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Abstract

Face swapping technology used to create ”Deepfakes”
has advanced significantly over the past few years and now
enables us to create realistic facial manipulations. Current
deep learning algorithms to detect deepfakes have shown
promising results, however, they require large amounts of
training data, and as we show they are biased towards
a particular ethnicity. We propose a deepfake detection
methodology that eliminates the need for any real data
by making use of synthetically generated data using Style-
GAN3. This not only performs at par with the traditional
training methodology of using real data but it shows bet-
ter generalization capabilities when finetuned with a small
amount of real data. Furthermore, this also reduces biases
created by facial image datasets that might have sparse data
from particular ethnicities. To promote reproducibility the
code base has been made publicly available ' .

1. Introduction

Numerous approaches have been proposed to create
photo-realistic deepfakes in recent years. With every new
approach that is proposed, the quality of the deepfakes is
getting better; we will likely eventually reach a point where
humans are unlikely to distinguish them from real images
or video [24]. Most current approaches make use of face-
swapping models where the face of a person is replaced with
that of another in an image or video. While current ap-
proaches to detecting deepfakes have been promising they
require a large dataset of facial images. This can be chal-
lenging as publicly available datasets have extremely strict
licenses or in some cases do not have the rights for use of
the data cleared - such as the FakeAVCeleb, FF++, Celeb-
DF, and UADFV to name a few. Some of these datasets
have directly used videos from YouTube or other such pub-
lic spaces without obtaining proper consent from the peo-
ple that appear in the videos. Published datasets that have
claimed to use images of celebrities scraped from public

Uhttps://github.com/anubhav1997/youneednodataset

Figure 1. Examples of images generated using StyleGAN3 [18].

forums have often included data from ordinary” individu-
als [23] and have hence been discontinued due to such rea-
sons [22]. This leads to a need to move away from such
approaches that require large amounts of privacy-sensitive
data.

In fact, biometric data privacy is now considered a fun-
damental right and the collection and usage of such data is
regulated under the law. For example, in 2017 the Indian
supreme court ruled that privacy is a fundamental right of
its residents and further emphasized that the protection of
biometric data is of utmost importance. Recently, we have
seen regulations such as the General Data Protection Reg-
ulation by the European Union that have brought the usage
of biometric data under strict data protection laws. In the
United States, similar steps have been taken. In California,
the California Consumer Privacy Act (CCPA) and Califor-
nia Privacy Rights Act (CPRA) were put in place for this
very purpose. In 2008, Illinois set forth the Biometric In-
formation Privacy Act (BIPA), which has so far also been
adopted by the states of Washington and Texas. Companies
such as Facebook [26], Google [3], and Shutterfly [1] have
come under the scanner for their usage of facial images of
their users under the BIPA law. On a national level, the
National Biometric Information Privacy Act of 2020 (Sen-
ate Bill 4400) was introduced, if passed it would further
strengthen the regulations on such data [2].

There has also been an ongoing debate on whether re-
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Figure 2. Examples of face swaps created using SimSwap and Sberswap.

searchers should be legally allowed to use publicly avail-
able biometric data and especially faces [12]. While it is
still not illegal to do so, it is often considered to be an ethi-
cal issue. This stems from the fact that the users appearing
in these datasets are neither informed about their data being
used nor has their consent been taken beforehand. If a user
deletes their data from a public forum or wishes to do so,
the machine learning models built using their data cannot
be tracked and machine unlearning of this data which is no
longer publicly available is close to impossible. Moreover,
there is no way of tracking the datasets that are using data
that the user no longer deems to be public. These ethical and
legal conundrums have resulted in approaches for building
vision models that move away from using data that contain
biometric data of individuals.

In this paper, we propose a dataset-free approach for
training a face-swap detection model that will help in by-
passing such key privacy concerns by utilizing images of
people that don’t exist. We do this by generating fake iden-
tities and using these to create deepfakes or face swaps.

Since we create face swaps on the fly a major concern
that arises with such an approach is that we assume that we
have access to the face-swapping model in question. While
this may seem to hamper its applicability in the real-world
scenario, we show that this detection model built upon a
face-swapper is generalizable to unseen face-swapping al-
gorithms. We further emphasize this by showing that the
detection model learns interpretable features through visu-
alization using Captum [21]. We observe that the model
performs the best when it is fine-tuned with a small sample
of real data to take care of the domain shift between syn-
thetic and real data.

Finally, we show that the deepfake detector trained on

(c) Swapped using SimSwap (d) Swapped using SberSwap
1 11 1 11

(g) Swapped using SimSwap (h) Swapped using SberSwap

real-world data is biased against certain ethnicity. This has
serious implications where deepfakes pertaining to this eth-
nicity is less likely to be detected. And as is often the case
this arises due to biases existing in the dataset that is used to
train the classification model. Our approach eliminates this
dataset induced bias by using synthetic images. We show
empirically in the paper that training a face swap detector
using synthetic data helps in removing biases in the model
architecture. A simple intuition is that synthetic datasets or
GAN models give an additional level of control over the im-
age we want. Even simply random sampling from the GAN
latent space is powerful enough to reduce the bias signifi-
cantly as we will show in this paper.

2. Related Work
2.1. Deepfake and Face Swapping Detection

There has been a lot of recent interest in the de-
tection of deepfakes and face-swapped images. Face-
swapping methodologies can be divided into traditional
face-swapping methods that use software such as Adobe
Photoshop and the more recent GAN-based face-swapping
models. In this paper, the focus is on the detection of the
latter. Ding et al. [7] proposed a transfer learning-based
approach to detect face swaps that were created using Au-
toencoder GAN and Nirkin’s method. The dataset that the
authors created consisted of approximately 420,000 images.
The frequency-domain has been used for the detection of
face swaps in conjunction with a CNN-based network [20].
Guan et al. [10] proposed an approach to detect face swaps
based on the inconsistencies in the 3D facial shape and
appearance-based features. The authors tested the model on
the FaceSwap and Deepfakes subset of the FaceForensics++
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dataset. Other researchers have also proposed approaches
that improve the generalizability of these classifiers such as
Jiang et al. [16]. However, their work requires the corre-
sponding real face as a reference for prediction - which may
not always be feasible to acquire. This also raises certain
privacy concerns.

2.2. Synthetic Datasets

Generative adversarial networks have widely been used
to create realistic synthetic imagery. In the past couple
of years, GAN-generated images have become more and
more realistic and have been successful in deceiving hu-
man beings. Now the question arises that since these im-
ages are indistinguishable from real images, can they also
be used to train deep classifiers? Grosz et al. [9] showed
that fingerprint spoofing classification benefits from the us-
age of synthetic GAN-generated fingerprints. They trained
the spoofing classifier first only with generated images and
further fine-tuned it using real images which shows better
performance as compared to only training using real im-
ages. Jahanian et al. [13] used generated images as a source
for multiview representation learning. They show that the
learned representations are as good or sometimes even bet-
ter than the ones learned using real data. Moreover, using
contrastive learning, they were able to easily find positive
pairs by generating images from nearby latent vectors.

Other benefits of using synthetic datasets have also been
studied. Jaipuria et al. [15] showed that using synthetic data
augmentation they were able to improve the model general-
izability in the cross-dataset scenario by introducing more
diversity in the training dataset. While these studies com-
prehensively show that there is a reasonable advantage to
using synthetic data, they do not discuss the inherent biases
introduced in the models due to class imbalance, and under-
representation of particular ethnicities, genders, or racial
groups.

3. Datasets

In the paper we evaluate the trained face swap detec-
tion models on three datasets - Flickr Faces High Quality
(FFHQ), CelebA-HQ, and the Amsterdam Dynamic Facial
Expression Set (ADFES).

The Flickr Faces HQ dataset [19] contains 70,000 high
quality 1024x1024 real closeup facial images. The images
were scrapped from Flickr and thus have some distribution
amongst various age groups, ethnicities, and backgrounds.
The images were further processed by aligning and crop-
ping them using dlib. We split the dataset into train and test
sets with 30,000 images in the test set and the remaining
40,000 in the train set. For validation, we have utilized a
small subset of images from the train test.

The CelebA-HQ dataset [17] is higher quality version of
the CelebA dataset of resolution 1024x1024. As the name
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Figure 3. Overview of the proposed approach to detect face-
swapped images using synthetically generated images.

suggests the dataset contains images of celebrities. The im-
ages have variable backgrounds and are diverse in terms of
ethnic groups, age, and gender. We utilize the entire dataset
for testing our models. Given the diversity in the dataset, we
also use it for experimentation on understanding the biases
present in the detection models.

The Amsterdam Dynamic Facial Expression Set (AD-
FES) [8] is a smaller dataset that contains 648 images from
22 models showcasing nine facial expressions: fear, anger,
contempt, disgust, joy, sadness, pride, embarrassment, and
surprise. The images in the dataset are of size 576x720 and
thus had to be resized to 1024x1024 using bilinear interpo-
lation. Moreover, the dataset contains only Northern Euro-
pean and Mediterranean models. The entire dataset is uti-
lized for testing.

4. Proposed Approach

In this section, we describe the proposed pipeline of us-
ing synthetic images to train a face-swapping detection al-
gorithm. To fairly evaluate the advantages of using syn-
thetic images over using real images from the FFHQ dataset
for training the classifier we have kept all other parame-
ters consistent including preprocessing steps along with op-
timization parameters batch size and learning rate.

The pipeline contains 3 major steps as shown in figure
3. These are the generation of synthetic data, face swap-
ping using the generated data, and finally classification of
the face swaps.

4.1. Data Generation

We generated synthetic images using a pre-trained Style-
GAN3 [18] model. The StyleGAN3 model was trained
on the Flickr-Faces High-Quality [19] dataset to generate
1024x1024 closeup facial images. Figure 1 shows some ex-
amples of the generated images. Instead of creating a syn-
thetic dataset [13] which would require a high amount of
storage space we generate batches of images and use this
for training. To ensure that the faces we generate are dis-
similar we use a random vector generated using a different
seed value for every batch. Moreover, we randomly select
the truncation-psi value between [0, 1] using a normal dis-
tribution.

4.2. Face Swapping

The generated images from StyleGAN3 are further used
for creating face swaps. The face swapper takes in a batch
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Table 1. Evaluation of the Xception trained only on synthetic data (row 1), real data from FFHQ dataset (row 2), and synthetic data with
finetuning on FFHQ dataset (row 3) on the FFHQ, ADFES, and CelebA-HQ dataset. The classifier is trained to detect images from one
face swapper and is tested in a cross-modal scenario on another.

Train Type Train Swap Model Test Swap Model FFHQ ADFES CelebA-HQ
Trained on FFHQ Simswap Simswap 0.9973 1.0000  0.7437
Sberswap 0.9972 1.0000  0.7437
Sberswap Simswap 0.9973 0.9979  0.9341
Sberswap 0.9974 0.9979  0.9341
Synthetic Data Simswap Simswap 0.9972  0.9979  0.8821
Sberswap 0.8802 0.9353  0.8509
SberSwap Simswap 0.9913 0.9916  0.8221
Sberswap 0.9921 09916  0.8236
Finetuned on FFHQ  Simswap Simswap 0.9974 1.0000 09167
Sberswap 0.9971 1.0000 09164
Sberswap Simswap 0.9955 0.9979  0.9979
Sberswap 0.9973 1.0000  0.9877

Table 2. Evaluation of the biases on the model trained with real data vs the models trained with synthetic data when testing on the CelebA-
HQ dataset using the metrics Accuracy Difference (AD), Difference in Rejection Rate (DRR), and Difference in Acceptance Rate (DAR).

Train Type Train Swap Test Swap Ethnicities Gender Age
Model Model AD DRR DAR AD DRR DAR AD DRR DAR
Trained on  Simswap Simswap  0.2233 0.2385 0.0181 0.1581 0.1555 0.0064 0.3384 0.5409 0.0069
FFHQ Sberswap  0.2573 0.2893 0.0181 0.1402 0.1236 0.0070 0.3388 0.6686 0.0103
Sberswap Simswap  0.0933 0.1656 0.0160 0.0589 0.1030 0.0054 0.2828 0.9044 0.1429
Sberswap  0.1053 0.2172 0.0142 0.0542 0.0865 0.0056 0.2813 0.8983 0.1430
Finetuned  Simswap Simswap  0.0729 0.1281 0.0164 0.0384 0.067  0.0054 0.3703 0.6646 0.0133
on FFHQ Sberswap  0.0982 0.1923 0.0159 0.0331 0.0483 0.0047 0.3676 0.8624 0.0100
Sberswap Simswap ~ 0.0180 0.0221 0.0184 0.0069 0.0151 0.0043 0.2223 0.9816 0.1250
Sberswap  0.0198 0.0334 0.0154 0.0086 0.0117 0.0058 0.2223 0.9818 0.1250

of GAN-generated images and generates N — 1 number of
swapped images by swapping the ¢ — th image with the
(¢ + 1) — th image.

We used two methodologies to swap faces - SimSwap [4]
and SberSwap [5]. Both of these are GAN-based mod-
els that have been trained on the VGGFace2-HQ and VG-
GFace? datasets respectively.

The SimSwap architecture consists of three parts - the
encoder, ID injection module (IIM), and the decoder. The
ID injection module transfers the identity of the source im-
age onto the target. The network is trained with an identity
loss to ensure that the identity of the source image is gener-
ated. The network ensures that other facial attributes such
as expression and gaze direction are transferred.

The SberSwap algorithm is an improvement over the
FaceShifter network [5]. They make use of the AEI mod-
ule combined with an adaptation of reconstruction loss
proposed by SimSwap. They have an additional super-
resolution block that makes the resulting images more re-

alistic. They also added an eye loss, that was specifically
made to ensure the consistency of the eye. The discrepan-
cies in the eye and iris shape have been discussed in detail

by previous researchers as being an easy way to spot deep-
fakes [11].

4.3. Classification Network

Finally, for the classification network, we use the Xcep-
tion network [6]. Authors of the FaceForensics++ dataset
[24] found this to be the best performing model on their
dataset. We have used the same hyperparameters as in the
original paper for consistency.

The Xception network is trained for binary classifica-
tion with a categorical cross-entropy loss function to dis-
tinguish between the face swapped and the original images.
We changed the input and output classification layers from
the original ImageNet model architecture. For training the
classifier binary classification model, the synthetically gen-
erated images are considered as the “’real class” and the face
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swapped images are considered as the “fake class”. While
the synthetic media isn’t truly a “real class” and is often
considered to be fake, in this particular case the deep learn-
ing model will learn distinguishing features between the
two classes. Since both classes have synthetically gener-
ated images, the distinguishing features would come from
the face swapper.

As a baseline model, we train the XceptionNet using
only real images from the training set of the FFHQ dataset
instead of using synthetically generated images. For fair
comparison, only the training data has been changed, while
keeping the model architecture and other training dynamics
the same. The two models are trained using a batch size of
12 - which was the largest batch that could fit on an RTX-
8000 GPU node. Due to the large size of the FFHQ dataset,
we limited the number of steps per epoch to 2000 for both
the models that were trained using real data and synthetic
data.

5. Results
5.1. Detection Performance

The classification performance of the models trained on
real and synthetic data is tested both in the seen and un-
seen scenarios with respect to the face swap model and
the dataset. We performed two sets of cross-modality ex-
periments to test the efficiency of the proposed approach.
First, we tested the model against an unseen face swap at-
tack. For example, a model trained only on face swaps
generated from SimSwap is tested on face swaps generated
from SberSwap. Secondly, there might be some informa-
tion leakage in the case of the FFHQ dataset through the
StyleGAN3 model which was trained on this dataset, thus
we test the model on two other datasets that have been col-
lected in completely different settings and backgrounds. In
fact images from the ADFES dataset had to be resized with-
out maintaining the aspect ratio. A model that is able to
generalize in such a scenario is immune to resizing-based
image transformations. This is typically not the case with
models that learn noise level differences and artifacts.

We observed that simply training on GAN-generated im-
ages led to good performance on the FFHQ and the AD-
FES dataset ( 99% accuracy for both) and even generalized
to a different face-swapping method than it was originally
trained on. However, the accuracy results for the CelebA-
HQ dataset were lower as compared to the model trained
on real FFHQ data. The model trained on real data with
both the swapping and testing model being SberSwap had a
detection accuracy of 93.41% and for the same setting, the
model trained on synthetic data had only 82.36% accuracy.
While there were also scenarios where the model trained on
synthetic data performed better than the model trained on
real data, this showed that there was still a need for over-

coming the domain shift to perform better than the model
solely trained on real data. For this purpose, we finetune the
model trained solely on synthetic data with only 12,000 real
images from FFHQ. This finetuned model performed better
than the model solely trained on synthetic data in all combi-
nations of datasets and face-swapping model - generalizing
well across different datasets and face-swap technologies.

5.2. Bias

We hypothesize that the models trained on synthetic data
would be fairer or less biased. Since models trained on real
data exhibit similar biases to the datasets they are trained
on and in this case, the absence of a dataset allows an extra
layer of control to mitigate bias. Our empirical results show
that even simply random sampling images from a GAN
model leads to significantly lesser bias in the resultant clas-
sification model.

To test our hypothesis we utilize three metrics for evalu-
ation of the post-training model biases - accuracy difference
(AD), the difference in acceptance rate, and the difference
in rejection rate. Accuracy difference is the maximum dif-
ferent between the classification accuracy of different facets
in a set of demographics {d1,ds, ...,d,} € D (equation 1).
DAR and DRR have similarly been defined as the maximum
difference in acceptance and rejection rates respectively (eq.
2 and 3). Here acceptance rate is defined as the ratio of true
positive predictions to the observed positives and the rejec-
tion rate is defined as the ratio of the true negative predic-
tions to the observed negatives.

AD = maxi,j|ACCi — ACCAVLJ eD @))

DAR = maxiyj\ARi — ARAVZ,] eD 2)

DRR = maz; j|RR; — RR;|Vi,j € D 3)

For this work, we have categorized the people based on
their ethnicity/race, age, and gender. DeepFace model [25]
was used for categorization of the image into these sub-
groups based on the predicted race, age, and gender. We
have considered six ethnic groups of people - white, Asian,
Indian, black, Latino Hispanic, and middle eastern based on
the predictions of DeepFace. The people are classified into
two genders - male and female and we have quantized the
estimated age into buckets of 10 years.

We observed significant improvement in the biases of the
model fine-tuned on real data vs the model solely trained
on real data. The results have been summarized in table
2. From this, we observe that the accuracy difference for
the former is roughly 10 times lesser than the latter in most
cases. Similarly, DRR is about half and DAR is almost the
same. The only anomaly is in the case of biases in age
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Figure 4. Observed Saliency plots for the XceptionNet models
trained on synthetic data (top row) and real data (bottom row)
showing the gradient magnitudes.

groups where the model trained on real data is slightly bet-
ter in terms of AD and DRR. However, it is important to
note that particular age groups such as *10-20” and *70-80’
which had only 16 and 9 samples in the CelebA-HQ dataset
have largely influenced these values. Thus, the major focus
should remain on the values pertaining to the subcategories
of ethnicity and gender where there are a sufficient number
of samples per subcategory (> 500).

5.3. Interpretability

Finally, we analyze the model trained on synthetic data
with the model trained on real data using Captum [21] to
observe the areas the model focuses on for making predic-
tions. The objective behind this experiment is to observe
whether these models are learning meaningful and human
interpretable differences brought by the face swapper or if it
is focusing on noise-level artifacts. We utilize two method-
ologies provided by Captum - Saliency and Occlusion. The
former computes the gradients with respect to the class in-
dex and transposes the output for visualization. While for
the latter a sliding window is used to iteratively occlude part
of the image. The change in the model output is quantified
and visualized.

Figure 5 depicts the Saliency plots for the two models.
It can be seen that the model trained on synthetic data has
more focused regions that clearly align with the human face
attributes such as the eyes, nose, and mouth. However, for
the model trained on real data, the higher valued gradients
are more spread around the face and some background re-

Figure 5. Examples regions that the model focuses on for making
the decisions for both using synthetic data (top row) and real data
for training (bottom row).

gions.

Similarly, for the Occlusion plots in figure 4, it can be ob-
served that the model trained on synthetic data learns more
interpretable and generalizable features. The model trained
only on real data focuses on the entire face region along
with some background regions while on the other hand, the
model trained on synthetic data learns to specifically focus
on facial attributes.

Researchers in the past have shown that detectors tend
to focus on noise level features generated by CNNs more
easily when trained with real data [14,27]. We hypothesize
that the model trained on synthetic data learns more inter-
pretable or higher-level image features as the synthetic im-
ages which are considered real for the classification model
already contain some CNN-generated artifacts. These arti-
facts get overlayed on the ones introduced by the face-swap
algorithm making it difficult to distinguish between them.

6. Conclusion

In this paper, we present an approach for detecting face
swaps using synthetic data. We show that this dataless
and privacy-aware approach of using faces that do not ex-
ist achieves competitive performance to models trained on
real data. With some additional fine-tuning on real data, the
model trained only on synthetic data can actually surpass
the performance of the model trained on real data. In ad-
dition to the privacy and memory advantages of using syn-
thetic datasets, we show that the final trained model is also
less biased and learns more interpretable features. We mea-
sure the bias based on the performance of the model across
the different races, genders, and age groups. Overall, we
have shown several advantages to shifting from using real
data for training such models to using synthetic data.
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