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INTRODUCTION

  ABSTRACT
Modern engineered systems, and learning-based systems, in particular, provide unprecedented complexity that requires advance-
ment in our methods to achieve confidence in mission success through test and evaluation (T&E). We define learning-based 
systems as engineered systems that incorporate a learning algorithm (artificial intelligence) component of the overall system. A 
part of the unparalleled complexity is the rate at which learning-based systems change over traditional engineered systems. Where 
traditional systems are expected to steadily decline (change) in performance due to time (aging), learning-based systems undergo 
a constant change which must be better understood to achieve high confidence in mission success. To this end, we propose pairing 
Bayesian methods with systems theory to quantify changes in operational conditions, changes in adversarial actions, resultant 
changes in the learning-based system structure, and resultant confidence measures in mission success. We provide insights, in this 
article, into our overall goal and progress toward developing a framework for evaluation through an understanding of equivalence 
of testing.
  KEYWORDS:  Test and Evaluation; systems theory; Bayesian; Learning; artificial intelligence
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Test and evaluation (T&E) frame-
works for learning-based systems 
(LBS) are currently in their na-
scent stage, with existing frame-

works lacking specificity and needing to 
be piloted against actual LBS. By the term 
LBS, we refer to an array of systems, based 
on artificial intelligence (AI), with adaptive 
learning behavior stemming from training 
data, such as machine learning (ML) com-
puter vision algorithms. A particular chal-
lenge arises when considering the impacts 
of changes in operational conditions and 
adversarial actions, which may notably vary 
over the life-cycle of an LBS and cause devi-
ation of the LBS from design limits (Lanus 
2021). Traditional systems employ a black-
box T&E method of providing sampled 
inputs, from which outputs are measured 
against expectations. LBS’s complexity and 
dynamics suggest challenges in applying 

traditional methods (Freeman 2020).
This paper reports on the status of a 

Systems Engineering Research Center 
(SERC) project that aims to establish theory 
and methods for how T&E requirements 
can and should change as a function of 
the test team’s knowledge of LBS technical 
specifications. An overarching objective of 
this research is to characterize the balance 
between the design of T&E activities and 
the cost of data/model rights acquisition 
for LBS. This informs government deci-
sion-makers on the emerging necessity 
for a new policy. We focus this research 
article on building from past research on 
a notional networked munition system of 
systems for ground denial, referred to as 
the Silverfish Testbed (Carter 2019), which 
we leverage to provide insights to our initial 
T&E framework for LBS.

We develop a framework consisting of 

Bayesian methods and a system theoretic 
basis for the mathematical characterization 
of equivalence between pairs, referred to 
as a morphism. The project experimented 
with two pilot scenarios to demonstrate 
how multiple testing phases contribute 
to evaluating an LBS, using morphisms 
as guiding principles. The pilot scenarios 
center on an unmanned aerial vehicle 
(UAV), providing vehicle and human detec-
tion functions in the Silverfish notional 
weapons system. These detection functions 
use the You Only Look Once (YOLO) 
image recognition agent (Redmon 2016) 
trained on the Common Object in Context 
(COCO) data set of images (Lin 2014) and 
paired with simulations and real drones. 
From knowledge of morphic equivalence, 
we frame the correlation between scenarios 
and resulting confidence in mission success 
through Bayesian methods.
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We share insights from our initial frame-
work, practical development, and expected 
future activities in the following sections.

GOALS AND OBJECTIVES
The complexity of T&E for LBS is unpar-

alleled when compared to traditional sys-
tems. LBS have a rate of evolution based on 
behavior changes due to the data ingestion 
rate, which generally has a high frequency, 
such as in the measure of fractions of a 
second. Traditional systems, alternatively, 
are expected to have a low frequency of 
behavior change, even with changes in 
input. Furthermore, traditional systems 
may typically be viewed as deterministic, 
whereas LBS are viewed from a probabi-
listic context. Such distinctions between 
traditional systems and LBS suggest that 
new T&E methods are necessary to cope 
with the magnitude of complexity.

Further complexity arises from the 
necessity to rely on surrogate analogies 
to achieve confidence in mission success 
during developmental testing (DT) of 
LBS. First, the environments and opera-
tional conditions of the mission are often 
analogies to the full scope of the mission 
set. For example, a system developed for a 
mission to Mars would leverage a surrogate 
analogy to the Mars environments on Earth 
(such as desert climate) to gain confidence 
in mission success before deployment to 
the actual Mars environment. Second, the 
real system may not be available during 
DT; surrogate analogous systems are used 
instead. For example, in our case, we use 
simulation and a low-cost drone as surro-
gate analogies for the UAV “real” (fielded) 
system.

This research is driven toward develop-
ing a T&E framework for LBS through the 
necessity to understand the equivalence be-
tween and confidence from using the sur-
rogate analogies versus the fielded system 
and actual mission. An overarching goal of 
this research is to reach the characteriza-
tion of the tradespace between the design 
of T&E activities and the cost of changes 
in policy to acquire increased access to 
data/model rights for LBS. To understand 
this tradespace, subsequent objectives are 
defined as follows:

■■ Characterize the change in operational 
conditions and adversarial actions;

■■ Characterize the impact of change in 
operational conditions and adversarial 
actions on changes to the system 
implementation and behavior; and

■■ Create a T&E framework for LBS that 
characterizes the balance between 
T&E activities and data/model rights 
acquisition costs.

This article provides insights into the 
creation of the T&E framework. We discuss 
the framework (1) in terms of notional 
use for the characterization of changes in 
operational conditions and adversarial 
actions, which we refer to as a systems 
theoretic morphism between the mission 
and mission surrogates used for T&E; (2) 
in terms of notional use for the character-
ization of changes in system implemen-
tation and behavior, which we refer to as 
a systems theoretic morphism between 
the fielded system and surrogate systems 
used for T&E; and (3) in terms of notional 
decision context. The characterization of 
the balance between T&E activities and 
data/model rights acquisition cost is left 
for future research. However, we provide 
insights into the Bayesian methods that 
are in development and, when paired with 
systems theory, will be used to reach the 
overarching goal.

TESTBED ENVIRONMENTS
The primary testbed for this research is a 

notional weapons system of systems named 
Silverfish. Silverfish is used to deny ground 
to adversaries through a networked mu-
nition system with integrated surveillance 
and situational awareness technology. The 
system of systems includes the protected 
area, a UAV that performs surveillance 
functions, tripwire and infrared ground 
sensors, and a human operator in charge of 
command and control. Data from the UAV 
cameras and the ground sensors are fused 

to provide situational awareness of the 
protected area, emphasizing the detection 
of humans or vehicles. In the event of a 
detection, the operator is provided with 
a likelihood that the entity traversing the 
protected area is a combatant versus a 
non-combatant. The human is responsible 
for final decisions, including engaging a 
target with the networked munitions. We 
provide the Silverfish notional system in 
Figure 1 to illustrate the system of systems.

The Silverfish testbed continues to 
expand from its conception. In the original 
implementation, Silverfish included a 
network of connected Raspberry Pi ® to 
emulate the protected area and ordinance. 
In line with digital engineering (DE), a 
model-based systems engineering (MBSE) 
implementation of Silverfish was defined 
in the GENESYS tool (Long 2019). More 
recent progress by our research group has 
included some initial transition of the 
MBSE implementation to the Cameo MBSE 
tool (NoMagic), simulation, and physical 
testing through the pairing of the YOLO 
algorithm with UAV/drone hardware.

In this article, our current focus is on the 
UAV element of Silverfish and T&E for its 
LBS nature. We refer to the LBS element of 
the UAV as Agent YOLO, for the name of 
the computer vision algorithm leveraged 
therein. The YOLO algorithm provides an 
open-sourced algorithm to fulfill the intent 
of a cascade of analogies with respect to 
the development sequence. The cascade 
includes T&E surrogates of the Silverfish 
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Figure 1. The UAV within Silverfish’s notional system of systems context is considered 
to be the system of interest for this research article

 21564868, 2022, 4, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/inst.12414 by V

irginia Tech, W
iley O

nline Library on [13/02/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



SP
ECIA

L 
FEA

TU
R

E
D

ECEM
B

ER
  2O

22
VOLUM

E 25/ ISSUE 4

67

UAV and surrogates of its mission context 
within the Silverfish system of systems, 
which is to surveil a protected area, identify 
potential attackers, and report the surveil-
lance activities to the human command and 
control element.

OVERVIEW OF FRAMEWORK
Our framework consists of two parts: 

(1) systems theoretic characterization of 
stratification as well as characterization of 
equivalence referred to as system mor-
phisms and (2) Bayesian method charac-
terization of correlation in confidence in 
mission success.

We provide a visualization of the systems 
theoretic aspects of the framework in 
Figure 2, which builds on the research 
found in Wach 2021; Wach 2022a; Wach 
2022b). The horizontal lines reflect 
morphic equivalence between surrogate 
analogies with the real mission and the 
fielded system; the vertical lines reflect 
knowledge of the interior structure of 
the LBS system implementation. Each 
surrogate may have morphisms relative 
to other surrogates (mission-mission and 
model-model). There is a corresponding 
cost associated with acquiring the data for 
systems. To account for the many levels 
of data-driven knowledge, we use systems 
theory to mathematically characterize the 
iterative and recursive stratification.

We provide a visualization of the Bayesian 
aspect of the framework in Figure 3. We 
use a Bayesian network to characterize the 
probability of outcomes across the testing 
phases; the network’s edges represent 
conditional probabilities that can be used 
to compute the probability of — or the 

operational cost associated with — outcomes 
at each layer. In this simple example, we 
use three layers to represent three different 
system types that might be evaluated, 
including in the Silverfish context, System 
1 might be a pairing of Agent Yolo with 
prototype hardware for a developmental 
test activity, System 2 might be a pairing of 
Agent Yolo with low-rate initial production 
hardware (LRIP) in an initial operational 
T&E (IOT&E) activity, and System 3 might 
be the real mission and fielded system. We 
then categorize the outcomes from those 
systems into two cases, Case A and Case 
¬A (“not A”), which might, for example, 
correspond to “detect” and “no detect” in the 
context of Silverfish. We elaborate further in 
the next section; see Figure 5 in particular.

The Bayesian network is paired with the 
cascade of knowledge of the results of T&E 
activities, which builds on the research 

found in Salado (2018). This knowledge 
includes the systems theoretic characteri-
zation of morphic equivalence and internal 
structure. The combined and framed 
knowledge impacts overall confidence in 
mission success from the deployment of 
the LBS, which can be paired with utility 
metrics such as cost/schedule for predictive 
capabilities. In doing so, the framework 
enables the characterization of the relation-
ship between the design of the evaluation 
activities and the characterization of equiv-
alence. When we pair the systems theoretic 
morphisms with Bayesian methods, we 
have a fabric for connecting information 
and determining T&E priority. For exam-
ple, we may select a cheap drone for a T&E 
activity as a surrogate or a more expensive 
drone because we believe the drone to have 
a low probability of mission degradation 
when considering the overall LBS. Thus, 
an impact of the framework is the ability to 
narrow down cases that are most likely to 
fail or cause problems. By connecting levels 
of knowledge of the surrogate analogies to 
confidence, we can weigh the cost of a T&E 
activities in light of their importance to 
mission success.

INITIAL RESULTS
In this section, we provide insights 

into the results. We focus here on a T&E 
activity consisting of detecting automobiles 
and using physical drones paired with 
Agent YOLO, which have various morphic 
equivalence to the real mission and fielded 
system. We have a cheap prototype drone 
paired with Agent YOLO in the first case. 
In the second case, we have the higher-cost 
LRIP drone paired with Agent YOLO. Both 
drone/agent pairs were simultaneously 
tested and evaluated for detecting 
automobiles, which is a surrogate mission 
scenario for detecting a potential attacker. 
A visualization is shown in Figure 4.

Physical Attacker

<< morphism >>

<< knowledge >>

<< morphism >>

<< knowledge >>

HW/SW / agent
Fielded System

Full Knowledge Surrogate Models

Surrogate
Mission

T&E; V&V

Real
Mission
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<< morphism >>

of mission, needs, requirements

of internal structure

Figure 2. Proposed systems theoretic test and evaluation framework
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Case ¬A
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Figure 3. A visualization of the Bayesian aspect of the framework

 21564868, 2022, 4, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/inst.12414 by V

irginia Tech, W
iley O

nline Library on [13/02/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



SP
ECIA

L 
FEA

TU
R

E
D

ECEM
B

ER
  2O

22
VOLUM

E 25/ ISSUE 4

68

To further elaborate on the two drones 
used for this study: The first drone used 
is a lower-cost drone (Ryze Tello), which 
has cost-corresponding attributes such as 
camera megapixels (5 MP) and resolution 
(720 HD). The second drone used is a 
higher-cost drone (Parrot ANAFI), which 
has cost-corresponding attributes such as 
camera megapixels (21 MP) and resolution 
(4k HD).

Each drone served as a representation 
of a phase of system development with the 
corresponding testing. We treat the low-
cost drone as a prototype that may be used 
in the early development of a system for 
a developmental test. We treat the high-
er-cost drone as resembling what may be 
produced during LRIP for IOT&E.

Ryze Tello Drone
5 MP Camera
720 HD Resolution

Parrot ANAFI Drone
21 MP Camera
4K HD Resolution

Physical Attacker

HW/SW/agent
Prototype physical test

HW/SW/agent
Fielded System

Full System Knowledge HW/SW/agent
Final product
LRIP, IOT&E

T&E
Automobile
Physical Test

Final Produce

T&E
Automobile
Physical Test

Prototype

Real
Mission

Figure 4. A visualization of the systems theoretic framing of the test context

We used simultaneous testing of the 
drones, although one would typically ex-
pect time to elapse between tests following 
phased system development. Each drone 
was positioned side-by-side at the same 
time of day and in view of the same street. 
During the test activity, Agent YOLO, 
paired with each drone, characterized the 
vehicles as they passed on the street.

The vertical lines in Figure 4 reflect 
morphic equivalence at each system spec-
ification level, similar to Figure 2. In this 
case, we add a vertical line at the mission 
level of system specification between the 
test conducted on the low-cost drone and 
the test conducted on the higher-cost drone 
to reflect morphic equivalence between the 
tests. Also, in this case, we add a vertical 

System 1 System 2 System 3

Case A Case A Case A

Case ¬A

Case ¬A

Case A

Case ¬A

Case A

Case ¬A

Case A

Case ¬A

Case ¬A

Real Mission

HW/SW/agent
Prototype physical test

Physical Attacker

HW/SW/agent
Fielded System

Full System Knowledge

HW/SW/agent
Final product
LRIP, IOT&E

Figure 5. A visualization of the Bayesian propagation of confidence

line at the system implementation level be-
tween the low-cost and higher-cost drones 
to reflect morphic equivalence between the 
drones.

The knowledge of morphic equivalence 
may be complemented by a confidence fac-
tor defined by Bayesian methods, as shown 
in Figure 5.

The images of the street and vehicles 
passing by are shown in Figure 4 at the 
top middle for the lower-cost drone and 
to the right side for the higher-cost drone, 
which is unaltered and can be observed 
to have visual differences. Although there 
is nearly an exact morphic equivalence at 
the mission level, there is a lower degree of 
morphic equivalence at the drone system 
implementation level. The morphisms 
provide knowledge to frame the overall 
equivalence, which feeds into confidence in 
mission success. Using Bayesian methods, 
the success (or lack thereof) detection and 
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categorization of the automobiles with the 
lower-cost drone indicate success for the 
higher-cost drone. The complementary 
pairing of system morphisms with Bayesian 
methods provides the basis for our frame-
work for the T&E of LBS.

FUTURE WORK
Our future efforts are threefold: (1) link 

the LBS lifecycle, (2) advance the digital 
engineering aspects, and (3) prove the value 
to the government.

As discussed in this article, we have 
focused our initial efforts on the DT aspects 
of T&E. Our future efforts will contin-
ue from DT to later aspects of the LBS 
lifecycle. We plan to show the propagation 
of knowledge and confidence in mission 
success from the DT to the operational, 
surveillance, and maintenance phases of 
the LBS lifecycle. Furthermore, knowledge 
of retirement and legacy systems propa-
gates perceived confidence in new systems, 
which we will explore in future work.

We are exploring several paths to ad-
vance the digital engineering aspects of the 
framework. One, we are exploring creating 
plugins for the Cameo MBSE tool and 
constructs based on the Systems Modeling 
Language (SysML). We plan to enhance 
the framework through digital twin and 
physical twin pairing. We are also explor-
ing creating an expert system to advise the 
human decision-maker (s) during acqui-
sition and deployment based on the T&E 
framework. Lastly, we anticipate linking 
the framework to a “born-digital” Test and 
Evaluation Master Plan (d-TEMP). These 
are some of the digitally enhanced efforts 
either in planning or in progress.

To reach the main goal of this effort, we 
desire to prove the value to the govern-
ment and use the framework to assess the 
tradespace between confidence in mis-
sion success and resources necessary for 
acquiring increased data/model rights to 
LBS. First, we plan to add utility metrics to 
the Bayesian methods and simulate policy 
changes to accomplish this. Second, our 
data set is currently small, and we would 
like to expand it with more control. As an 
example, we are proposing using a con-
trolled group of students traversing a field 
to emulate the red/blue scenario. Further-
more, we are leveraging commercial-off-
the-shelf drones with limited insights and 
control over their hardware and software, 
increasing our urgency to create our con-
trolled hardware/software. Last, we plan to 
up-scale the framework from the controlled 
development environments to real LBS 
acquisition, deployment, and policy deci-
sion-making.

CONCLUSION
We present a novel framework for the 

T&E of LBS. The framework consists of 
a systems theoretic basis for determining 
equivalence from surrogate analogies used 
for T&E relative to the real mission and 
system implementation. The framework 
uses Bayesian methods to characterize 
confidence in mission success. We initial-
ly framed LBS through simulation and 
physical testing, which has shown promise. 
This article is focused on exposure to the 
framework rather than the data and spe-
cifics of the mathematical basis. Finally, we 
discuss aspirations for the T&E framework 
for LBS.  ¡

DISCLAIMER
The Acquisition Innovation Research Center 

is a multi-university partnership led and man-
aged by the Stevens Institute of Technology and 
sponsored by the U.S. Department of Defense 
(DoD) through the Systems Engineering Re-
search Center (SERC)—a DoD University-Affili-
ated Research Center (UARC).

This material is based upon work support-
ed, in whole or in part, by the U.S. Depart-
ment of Defense through the Office of the 
Assistant Secretary of Defense for Research 
and Engineering (ASD(R&E)) through SERC 
and AIRC under Contract HQ0034-19-D-0003, 
TO#0309.

The views, findings, conclusions, and recom-
mendations expressed in this material are solely 
those of the authors and do not necessarily 
reflect the views or positions of the United 
States Government (including the DoD and 
any government personnel) the Virginia Tech 
National Security Institute, the Stevens Institute 
of Technology, and the Purdue University.

No Warranty.
This Material is furnished on an “as-is” basis. 

The Virginia Tech National Security Institute, 
the Stevens Institute of Technology, and the 
Purdue University make no warranties of any 
kind—either expressed or implied—as to any 
matter, including (but not limited to) warran-
ty of fitness for purpose or merchantability, 
exclusivity, or results obtained from use of the 
material.

The Virginia Tech National Security Institute, 
the Stevens Institute of Technology, and the 
Purdue University do not make any warranty of 
any kind with respect to freedom from patent, 
trademark, or copyright infringement.

This material has been approved for public 
release and unlimited distribution.

REFERENCES
■■ Beling, P., B. Horowitz, C. Fleming, S. Adams, G. Bakirtzis, 

B. Carter, T. Sherburne, C. Elks, A. Collins, and B. Simon. 
2019. “Model-based engineering for functional risk assessment 
and design of cyber resilient systems.” University of Virginia 
Charlottesville United States.

■■ ———      . 2018. Model-based systems engineering. CRC press.
■■ Carter, B., S. Adams, G. Bakirtzis, T. Sherburne, P. Beling, B. 

Horowitz, and C. Fleming. 2019. “A Preliminary Design-Phase 
Security Methodology for Cyber-Physical Systems.” Systems 7 
(2): 21.

■■ Cody, T., S. Adams, and P. A. Beling. 2019. “A systems theoretic 
perspective on transfer learning.” 2019 IEEE International 
Systems Conference (SysCon), 1–7. IEEE.

■■ Consortium, Coco. 2022. ‘COCO Common Objects in Con-
text.’

■■ ———      . 2020. “Test and Evaluation for Artificial Intelligence.” 
INSIGHT 23 (1): 27–30.

■■ Fleming, C. H., C. Elks, G. Bakirtzis, S. Adams, B. Carter, 
P. Beling, and B. Horowitz. 2021. “Cyberphysical Security 
Through Resiliency: A Systems-Centric Approach.” Computer 
54, (6): 36–45.

■■ Freeman, L.. 2020. ‘Test and Evaluation for Artificial Intelli-
gence.’ INSIGHT 23 (1): 27–30. https://doi.org/10.1002/inst.12281 .

■■ Lanus, E., I. Hernandez, A. Dachowicz, L. Freeman, M. 
Grande, A. Lang, J. H. Panchal, A. Patrick, and S. Welch. 2021. 
“Test and Evaluation Framework for Multi-Agent Systems of 
Autonomous Intelligent Agents.” arXiv preprint arXiv:2101. 
10430. http://arxiv.org/abs/2101.10430 .

■■ Lin, T. Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. 
Ramanan, P. Dollár, and C. L. Zitnick. 2014. “Microsoft coco: 
Common objects in context.” European conference on computer 
vision, 740–55. Springer.

■■ ———      . 2021. “Test and Evaluation Framework for Multi-
Agent Systems of Autonomous Intelligent Agents.” 
arXiv [cs, eess], Ιανουάριος. arXiv. https://doi.org/10.1109/
SOSE52739.2021.9497472.

■■ Long, D. 2019. “MBSE 2.0: The Future of MBSE.”
■■ McDermott, T. A., M. R. Blackburn, and P. A. Beling. 2021. 

“Artificial Intelligence and Future of Systems Engineering.” 
Systems Engineering and Artificial Intelligence, 47–59. 
Springer.

■■ NoMagic. Accessed 2022 Oct 10 “Cameo Systems Modeler.” 
https://www.nomagic.com/products/cameo-systems-modeler

■■ ———      . 2016. “You Only Look Once: Unified, Real-Time Object 
Detection.” Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 779–88.

 21564868, 2022, 4, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/inst.12414 by V

irginia Tech, W
iley O

nline Library on [13/02/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



SP
ECIA

L 
FEA

TU
R

E
D

ECEM
B

ER
  2O

22
VOLUM

E 25/ ISSUE 4

70

■■ Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. 2016. 
“You Only Look Once: Unified, Real-Time Object Detection.” 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, 779–88.

■■ Salado, A., and H. Kannan. 2018. “A mathematical model of 
verification strategies.” Systems Engineering 21 (6): 593–608.

■■ Wach, P., B. P. Zeigler, and A. Salado. 2021. “Conjoining 
Wymore’s Systems Theoretic Framework and the DEVS 
Modeling Formalism: Toward Scientific Foundations for 
MBSE.” Applied Sciences 11 (11): 4936.

■■ Wach, P., P. Beling, and A. Salado. 2022a. “Formalizing the 
Representativeness of Verification Models Using Morphisms.” 
INCOSE-IS, Detroit, MI, USA.

■■ ———      . 2022b. “Initial Systems Theoretic Metamodel of 
Verification Artifacts.” CSER, Norwegian University of Science 
and Technology, Norway.

ABOUT THE AUTHORS
Paul Wach has research interests include the intersection 

of theoretical foundations of systems engineering, digital 
transformation, and artificial intelligence. Dr. Wach is a member 
of the Intelligent Systems Division at the Virginia Tech National 
Security Institute. He was the President and Founder of the 
Virginia Tech student division of INCOSE. Dr. Wach also works 
for The Aerospace Corporation, leading enterprise digital 
engineering transformation. His prior work experience is with 
the Department of Energy, two National Laboratories, and 
the medical industry. Dr. Wach received a B.S. in Biomedical 
Engineering from Georgia Tech, an M.S. in Mechanical 
Engineering from the University of South Carolina, and a Ph.D. in 
Industrial and Systems Engineering from Virginia Tech.

Justin Krometis is a research assistant professor in the 
Intelligent Systems Division of the Virginia Tech National Security 
Institute. Before joining NSI, Dr. Krometis worked in Virginia 
Tech’s Advanced Research Computing department for ten years 
as a Computational Scientist supporting research computing. 
Before that, he worked in the public and private sectors doing 
transportation modeling for planning and evacuation applications; 
hurricane, pandemic, and other emergency preparedness; and 
project management. His research is in the development of 
theoretical and computational frameworks to address analytics 
problems, such as how to incorporate and balance data and expert 
opinion into decision-making, how to fuse data from multiple 
sources, and how to estimate model parameters, including 
high- or infinite-dimensional quantities, from noisy data. Areas 
of interest include Bayesian inference, parameter estimation, 
machine learning, data science, and experimental design. Dr. 
Krometis holds a Ph.D. in mathematics, an M.S. in mathematics, a 
B.S. in mathematics, and a BS in physics, all from Virginia Tech.

Atharva Sonanis is an M.S. in Mechanical Engineering 
student working with Professor Jitesh Panchal at the Design 
Engineering Laboratory at Purdue University (DELP). Atharva’s 
research interests include robotics, controls, computer vision, 
machine learning, and systems. He received his B.E. in 
Mechanical Engineering from M.I.T. College of Engineering, 
Pune. While pursuing his bachelor’s degree, he was selected as 
a Cummins Scholar and received the opportunity to work at 
Cummins Technical Centre India in the R&D department. He 
also holds a Mechanical Engineering diploma from Government 
Polytechnic, Miraj.

Dinesh Verma is a professor in systems engineering at Stevens 
Institute of Technology and the former dean of its School of 
Systems and Enterprises. He is an INCOSE Fellow and 2019 chair 
of the Fellows Committee. Dr. Verma is the executive director 
of the Systems Engineering Research Center (SERC), the first 
university-affiliated research center (UARC) established by the 
US DoD for systems engineering research. Prior to these roles, 
he served as technical director at Lockheed Martin Undersea 
Systems in Manassas, Virginia, US, in the area of adapted systems 
and supportability engineering processes, methods, and tools 
for complex system development and integration. He has a 
BS in mechanical engineering, MS in industrial and systems 
engineering, and a Ph.D. in industrial and systems engineering.

Jitesh Panchal is a Professor of Mechanical Engineering at 
Purdue University. He received his BTech (2000) from the Indian 
Institute of Technology (IIT) Guwahati, and MS (2003) and Ph.D. 
(2005) in Mechanical Engineering from Georgia Institute of 
Technology. Dr. Panchal’s research interests are in (1) design at 
the interface of social and physical phenomena, (2) computational 
methods and tools for digital engineering, and (3) secure design 
and manufacturing. He is a recipient of the CAREER award 
from the National Science Foundation (NSF); Young Engineer 
Award, Guest Associate Editor Award, and three best paper 
awards from ASME; and was recognized by the B.F.S. Schaefer 
Outstanding Young Faculty Scholar Award, the Ruth and Joel 
Spira Award, and is one of the Most Impactful Faculty Inventors 
at Purdue University. He is a co-author of two books and has 
co-edited one book on engineering systems design. He has served 
on the editorial board of international journals, including the 
ASME Journal of Mechanical Design and the ASME Journal of 
Computing and Information Science in Engineering. He is a 
program chair of the ASME IDETC/CIE conference and the past 
chair of the ASME Computers and Information in Engineering 
(CIE) division.

Laura Freeman is a Research Associate Professor of Statistics 
and dual-hatted as the Deputy Director of the Virginia Tech 
National Security Institute and Assistant Dean for Research for 
the College of Science.  Her research leverages experimental 
methods for conducting research that combines cyber-physical 
systems, data science, artificial intelligence (AI), and machine 
learning to address critical challenges in national security.  She 
develops new methods for test and evaluation focusing on 
emerging system technology. Previously, Dr. Freeman was the 
assistant director of the Operational Evaluation Division at the 
Institute for Defense Analyses (IDA). Dr. Freeman also served as 
the acting senior technical advisor for the Director of Operational 
Test and Evaluation (DOT&E). Dr. Freeman has a BS in aerospace 
engineering, an M.S. in statistics, and a Ph.D. in statistics, all from 
Virginia Tech.

Peter Beling is a professor in the Grado Department of 
Industrial and Systems Engineering and Director of the Intelligent 
Systems Division at the Virginia Tech National Security Institute. 
Dr. Beling’s research interests lie at the intersections of systems 
engineering and artificial intelligence (AI), including AI adoption, 
reinforcement learning, transfer learning, and digital engineering. 
His research has found applications in various domains, including 
mission engineering, cyber resilience of cyber-physical systems, 
prognostics and health management, and smart manufacturing. 
He received his Ph.D. in operations research from the University 
of California at Berkeley.

 21564868, 2022, 4, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/inst.12414 by V

irginia Tech, W
iley O

nline Library on [13/02/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License




