 4). In
addition, the vast majority of other performance metrics such as
accuracy, POD, POFD, and POD-POFD from the SNN are
improved over these other methods as well (Supplementary
Table 5).

SNN model explainability. The SNN-determined independent
functions Sj show varying relationships between both features and
feature interdependencies, and their absolute susceptibility con-
tribution (Fig. 6). SMAP�Slope and SNEE�Slope generally exhibit steep
increases with feature value, followed by asymptotic behavior
(Fig. 6a, d, g). These nonlinear relationships between landslide
susceptibility and the product of slope and climatic features of
MAP and NEE are similar in all three regions. In addition, SAsp
shows a peak around 145∘ to 180∘, which indicates a preference
for south-facing slopes, likely due to moisture from the Bay of
Bengal49 (Supplementary Fig. 6, Supplementary Note 3). These
functional relationships are similar to those deduced by the LR
statistical method that represent the likelihood of landslide
occurrence. However, unlike LR, which assume the same, average
likelihood (LR= 1) for each feature, Sj corresponding to LR= 1
varies depending on a feature’s absolute, decoupled contribution
to landslide susceptibility.

The SNN provides the exact contribution of each individual
feature to the total susceptibility outcome, which allows us to

Fig. 3 Study area in the easternmost Himalaya. Colors represents the
elevation71, and yellow boxes indicate our N-S (Dibang), NW-SE (range
front), and E-W (Lohit) oriented study regions. The inset map shows the
eastern Himalayan region with our study area shown in a black box and
national borders shown in dark gray lines.
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quantify the relative importance of landslide controls in different
localities and across varying spatial scales (Fig. 7d–f). Causal
rankings of individual features that drive landslides can be
obtained by calculating the susceptibility difference between ld
v.s. nld pixels, Δ�Sj, within a region of interest for each individual
feature. This is demonstrated both globally (Fig. 7a–c), where the
region of interest is the entire region of study, and locally
(Fig. 8a–c), where the region of study is divided into hundreds of
smaller regions of interest, each consisting of a 2.25 km2 window.
For comparison, we also identified the primary controls of
landslides and their relative contributions from the Level-1 SNN
and weights determined by the logistic regression model
(Supplementary Note 2, Supplementary Fig. 7).

Composite features involving topographic and climate features
are identified as important landslide controls for our study area.
Namely, the product of slope and NEE or MAP, Asp, and the
product of Asp and Relief tend to have large Δ�Sj across all three
regions (Fig. 7a–c). In addition, those features are identified

as locally important, primary features when analyzing using a
2.25 km2 window throughout the area (Fig. 8a–c). The primary
features of MAP*Slope and NEE*Slope are consistent among our
three study regions in the easternmost Himalaya, despite
differences in the spatial distribution and magnitude of
precipitation and proximity to a major fault with a history of
earthquakes (Supplementary Fig. 1). Although these composite
features may not be the largest contributor for total susceptibility
(Fig. 7d–f), they tend to have different contributions for ld and
nld areas and lead to a large Δ�Sj (Fig. 7a–c).

SNN-derived individual feature contributions are used to assess
the relative importance between climate and slope features. The
feature independence in the SNN additive architecture and the
use of composite features allows us to isolate the effect of slope or
climate in the model. (1) The exact marginal contribution is
calculated for Level-2 features involving slope or climate (i.e., Asp,
NEE, and MAP). (2) Level-1 slope and Level-2 slope marginal
contributions are added together to produce the total

Fig. 5 Illustration of spatial data partitioning using Pythagorean tiling. Pythagorean tiling is used to divide data from the modeled region in a spatially
representative manner that maintains variability between training and testing partitions. Using Pythagorean tiling, we generate a checkerboard-like pattern
with a 70/30% square ratio, where bigger squares correspond to training and smaller squares correspond to testing.

Fig. 4 Mapped landslides and modeled susceptibility. Spatial distribution of a–cmapped landslides and d–fmodeled landslide susceptibility for the a, d N-
S, b, e NW-SE, and c, f E-W study regions. a 959, b 1536, and (c) 386 landslides are shown in red polygons in (a–c). Total susceptibility at the pixel scale
(St) from the Level-2 superposable neural network are shown in (d–f). The threshold St values that are used to classify landslide and non-landslide pixels in
the model are d 0.767, e 0.861, and f 0.816, respectively.
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susceptibility contribution from the slope, St,Slope. (3) Level-1
climate and Level-2 climate marginal contributions are added
together to produce total susceptibility contribution from climate
features, St,Climate. In Fig. 8d–f, we compare the relative
importance of slope and climate features using our approach
that separates their contributions between ld and nld pixels
throughout the region. Then, we calculate the difference between
Δ�St;Slope and Δ�St;Climate, divided by the threshold susceptibility
value, St,threshold, for each respective region. We find that ~74%,
54%, and 54% of localities have a larger contribution from climate
features than that of slope for the N-S, NW-SE, and E-W regions,
respectively, emphasizing an overall importance of climatic
features that drive landslides.

Accurate and interpretable landslide susceptibility from the
SNN. Whereas many XAI efforts involve a trade-off between
accuracy and interpretability, our SNN does not compromise
accuracy. Given the SNN’s inherent and unique ability to
decouple individual feature contributions and select feature
interdependencies, we can easily isolate local contributions from
primary controls discovered by the SNN (Fig. 8). Our local
analyses for assessing landslide controls indicate that the con-
tribution of climate features, such as NEE, MAP, and Asp, to
landslide susceptibility tends to surpass that of slope for a
majority of landslide occurrences in this area. These results
highlight a prevalent climatic control on landslide occurrences in
the easternmost Himalayan region. Due to the eastward

Fig. 6 Individual feature contributions to total susceptibility. Independent functions of Sj identified as primary landslide controls are shown for the a–c N-
S, d–f NW-SE, and g, h E-W study regions. Likelihood ratios (LR), representing the likelihood of landslide occurrence for a specific range of feature values,
are shown as short, dashed, colored lines with corresponding right-side y-axes for reference. LR = 1 and LR > 1 represent the average and above-average
likelihood of landslide occurrence, respectively. Note that Sj corresponding to LR= 1, shown as long-dashed black lines, differ between features because the
SNN quantifies the absolute contributions of Sj decoupled from other features. Features related to topography, aspect, climate, and geology are shown in
green, pink, blue, and brown or combinations thereof, respectively. Mean annual precipitation (MAP), number of extreme rainfall events (NEE), aspect
(Asp), elevation (Elev), mean curvature (CurvM), and local relief (Relief). The asterisk * indicates algebraic multiplication of two features.
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increasing trends of precipitation rate and variability along the
Himalaya, the easternmost Himalaya contains one of the largest
strike-perpendicular climatic variations across the steep mountain
range49. This considerable climate gradient from the range front
to the hinterland likely impacts landslide susceptibility in the
easternmost Himalaya.

The transparency of our SNN model offers insight into
potential mechanisms of landslides and the relative importance of
controlling factors. First, the SNN highlights the important, yet
under-appreciated controls of NEE*Slope, MAP*Slope, Asp, and
Asp*Relief (Fig. 8), which implies a dominant occurrence of
precipitation-induced landslides in our study site. However, these
topography-climate composite features reveal the importance of

both incorporated features. These features comprising the
product between slope and precipitation rates and intensity as
well as that of aspect and relief suggest that landslides are affected
by strong slope-climate couplings and aspect-related
microclimates.

The nonlinear asymptotic function of SMAP�Slope and SNEE�Slope
(Fig. 6a, d, g) can be explained by a physical mechanism of
rainfall-induced landslides that induces slope failure due to an
increase in pore-water pressure and subsurface saturation62. The
modeled total landslide susceptibility (St) is analogous to
the physically-derived failure index (FI), which is equivalent to
the inverse of the factor-of-safety. FI is formulated from
equilibrium on an infinite, cohesionless slope considering a pore

Fig. 7 Feature contributions to total susceptibility. (a, d) N-S, (b, e) NW-SE, and (c, f) E-W study regions. Bar charts in (a–c) represent Δ�Sj in descending
order, and pie charts in (d–f) represent average Sj (�Sj) contributions to landslide (ld) and non-landslide (nld) areas. Δ�Sj represents the difference in average
contribution between areas of ld and nld in each region. Extruding pie chart features are features with large Δ�Sj found in the corresponding bar chart on the
left. Features related to topography, aspect, climate, and geology are shown in green, pink, blue, and brown or combinations thereof, respectively. Mean
annual precipitation (MAP), number of extreme rainfall events (NEE), aspect (Asp), elevation (Elev), mean curvature (CurvM), distances to channel (DistC),
all faults (DistF), and the Main Frontal Thrust and suture zone (DistMFT), and local relief (Relief). The asterisk * indicates algebraic multiplication of two
features. Information regarding features is provided in “Methods”.
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pressure effect based on SHALSTAB12,59 as:

FI ¼ S
S0

1�W
ρw
ρs

� ��1

ð2Þ

where S0 is the threshold slope, S is the local slope, ρs is the wet
bulk density of soil (2.0 g/cm3), ρw is the bulk density of water
(1.0 g/cm3), and W is wetness. W is calculated as a ratio between
local hydraulic flux from a given steady-state precipitation rate
relative to that of soil profile saturation12:

W ¼ h
z
¼ qA

bT sin θ
ð3Þ

where h is the saturated height of the soil column (L), z is the total
height of the soil column (L), q is the steady-state precipitation
during a storm event (L/T), A is the drainage area (L2) draining
across the contour length b (L), T is the soil transmissivity when
saturated (L2/T), and θ is the local slope in degrees.W varies from
0 (unsaturated) to 1 (fully saturated). See Supplementary Note 2
for model details.

Expansion of the denominator in a geometric series gives:

FI ¼ S
S0

1þW
ρw
ρs

þW2 ρw
ρs

� �2

þ OðW3Þ
 !

� S
S0

kðWÞ: ð4Þ

The approximated FI has three components: local slope S,
threshold slope S0, and k(W), which represents the degrees that
landslides are promoted by subsurface saturation. k(W) varies
from 1 (unsaturated) to 2 (fully saturated). The multiplication of
local slope and k(W), which has an upper bound, mimics the
nonlinear asymptotic function of SMAP�Slope and SNEE�Slope. This

asymptotic increase in susceptibility is similar to observations of
other precipitation-induced landslides, but different from
earthquake-induced landslides whose occurrences increase non-
linearly with increasing slope63,64.

Second, the identified controls of MAP, NEE, and Asp imply
that local precipitation infiltration on steep slopes may be the
dominant contributor to subsurface saturation in the easternmost
Himalaya. A change in climatic conditions can raise volumetric
water content and porewater pressure. This rise leads to an
increased degree of subsurface saturation (i.e., W) and subse-
quently induces slope failure. Previous physically-based slope
stability models consider various climatic factors (e.g., rainfall
amount and intensity, subsurface convergence flow) to deduce the
degree of subsurface saturation to model rainfall-induced land-
slide occurrences12,16,18. For example, SHALSTAB12,27 uses the
topographic wetness index, proposed by Beven and Kirkby65, to
calculate subsurface saturation considering the convergence of
shallow subsurface flow from up-slope drainage areas for a given
steady-state precipitation. On the other hand, the Transient
Rainfall Infiltration and Grid based Regional Slope stability model
(TRIGRS)16,18 calculates transient pore pressure development
due to vertical rainfall infiltration from rainfall intensity. In
reality, both subsurface convergence and rainfall infiltration are
essential contributors to subsurface saturation and need to be
implemented in physically-based slope stability models. However,
measuring precipitation intensity, moisture availability, or sub-
surface convergence and saturation in the field is difficult,
especially in rural mountainous areas with limited accessibility.

According to our SNN model results, the most important,
controlling features for landslides in this area are the product of

Fig. 8 Important controls for landslides. Spatial distribution of a–c primary features identified as locally important controls of landslides and d–f relative
climate vs slope susceptibility contributions for the a, d N-S, b, e NW-SE, and c, f E-W study regions. The locally important control in (a–c) is identified as
the feature with the largest difference in average contribution (Δ�Sj) between areas of landslides (ld) and non-landslides (nld) within a 2.25 km2 window.
The contribution from climate features (Δ�St;Climate; j ¼ Asp;NEE;MAP) relative to that of slope (Δ�St;Slope) normalized by the corresponding threshold St is
shown in (d–f). Windows with a higher climate contribution are colored blue while those with a greater slope contribution are colored red. Windows of no
data contain a majority of unmapped areas or indicate lack of modeled landslides. Features related to topography, aspect, climate, and geology are shown in
green, pink, blue, and brown or combinations thereof, respectively. Mean annual precipitation (MAP), number of extreme rainfall events (NEE), aspect
(Asp), elevation (Elev), mean curvature (CurvM), and local relief (Relief). The asterisk * indicates algebraic multiplication of two features.
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slope and MAP (N-S region) or that of slope and NEE (NW-SE
and E-W regions). This result implies that local precipitation
infiltration influenced by precipitation rate and intensity,
represented by MAP and NEE, may serve as a first-order control
on W or k(W) in Eq. (4). The absence of drainage area or
discharge as a dominant contributing feature to susceptibility may
suggest that subsurface flow convergence may be a second-order
contributor to landslides in the easternmost Himalaya. However,
we cannot rule out the possibility that the importance of
topographic convergence was masked due to the low-resolution
of our input topographic and rainfall data66. These factors can be
further examined in future studies using high-resolution topo-
graphic and climate data in SNN models.

Nonetheless, identifying the exact trigger for a landslide
requires dense field measurements and historic records of soil,
hydrologic, and climatic conditions (e.g., soil moisture,
antecedent rainfall, rainfall intensity)9,67, which are often difficult
to obtain, especially in rural mountainous areas with limited
accessibility. We have shown that our SNN model can
identify key controls and quantify their potential contributions
to susceptibility, highlighting the essence of strong slope-climate
coupled controls on landslide occurrences. The
composite features identified by the SNN such as NEE*Slope or
MAP*Slope are consistent with previous understandings of
landslide mechanisms. However, they were not explicitly
implemented in previous data-driven statistical models. In DNNs,
such couplings would likely be identified, but if that were the case,
the information would be implicitly contained in the network
weights and not readily available to the user. By incorporating
climatic composite features including MAP*Slope, NEE*Slope,
and Asp*Relief, the performance of the SNN improved, increasing
average AUROC by 5–22% compared to those of statistical or
physically-based models12,27,60,61 (Supplementary Note 2, Sup-
plementary Table 3). This performance enhancement is statisti-
cally significant according to our confidence interval estimates
from a 10-fold cross validation.

Implications, limitations, and future directions. Our work
presents a substantial advance in XAI applications to natural
hazards and circumvents the “black box” nature of common AI
models. SNNs provide quantitative analyses of controlling factors
and further highlight the important, mechanistic interpretations
of landslides. Our AI-based decision-making approach provides a
comprehensive framework that allows for the examination of
numerous composite features and identification of key controls
while retaining high accuracy. As natural perturbations increase
due to urban development and climate change, the SNN may
provide a promising, data-driven predictive tool that will enable
communities to confidently tailor plans for hazard mitigation.

While a variety of explainable AI methods are available today,
our proposed SNN method offers unique advantages that are not
simultaneously present in any other method. SNN is a fully
explainable model that achieves a level of explainability compar-
able to linear regression, while delivering state-of-the-art
performance that matches that of black box models like deep
neural networks. Furthermore, unlike other additive models, SNN
can incorporate multivariate functions without compromising full
explainability. Additionally, the model features adaptive optimi-
zation of both feature selection and network architecture during
training. A comprehensive comparison of SNN with other
explainable AI methods must take all of these factors into
account. This requires an in-depth study beyond the scope of this
paper. For instance, other additive model methods generally rely
on fixed architectures and preselected feature sets that lack feature
interactions beyond bivariate interactions. On the other hand,

decision trees utilize highly nonlinear interactions between
multiple features through a different approach that theoretically
offers full explainability, but is often difficult to interpret for large
number of features or complex problems requiring numerous
branches. It is also worth noting that SNN is not restricted to
MST as the teacher model, and its accuracy can be further
improved when more accurate teacher models are found. A viable
alternative to MST for applications with small datasets is random
forest, which is an ensemble of decision trees trained on
randomly selected feature and dataset subsets using bootstrap-
ping. While decision trees are explainable, random forest is
considered a black box since its outcome is an aggregate of
multiple trees. In such cases, SNN can leverage random forest as a
teacher model to achieve similar accuracy while maintaining full
explainability.

We acknowledge that the overall importance of slope and
climatic features and their functional relationships with suscept-
ibility revealed by the SNN are qualitatively similar to those
inferred from statistical models. However, the SNN is more useful
for landslide susceptibility assessment because it decouples
individual feature contributions and quantifies absolute contribu-
tions from features and feature interdependencies. For example,
the relative and absolute importance of SNN decoupled features
are different from those determined by the weights set by logistic
regression. In addition, our analysis shows that Sj corresponding
to LR= 1 differs depending on a feature’s absolute, decoupled
contribution to landslide susceptibility. The SNN approach
reveals the important coupling between slope and climatic factors
(e.g., MAP*Slope, NEE*Slope) as a primary driver for landslide
occurrence. Accounting for these under-appreciated features and
feature interdependencies that are not generally implemented in
statistical methods or physically-based models can lead to a
substantial increase in performance. We note that these results
are specific to the region analyzed herein (easternmost Himalaya),
and other regions may feature a different set of dominant factors.

We acknowledge there are limitations of our method in the
easternmost Himalaya. Our input features are averaged over time
and space, making it impossible to relate them directly to specific
events (e.g., intense rainstorms or earthquakes) inducing land-
slides in our inventories. In addition, our inventory is based on
optical satellite images acquired at a specific time (e.g., 2017
Landsat) and post-failure spectral signatures. Thus, our model
lacks information about the precise timing or types of landslides
(e.g., fast- or slow-moving landslides, soil or bedrock landslides).
This makes it difficult to assess the timescales and spatial
dependencies of landslide-triggering events (e.g., rainfall intensity
or duration) for specific landslides or landslide types. Previous
studies from the Nepal Himalaya suggest that the spatial
distribution of landslides can vary with triggering events such
as cloud outbursts, flooding and large-magnitude
earthquakes68,69.

However, for this study region, our method properly captures
the first-order climatic controls of landslide occurrences. Our
primary feature datasets may capture a representative, spatial
distribution of landslide-triggering events such as intense
precipitation and rock damage over the decadal timescale of
concern. In the easternmost Himalaya, both MAP and NEE from
TRMM and APHRODITE datasets covering 12 and 50 years
show similar southward increasing trends49,70. This spatial
pattern likely emerges from the aggregation of intense precipita-
tion events influenced by orographic precipitation49. In the 30
years prior to the mapped inventory, there were no earthquakes
with a magnitude larger than MW 5.0 (Incorporated Research
Institutions for Seismology, www.iris.edu), which can induce
abundant landslides. In future studies, a time-series landslide
inventory from multiple years and information on
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nonrepresentative or infrequent extreme events can be used to
assess the spatial and temporal correspondence between trigger-
ing events and landslides69.

Additionally, landslide and input feature data have relatively
coarse spatial resolutions and are based on limited temporal
information (e.g., 30 m resolution Landsat satellite images from
201771, 90 m resolution SRTM DEM71, and ~5 km2 resolution
TRMM data over 12 years49). We do not have access to high-
quality, high-resolution data of topography, surface materials (e.g.,
soil depth, bedrock structures, lithology), and climatic and
ecohydrologic conditions (e.g., landslide-triggering storm inten-
sity, time-series precipitation intensity, vegetation types). Due to
the extremely rugged mountains in the Himalaya, the highest
available DEM resolution without extensive data gaps, suitable for
regional-scale landslide susceptibility analysis, is 90 m9,10. Also,
there are no readily available time-series precipitation data with a
resolution < 5 km2 in this area. We used relatively coarse 30 m
resolution Landsat images to map landslides even though limited
high-resolution satellite imagery is available (e.g., Planetscope
Scene). This is because: (1) Landsat images are globally available,
open-source satellite images with a ~40-year historic archive, (2)
reliable topographic, climatic, and geologic feature data have
coarser resolutions than 30 m, and (3) we cover a large region of
the easternmost Himalaya (a total area of 4.19 × 109 m2, 4.66 × 106

pixels at 30 m). When applying a regional-scale model covering a
large area with limited input data resolution and high computa-
tional costs, the use of 30 m resolution imagery for our model was
inevitable. Although our inventory is based on coarse 30 m
resolution Landsat images, our landslide inventory adequately
captures the regional-scale spatial distributions of landslide
occurrences and provides essential information for regional-scale
landslide susceptibility models (see “Methods”). However, it is
possible that our results from both physically-based or data-driven
models may be biased due to the inherited uncertainties and
limitations of our input data that are resolution-sensitive (e.g.,
topographic metrics, mapped landslides).

Despite data limitations and uncertainties, our method is
general and adaptable to other regions as well as sets and formats
of contributing factors and available datasets. Our SNN analysis
of the easternmost Himalaya alone presents an important
contribution to landslide hazard studies. High mountains in Asia
hold the majority of human losses due to landslides globally,
according to a global analysis conducted using 2004–2016 data1,2.
Due to the associated high risks, there have been efforts to model
landslide susceptibility in the Himalayan regions based on
currently available data with limited resolutions9,20,56–58. Our
work aims to capture the regional-scale spatial distributions of
landslide susceptibility, differentiate controls of landslide occur-
rences, and provide interpretable, empirical functional relation-
ships between landslide controls and susceptibility. The
decoupled SNN-identified functions combined with future
changes in environmental conditions (e.g., extreme
precipitation)9,72 may provide a promising tool for assessing
potential landslide hazards in this area. Additionally, a modified
version of the semi-automatic detection algorithm can be
extended further to incorporate InSAR data from sources such
as Copernicus Sentinel-1 satellites alongside time-scale optical
satellite imagery73,74 to specifically detect slow-moving landslides
in future studies. With these datasets, we can apply SNN methods
to slow-moving landslides and assess the controls of surface
deformation while accounting for temporal changes in environ-
mental conditions75. Our method is easily applicable to other
locations, different datasets, and other physical hazards, such as
earthquakes and wildfires. The SNN is remarkably simple
consisting of only two hidden layers, yet its performance rivals
that of DNNs. Our SNN can also be easily updated and improved

when global, open-source, high-resolution datasets and high-
performance computational resources become more available in
the future.

Methods
Study area. Numerous landslides in the Himalayan region come from steep
topography, intense rainfall and flood events, and seismic activities48,49,58,76,77. In
particular, the easternmost Himalaya (Fig. 3) has a high susceptibility to landslides
due to the following reasons. First, this area exhibits a dramatic precipitation
gradient due to moisture originating from the Bay of Bengal in the south49–51

(Fig. 3). Previous studies have calculated daily and mean annual precipitation rates
based on 90-min measurements from the Tropical Rainfall Measuring Mission
(TRMM) 2B31 over 12 years (January 1998 to December 2009), with a spatial
resolution of ~5 km249. According to these datasets, our region has mean annual
precipitation rates (MAP) varying from ~7000 mm/yr in the range front to ~200
mm/yr in the hinterland49 with the number of extreme rainfall events (NEE),
calculated as the number of days that exceed the 90th percentile of daily rainfall
rates, reaching ~13 and ~2 events/yr in the range front and hinterland,
respectively49. The dramatic orographic patterns of precipitation magnitude and
variability are also observed in the 57-yr Asian Precipitation-Highly Resolved
Observational Data Integration Towards Evaluation of Water Resources project
(APHRODITE)70. Second, this area has consistently steep slopes from the range
front, where Holocene Himalayan shortening is concentrated near and along the
Main Frontal Thrust, into the hinterland, which is affected by deglaciations from
the last glacial maximum78–81. Third, this area is prone to active seismicity. The
1950 MW 8.6 Assam earthquake, one of the largest earthquakes in the Himalayan
range, struck the nearby Namche Barwa region52. Since 1973, this region has
experienced >450 earthquakes with MW > 4 according to the Incorporated Research
Institutions for Seismology data archive (www.iris.edu, accessed on 10/01/2020).
Many of these factors contribute to landslide occurrences in our study site.

Within the easternmost Himalaya, we selected three regions (the Dibang, Lohit,
and range front regions) with varying ranges of landslide controls to test the
performance and application of the SNN model (Fig. 3 and Supplementary Fig. 1).
Both Dibang and Lohit regions extend from the active range front to the
hinterland, from north to south and east to west, respectively. The Dibang region
consists of metasedimentary rocks in the range front and crystalline rocks in the
hinterland. The Lohit region is mainly composed of crystalline rocks. The active
range front region is oriented in a northwest-southeast direction and mainly
composed of metasedimentary rocks.

Landslide Inventory. We generated a landslide inventory of the easternmost
Himalaya using a semi-automatic detection algorithm that combines manual
delineation of landslide areas with an automatic detection algorithm based on
convolutional neural networks (CNN)53–55 (Fig. 4a–c; the method illustrated using
a flowchart diagram in Supplementary Fig. 2). The basic procedure is as follows.
We initially mapped landslides using 30 m resolution Landsat 8 imagery from
November 2017 with bands 2, 3, 4, 5, and 771. These satellite images were used to
generate natural and false color imagery to show information of landcover types.
High degrees of vegetation in the area allow for the easy detection of vegetation
removal due to landslides and clear delineation of a landslide polygon. Most
landslides are mapped as a combination of source and deposit, which are difficult
to distinguish in coarse resolution Landsat bands. Whenever possible, we excluded
debris transport or deposits and only mapped landslide scars associated with
source areas. Because our landslide mapping is based on spectral signatures of post
failures, our inventory likely includes both shallow, soil landslides and deep,
bedrock landslides.

We only assessed regions where landslides generally have the potential to occur
or be detectable. Thus, areas of topographic slope less than 0.06 and alpine areas
without vegetation cover were excluded from our landslide mapping and analysis.
A slope threshold of 0.06 was determined to be the minimum slope along which
landslides occur based on a cumulative distribution function of slope from
observed landslides in the easternmost Himalaya. Similar criteria based on terrain
characteristics such as slope or local relief have been used in previous studies to
constrain the area of landslide analysis82. Alpine areas were classified using spectral
signatures representing snow cover in Landsat 8 imagery from February 2018.

Then, we used a CNN to detect landslides automatically, following previous
works53,54 (Supplementary Fig. 2). The CNN is used as a segmentation model for
identifying landslides from 5 Landsat 8 bands and 7 input features (i.e., mean
curvature, elevation, local relief, mean annual precipitation, slope, failure index,
and wetness). The model takes a 32 × 32 × 12 patch as an input, where 12
represents the sum of 5 satellite bands and 7 input features. The model produces a
32 × 32 binary patch as an output, where landslide pixels are given a value of 1, and
non-landslide pixels are given a value of 0. The model segments a full region by
dividing the region into 32 × 32 patches, segmenting each patch individually, then
stitching the model outputs back together to obtain a fully segmented region. The
training dataset was prepared by manually annotating a small percentage of each
studied region to be used as the ground truth targets for training the CNN. The
manually annotated areas were selected as a number of randomly distributed
50 × 50 pixel square sections throughout the studied regions. The manually
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annotated sections were selected such that half of them include landslides and half
of them do not. Hundreds of 32 × 32 patches were extracted from each
50 × 50 square section to augment the size of the training dataset. Once the CNN
model is trained and used to segment the full region, the result is reviewed
manually by an expert and modifications are made.

We manually corrected landslides from the automatic detection method using
Landsat 8 images, high-resolution satellite images from Google Earth, and a 4-band
Planetscope Scene with a 3 m resolution. Manual correction is necessary because of
potentially inaccurate representations of landslide areas in automatically mapped
inventories. Common issues include large detected features aggregated from
multiple, adjacent landslides and small detected features that are not related to
landslides82,83. We divided aggregated features into multiple landslides following
suggestions from a previous study83. Most landslide polygons in all study regions
were checked for aggregated features, which were divided based on the spectral
signatures of recent scars and debris flows shown in high-resolution imagery. We
used the manually corrected, automatically mapped landslides for our final
landslide inventory (referred to as semi-automated landslides)55. The spatial
distributions and extents of landslides from our inventory are shown in Fig. 4a–c.

The manually and semi-automatically detected landslides show a good
correspondence [>90% match for landslides > 4 pixels (3600 m2)] based on object
identification that examines the existence of overlapping areas. Generally, most
landslides missing from the manually detected inventory are objects with a small
number of pixels that are not easily and objectively detected by humans. Semi-
automated landslides with ≤4 pixels comprise ~7.5% of total landslide areas. When
comparing these pixels with 3 m resolution Planetscope Scene satellite images
during the post-processing procedure, we found that many of these pixels are
indeed small landslides showing different spectral signatures (e.g., Supplementary
Fig. 3). Thus, we included these semi-automatic landslides with ≤4 pixels in our
final inventory. Areas commissioned by semi-automatic detection, but not manual
mapping, were ~0.1, ~0.4, and ~0.1%, while areas omitted by semi-automated
detection were ~0.2, ~0.6, and ~0.1% of the N-S, NW-SE, and E-W study areas,
respectively.

The area frequency distribution of our landslides from manual and semi-
automatic mappings before 2017 shows a similar distribution to that of pre-2007
landslides from a nearby eastern Himalayan region that were manually mapped
using 15–30 m resolution ASTER and Landsat images48,84 (Supplementary Fig. 4).
According to a global compilation of geometrical measurements and types of 4231
landslides84, soil landslides from all examined regions including the Himalayan
region do not appear to exceed an area of 100,000 m2. Below this threshold, soil
landslides tend to be dominant48,84. In our landslide inventory, <1% of individual
landslides and <20% of total landslide area are greater than 100,000 m2

(Supplementary Table 1). Thus, we assume that most mapped landslides are likely
soil landslides. In addition, we find that more abundant small landslides detected
using the semi-automated method are similar to those observed in the landslide
area-frequency distribution based on high resolution imagery (~4–15 m) from an
eastern Himalayan region nearby (Supplementary Fig. 4)48. This supports that our
semi-automatically mapped landslide inventory likely includes many small
landslides missed by humans that were detected by a CNN-based automatic
detection algorithm.

The total number of semi-automatically mapped landslides in our inventory is
2289, whose areas range from 900 to 1.96 × 106 m2 (Fig. 4a–c). The total mapped
landslide area is 2.83 × 107 m2, which produces a landslide density of 0.007 within
the entire study area of 4.19 × 109 m2 (Supplementary Table 1). Landslide density is
also calculated within a 2.25 km2 window, which is greater than the largest
landslide size (1.96 km2). Landslide densities calculated over a 2.25 km2 window
are high in the range front (maximum of 0.121) and low in the hinterland
(maximum of 0.039).

Model input feature descriptions. We quantified the spatial distribution of 15
topographic, climatic, and geologic controls and used them as input features for the
SNN (Supplementary Fig. 5, Supplementary Table 2). Topographic controls include
aspect (the direction of topographic slope face; Asp), mean curvature (CurvM),
planform curvature, profile curvature, total curvature, distance to channel (DistC),
drainage area, elevation (Elev), local relief calculated as an elevation range within a
2.5 km radius circular window (Relief), and slope. Climatic or hydrologic controls
include discharge, mean annual precipitation (MAP), and number of extreme
rainfall events (NEE). Last, geologic controls include the distance to lithologic
boundaries (i.e., mostly faults) (DistF) and distance to the Main Frontal Thrust and
suture zone (DistMFT). These features were selected from literatures that examined
landslide occurrences in the Himalayan region20,56–58. We mostly used features
directly measured through satellite data including a 90 m digital elevation model
from the Shuttle Radar Topography Mission (SRTM)71 and rainfall magnitude and
variability from TRMM49, as well as published regional geologic maps79,85. Uti-
lizing open-source satellite data with a long-term historic archive allows anyone to
easily implement our approach in other regions (e.g., Himalayan Arc) with limited
accessibility, high landslide potential, and a long landslide history1,2,9,86.

Below are the details of our data sources and methods of calculation. First,
topographic variables such as slope, aspect, local relief, curvature, distance to
channel, and drainage area were calculated from a 90 m SRTM digital elevation
model (DEM)71. Although a higher-resolution 30 m DEM is available, it contains

missing values within our study area. Thus, we used a 90 m DEM for calculating
topographic variables. Slope was calculated as the steepest descent gradient using
an 8-direction (D8) flow routing method87. We calculated aspect, the direction of
slope face, as the angle in degrees clockwise from north given by the components of
the 3-D surface normal. The surface normal was calculated using the x, y, and z
components of each pixel. Local relief was calculated as the range in elevation
within a 2.5 km radius circular window. We used a 2.5 km radius window because
it is similar to the length scale of across-valley widths in the range front where most
landslides are. Local relief at this scale allowed us to quantify the spatial variation of
topographic relief relevant to landslides on these fluvial valleys. Curvature was
calculated as the second derivative of the 90 m SRTM DEM. We calculated mean,
planform, profile, and total curvatures using TopoToolbox 287,88.

To calculate distance from channel, we first determined flow direction using D8
flow routing. The flow direction was carved through topographic depressions and
flat areas to avoid sinks and generate a continuous drainage system. We then
imposed a minimum drainage area of 1 km2 needed to initiate a stream before
extracting a stream network based on the flow direction. Using the stream network,
we calculated the distance of each pixel in the DEM to the nearest location in the
stream network.

We acquired MAP and NEE from a previous study49 that analyzed the Tropical
Rainfall Measuring Mission (TRMM) 2B31 datasets from January 1998 to
December 2009. Daily rainfall and MAP values were integrated from 90-min
measurements over 12 years. To calculate NEE, the 90th percentile of daily rainfall
total for each pixel was determined for the 12-year measurement period49. Only
days with measured rainfall were included in calculating the probability density
function. The number of days per year with a daily rainfall total above the 90th
percentile was counted as NEE49,89. The resolution of the original MAP and NEE
datasets in our study area is ~5 km2, which we resampled to 30 m resolution to be
consistent with the resolution of our landslide inventory. To calculate the drainage
area, we first calculated D8 flow directions of stream networks and calculated the
number of upstream cells that contribute to each pixel. The number of cells can
then be converted into a drainage area. Discharge was calculated by summing
upstream contributing cells weighted by their MAP to account for spatially varying
precipitation patterns. Using these weights, cells with higher MAP values will
contribute more to total discharge than cells with lower precipitation values.

Previous studies82,90 have shown that distance to fault ruptures is a good
predictor for the occurrence of earthquake-induced landslides. We do not have
information on active fault planes at depth and ground peak acceleration patterns
for past earthquakes in these regions. Thus, we calculated DistMFT for our study
regions as each pixel’s Euclidean distance from the closest point on traces of the
Main Frontal Thrust (MFT) and suture zones mapped by Taylor and Yin85. These
faults represent potentially active faults in our study area79,80. Because the suture
zone is located far to the north, DistMFT largely reflects the distance to the MFT. In
addition, we calculated DistF as the Euclidean distance of each pixel from
boundaries separating all lithologic units reported in79. We included DistF because
bedrock tends to be more damaged near major lithologic boundaries due to
faulting, which may influence landslide occurrences. The Euclidean distance was
calculated using ArcGIS 10.6.

SNN training method: composite features. We categorize composite features by
the number of product operations involved. For example, given a problem with n
original input features x1, x2, . . . xn, we can generate a set of M ≥ n composite
features χ1, χ2, . . . χM, where Level-1 features are the single original features (first-
degree monomials such as xi) and Level-2 features are composite features equal to
the product of two Level-1 features. As an example, we may form the product x1*x2
(second-degree monomial), where the monomials x1 and x2 are Level-1 features.
Level-3 features are composite features consisting of a product of three Level-1
features, such as x1*x2*x3 or x1 � x22, and so on, resulting in third-degree mono-
mials. Composite features are restricted to functions that cannot be derived from
another function by elementary algebraic transformations. For example, x21 � x22
and 2*x1*x2 are not permitted since they can be derived from x1*x2 by elementary
operations (namely, by squaring and scaling, respectively). In mathematics, com-
posite features differing from each other by a finite number of elementary
operations could define an equivalence class.

SNN training method: optimization. The flow diagram of the superposable neural
networks (SNN) training method is presented in Fig. 2. The SNN is an additive
model91,92 with a unique architecture described by Eq. (1) and Fig. 1, and a unique
training method explained here.

The method can be summarized by the following steps:

(1) Multivariate polynomial expansion: composite features are generated.
(2) Tournament ranking: an automated feature selection method we have

designed for finding the features that are most relevant to the model.
(3) Multistage training (MST): a second-order deep learning technique for

generating a high-performance teacher network.
(4) Fractional knowledge distillation: a technique we designed for separating the

contribution of each feature to the final output.
(5) Parallel knowledge distillation: standard knowledge distillation individually

applied to networks corresponding to each feature.
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(6) Network superposition: merging single layer networks corresponding to
each feature into one SNN.

The two stages of knowledge distillation are key in facilitating the optimization
of the highly constrained SNN architecture in a way that maximizes accuracy while
minimizing the number of neurons for optimal model simplicity. The multi stage
training (MST) DNN used as the teacher model due to its high performance and
regularization properties, was tuned to minimize the difference between training
and testing accuracy to guide the SNN model into a regularized solution that avoids
over-fitting. The steps are further explained in detail below.

SNN training method: multivariate polynomial expansion. Given n features
x1, x2,…, xn, we generate M composite features χ1, χ2,…, χM according to a pre-
determined maximum composite feature level.

Example 1. If the original number of features is 3 and the maximum composite
feature level is Level-3, then we generate 13 composite features ½χ1; χ2; ¼ ; χ13� ¼
½x1; x2; x3; x1 � x2; x1 � x3; x2 � x3; x1 � x2 � x3; x21 � x2; x21 � x3; x22 � x1; x22 � x3; x23�
x1; x

2
3 � x2�.
In this work, we have used 15 original features with a maximum composite

feature Level-2. Because Level-3 performs marginally better than Level-2, we
consider the Level-2 SNN as our optimal SNN. With 15 original features and the
maximum composite feature Level-2, we generate a total 120 composite features.
All features are standardized with zero-mean and unit-variance. The Level-1 SNN
inputs are single features, and the Level-2 SNN inputs are single and composite
features. The SNN output is the estimated total landslide susceptibility (St) at a
specific location, which is the sum of the susceptibility contributions from all
individual features. Our optimization approach allows for the exploration of
multiple combinations of parameters (e.g., 120 composite features for Level-2)
without relying on an expert’s choices, preconditions, or classifications of input
features. The initial set of potentially relevant features is determined by the
tournament ranking step. The most relevant features are then iteratively
determined during the training process, where the contribution of each control to
susceptibility (Sj, where j corresponds to a single or composite feature) is quantified
using multiple steps of knowledge distillation. By superposing Sj, we produced
(pixel-by-pixel) the total landslide susceptibility map, St, with values ranging from
0 to 1 as the final product (Fig. 2).

SNN training method: tournament ranking. Our feature selection technique is
based on a point system and uses a combination of backwards elimination and
forward selection93 as building blocks. The composite features generated in the
previous steps are randomly arranged into groups, with each group containing a
subset of the features. Each feature group is used to train a simple neural network
model. After the network is trained, backwards elimination is applied using area
under the receiver operating characteristic curve (AUROC) as the performance
criterion (Supporting Information). The top performing feature in the group
receives a point. This process is repeated many times; several thousand groups were
generated in the training of each SNN in this work. Features are ranked according
to the points they accumulated. Forward selection is then applied in the order of
the feature ranking to select the features that will be passed on to the next step.

The second-order Levenberg-Marquardt algorithm45 was used in training the
individual neural networks models. It should be noted that using second-order
training is essential for the practicality of this step. Unlike first-order training
algorithms (based on gradient descent) that require manual hyper parameter
tuning, second-order training algorithms are robust. In addition, second-order
training can achieve better performance with fewer parameters45,94–99. This allows
for the automation of the process, and reduces the memory requirements for
training the networks, yielding a more efficient parallel implementation on
multicore processors.

SNN training method: multistage training. The high-ranked features that are
passed on from the previous step are used to train a high-performance DNN. We
chose MST as our DNN model, since it has shown superior performance in similar
applications as well as regularization properties that counteracts over-fitting42–44.

SNN training method: fractional knowledge distillation. Knowledge distillation
is a technique to reduce model complexity, by using the soft output of a more
complex teacher DNN as the target of a less complex student DNN46. The MST in
the previous step acts as our teacher network.

We have designed a variation of knowledge distillation that allows us to isolate
the contribution of each feature to the estimated output. We call this variation
fractional knowledge distillation (FKD), a term that is inspired by the fractional
distillation technique in chemistry. We illustrate this using a step-by-step example
for the case of two features. This can be easily generalized to any number of
features.

Example 2. Assume that two composite features [χ1, χ2] are passed on from the
feature selection stage, and ordered according to importance where χ1 is the most
important. Let ts0 be the set of soft targets obtained from the MST output:

(1) Save a copy of ts0, named ts0c
(2) Train a simple DNN net1,1 using only χ1 as input and ts0 as an output
(3) Obtain o1,1, the set of outputs of net1,1
(4) Update ts0 to ts0− o1,1
(5) Train a simple DNN net2,1 using only χ2 as input and ts0 as an output
(6) Obtain o2,1, the set of outputs of net2,1
(7) Update ts0 to ts0− o2,1
(8) Evaluate performance by calculating AUROC using ∑2

i¼1 ∑
1
j¼1 oi;j and ts0c

(9) Train a simple DNN net1,2 using only χ1 as input and ts0 as an output
(10) Obtain o1,2, the set of outputs of net1,2
(11) Update ts0 to ts0− o1,2
(12) Train a simple DNN net2,2 using only χ2 as input and ts0 as an output
(13) Obtain o2,2, the set of outputs of net2,2
(14) Update ts0 to ts0− o2,2
(15) Evaluate performance by calculating AUROC using ∑2

i¼1 ∑
2
j¼2 oi;j and ts0c

(16) Repeat n times until the performance stops improving

Each DNN above consists of only a few neurons and is trained for a small
number of epochs where the contribution of each feature is gradually determined
to avoid numerical instabilities. The number of neurons and epochs are hyper
parameters that can be tuned based on the data. We note that the DNNs in the
FKD are part of the optimization, not the final optimized SNN model. Each DNN
has a single input and a single output. The function of the input relative to the
output is completely known in this case regardless of the model. Each feature has
multiple DNNs that gradually improve its functional relationship to the output in
an aggregate manner. This enables grouping all the DNNs corresponding to a
specific feature and adding their outcome (the aggregate DNN model will still have
a single input and a single output). Once the functional relationship of the feature
is learned, it’s distilled to a single transparent layer in the next step which is what is
actually used in the optimized SNN model, making it fully interpretable.

SNN training method: parallel knowledge distillation. The outputs from groups
of networks, corresponding to each feature from the previous step, are added
together to yield one soft target per feature. Knowledge distillation is separately
used to train a single SNN layer for each feature.

Example 3. Following the previous example:

(1) Create two soft targets: ts1 ¼ ∑n
j¼1 o1;j , and ts2 ¼ ∑n

j¼1 o2;j
(2) Train a single layer network net1 using χ1 as input and ts1 as an output
(3) Train a single layer network net2 using χ2 as input and ts2 as an output

SNN training method: network superposition. The single layer networks from
the previous step are merged together to create the SNN, by adding an output layer
that sums up the outputs of all the networks from the previous step. The con-
nection weights at the output layer are set to one. The output of the SNN is a
continuous value between 0 and 1, which determines the network’s estimation of
landslide susceptibility at a specific location.

Example 4. Following the previous example, an SNN is created with χ1 and χ2 as
inputs and O= o1+ o2 as the output, where o1 is the output of net1 and o2 is the
output of net2.

SNN training method: implementation. In this work, we have created three SNNs
for three regions. The data samples from each region were partitioned into roughly
70% for training and 30% for testing. All reported performance metric results in
the paper were obtained using the testing portion of the data. Class imbalance was
taken into consideration when training the networks. Given that the percentage of
positive targets (locations containing a landslide) in each region is substantially
smaller than negative targets (locations with no landslide), positive targets were
weighted higher than negative targets in the training cost functions following the
approach in ref. 44.

Pythagorean tiling. While applying the SNN to landslide susceptibility modeling,
we aimed to satisfy a number of conditions: (1) Full model interpretability, both
locally and globally. (2) Minimizing the number of features included in the model.
(3) Maximizing prediction accuracy. (4) Optimizing generalizability, such that the
model is equally representative across each region.

Due to the nature of this application, special attention should be paid to the last
requirement. The standard practice in ML is to divide available data into two main
partitions. One partition is used for training/validation (typically 70% of the data)
and the other one for testing (typically 30% of the data). Traditionally, the goal is to
maximize the reported accuracy of the testing partition where to a certain extent,
over-fitting in the training portion of the data is not a primary concern. A key
difference in this application is that a model generated for a certain region must be
equally representative of and applicable to the entire region after training, both in
accuracy and explainability. To meet this requirement, we use a special data
partitioning technique that utilizes Pythagorean tiling to divide our data in a
spatially representative manner that maintains variability between training and
testing partitions. Using Pythagorean tiling, we generate a checkerboard pattern
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with a 70/30% square ratio, where bigger squares correspond to training and
smaller squares correspond to testing (Fig. 5). Instead of primarily aiming to obtain
the highest accuracy on the testing portion of the data, our algorithm is designed to
find a more conservative solution with optimal balance between maximizing testing
accuracy and minimizing the difference between training and testing accuracies.

Data availability
The manual and semi-automatically mapped landslide inventories and environmental
control datasets used within this manuscript are provided through the UCLA Dataverse:
https://doi.org/10.25346/S6/D5QPUA.

Code availability
The SNN code associated with this paper is available on GitHub: https://github.com/
GeoSNN/GeoSNN.git. The associated DOI is: https://doi.org/10.5281/zenodo.7833891.
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