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Multi-objective optimization is often a difficult task owing to the need to balance competing
objectives. Solution to a multi-objective optimization problem is represented by a set of non-
dominated designs that form Pareto frontier in objective space. Quality approximation of Pareto
frontier requires performing thousands of experiments that makes the process computationally
demanding. In this work, we propose two active subspace-based Bayesian optimization methods
to handle expensive multi-objective design tasks. The Active Subspace Method (ASM) enables
recognition of highly informative lower dimensional spaces in design space in terms of objective
function variability. Defining a problem on lower dimensional spaces ease learning process
and enables better approximations of Pareto frontier at lower computational expenses. The
approaches are demonstrated on different real-world engineering problems.

I. Introduction
Many design problems in engineering involve optimization of expensive black-box objective functions with unknown

characteristics. Often, limited computational resources necessitate the use of efficient algorithms that can both explore
and exploit the unknown design space. In such circumstances, Bayesian optimization (BO) algorithms [1, 2] have been
effectively used and offer significant improvements in efficiency in comparison to other design algorithms [3, 4]. A
Bayesian optimization algorithm works with minimal data, incorporates prior knowledge about an objective function,
calculates the posterior distribution and looks for the potentially best next experiment to iteratively improve the current
best design and increase the potential to improve it further on the next iteration. A Bayesian optimization framework
uses surrogate models, usually Gaussian processes (GPs) [5] to model underlying objective functions. An acquisition,
or utility function is also used to search for the best decision to make at every iteration to maximize the improvement of
system’s estimation of the optimal design.

A concern with any optimization algorithms, including Bayesian optimization frameworks is loss of efficiency as
the dimensionality of the design space increases. As the number of design variables goes up, searching the space gets
more challenging and numerical aspects of many algorithms can deteriorate, adversely affecting the learning process.
Although Bayesian optimization frameworks are known to work with minimal data, their performance diminishes in
high-dimensional design spaces. To address the issue, some dimensionality reduction techniques have been proposed,
for example, subspace approximation techniques [6] are introduced to project high-dimensional design problems onto a
lower dimensional space. This in fact can ease the learning process of an objective function and increase the efficiency of
a design framework [7–9]. The active subspace method (ASM) is one of subspace approximation techniques introduced
in Refs. [10–12]. The idea behind this technique is to define an objective function on a lower dimensional space such
that the highest amount of information about the objective function is preserved. In other words, the active subspace is
a subspace of the high-dimensional design space which an objective function varies the most. The active subspace
is formed using directions that an objective function has the largest variability and those directions that the objective
function is less sensitive to are discarded. Once the active subspace is formed, optimization can be performed over this
lower dimensional space to avoid wasting resource to search less important regions of the design space.

The key difference between the active subspace method and some other dimensionality reduction techniques, like,
principal component analysis (PCA) [13], is that the active subspace method aims to preserve the most information
about the objective function in a lower dimensional space to assist the optimization process. In contrast, techniques such
as PCA seek to keep as much information as possible about the samples only in the input space, which is not necessarily
helping with finding the optimal design and actually, it may result in loss of information about the objective function.
The active subspace method has been used in works such as design optimization [14–16], shape optimization [17–19],
and uncertainty quantification [20, 21]. Recently, a multifidelity Bayesian optimization framework employing this
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technique has been proposed in Ref. [22] where they have shown how to apply the active subspace method in presence
of different models with varying active subspaces representing the same quantity of interest. However, in all of these
works, single objective functions are being optimized. To the best of our knowledge, there is no work done toward
employing a subspace approximation technique to optimize multi-objective functions.

Some studies have proposed other dimensionality reduction techniques to solve multi-objective optimization
problems. In Refs. [23, 24], they introduce algorithms to divide design variable into diversity related clusters and deal
with sub-groups of variables one by one, considering the linkage between design variables. In Ref [25], a strategy is
proposed that take into account the mapping relationships between design variables and objective functions. They divide
the decision space into several subspaces based on the obtained relationships and take local search strategies. Another
work presented in Ref. [26] clusters the design variables into convergence related and diversity related groups. Then,
principal component analysis is used to reduce the dimensionality of the those design variables affecting the convergence
of the evolution. Our contribution in this study is to propose approaches to allow use of active subspace method
as a subspace approximation technique in Bayesian optimization frameworks to handle multi-objective optimization
problems. The challenge here is that every objective function has a different active subspace and varies differently
with respect to the change in design variables. Basically, we aim to explore different active subspaces and count for
their impact on improving the solution estimation of multi-objective design problems. Two different approaches are
introduced in this work and we investigate how using the active subspace method can improve the performance of
multi-objective Bayesian optimization frameworks.

The rest of the paper proceeds as follows. First, background is provided to discuss each ingredient of the proposed
framework. Gaussian process regression is introduced as surrogates to model objective functions, followed by presenting
a discussion on multi-objective optimization and available techniques to solve such design problems. The active
subspace method is introduced as the last part of the background section. We then describe proposed approaches to
implement the active subspace method within a multi-objective Bayesian optimization framework. Finally, we apply
our proposed approaches on some real-world design problems to examine the performance of each approach. We then
provide concluding remarks and discuss avenues of future work.

II. Background
A multi-objective optimization problem is defined as

minimize { 𝑓1 (x), ..., 𝑓𝑛 (x)}, x ∈ X (1)

where 𝑓1 (x), . . . , 𝑓𝑛 (x) are the objectives, usually in form of black-box functions, and X is the feasible design space.
Although we develop an unconstrained approach, but in can be extended to a constrained approach by considering
penalty terms for constraint handling. For instance, in some of the applications presented in this work, a new objective
is introduced to encapsulates all constraint’s violation penalty terms.

A. Gaussian Process Regression
A Gaussian process (GP) conditions a probabilistic model to training data to represent an objective function as a

stochastic process. GPs allow for estimating an underlying function using previously evaluated samples from a model at
negligible computational cost. The popularity of GPs for modeling purposes in engineering applications stems from
their flexibility and easy manipulation characteristics. A GP maps every point in the input space to a normal distribution
in the objective space defined by mean and covariance functions [5]. Assume there are 𝑁 previously evaluated samples
from an objective function that forms our prior knowledge about that objective function denoted by {X𝑁 , y𝑁 }, where
X𝑁 = (x1, . . . , x𝑁 ) are 𝑁 input designs and y𝑁 = ( 𝑓 (x1), . . . , 𝑓 (x𝑁 )) are the corresponding objective values. Then,
the posterior distribution of the objective function at any input location x is given as

𝑓GP (x) | X𝑁 , y𝑁 ∼ N
(
𝜇(x), 𝜎2

GP(x)
)

(2)

where
𝜇(x) = 𝐾 (X𝑁 , x)𝑇 [𝐾 (X𝑁 ,X𝑁 ) + 𝜎2

𝑛 𝐼]−1y𝑁

𝜎2
GP (x) = 𝑘 (x, x) − 𝐾 (X𝑁 , x)𝑇

[𝐾 (X𝑁 ,X𝑁 ) + 𝜎2
𝑛 𝐼]−1𝐾 (X𝑁 , x)

(3)
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with 𝑘 as a real-valued kernel function over the input space. Then, 𝐾 (X𝑁 ,X𝑁 ) is a 𝑁 × 𝑁 matrix with 𝑚, 𝑛 entry as
𝑘 (x𝑚, x𝑛), and 𝐾 (X𝑁 , x) is a 𝑁 × 1 vector with 𝑚𝑡ℎ entry as 𝑘 (x𝑚, x). The term 𝜎2

𝑛 , incorporates model observation
error based on experiments or expert’s opinion. Among different choices for the kernel function, we use the squared
exponential function:

𝑘 (x, x′) = 𝜎2
𝑠 exp

(
−

𝑑∑︁
ℎ=1

(𝑥ℎ − 𝑥 ′ℎ)
2

2𝑙2
ℎ

)
(4)

where 𝑑 is the dimensionality of the input space, 𝜎2
𝑠 is the signal variance, and 𝑙ℎ, where ℎ = 1, 2, . . . , 𝑑, is the

characteristic length-scale that determine the degree of correlation between samples within the dimension ℎ of the input
space. A maximum likelihood method [5] may be employed to obtain the optimum hyperparameters for a GP, but as
the dimensionality of the space increases, there are chances that these methods fail since there are not sufficient data
available. Therefore, expert’s opinion can be a better choice in such cases.

B. Multi-Objective Optimization
In multi-objective design problems, it is usually the case that some objectives are in contradiction with each other

and there is no single solution optimizing all objectives simultaneously. To manage such design problems, one approach
is to create a single scalar objective, for example, weighted sum of all objective values, to transform the problem in to a
single objective optimization problem. Another approach is to discover non-dominated solutions converging to the
Pareto frontier. In this work, we take the latter technique and try to find the best approximation of the Pareto frontier.
Here, non-dominated designs, y, to a 𝑛-objective design problem are given as

{y : y = (𝑦1, 𝑦2, . . . , 𝑦𝑛), 𝑦𝑖 ≤ 𝑦′𝑖 ∀ 𝑖 ∈ {1, 2, . . . , 𝑛}, ∃ 𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑦 𝑗 < 𝑦′𝑗 } (5)

where y′ = (𝑦′1, 𝑦
′
2, . . . , 𝑦

′
𝑛) denotes possible objective outputs. The set of y is the Pareto front of the problem. Figure. 1

illustrates the Pareto frontier of a 2-objective design problem if the goal is to minimization of both objectives.

Fig 1. All points on the red line are non-dominated and constitute the solution set.

There are several methods to approximate Pareto frontiers of multi-objective optimization problems such as the
weighted sum approach [27], the adaptive weighted sum approach [28], normal boundary intersection methods [29],
hypervolume indicator methods [30–36], and others. In this work, we employ a hypervolume indicator approach since
it is a better fit for expected improvement-based algorithms. In hypervolume indicator approaches, the concept of
hypervolume is introduced as the quality measure of Pareto front approximation. By defining a fixed reference point
in the objective space, the hypervolume is computed as the volume between this reference point and approximated
non-dominated designs. A larger hypervolume indicates a better approximation of Pareto front, thus, a hypervolume
indicator algorithm seeks to maximize the hypervolume. Mathematically, the hypervolume and its uncertainty can
be calculated using, for example, prior predictive distributions obtained from GPs for each objective value. In this
work, we follow Ref. [37] for fast and exact computation of expected hypervolume improvement (EHVI) as the utility
function in a Bayesian optimization framework to balance the exploration of the space versus exploitation of the current
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system’s knowledge of optimum designs. Mathematical expressions and details about the computation of EHVI and the
implementation in Bayesian optimization frameworks are discussed in Refs. [37–42].

C. The Active Subspace Method
Dimensionality reduction techniques are used to represent data in lower dimensional spaces, mainly to reduce the

associated computational costs of working with high-dimensional data, for example, in machine learning objectives.
The active subspace method (ASM) is one of such techniques that is used to approximate an objective function in
lower dimensional spaces. In contrast to other dimensionality reduction techniques that seek to project data to lower
dimensions such that they preserve the most information about the data, for instance, principal component analysis
(PCA), the active subspace method uses mapping information from input to output space and considers information
form output space as well. In other words, the dimensionality of the input space is reduced such that the highest
amount of information on the output side is preserved. The contribution of objective space’s information makes
active subspace method well-suited for learning purposes in machine learning objectives [10, 22, 43]. Although using
approaches such as PCA can ease the learning process by reducing the dimensionality of the input space to address
the curse of dimensionality in some degree, it is usually the case that in machine learning design tasks, there are not
enough observations initially available, plus, preserving the information in the input space is not necessary linked to the
information needed for optimizing an objective function.

The active subspace is considered a highly informative lower dimensional space representing the objective function.
Figure 2 illustrates an example of a 2-dimensional space and a possible active subspace which is essentially 1-dimensional
in this case. By defining an objective function in a lower dimensional space, we speed up the design process significantly
and reduce associated computational costs required for probing the space looking for the best next experiment in
Bayesian optimization frameworks.

Fig 2. An example of determining the active subspace and inverse mapping problem solutions of a 2-dimensional
design space.

Following the Refs. [11, 43, 44], assuming a scalar function 𝑓 that takes 𝑚 dimensional input x from the design
space X, ∇𝑥 𝑓 represents the gradient of the objective function at location x in X. First, we compute the covariance of
the gradient, C:

C = E[∇x 𝑓 (x)∇x 𝑓 (x)T] (6)
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If the objective function has a black-box nature, as it does in many engineering design problems, the gradient can be
approximated by Monte Carlo approaches. Assuming there are 𝑀 samples available from previous function evaluations,
the covariance matrix is formed as

C ≈ 1
𝑀

𝑀∑︁
𝑖=1

∇x 𝑓 (x𝑖)∇x 𝑓 (x𝑖)T (7)

By computing the eigenvalues and eigenvectors of the covariance matrix, the effectiveness of directions defined by
eigenvectors can be compared by the respective eigenvalues. Based on the eigenvalue decomposition, the covariance
matrix can be written as

C = W𝜆WT (8)

where W is the matrix formed by eigenvectors and 𝜆 is a diagonal matrix of eigenvalues. To build an 𝑛-dimensional
active subspace, the eigenvectors corresponding to the first 𝑛 largest eigenvalues are selected.

W = [U V], 𝜆 =

[
𝜆1

𝜆2

]
(9)

The matrix U has 𝑛 eigenvectors corresponding to the first 𝑛 largest eigenvectors forming 𝜆1 and is called the
transformation matrix. Any design point in X can be transformed to the active subspace using the transformation matrix:

z = UTx (10)

and the function 𝑔 represents the original function 𝑓 in the active subspace:

𝑔(z) = 𝑔(UTx) ≈ 𝑓 (x) (11)

Once the transformation matrix U is found, all evaluated design points from the objective function 𝑓 are projected to the
active subspace

Z𝑁 = UTX𝑁 (12)

and a new Gaussian process is built using the projected design points in the active subspace

𝑔(z) | Z𝑁 , y𝑁 ≈ N
(
𝜇(z), 𝜎2 (z)

)
(13)

where 𝑔(z) is the posterior distribution of the objective function in the active subspace. Now, we seek to learn the
objective function 𝑔 in the active subspace instead of the original objective function 𝑓 .

When using the active subspace method, Bayesian optimization should be completed twice at every iteration. The
first step is applied by probing the active subspace to suggest the best next experiment, while the second step must be
completed over the original input space. The trick here is, for the second step, we only search the subspace of the full
high-dimensional space that has the same projection on the active subspace as the selected design in the first step. As
shown in Fig. 2, the point x∗ is selected in the active space, then the second step is to search the subspace defined by
vector P. Detailed discussion on how to find the complementary subspace for completing the second step and solve the
mapping back problem is provided in Refs. [16, 22].

III. Approach
In this section, we introduce a framework to employ the active subspace method in optimization of multi-objective

functions.
A challenge when employing the active subspace method in multi-objective design problems is that each objective

function varies differently when moving toward different directions in the design space. Therefore, there are multiple
active subspaces available depending on which objective value is used for calculations. Here, we aim to use all possible
active subspaces and seek to maximize the acquisition function (EHVI in this work). Here, we propose 2 different
approaches:

• Approach 1: suggest one best next experiment per objective function using its active subspace
• Approach 2: suggest one best next experiment chosen among the best next experiments selected in the first step

of Bayesian optimization using the active subspace associated to each of the objective functions
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Fig 3. Illustration of both approaches to employ the active subspace method in multi-objective optimization
framework.

Here, we explain each approach in more details.
The first approach accounts for improving the approximation of Pareto front with respect to all objective functions in

turn. Basically, the optimization is done multiple times at every iteration using different active subspaces. Note that, we
still use EHVI as the utility function to value each potential next experiment in both steps of Bayesian optimization, but
we define the problem on different active subspaces to explore the impact of all objective functions on the hypervolume
improvement. Taking this approach, it is possible to employ parallel computations, exploring all active subspaces at no
additional simulation wall-time.

In other approach, the second step of Bayesian optimization is completed over a pool of best experiments created by
storing all suggested best experiments in active subspace of each objective function. In other words, once the first step
of Bayesian optimization is completed over an active subspace and the selected design is mapped back to the original
design space, the resulted solution set is added to a pool. Then, the second step of Bayesian optimization searches
this pool to suggest the best next experiment (best of best next experiments). This approach is still exploring all active
subspaces but only one experiment is selected to be completed, regardless of the active subspace searched in the first
steps of Bayesian optimization. Figure 3 is summarizing the steps in both approaches.

IV. Applications
To assess the performance of our framework, we have implemented it to solve a few real-world engineering design

problems. Although there are available some synthetic test functions for testing multi-objective optimization approaches,
the problem is, most often, these synthetic functions, such as DTLZ function family [45] or ZDT function family [46],
have unusual properties and unrealistic characteristics that do not usually appear in engineering applications. Therefore,
we believe real-world applications and available physical models are a better choice to examine and compare the
performance of evolutionary multi-objective optimization algorithms. In the following, we present the results of
implementing both suggested approaches and compare it to the case without employing the active subspace method to
solve multiple real-world engineering design problems from Ref. [47], where they introduce several easy to implement
design problems suitable for testing multi-objective optimization frameworks. Via representing each design problem
by simple mathematical expressions, for example, defining parameters using response surface methods, it is possible
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to model different engineering applications without running specific simulation software or experiment. Readers are
referred to [47] for details of the each design problem and formulation of objective functions and constraints.

All the results are averaged over 50 replications of a simulation.

A. Four bar truss design problem
This is a 2-objective design problem defined on a 4-dimensional design space. Design variables represent the length

of four bars and the goal is to minimize the structural volume and the joint displacement of the four bar truss.

0 50 100 150 200
Iteration

4.6

4.8

5

5.2

5.4

5.6

H
yp

er
vo

lu
m

e

105

No ASM
With ASM (Approach 1)
With ASM (Approach 2)
Query limit (if any)

Fig 4. Four bar truss design problem. Hypervolume values averaged over 50 replications of a simulation for all
approaches.

Figure 4 shows the hypervolume at different iterations. Note that the value of the hypervolume itself does not
provide any specific information as it depends on the reference point selected for computing the hypervolume, however,
the improvements are indications of finding better approximations of the Pareto front. Employing the first approach
introduced in Sec. III, at any iterations, a better Pareto front is found in comparison to the case where no active subspace
method is used. On the other hand, the second approach is not suggesting any improvements to the results. One
argument here is, the first approach is making 1 evaluation per objective, so the total number of experiments is twice the
other approaches. Although the evaluations can be made in parallel, without increasing the simulation time, the budget
may have been defined over total number of allowed experiments and not the number of iterations. In this condition, by
employing the first approach, all budget is exhausted at iteration 100, marked in Fig. 4. As evident, in this scenario, the
final hypervolume is almost the same as the approach with no ASM, but the optimization time is halved. This points to
the fact that taking advantage of the active subspace method is beneficial in the sense that it makes it possible to discover
the optimal design region faster.

B. Reinforced concrete beam design problem
This is a constrained 3-dimensional design problem and the first objective is to minimize the total cost of concrete

and reinforcing steel of the beam. To formulate the second objective, we use sum of all constraint violations and seek to
minimize it.

In Fig. 5, it has been shown that taking the first approach is successfully discovering a significantly better
approximation of the Pareto front as the hypervolume values are considerably larger. Regardless of the scenario defined
to solve this design problem, either limiting the number of iterations or number of allowed evaluations, employing the
active subspace method is suggesting better solutions in both proposed approaches in comparison to the case where the
active subspace method tool is not utilized.

C. Hatch cover design problem
In this constrained 2-dimensional design problem, the first objective is to minimize the weight of the hatch cover and

the second objective is to minimize constraint violations. Flange thickness and beam height of the hatch cover are the
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With ASM (Approach 1)
With ASM (Approach 2)
Query limit (if any)

Fig 5. Reinforced concrete beam design problem. Hypervolume values averaged over 50 replications of a
simulation for all approaches.

design variables.

0 20 40 60 80 100

Iteration

19.3

19.35

19.4

19.45

H
y
p
e
rv

o
lu

m
e

No ASM

With ASM (Approach 1)

With ASM (Approach 2)

Query limit (if any)

Fig 6. Hatch cover design problem. Hypervolume values averaged over 50 replications of a simulation for all
approaches.

similarly, the first proposed approach is successfully discovering a better Pareto front in comparison to other
approaches. In case of limitation over allowable number of experiment, it suggests a faster discovery of the optimal
region. The second proposed approach however, is not suggesting any improvements when compared to no ASM
approach. A possible issue with this approach can be if it is not exploring all active subspaces associated to objective
functions. In other words, it is possible that in every iteration, the selected experiment is coming from exploring only
one of the active subspaces, so that the potential improvements regarding the other active subspaces are missed.

D. Disc brake design problem
This is a constrained design problem defined over a 4-dimensional design space with 3 objectives to be minimized:

mass of the brake and minimum stopping time. The third objective is formulated as sum of constraint violations. Design
variables in this problem introduce inner and outer radii of the discs, engaging force and number of friction surfaces.

Similar to reinforced concrete beam design problem, both approaches taking advantage of the active subspace
method are outperforming the Bayesian optimization approach with no ASM. In Fig. 7, it is shown that how quickly the
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Fig 7. Disc brake design problem. Hypervolume values averaged over 50 replications of a simulation for all
approaches.

first approach is discovering optimal non-dominated design regions. Significantly larger hypervolumes are achieved in
only a few iterations.

E. The vehicle crashworthiness design problem
The objective in this 5-dimensional design problem is to minimize the weight, acceleration characteristics and

toe-board instruction of the vehicle design. Design variables are the thickness of reinforced members of the frontal
structure.

0 50 100 150 200
Iteration

1.46

1.48

1.5

1.52

1.54

1.56

1.58

H
yp

er
vo

lu
m

e

No ASM
With ASM (Approach 1)
With ASM (Approach 2)
Query limit (if any)

Fig 8. The vehicle Crashworthiness design problem. Hypervolume values averaged over 50 replications of a
simulation for all approaches.

Finally, the results of applying both approaches to solve the vehicle crashworthiness design problem are presented in
Fig. 8. Again, taking the first approach, larger hypervolumes are quickly obtained in comparison to other cases. As
mentioned earlier, the second approach where perform the second step of Bayesian optimization over a pool of best
possible experiments selected from the first step of Bayesian optimization step is not able to suggest any improvements
which can be due to the fact that it misses exploring all active subspaces.
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V. Conclusions and Future Work
In this study, we proposed two approaches to employ the active subspace method in optimization of multi-objective

functions in Bayesian optimization framework. By using the active subspace method , it is possible to define the
design problem in a lower dimensional space to ease the learning process. Since in multi-objective design problems,
each objective function is associated to a different active subspace, we seek to explore all active subspaces to make
improvements to the hypervolume of the approximated Pareto front. The results suggest that, by exploring all active
subspaces and make evaluations accordingly (that can be done in parallel), better approximations of Pareto frontier is
obtained in less amount of computational time, indicating efficiency gains of this approach in comparison to the case
which the active subspace tool is not used. The results for the other proposed approach are mixed and is not clear how it
interacts with different active subspaces. There is a possibility that it gets stuck in exploring the same objective function’s
active subspace, so that it is not able to provide significant improvements to the results after some point. Overall, the
first proposed approach that explores all objective function’s active subspaces is dominating in terms of providing better
approximation of a Pareto front. Although the preliminary results are promising and suggesting possible efficiency
gains via employing the active subspace method in Bayesian optimization of multi-objective functions, we continue to
investigate how different active subspaces in a design problem interact with each other and what are other potential
solutions to further increase the efficiency of our proposed approaches. A subject of future work is to implement the
active subspace method in multifidelity settings. In such cases, there exist multiple sources (models or experiments)
estimating the same set of objective functions varying in fidelity level and computational cost. Via employing an
information fusion technique such as reification or cokriging [48, 49], pieces of information from different sources are
fused to mitigate the need for querying more expensive models. Therefore, there will be the additional interaction of
different models active subspaces as well as different objective functions.
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