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Abstract

Face swapping technology used to create ”Deepfakes”

has advanced significantly over the past few years and now

enables us to create realistic facial manipulations. Current

deep learning algorithms to detect deepfakes have shown

promising results, however, they require large amounts of

training data, and as we show they are biased towards

a particular ethnicity. We propose a deepfake detection

methodology that eliminates the need for any real data

by making use of synthetically generated data using Style-

GAN3. This not only performs at par with the traditional

training methodology of using real data but it shows bet-

ter generalization capabilities when finetuned with a small

amount of real data. Furthermore, this also reduces biases

created by facial image datasets that might have sparse data

from particular ethnicities. To promote reproducibility the

code base has been made publicly available 1 .

1. Introduction

Numerous approaches have been proposed to create

photo-realistic deepfakes in recent years. With every new

approach that is proposed, the quality of the deepfakes is

getting better; we will likely eventually reach a point where

humans are unlikely to distinguish them from real images

or video [24]. Most current approaches make use of face-

swapping models where the face of a person is replaced with

that of another in an image or video. While current ap-

proaches to detecting deepfakes have been promising they

require a large dataset of facial images. This can be chal-

lenging as publicly available datasets have extremely strict

licenses or in some cases do not have the rights for use of

the data cleared - such as the FakeAVCeleb, FF++, Celeb-

DF, and UADFV to name a few. Some of these datasets

have directly used videos from YouTube or other such pub-

lic spaces without obtaining proper consent from the peo-

ple that appear in the videos. Published datasets that have

claimed to use images of celebrities scraped from public

1https://github.com/anubhav1997/youneednodataset

Figure 1. Examples of images generated using StyleGAN3 [18].

forums have often included data from ”ordinary” individu-

als [23] and have hence been discontinued due to such rea-

sons [22]. This leads to a need to move away from such

approaches that require large amounts of privacy-sensitive

data.

In fact, biometric data privacy is now considered a fun-

damental right and the collection and usage of such data is

regulated under the law. For example, in 2017 the Indian

supreme court ruled that privacy is a fundamental right of

its residents and further emphasized that the protection of

biometric data is of utmost importance. Recently, we have

seen regulations such as the General Data Protection Reg-

ulation by the European Union that have brought the usage

of biometric data under strict data protection laws. In the

United States, similar steps have been taken. In California,

the California Consumer Privacy Act (CCPA) and Califor-

nia Privacy Rights Act (CPRA) were put in place for this

very purpose. In 2008, Illinois set forth the Biometric In-

formation Privacy Act (BIPA), which has so far also been

adopted by the states of Washington and Texas. Companies

such as Facebook [26], Google [3], and Shutterfly [1] have

come under the scanner for their usage of facial images of

their users under the BIPA law. On a national level, the

National Biometric Information Privacy Act of 2020 (Sen-

ate Bill 4400) was introduced, if passed it would further

strengthen the regulations on such data [2].

There has also been an ongoing debate on whether re-

20
22

 IE
EE

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e 
on

 B
io

m
et

ric
s (

IJC
B)

 |
 9

78
-1

-6
65

4-
63

94
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IJC
B5

42
06

.2
02

2.
10

00
79

67

Authorized licensed use limited to: New York University. Downloaded on November 28,2023 at 17:22:16 UTC from IEEE Xplore.  Restrictions apply. 



(a) Source (b) Target (c) Swapped using SimSwap (d) Swapped using SberSwap

(e) Source (f) Target (g) Swapped using SimSwap (h) Swapped using SberSwap

Figure 2. Examples of face swaps created using SimSwap and Sberswap.

searchers should be legally allowed to use publicly avail-

able biometric data and especially faces [12]. While it is

still not illegal to do so, it is often considered to be an ethi-

cal issue. This stems from the fact that the users appearing

in these datasets are neither informed about their data being

used nor has their consent been taken beforehand. If a user

deletes their data from a public forum or wishes to do so,

the machine learning models built using their data cannot

be tracked and machine unlearning of this data which is no

longer publicly available is close to impossible. Moreover,

there is no way of tracking the datasets that are using data

that the user no longer deems to be public. These ethical and

legal conundrums have resulted in approaches for building

vision models that move away from using data that contain

biometric data of individuals.

In this paper, we propose a dataset-free approach for

training a face-swap detection model that will help in by-

passing such key privacy concerns by utilizing images of

people that don’t exist. We do this by generating fake iden-

tities and using these to create deepfakes or face swaps.

Since we create face swaps on the fly a major concern

that arises with such an approach is that we assume that we

have access to the face-swapping model in question. While

this may seem to hamper its applicability in the real-world

scenario, we show that this detection model built upon a

face-swapper is generalizable to unseen face-swapping al-

gorithms. We further emphasize this by showing that the

detection model learns interpretable features through visu-

alization using Captum [21]. We observe that the model

performs the best when it is fine-tuned with a small sample

of real data to take care of the domain shift between syn-

thetic and real data.

Finally, we show that the deepfake detector trained on

real-world data is biased against certain ethnicity. This has

serious implications where deepfakes pertaining to this eth-

nicity is less likely to be detected. And as is often the case

this arises due to biases existing in the dataset that is used to

train the classification model. Our approach eliminates this

dataset induced bias by using synthetic images. We show

empirically in the paper that training a face swap detector

using synthetic data helps in removing biases in the model

architecture. A simple intuition is that synthetic datasets or

GAN models give an additional level of control over the im-

age we want. Even simply random sampling from the GAN

latent space is powerful enough to reduce the bias signifi-

cantly as we will show in this paper.

2. Related Work

2.1. Deepfake and Face Swapping Detection

There has been a lot of recent interest in the de-

tection of deepfakes and face-swapped images. Face-

swapping methodologies can be divided into traditional

face-swapping methods that use software such as Adobe

Photoshop and the more recent GAN-based face-swapping

models. In this paper, the focus is on the detection of the

latter. Ding et al. [7] proposed a transfer learning-based

approach to detect face swaps that were created using Au-

toencoder GAN and Nirkin’s method. The dataset that the

authors created consisted of approximately 420,000 images.

The frequency-domain has been used for the detection of

face swaps in conjunction with a CNN-based network [20].

Guan et al. [10] proposed an approach to detect face swaps

based on the inconsistencies in the 3D facial shape and

appearance-based features. The authors tested the model on

the FaceSwap and Deepfakes subset of the FaceForensics++
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dataset. Other researchers have also proposed approaches

that improve the generalizability of these classifiers such as

Jiang et al. [16]. However, their work requires the corre-

sponding real face as a reference for prediction - which may

not always be feasible to acquire. This also raises certain

privacy concerns.

2.2. Synthetic Datasets

Generative adversarial networks have widely been used

to create realistic synthetic imagery. In the past couple

of years, GAN-generated images have become more and

more realistic and have been successful in deceiving hu-

man beings. Now the question arises that since these im-

ages are indistinguishable from real images, can they also

be used to train deep classifiers? Grosz et al. [9] showed

that fingerprint spoofing classification benefits from the us-

age of synthetic GAN-generated fingerprints. They trained

the spoofing classifier first only with generated images and

further fine-tuned it using real images which shows better

performance as compared to only training using real im-

ages. Jahanian et al. [13] used generated images as a source

for multiview representation learning. They show that the

learned representations are as good or sometimes even bet-

ter than the ones learned using real data. Moreover, using

contrastive learning, they were able to easily find positive

pairs by generating images from nearby latent vectors.

Other benefits of using synthetic datasets have also been

studied. Jaipuria et al. [15] showed that using synthetic data

augmentation they were able to improve the model general-

izability in the cross-dataset scenario by introducing more

diversity in the training dataset. While these studies com-

prehensively show that there is a reasonable advantage to

using synthetic data, they do not discuss the inherent biases

introduced in the models due to class imbalance, and under-

representation of particular ethnicities, genders, or racial

groups.

3. Datasets

In the paper we evaluate the trained face swap detec-

tion models on three datasets - Flickr Faces High Quality

(FFHQ), CelebA-HQ, and the Amsterdam Dynamic Facial

Expression Set (ADFES).

The Flickr Faces HQ dataset [19] contains 70,000 high

quality 1024x1024 real closeup facial images. The images

were scrapped from Flickr and thus have some distribution

amongst various age groups, ethnicities, and backgrounds.

The images were further processed by aligning and crop-

ping them using dlib. We split the dataset into train and test

sets with 30,000 images in the test set and the remaining

40,000 in the train set. For validation, we have utilized a

small subset of images from the train test.

The CelebA-HQ dataset [17] is higher quality version of

the CelebA dataset of resolution 1024x1024. As the name

Figure 3. Overview of the proposed approach to detect face-

swapped images using synthetically generated images.

suggests the dataset contains images of celebrities. The im-

ages have variable backgrounds and are diverse in terms of

ethnic groups, age, and gender. We utilize the entire dataset

for testing our models. Given the diversity in the dataset, we

also use it for experimentation on understanding the biases

present in the detection models.

The Amsterdam Dynamic Facial Expression Set (AD-

FES) [8] is a smaller dataset that contains 648 images from

22 models showcasing nine facial expressions: fear, anger,

contempt, disgust, joy, sadness, pride, embarrassment, and

surprise. The images in the dataset are of size 576x720 and

thus had to be resized to 1024x1024 using bilinear interpo-

lation. Moreover, the dataset contains only Northern Euro-

pean and Mediterranean models. The entire dataset is uti-

lized for testing.

4. Proposed Approach

In this section, we describe the proposed pipeline of us-

ing synthetic images to train a face-swapping detection al-

gorithm. To fairly evaluate the advantages of using syn-

thetic images over using real images from the FFHQ dataset

for training the classifier we have kept all other parame-

ters consistent including preprocessing steps along with op-

timization parameters batch size and learning rate.

The pipeline contains 3 major steps as shown in figure

3. These are the generation of synthetic data, face swap-

ping using the generated data, and finally classification of

the face swaps.

4.1. Data Generation

We generated synthetic images using a pre-trained Style-

GAN3 [18] model. The StyleGAN3 model was trained

on the Flickr-Faces High-Quality [19] dataset to generate

1024x1024 closeup facial images. Figure 1 shows some ex-

amples of the generated images. Instead of creating a syn-

thetic dataset [13] which would require a high amount of

storage space we generate batches of images and use this

for training. To ensure that the faces we generate are dis-

similar we use a random vector generated using a different

seed value for every batch. Moreover, we randomly select

the truncation-psi value between [0, 1] using a normal dis-

tribution.

4.2. Face Swapping

The generated images from StyleGAN3 are further used

for creating face swaps. The face swapper takes in a batch

Authorized licensed use limited to: New York University. Downloaded on November 28,2023 at 17:22:16 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. Evaluation of the Xception trained only on synthetic data (row 1), real data from FFHQ dataset (row 2), and synthetic data with

finetuning on FFHQ dataset (row 3) on the FFHQ, ADFES, and CelebA-HQ dataset. The classifier is trained to detect images from one

face swapper and is tested in a cross-modal scenario on another.

Train Type Train Swap Model Test Swap Model FFHQ ADFES CelebA-HQ

Trained on FFHQ Simswap Simswap 0.9973 1.0000 0.7437

Sberswap 0.9972 1.0000 0.7437

Sberswap Simswap 0.9973 0.9979 0.9341

Sberswap 0.9974 0.9979 0.9341

Synthetic Data Simswap Simswap 0.9972 0.9979 0.8821

Sberswap 0.8802 0.9353 0.8509

SberSwap Simswap 0.9913 0.9916 0.8221

Sberswap 0.9921 0.9916 0.8236

Finetuned on FFHQ Simswap Simswap 0.9974 1.0000 0.9167

Sberswap 0.9971 1.0000 0.9164

Sberswap Simswap 0.9955 0.9979 0.9979

Sberswap 0.9973 1.0000 0.9877

Table 2. Evaluation of the biases on the model trained with real data vs the models trained with synthetic data when testing on the CelebA-

HQ dataset using the metrics Accuracy Difference (AD), Difference in Rejection Rate (DRR), and Difference in Acceptance Rate (DAR).

Train Type Train Swap Test Swap Ethnicities Gender Age

Model Model AD DRR DAR AD DRR DAR AD DRR DAR

Trained on Simswap Simswap 0.2233 0.2385 0.0181 0.1581 0.1555 0.0064 0.3384 0.5409 0.0069

FFHQ Sberswap 0.2573 0.2893 0.0181 0.1402 0.1236 0.0070 0.3388 0.6686 0.0103

Sberswap Simswap 0.0933 0.1656 0.0160 0.0589 0.1030 0.0054 0.2828 0.9044 0.1429

Sberswap 0.1053 0.2172 0.0142 0.0542 0.0865 0.0056 0.2813 0.8983 0.1430

Finetuned Simswap Simswap 0.0729 0.1281 0.0164 0.0384 0.067 0.0054 0.3703 0.6646 0.0133

on FFHQ Sberswap 0.0982 0.1923 0.0159 0.0331 0.0483 0.0047 0.3676 0.8624 0.0100

Sberswap Simswap 0.0180 0.0221 0.0184 0.0069 0.0151 0.0043 0.2223 0.9816 0.1250

Sberswap 0.0198 0.0334 0.0154 0.0086 0.0117 0.0058 0.2223 0.9818 0.1250

of GAN-generated images and generates N − 1 number of

swapped images by swapping the i − th image with the

(i+ 1)− th image.

We used two methodologies to swap faces - SimSwap [4]

and SberSwap [5]. Both of these are GAN-based mod-

els that have been trained on the VGGFace2-HQ and VG-

GFace2 datasets respectively.

The SimSwap architecture consists of three parts - the

encoder, ID injection module (IIM), and the decoder. The

ID injection module transfers the identity of the source im-

age onto the target. The network is trained with an identity

loss to ensure that the identity of the source image is gener-

ated. The network ensures that other facial attributes such

as expression and gaze direction are transferred.

The SberSwap algorithm is an improvement over the

FaceShifter network [5]. They make use of the AEI mod-

ule combined with an adaptation of reconstruction loss

proposed by SimSwap. They have an additional super-

resolution block that makes the resulting images more re-

alistic. They also added an eye loss, that was specifically

made to ensure the consistency of the eye. The discrepan-

cies in the eye and iris shape have been discussed in detail

by previous researchers as being an easy way to spot deep-

fakes [11].

4.3. Classification Network

Finally, for the classification network, we use the Xcep-

tion network [6]. Authors of the FaceForensics++ dataset

[24] found this to be the best performing model on their

dataset. We have used the same hyperparameters as in the

original paper for consistency.

The Xception network is trained for binary classifica-

tion with a categorical cross-entropy loss function to dis-

tinguish between the face swapped and the original images.

We changed the input and output classification layers from

the original ImageNet model architecture. For training the

classifier binary classification model, the synthetically gen-

erated images are considered as the ”real class” and the face
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swapped images are considered as the ”fake class”. While

the synthetic media isn’t truly a ”real class” and is often

considered to be fake, in this particular case the deep learn-

ing model will learn distinguishing features between the

two classes. Since both classes have synthetically gener-

ated images, the distinguishing features would come from

the face swapper.

As a baseline model, we train the XceptionNet using

only real images from the training set of the FFHQ dataset

instead of using synthetically generated images. For fair

comparison, only the training data has been changed, while

keeping the model architecture and other training dynamics

the same. The two models are trained using a batch size of

12 - which was the largest batch that could fit on an RTX-

8000 GPU node. Due to the large size of the FFHQ dataset,

we limited the number of steps per epoch to 2000 for both

the models that were trained using real data and synthetic

data.

5. Results

5.1. Detection Performance

The classification performance of the models trained on

real and synthetic data is tested both in the seen and un-

seen scenarios with respect to the face swap model and

the dataset. We performed two sets of cross-modality ex-

periments to test the efficiency of the proposed approach.

First, we tested the model against an unseen face swap at-

tack. For example, a model trained only on face swaps

generated from SimSwap is tested on face swaps generated

from SberSwap. Secondly, there might be some informa-

tion leakage in the case of the FFHQ dataset through the

StyleGAN3 model which was trained on this dataset, thus

we test the model on two other datasets that have been col-

lected in completely different settings and backgrounds. In

fact images from the ADFES dataset had to be resized with-

out maintaining the aspect ratio. A model that is able to

generalize in such a scenario is immune to resizing-based

image transformations. This is typically not the case with

models that learn noise level differences and artifacts.

We observed that simply training on GAN-generated im-

ages led to good performance on the FFHQ and the AD-

FES dataset ( 99% accuracy for both) and even generalized

to a different face-swapping method than it was originally

trained on. However, the accuracy results for the CelebA-

HQ dataset were lower as compared to the model trained

on real FFHQ data. The model trained on real data with

both the swapping and testing model being SberSwap had a

detection accuracy of 93.41% and for the same setting, the

model trained on synthetic data had only 82.36% accuracy.

While there were also scenarios where the model trained on

synthetic data performed better than the model trained on

real data, this showed that there was still a need for over-

coming the domain shift to perform better than the model

solely trained on real data. For this purpose, we finetune the

model trained solely on synthetic data with only 12,000 real

images from FFHQ. This finetuned model performed better

than the model solely trained on synthetic data in all combi-

nations of datasets and face-swapping model - generalizing

well across different datasets and face-swap technologies.

5.2. Bias

We hypothesize that the models trained on synthetic data

would be fairer or less biased. Since models trained on real

data exhibit similar biases to the datasets they are trained

on and in this case, the absence of a dataset allows an extra

layer of control to mitigate bias. Our empirical results show

that even simply random sampling images from a GAN

model leads to significantly lesser bias in the resultant clas-

sification model.

To test our hypothesis we utilize three metrics for evalu-

ation of the post-training model biases - accuracy difference

(AD), the difference in acceptance rate, and the difference

in rejection rate. Accuracy difference is the maximum dif-

ferent between the classification accuracy of different facets

in a set of demographics {d1, d2, ..., dn} ∈ D (equation 1).

DAR and DRR have similarly been defined as the maximum

difference in acceptance and rejection rates respectively (eq.

2 and 3). Here acceptance rate is defined as the ratio of true

positive predictions to the observed positives and the rejec-

tion rate is defined as the ratio of the true negative predic-

tions to the observed negatives.

AD = maxi,j |ACCi −ACCj |∀i, j ∈ D (1)

DAR = maxi,j |ARi −ARj |∀i, j ∈ D (2)

DRR = maxi,j |RRi −RRj |∀i, j ∈ D (3)

For this work, we have categorized the people based on

their ethnicity/race, age, and gender. DeepFace model [25]

was used for categorization of the image into these sub-

groups based on the predicted race, age, and gender. We

have considered six ethnic groups of people - white, Asian,

Indian, black, Latino Hispanic, and middle eastern based on

the predictions of DeepFace. The people are classified into

two genders - male and female and we have quantized the

estimated age into buckets of 10 years.

We observed significant improvement in the biases of the

model fine-tuned on real data vs the model solely trained

on real data. The results have been summarized in table

2. From this, we observe that the accuracy difference for

the former is roughly 10 times lesser than the latter in most

cases. Similarly, DRR is about half and DAR is almost the

same. The only anomaly is in the case of biases in age
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Figure 4. Observed Saliency plots for the XceptionNet models

trained on synthetic data (top row) and real data (bottom row)

showing the gradient magnitudes.

groups where the model trained on real data is slightly bet-

ter in terms of AD and DRR. However, it is important to

note that particular age groups such as ’10-20’ and ’70-80’

which had only 16 and 9 samples in the CelebA-HQ dataset

have largely influenced these values. Thus, the major focus

should remain on the values pertaining to the subcategories

of ethnicity and gender where there are a sufficient number

of samples per subcategory (> 500).

5.3. Interpretability

Finally, we analyze the model trained on synthetic data

with the model trained on real data using Captum [21] to

observe the areas the model focuses on for making predic-

tions. The objective behind this experiment is to observe

whether these models are learning meaningful and human

interpretable differences brought by the face swapper or if it

is focusing on noise-level artifacts. We utilize two method-

ologies provided by Captum - Saliency and Occlusion. The

former computes the gradients with respect to the class in-

dex and transposes the output for visualization. While for

the latter a sliding window is used to iteratively occlude part

of the image. The change in the model output is quantified

and visualized.

Figure 5 depicts the Saliency plots for the two models.

It can be seen that the model trained on synthetic data has

more focused regions that clearly align with the human face

attributes such as the eyes, nose, and mouth. However, for

the model trained on real data, the higher valued gradients

are more spread around the face and some background re-

Figure 5. Examples regions that the model focuses on for making

the decisions for both using synthetic data (top row) and real data

for training (bottom row).

gions.

Similarly, for the Occlusion plots in figure 4, it can be ob-

served that the model trained on synthetic data learns more

interpretable and generalizable features. The model trained

only on real data focuses on the entire face region along

with some background regions while on the other hand, the

model trained on synthetic data learns to specifically focus

on facial attributes.

Researchers in the past have shown that detectors tend

to focus on noise level features generated by CNNs more

easily when trained with real data [14, 27]. We hypothesize

that the model trained on synthetic data learns more inter-

pretable or higher-level image features as the synthetic im-

ages which are considered real for the classification model

already contain some CNN-generated artifacts. These arti-

facts get overlayed on the ones introduced by the face-swap

algorithm making it difficult to distinguish between them.

6. Conclusion

In this paper, we present an approach for detecting face

swaps using synthetic data. We show that this dataless

and privacy-aware approach of using faces that do not ex-

ist achieves competitive performance to models trained on

real data. With some additional fine-tuning on real data, the

model trained only on synthetic data can actually surpass

the performance of the model trained on real data. In ad-

dition to the privacy and memory advantages of using syn-

thetic datasets, we show that the final trained model is also

less biased and learns more interpretable features. We mea-

sure the bias based on the performance of the model across

the different races, genders, and age groups. Overall, we

have shown several advantages to shifting from using real

data for training such models to using synthetic data.
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