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B ABSTRACT

Modern engineered systems, and learning-based systems, in particular, provide unprecedented complexity that requires advance-
ment in our methods to achieve confidence in mission success through test and evaluation (T&E). We define learning-based
systems as engineered systems that incorporate a learning algorithm (artificial intelligence) component of the overall system. A
part of the unparalleled complexity is the rate at which learning-based systems change over traditional engineered systems. Where
traditional systems are expected to steadily decline (change) in performance due to time (aging), learning-based systems undergo
a constant change which must be better understood to achieve high confidence in mission success. To this end, we propose pairing
Bayesian methods with systems theory to quantify changes in operational conditions, changes in adversarial actions, resultant
changes in the learning-based system structure, and resultant confidence measures in mission success. We provide insights, in this
article, into our overall goal and progress toward developing a framework for evaluation through an understanding of equivalence

of testing.

B KEYWORDS: Test and Evaluation; systems theory; Bayesian; Learning; artificial intelligence

INTRODUCTION
est and evaluation (T&E) frame-
works for learning-based systems
(LBS) are currently in their na-
scent stage, with existing frame-
works lacking specificity and needing to
be piloted against actual LBS. By the term
LBS, we refer to an array of systems, based
on artificial intelligence (AI), with adaptive
learning behavior stemming from training
data, such as machine learning (ML) com-
puter vision algorithms. A particular chal-
lenge arises when considering the impacts
of changes in operational conditions and
adversarial actions, which may notably vary
over the life-cycle of an LBS and cause devi-
ation of the LBS from design limits (Lanus
2021). Traditional systems employ a black-
box T&E method of providing sampled
inputs, from which outputs are measured
against expectations. LBS’s complexity and
dynamics suggest challenges in applying

traditional methods (Freeman 2020).

This paper reports on the status of a
Systems Engineering Research Center
(SERC) project that aims to establish theory
and methods for how T&E requirements
can and should change as a function of
the test team’s knowledge of LBS technical
specifications. An overarching objective of
this research is to characterize the balance
between the design of T&E activities and
the cost of data/model rights acquisition
for LBS. This informs government deci-
sion-makers on the emerging necessity
for a new policy. We focus this research
article on building from past research on
a notional networked munition system of
systems for ground denial, referred to as
the Silverfish Testbed (Carter 2019), which
we leverage to provide insights to our initial
T&E framework for LBS.

We develop a framework consisting of

Bayesian methods and a system theoretic
basis for the mathematical characterization
of equivalence between pairs, referred to

as a morphism. The project experimented
with two pilot scenarios to demonstrate
how multiple testing phases contribute

to evaluating an LBS, using morphisms

as guiding principles. The pilot scenarios
center on an unmanned aerial vehicle
(UAV), providing vehicle and human detec-
tion functions in the Silverfish notional
weapons system. These detection functions
use the You Only Look Once (YOLO)
image recognition agent (Redmon 2016)
trained on the Common Object in Context
(COCO) data set of images (Lin 2014) and
paired with simulations and real drones.
From knowledge of morphic equivalence,
we frame the correlation between scenarios
and resulting confidence in mission success
through Bayesian methods.
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We share insights from our initial frame-
work, practical development, and expected
future activities in the following sections.

GOALS AND OBJECTIVES

The complexity of T&E for LBS is unpar-
alleled when compared to traditional sys-
tems. LBS have a rate of evolution based on
behavior changes due to the data ingestion
rate, which generally has a high frequency,
such as in the measure of fractions of a
second. Traditional systems, alternatively,
are expected to have a low frequency of
behavior change, even with changes in
input. Furthermore, traditional systems
may typically be viewed as deterministic,
whereas LBS are viewed from a probabi-
listic context. Such distinctions between
traditional systems and LBS suggest that
new T&E methods are necessary to cope
with the magnitude of complexity.

Further complexity arises from the
necessity to rely on surrogate analogies
to achieve confidence in mission success
during developmental testing (DT) of
LBS. First, the environments and opera-
tional conditions of the mission are often
analogies to the full scope of the mission
set. For example, a system developed for a
mission to Mars would leverage a surrogate
analogy to the Mars environments on Earth
(such as desert climate) to gain confidence
in mission success before deployment to
the actual Mars environment. Second, the
real system may not be available during
DT; surrogate analogous systems are used
instead. For example, in our case, we use
simulation and a low-cost drone as surro-
gate analogies for the UAV “real” (fielded)
system.

This research is driven toward develop-
ing a T&E framework for LBS through the
necessity to understand the equivalence be-
tween and confidence from using the sur-
rogate analogies versus the fielded system
and actual mission. An overarching goal of
this research is to reach the characteriza-
tion of the tradespace between the design
of T&E activities and the cost of changes
in policy to acquire increased access to
data/model rights for LBS. To understand
this tradespace, subsequent objectives are
defined as follows:

= Characterize the change in operational

conditions and adversarial actions;

= Characterize the impact of change in

operational conditions and adversarial
actions on changes to the system
implementation and behavior; and

= Create a T&E framework for LBS that

characterizes the balance between
T&E activities and data/model rights
acquisition costs.
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Figure 1. The UAV within Silverfish's notional system of systems context is considered
to be the system of interest for this research article

This article provides insights into the
creation of the T&E framework. We discuss
the framework (1) in terms of notional
use for the characterization of changes in
operational conditions and adversarial
actions, which we refer to as a systems
theoretic morphism between the mission
and mission surrogates used for T&E; (2)
in terms of notional use for the character-
ization of changes in system implemen-
tation and behavior, which we refer to as
a systems theoretic morphism between
the fielded system and surrogate systems
used for T&E; and (3) in terms of notional
decision context. The characterization of
the balance between T&E activities and
data/model rights acquisition cost is left
for future research. However, we provide
insights into the Bayesian methods that
are in development and, when paired with
systems theory, will be used to reach the
overarching goal.

TESTBED ENVIRONMENTS

The primary testbed for this research is a
notional weapons system of systems named
Silverfish. Silverfish is used to deny ground
to adversaries through a networked mu-
nition system with integrated surveillance
and situational awareness technology. The
system of systems includes the protected
area, a UAV that performs surveillance
functions, tripwire and infrared ground
sensors, and a human operator in charge of
command and control. Data from the UAV
cameras and the ground sensors are fused

to provide situational awareness of the
protected area, emphasizing the detection
of humans or vehicles. In the event of a
detection, the operator is provided with

a likelihood that the entity traversing the
protected area is a combatant versus a
non-combatant. The human is responsible
for final decisions, including engaging a
target with the networked munitions. We
provide the Silverfish notional system in
Figure 1 to illustrate the system of systems.

The Silverfish testbed continues to
expand from its conception. In the original
implementation, Silverfish included a
network of connected Raspberry Pi © to
emulate the protected area and ordinance.
In line with digital engineering (DE), a
model-based systems engineering (MBSE)
implementation of Silverfish was defined
in the GENESYS tool (Long 2019). More
recent progress by our research group has
included some initial transition of the
MBSE implementation to the Cameo MBSE
tool (NoMagic), simulation, and physical
testing through the pairing of the YOLO
algorithm with UAV/drone hardware.

In this article, our current focus is on the
UAYV element of Silverfish and T&E for its
LBS nature. We refer to the LBS element of
the UAV as Agent YOLO, for the name of
the computer vision algorithm leveraged
therein. The YOLO algorithm provides an
open-sourced algorithm to fulfill the intent
of a cascade of analogies with respect to
the development sequence. The cascade
includes T&E surrogates of the Silverfish
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Figure 2. Proposed systems theoretic test and evaluation framework

UAYV and surrogates of its mission context
within the Silverfish system of systems,
which is to surveil a protected area, identify
potential attackers, and report the surveil-
lance activities to the human command and
control element.

OVERVIEW OF FRAMEWORK

Our framework consists of two parts:
(1) systems theoretic characterization of
stratification as well as characterization of
equivalence referred to as system mor-
phisms and (2) Bayesian method charac-
terization of correlation in confidence in
mission success.

We provide a visualization of the systems
theoretic aspects of the framework in
Figure 2, which builds on the research
found in Wach 2021; Wach 2022a; Wach
2022b). The horizontal lines reflect
morphic equivalence between surrogate
analogies with the real mission and the
fielded system; the vertical lines reflect
knowledge of the interior structure of
the LBS system implementation. Each
surrogate may have morphisms relative
to other surrogates (mission-mission and
model-model). There is a corresponding
cost associated with acquiring the data for
systems. To account for the many levels
of data-driven knowledge, we use systems
theory to mathematically characterize the
iterative and recursive stratification.

We provide a visualization of the Bayesian
aspect of the framework in Figure 3. We
use a Bayesian network to characterize the
probability of outcomes across the testing
phases; the network’s edges represent
conditional probabilities that can be used
to compute the probability of—or the

operational cost associated with—outcomes
at each layer. In this simple example, we
use three layers to represent three different
system types that might be evaluated,
including in the Silverfish context, System
1 might be a pairing of Agent Yolo with
prototype hardware for a developmental
test activity, System 2 might be a pairing of
Agent Yolo with low-rate initial production
hardware (LRIP) in an initial operational
T&E (IOT&E) activity, and System 3 might
be the real mission and fielded system. We
then categorize the outcomes from those
systems into two cases, Case A and Case
—A (“not A”), which might, for example,
correspond to “detect” and “no detect” in the
context of Silverfish. We elaborate further in
the next section; see Figure 5 in particular.
The Bayesian network is paired with the
cascade of knowledge of the results of T&E
activities, which builds on the research

System 1

All Scenarios

found in Salado (2018). This knowledge
includes the systems theoretic characteri-
zation of morphic equivalence and internal
structure. The combined and framed
knowledge impacts overall confidence in
mission success from the deployment of
the LBS, which can be paired with utility
metrics such as cost/schedule for predictive
capabilities. In doing so, the framework
enables the characterization of the relation-
ship between the design of the evaluation
activities and the characterization of equiv-
alence. When we pair the systems theoretic
morphisms with Bayesian methods, we
have a fabric for connecting information
and determining T&E priority. For exam-
ple, we may select a cheap drone for a T&E
activity as a surrogate or a more expensive
drone because we believe the drone to have
a low probability of mission degradation
when considering the overall LBS. Thus,

an impact of the framework is the ability to
narrow down cases that are most likely to
fail or cause problems. By connecting levels
of knowledge of the surrogate analogies to
confidence, we can weigh the cost of a T&E
activities in light of their importance to
mission success.

INITIAL RESULTS

In this section, we provide insights
into the results. We focus here on a T&E
activity consisting of detecting automobiles
and using physical drones paired with
Agent YOLO, which have various morphic
equivalence to the real mission and fielded
system. We have a cheap prototype drone
paired with Agent YOLO in the first case.
In the second case, we have the higher-cost
LRIP drone paired with Agent YOLO. Both
drone/agent pairs were simultaneously
tested and evaluated for detecting
automobiles, which is a surrogate mission
scenario for detecting a potential attacker.
A visualization is shown in Figure 4.
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Figure 3. A visualization of the Bayesian aspect of the framework
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Figure 4. A visualization of the systems theoretic framing of the test context

To further elaborate on the two drones
used for this study: The first drone used
is a lower-cost drone (Ryze Tello), which
has cost-corresponding attributes such as
camera megapixels (5 MP) and resolution
(720 HD). The second drone used is a
higher-cost drone (Parrot ANAFI), which
has cost-corresponding attributes such as
camera megapixels (21 MP) and resolution
(4k HD).

Each drone served as a representation
of a phase of system development with the
corresponding testing. We treat the low-
cost drone as a prototype that may be used
in the early development of a system for
a developmental test. We treat the high-
er-cost drone as resembling what may be
produced during LRIP for IOT&E.

System 1
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Figure 5. A visualization of the Bayesian propagation of confidence

We used simultaneous testing of the
drones, although one would typically ex-
pect time to elapse between tests following
phased system development. Each drone
was positioned side-by-side at the same
time of day and in view of the same street.
During the test activity, Agent YOLO,
paired with each drone, characterized the
vehicles as they passed on the street.

The vertical lines in Figure 4 reflect
morphic equivalence at each system spec-
ification level, similar to Figure 2. In this
case, we add a vertical line at the mission
level of system specification between the
test conducted on the low-cost drone and
the test conducted on the higher-cost drone
to reflect morphic equivalence between the
tests. Also, in this case, we add a vertical

System 2

Ryze Tello Drone
5 MP Camera
720 HD Resolution

Parrot ANAFI Drone
21 MP Camera
4K HD Resolution

line at the system implementation level be-
tween the low-cost and higher-cost drones
to reflect morphic equivalence between the
drones.

The knowledge of morphic equivalence
may be complemented by a confidence fac-
tor defined by Bayesian methods, as shown
in Figure 5.

The images of the street and vehicles
passing by are shown in Figure 4 at the
top middle for the lower-cost drone and
to the right side for the higher-cost drone,
which is unaltered and can be observed
to have visual differences. Although there
is nearly an exact morphic equivalence at
the mission level, there is a lower degree of
morphic equivalence at the drone system
implementation level. The morphisms
provide knowledge to frame the overall
equivalence, which feeds into confidence in
mission success. Using Bayesian methods,
the success (or lack thereof) detection and

System 3

Real Mission

dxb

Physical Attacker

HW/SW/agent
Final product
LRIP, IOT&E

=

.

-—d

e -
HW/SW/agent

Fielded System
Full System Knowledge

[umod ‘% ‘Z0T ‘898¥9S1T

1[uo-asodut//:sdyy woxy pap

ASULOIT SUOWIO)) dANEAI) d[qeatjdde ayy Aq pauIoAoS a1e sajonIe YO asn JO Sa[nI 10§ AIRIQIT UIUQ A3[IAL UO (SUONIPUOd-PUB-SULId}/W0d" K3[1m" ATeiqrautjuoy/:sdiy) suonipuo)) pue suud ] ayp 298 [£202/20/€ 1] uo Areiquy auruQ 1M Yoa L BIuSIA Aq $1HZ1ISUL/Z001 0 1/10p/w0d Ad[Im A



categorization of the automobiles with the
lower-cost drone indicate success for the
higher-cost drone. The complementary
pairing of system morphisms with Bayesian
methods provides the basis for our frame-
work for the T&E of LBS.

FUTURE WORK

Our future efforts are threefold: (1) link
the LBS lifecycle, (2) advance the digital
engineering aspects, and (3) prove the value
to the government.

As discussed in this article, we have
focused our initial efforts on the DT aspects
of T&E. Our future efforts will contin-
ue from DT to later aspects of the LBS
lifecycle. We plan to show the propagation
of knowledge and confidence in mission
success from the DT to the operational,
surveillance, and maintenance phases of
the LBS lifecycle. Furthermore, knowledge
of retirement and legacy systems propa-
gates perceived confidence in new systems,
which we will explore in future work.

We are exploring several paths to ad-
vance the digital engineering aspects of the
framework. One, we are exploring creating
plugins for the Cameo MBSE tool and
constructs based on the Systems Modeling
Language (SysML). We plan to enhance
the framework through digital twin and
physical twin pairing. We are also explor-
ing creating an expert system to advise the
human decision-maker (s) during acqui-
sition and deployment based on the T&E
framework. Lastly, we anticipate linking
the framework to a “born-digital” Test and
Evaluation Master Plan (d-TEMP). These
are some of the digitally enhanced efforts
either in planning or in progress.
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