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Abstract—As a key component of e-commerce computing, product representation learning (PRL) provides benefits for a variety of
applications, including product matching, search, and categorization. The existing PRL approaches have poor language understanding
ability due to their inability to capture contextualized semantics. In addition, the learned representations by existing methods are not
easily transferable to new products. Inspired by the recent advance of pre-trained language models (PLMs), we make the attempt to
adapt PLMs for PRL to mitigate the above issues. In this article, we develop KINDLE, a Knowledge-drIven pre-trainiNg framework for
proDuct representation LEarning, which can preserve the contextual semantics and multi-faceted product knowledge robustly and
flexibly. Specifically, we first extend traditional one-stage pre-training to a two-stage pre-training framework, and exploit a deliberate
knowledge encoder to ensure a smooth knowledge fusion into PLM. In addition, we propose a multi-objective heterogeneous
embedding method to represent thousands of knowledge elements. This helps KINDLE calibrate knowledge noise and sparsity
automatically by replacing isolated classes as training targets in knowledge acquisition tasks. Furthermore, an input-aware gating
network is proposed to select the most relevant knowledge for different downstream tasks. Finally, extensive experiments have
demonstrated the advantages of KINDLE over the state-of-the-art baselines across three downstream tasks.

Index Terms—Product representation learning, product search, product matching, product classification, pre-trained language models
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1 INTRODUCTION

NOWADAYS, e-commerce has become an integral part of
our lives. According to the global sale statistics,1 e-com-

merce is responsible for around $3.5 trillion in 2019, and is
expected to hit $4.9 trillion by 2021. Among numerous data
mining approaches for e-commerce, product representation
learning (PRL) serves as a fundamental component, which
aims to learn the distributional representations in a latent
space for thousands of products. The latent representations
have the advantages of dimensionality reduction, automatic
feature learning, etc., which makes them useful for many
downstream tasks, including product matching, search, and
categorization [2], [22], [24].

Despite the prevalence, existing product representation
learning approaches suffer from two noteworthy limitations:
(i) Insufficient ability in capturing contextualized semantics to deal
with the polysemy problem. The meaning of a word may vary in

different contexts. For instance, Fig. 1 shows a real example at
Amazon.com,where theword Monitor appears in two differ-
ent product titles, i.e., “Baby Monitor...” and “Dell... Monitor”.
The former refers to webcam or camera while the latter is
closer to display or screen. Such cases challenge the exist-
ing PRL approaches [2], [36], [41] that utilize similar ideas of
word2vec [13] to learn product semantics, as the static word
embedding cannot model the word sense dynamically from
the context. These approachesmay generate similar representa-
tions for two distinct products because they share somewords,
which actually have very different meanings in two products.
(ii) Lack of transferability from existing products to new products.
Most existing PRL approaches train a fixed embedding matrix
for existing products, they cannot generalize well to new prod-
ucts, especially Out-of-Distribution (OOD) samples. Yet, for
many e-commerce platformswhere high volumes of new items
are offered for sales everyday, stable and fast transferability is
critical to the success of reliable services.

More recently, the pre-trained language models (PLMs)
such as BERT and GPT-3, also known as contextualized word
embeddings [6], [17], [20], have achieved great success in a
broad range of natural language processing tasks. In contrast to
the traditional word embedding methods, PLMs can greatly
alleviate thepolysemyproblemas they encode semantic knowl-
edge into a Transformer network, which takes the whole
sequence as inputs and the word sense is conditioned on the
contexts. Besides, the paradigm of pre-training and fine-tuning
also enables better transferability for new data. Based on its
merits, we make the attempt to adapt PLMs to the scenario of
PRLandgenerate deep contextualizedproduct representations.
However, it is a non-trivial task due to the following challenges:

! Highlighting the key information of a product under the
PLM framework. A natural way of generating representation
is to feed the product title into a PLM and average all
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embeddings from the last layer of the Transformer. How-
ever, such flat representation lacks awareness of priority
over key terms. As shown in Fig. 2, identifying key informa-
tion (e.g., product type, accessories) of a product is critical
for humans to distinguish different products, yet a hard
task for machines. Therefore, how to highlight the “main
points” under PLM is crucial for accurate product represen-
tation learning, however still remains unsettled.

! Incorporating multi-faceted knowledge into PLMs. As
shown in Fig. 3, e-commerce platforms, like Amazon, eBay,
and Walmart, contain heterogeneous product knowledge,
such as product brand, product category, associated prod-
ucts, etc. In the literature, they have been used to enhance
product representation and alleviate the vocabulary gap
problem [29], [36], [41]. For example, people who search for
“Dell Monitor” may also be interested in “Docking Station”
although they are not literally similar. However, directly
incorporating product knowledge into PLMs by multi-task
learning can cause two kinds of discrepancy issues: (i) Lan-
guage and Knowledge Discrepancy, that is, the discrepancy
between language modeling and product knowledge pre-
serving may cause discrepant optimizing direction for the
underlying neural network. (ii) Intra-knowledge Discrepancy,
i.e., multi-faceted product knowledge (e.g., attribute, cate-
gory knowledge) is heterogeneous, directly preserving all
together may also cause dispersed training objectives.

! Handling the noise and sparsity issues of knowledge. In
most cases, product knowledge in e-commerce websites
relies on data contributed by retailers, thus tends to be noisy
and sparse [7]. Specifically, it happens due to the following
reasons: (i) Inconsistent word usage. Different retailers often
use synonyms (e.g., hood, hoodie, hoody) or abbreviation
(e.g., Chocolate versus Choc) to refer the same concept. (ii)
Missing attribute value. Retailers may not always list all
structured fields including necessary attributes and catego-
ries. (iii) Diverse user behaviors. Some knowledge is purely
driven by user behavior (e.g., product associations like co-
buy), inevitability affected by outliers.

In this article, we propose KINDLE to address these chal-
lenges. Specifically, our model is novel in four aspects. (i) We
extend the typical pre-training to two separate stages, i.e.,
language acquisition and knowledge acquisition, and use an
extra knowledge encoder to preserve product knowledge

alone. In this way, we alleviate the language and knowledge
discrepancy issue. (ii) To highlight the key information of a
product, a hierarchical Skeleton Attention (SA) compatible
with PLM is proposed to capture the main points. (iii) Dur-
ing pre-training, the knowledge encoder alongwith Skeleton
Attention first generates local product representations,
which capture individual knowledge facets. Then we pro-
pose an input-aware gating network to fuse local representa-
tions into final representations during fine-tuning stage. It
ensures automatically selecting relevant knowledge facets in
different downstream tasks and mitigating the intra-knowl-
edge discrepancy issue. (iv) To alleviate the noise and spar-
sity issues of product knowledge, we use heterogeneous
embeddings instead of isolated class labels to represent
knowledge elements in knowledge acquisition tasks. In this
way the knowledge interrelatedness, i.e., label correlations,
can be captured. Such interrelatedness of knowledge cata-
lyzes self-calibration to its noise and sparsity, enabling a
more robust learning process.

We conduct extensive experiments on three downstream
tasks and their zero-shot counterparts. Our framework consis-
tently outperforms state-of-the-art baselines in terms of vari-
ous metrics (improves averagely 4.5% on product matching,
8.7% on personalized product search, and 4.7% on product
classification). Ablation studies also show that different com-
ponents of KINDLE are contributing and the model achieves
the best performancewhen all the components are activated.

2 PRELIMINARIES

2.1 Problem Statement
In this article, we focus on title-based product representation
learning. Formally, given a product represented by its title p ¼
fwigni¼1, we aim to learn a model K (based on PLMs) that
maps the product title p into a dense representation KðpÞ
which encodes essential information. Following PLMs, we
adopt the paradigm of pre-training and fine-tuning. During
pre-training, we leverage multiple resources to help KðpÞ
encode product semantic information and additional multi-
faceted product knowledge. To apply in downstream tasks
such as product matching, search, classification, etc., K will
further be fine-tuned on task-specific datasets to encode task-
related knowledge.

2.2 Multi-Faceted Product Knowledge
In this article, we consider three facets of product knowledge
and represent them by Product Knowledge Graph (PKG). As

Fig. 1. An example of the polysemy problem.

Fig. 2. An example of different parts of a product title. The existing PRL
methods pay equal attention to different parts of the product title and
become less effective when applied to tasks such as product matching
and search.

Fig. 3. A snapshot of Product Knowledge. The central entity represents a
product. Surroundings are associated products, attributes (e.g., brand
name, size), and categories.
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shown in Fig. 3, three types of knowledge are loosely con-
nected by a central product while inter-knowledge correla-
tions are not presented. Besides, they differ vastly from each
other in terms of volume and internal structure, thus being
heterogeneous. Formal definitions of them are given below.

Definition 1. Neighbor Community Knowledge. Given a
product p in PKG, we consider Ep ¼ fpigmi¼1, i.e., the set of sur-
rounding products (similar or associated) as the neighbor com-
munity knowledge. Similar to social networks where we can
learn about a user through his friends, a product can also be
depicted and enriched by its associated products.

Definition 2. Attribute Knowledge. Given a product p in
PKG, we consider the corresponding attribute set Ap ¼ faigli¼1

as the attribute knowledge. It provides more fine-grained
semantic knowledge for product representations.

Definition 3. Category Knowledge. Given a product p and a
pre-defined category hierarchy T , we consider all categories it
belongs to as the category knowledge, corresponding to nodes in
T . We distinguish category from attributes because there are
rich structural correlations between different categories in T
and we preserve such structural priors by optimizing latent cat-
egory representations with Poincar!e Embedding [15].

2.3 Downstream Tasks
In this article, we mainly focus on three downstream tasks
that rely on learning product representations first, namely,
productmatching, product classification, personalized prod-
uct search. Detailed definitions of them can be found in
Section 4.

3 PRE-TRAINING METHODOLOGY

In this section, we introduce our methodology in detail. We
start with an overview of the proposed KINDLE framework.
Then, we present the details of the underlying components.

3.1 Framework Overview
As shown in Fig. 4, KINDLE consists of two sequential
stages: language acquisition and knowledge acquisition. In the
first stage of pre-training, we rely on the language suite (con-
sisting of Context Encoder and two language acquisition

tasks) to learn contextual semantics of the product domain. In
the second stage, Context Encoder is fixed and its output is
first transferred to Knowledge Encoder. Then followed by
multiple Skeleton Attention layers, we generate local prod-
uct representations (i.e., Knowledge Copies (KCs)), each cap-
turing one facet of product knowledge. KCs are trained by
heterogeneous embedding guided knowledge acquisition
tasks to actually obtain multi-faceted knowledge. Final product
representation is generated during fine-tuning stage by com-
bining all KCs through a gating network, which is able to
adjust weights according to the input product content.

3.2 Language Acquisition Suite
The language acquisition suite serves for modeling contex-
tual semantics, consisting of input representation mapping,
extended vocabulary, Context Encoder, and two language
acquisition tasks. Please note that the language acquisition
suite is optimized only during the first stage of pre-training.

3.2.1 Input Representation and Vocabulary

Given an input sequence (consisting of a product title p ¼
fwigni¼1 and a description d ¼ fwigmi¼1), we first tokenize
each word into smaller tokens (e.g, headphone-¿head, phone)
and use WordPiece embedding [34] to generate token
embeddings S ¼ fTokiTokiTokiTokiTokiTokiTokignþmþ2

i¼1 (two special tokens [CLS]

and [SEP] are inserted to the start and middle positions
respectively). For token vocabulary, we use the one of BERT
since we adopt it as the backbone of Context Encoder. To
deal with novel words in the product domain, we expand
the vocabulary with 1,000 most frequent out-of-vocabulary
(OOV) words in our corpus by directly adding them as
tokens. Table 1 shows representative words of different
product categories. Finally each token embedding is added
with a position embedding and a segment embedding [5] to
form the input representation SI ¼ fEiEiEiEiEiEiEignþmþ2

i¼1 .

3.2.2 Context Encoder

Context Encoder (CE) takes the tokenized, vectored sequen-
ces as input and generates contextualizedword embeddings.
We use pre-trained BERT2 as the backbone to build CE for

Fig. 4. Overview of KINDLE, a two-stage knowledge-driven pre-training framework. The first stage focuses on language acquisition while the second
is responsible for multi-faceted knowledge acquisition.

2. https://huggingface.co/bert-base-uncased

ZHANG ETAL.: MULTI-FACETED KNOWLEDGE-DRIVEN PRE-TRAINING FOR PRODUCT REPRESENTATION LEARNING 7241

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on November 28,2023 at 17:28:05 UTC from IEEE Xplore.  Restrictions apply. 

https://huggingface.co/bert-base-uncased


two notable benefits: (1) Inheriting rich language semantics
of BERT obtained from massive Wikipedia articles. (2) Easy
to adapt to our product domain and downstream tasks by
post-training and adding task-specific layers. Formally,
given an initialized input sequence SI ¼ fEiEiEiEiEiEiEignþmþ2

i¼1 , Context
Encoder maps SI to the contextualized embedding sequence
ST ¼ fTiTiTiTiTiTiTignþmþ2

i¼1 . While each internal layer of Context Encoder
is empowered by self-attention [31], each output word
embedding TiTiTiTiTiTiTi is dependent on the entire input sequence SI ¼
fEiEiEiEiEiEiEignþmþ2

i¼1 , such design enables the output embeddings to be
“contextualized”.

3.2.3 Language Acquisition Tasks

To preserve product semantics in CE, it is pre-trained by
two language-acquisition tasks.

Task 1:Masked LanguageModel (MLM).MLM is a fill-in-the-
blank task, where the model uses the context tokens around
themask token to predict what masked token should be (e.g.,

“Baby ½MASK' with Remote Pan-Tilt-Zoom Camera” !
predict

“Monitor”). When it converges, the model learns contextual
semantics of each token and the last layer of Transformer
is considered as contextual embeddings. Given a input
sequence, we randomly mask 15% (the ratio is empirically
borrowed from BERT) of tokens and reconstruct them using
the last layer, we refer readers to [6] for detailed objective
function ofMLM.

Task 2: Title Description Matching (TDM). In addition to
MLM, BERT uses the Next Sentence Prediction (NSP) task to
enhance high-level semantic learning. Whereas, the notion
of next sentence does not apply for product corpus as prod-
uct title or description usually consists of one sentence.
Hence, we propose TDM, a new sentence-level task in which
we use the global classification token ([CLS]) of the last
layer, to predict whether the input product title matches the

description (i.e., refer to the same product). Accordingly, we
modify the input a little during pre-training, i.e., the input
product title is pairedwith its correct product description for
50% of the time (labeled as Match). And for the rest 50% of
the time, we replace the correct product description with a
corrupted description that is randomly selected from a dif-
ferent category (labeled as NotMatch). The objective func-
tion of TDM is summarized as

qi ¼
exp T T

CLS;iwmT T
CLS;iwmT T
CLS;iwmT T
CLS;iwmT T
CLS;iwmT T
CLS;iwmT T
CLS;iwm

! "

1þ exp T T
CLS;iwmT T
CLS;iwmT T
CLS;iwmT T
CLS;iwmT T
CLS;iwmT T
CLS;iwmT T
CLS;iwm

! " (1)

LTDM ¼ (
X

i2D
yilog ðqiÞ þ ð1( yiÞlog ð1( qiÞ½ '; (2)

where wmwmwmwmwmwmwm is the parameter of binary classifier, qi denotes the
probability of that the ith title and description match. yi is
ground truth label (1 or 0) of matching. D denotes the train-
ing corpus. The two tasks of MLM and TDM are trained
together by multi-task learning with equal weights (0.5, 0.5).

3.3 Knowledge Acquisition Suite
In the second pre-training stage, we propose a knowledge
acquisition suite to preserve multi-faceted product knowl-
edge, consisting of a Knowledge Encoder (KE), Skeleton
Attention layers, and three knowledge-acquisition tasks as
shown in the right part of Fig. 4. In this stage, only parame-
ters of knowledge acquisition suite are optimized while the
Context Encoder (CE) is fixed. This ensures a smooth
knowledge fusion without interfering the language preserv-
ing function of the language acquisition suite.

3.3.1 Knowledge Encoder

We continue to use the product corpus as input fed into CE
and transfer the output to KE. As shown in right bottom of
Fig. 4, KE consists of two projection layers and multiple
Transformer layers. The projection layer aims to project
input to “knowledge space” from “semantic space”, the
Transformer layers store knowledge in the self-attentions
and keep compatible with CE. A skip connection is applied
across two projection layers to avoid losing contextual
embedding information. Only contextual embeddings of
the product title (i.e., fTiTiTiTiTiTiTigni¼1) are forwarded to KE to gener-
ate knowledge-informed embeddings (i.e., fKiKiKiKiKiKiKigni¼1). We dis-
card the product description because the title already
contains the most necessary information, and our problem
setting is using the title to represent a product, which is
more applicable when online retailers do not provide prod-
uct descriptions.

3.3.2 Skeleton Attention

To address the issue of highlighting key information of
products, we propose a novel attention method applied on
the output of KE to generate intermediate product represen-
tations. Our attention mechanism is featured with hierarchi-
cal structure and multi-faceted knowledge-guidance:

! We use a two-layer hierarchical structure to form the
attention, i.e., phrase-level attention and word-level
attention. In this way, it automatically learns to attend

TABLE 1
High-Frequency OOVWords in Product Corpus

Departments High-frequency words

Appliances humidifier, dryer, whirlpool, cooktop,
dispenser, bake, cfm, thermostat, heater

Automotive oem, bumpers, durability, stickers, gmc,
adhesive, waterproof, plated, relays

Clothing, Shoes
and Jewelry

bracelets, sandal, durability, cushioning,
sneaker, adidas, necklaces, legging

Electronics adapter, charger, warranty, interconnects,
headphones, headset, wifi, hdd

Grocery and
Gourmet Food

diagnose, calories, gluten, gourmet,
soybean, starch, hydrogenated, ounces,
caffeine

Home and
Kitchen

dishwasher, tablecloth, ornament,
polyester, stylish, handmade, rugs, figurine,
tumbler

Office Products toner, indexes, envelopes, mfc, deskjet,
pencils, laserjet, bookmark, eraser

Sports and
Outdoors

hoodie, neoprene, pant, sweatshirts, mans,
womens, wicking, zippered, breathability

Toys and
Games

jigsaw, bandai, assorted, playset,
quadcopter, pvc, monstercard, hasbro,
bobbleheads
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informative phrases in product title as well as infor-
mative words in phrase, i.e., what we consider as the
“skeleton” of a product.

! We leverage multiple duplicates of the attention layer
to generate intermediate representations, called
Knowledge Copies (KCs). Each representation is pre-
trained with a knowledge acquisition task, thus the
corresponding attention weights is guided by one
facet of product knowledge, and multi-faceted knowl-
edge is stored in different duplicates of the attention.

Word-Level Attention. Given the embeddings generated by
KE (i.e., fKiKiKiKiKiKiKigni¼1, corresponding to words in product title),
the first layer of Skeleton Attention is word-level attention,
which learns a attention score over each word within a
phrase. Specifically, we first obtain phrase boundary index
by chunking product titles into phrases3. Then within each
phrase, we calculate attention over eachword as

uijuijuijuijuijuijuij ¼ tanh WwKij þ bwWwKij þ bwWwKij þ bwWwKij þ bwWwKij þ bwWwKij þ bwWwKij þ bw
# $

(3)

aij ¼
exp uT

ijhwuT
ijhwuT
ijhwuT
ijhwuT
ijhwuT
ijhwuT
ijhw

! "

P
k0 exp uT

ij0hwuT
ij0hwuT
ij0hwuT
ij0hwuT
ij0hwuT
ij0hwuT
ij0hw

! " ; vivivivivivivi ¼
X

k

aijKijKijKijKijKijKijKij; (4)

where KijKijKijKijKijKijKij denotes the embedding of the jth word in the ith

phrase, we first feed it through a one-layer perceptron to get
uijuijuijuijuijuijuij as a hidden representation. Next we measure the impor-
tance of the word as the correlation between uijuijuijuijuijuijuij and a word-
level latent embedding hwhwhwhwhwhwhw, then get a normalized impor-
tance (attention) weight aij through a softmax function. hwhwhwhwhwhwhw

is randomly initialized and jointly learned during the train-
ing process. Finally, we compute the phrase embedding vjvjvjvjvjvjvj
by summing up all the words (i.e., fK1j;K2j; . . .gfK1j;K2j; . . .gfK1j;K2j; . . .gfK1j;K2j; . . .gfK1j;K2j; . . .gfK1j;K2j; . . .gfK1j;K2j; . . .g) within it
based on the attention weights.

Phrase-Level Attention. After we get the intermediate
phrase embeddings for phrases in product title, we obtain
the local product representations in a similar way

uiuiuiuiuiuiui ¼ tanh Wvvi þ bvWvvi þ bvWvvi þ bvWvvi þ bvWvvi þ bvWvvi þ bvWvvi þ bvð Þ (5)

bi ¼
exp uT

i hpuT
i hpuT
i hpuT
i hpuT
i hpuT
i hpuT
i hp

# $
P

k exp uT
khpuT
khpuT
khpuT
khpuT
khpuT
khpuT
khp

# $ ; ppppppp ¼
X

i

bivivivivivivivi; (6)

where we first feed the phrase embedding vivivivivivivi through a one-
layer MLP to get uiuiuiuiuiuiui as a hidden representation of vivivivivivivi, then
we measure the importance of the phrase as the correlation
between uiuiuiuiuiuiui and the phrase-level latent embedding hphphphphphphp, and
get a normalized importance score bi through a softmax
function. Finally, we compute the product embedding ppppppp as
a weighted sum of the phrase embeddings (i.e., fv1; v2; . . .gfv1; v2; . . .gfv1; v2; . . .gfv1; v2; . . .gfv1; v2; . . .gfv1; v2; . . .gfv1; v2; . . .g)
based on the attention weights.

We leverage three duplicates of the skeleton attention to
generate three local representations (i.e., p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3), what
we also call as “Knowledge Copies” as they are guided by
three knowledge acquisition tasks to obtain corresponding
knowledge.

3.3.3 Knowledge Acquisition Tasks

To preserve the multi-faceted product knowledge, we train
KCs (i.e., p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3) with three knowledge acquisition tasks,

i.e., Neighbor Prediction, Attribute Prediction, and Category Pre-
diction. In order to overcome the sparsity and noise issues of
product knowledge, we propose a heterogeneous embed-
ding model to represent different facets of knowledge. For
each task, we use the corresponding heterogeneous knowl-
edge embeddings as training targets of KCs. Compared to
representing knowledge elements as isolated class labels,
applying the knowledge embedding preserves the label cor-
relation and helps calibrate noise and sparsity.

Heterogeneous Knowledge Embeddings. We follow three
intuitions for generating the knowledge embeddings of
neighbor products, attributes, categories.

Intuition1: Products that share similar attributes, categories
should be close in the embedding space. This intuition helps alle-
viate the noise issue in product associations which are gen-
erated from user behaviors, i.e., making truly associated
products close to each other.

Intuition2: Attributes, categories that cover similar sets of
products should be close in the embedding space. The intuition
helps mitigate the synonym and missing value issues. For
example, for chocolate products, two retailers may use
“Chocolate” and “Choc” as the category name respectively,
but as long as two synonyms cover similar sets of products,
their embeddings will be close.

Intuition3: Category embeddings should preserve the hierarchi-
cal structure information. As mentioned previously, there are
rich structural correlations among categories, preserving
such information improves category representations.

To fulfill the above intuitions, we propose three objective
functions respectively and jointly optimize them. Let n; a; cn; a; cn; a; cn; a; cn; a; cn; a; cn; a; c
denotes the embeddings of neighbor products, attributes,
categories.

O1 ¼
X

ðni;ajÞ2GP

X

ðni;cjÞ2GP

log pðajjniÞ þ log pðcjjniÞ (7)

O2 ¼
X

ðni;ajÞ2GP

X

ðni;cjÞ2GP

log pðnjjaiÞ þ log pðnjjciÞ (8)

log sðnjnjnjnjnjnjnj
TaiaiaiaiaiaiaiÞ þ

XZ

z¼1

Enl)PnðnÞ log sð(nlnlnlnlnlnlnl
TaiaiaiaiaiaiaiÞ

% &
; (9)

where pðnjjaiÞ ¼ expðnjnjnjnjnjnjnj
TaiaiaiaiaiaiaiÞ=

P
nj0 2P

expðnj0nj0nj0nj0nj0nj0nj0
TaiaiaiaiaiaiaiÞ denotes the

probability of product nj given attribute ai, it follows sec-
ond-order proximity [28] in network embedding. GP denotes
product knowledge graph. P denotes the product set. For
efficient optimization, we replace pðnjjaiÞ with Eq. (9), i.e.,
using negative sampling [13] to approximate original soft-
max function, where sðxÞ ¼ 1=ð1þ expð(xÞÞ is the sigmoid
function. pðajjniÞ, pðajjciÞ, and pðcjjaiÞ are calculated in the
sameway.

O3 ¼
X

i2C

X

j2childðiÞ
pðcjjciÞ (10)

pðcjjcicjjcicjjcicjjcicjjcicjjcicjjciÞ ¼
exp (dPointcar!eðcj; cicj; cicj; cicj; cicj; cicj; cicj; ciÞ

# $
P

c2C exp (dPointcar!eðc; cic; cic; cic; cic; cic; cic; ciÞð Þ (11)

dPointcar!eðci; cjci; cjci; cjci; cjci; cjci; cjci; cjÞ¼arcosh 1þ 2
ci ( cjci ( cjci ( cjci ( cjci ( cjci ( cjci ( cj

'' ''2

1( cicicicicicicik k2
! "

1( cjcjcjcjcjcjcj
'' ''2

! "

0

@

1

A: (12)

O3 optimizes the distances of all parent-child category pairs,
pðcjjcicjjcicjjcicjjcicjjcicjjcicjjciÞ denotes softmax normalized distance of cj and ci.

3. We use AllenNLP toolkit to fulfill this, https://demo.allennlp.
org/constituency-parsing
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dPointcar!eð*; *Þ denotes the distance metric used in Pointcar!e
embedding [15] which is the key to preserve structural
correlations.

We leverage a simple yet effective multi-task learning
strategy described in [23] to jointly maximize O1;O2;O3, it
sample each tasks based on the size of the task data.

Knowledge Acquisition Tasks: Neighbor Prediction, Attribute
Prediction, Category Prediction.With the heterogeneous knowl-
edge embeddings generated, we use them as training targets
and optimize a hinge loss of distance between KCs and
their targets. For instance, the loss function of Neighbor
Prediction task is defined as

LNP ¼ (
X

i2D

X

j2NðiÞ
max 0; 1þ hp1;i; njp1;i; njp1;i; njp1;i; njp1;i; njp1;i; njp1;i; nji( hp1;i; n(

jp1;i; n
(
jp1;i; n
(
jp1;i; n
(
jp1;i; n
(
jp1;i; n
(
jp1;i; n
(
j i

! "
; (13)

where p1;ip1;ip1;ip1;ip1;ip1;ip1;i denotes the generated first KC (knowledge copy) of
the ith input product, D denotes the corpus.NðiÞ denotes the
neighbor products of i, njnjnjnjnjnjnj represents the pre-trained embed-
ding for neighbor product j, and n(

jn
(
jn
(
jn
(
jn
(
jn
(
jn
(
j is random negative

sample. h*; *i denotes the L2 distance. To be noted, only
KCs and the knowledge suite are updated while knowl-
edge embeddings (njnjnjnjnjnjnj) are fixed. For the tasks of Attri-
bute Prediction and Category Prediction, similarly, we
calculate LAP and LCP for p2; p3p2; p3p2; p3p2; p3p2; p3p2; p3p2; p3 by replacing njnjnjnjnjnjnj with ajajajajajajaj
and cjcjcjcjcjcjcj respectively,

LAP ¼ (
X

i2D

X

j2AðiÞ
max 0; 1þ hp1;i; ajp1;i; ajp1;i; ajp1;i; ajp1;i; ajp1;i; ajp1;i; aji ( hp1;i; a(jp1;i; a

(
jp1;i; a
(
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(
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(
j i

! "
(14)

LCP ¼ (
X

i2D

X

j2CðiÞ
max 0; 1þ hp1;i; cjp1;i; cjp1;i; cjp1;i; cjp1;i; cjp1;i; cjp1;i; cji ( hp1;i; c(jp1;i; c
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3.3.4 Final Representation byMixtures of Experts (MoE)

Given the knowledge-guided local representations p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3,
we propose to combine them coherently to generate the final
product representation. The intuitions are: (1) The same type
of knowledge may have different gain effect in different
instances of product (e.g., for those products that already
contains attribute information like “Material 100%cotton” in
title, attribute knowledge may bring limited improvements).
(2) The same knowledge may contribute differently (more or
less) to different downstream tasks. We utilize the Mixtures
of Experts (MoE) model to fulfill the intuitions. As shown in
Fig. 4, we apply a softmax gating network on the output of
Knowledge Encoder ([CLS] token) to calculate three nor-
malized scalars g1; g2; g3, which are then used as the weights
summing KCs

gi ¼
exp hT

ih
T
ih
T
ih
T
ih
T
ih
T
ih
T
i KCLSKCLSKCLSKCLSKCLSKCLSKCLS

# $

P
j exp hT

jh
T
jh
T
jh
T
jh
T
jh
T
jh
T
jKCLSKCLSKCLSKCLSKCLSKCLSKCLS

! " + pðpipipipipipipijh;KCLSh;KCLSh; KCLSh; KCLSh; KCLSh;KCLSh;KCLSÞ; i ¼ 1; 2; 3; (16)

where hihihihihihihi denotes the gating parameter for the ith knowledge
copy, KCLSKCLSKCLSKCLSKCLSKCLSKCLS denotes the output [CLS] token of KE, and hihihihihihihi
and KCLSKCLSKCLSKCLSKCLSKCLSKCLS have the same dimensions. Final product repre-
sentation ppppppp is calculated as a weighted sum of the gated
local representations, i.e., ppppppp ¼

P3
i¼1 gipipipipipipipi. To be noted, in pre-

training phase, only parameters behind p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3p1; p2; p3 are opti-
mized while parameters related to ppppppp are fixed. That is to say,

we only calculate final representation ppppppp and update other
parameters during the fine-tuning phase.

4 FINE-TUNING ON DOWNSTREAM TASKS

We present how to apply KINDLE on several downstream
tasks of product representation learning, i.e., product match-
ing, personalized product search, and product classification.

4.1 Product Matching
As shown in Fig. 5a, given two products (e.g., Kingston 133x
high-speed 4GB compact flash card ts4gcf133, 21.5 MB per sec
data transfer rate, vs,Kingston ts4gcf133 4GB compact flash mem-
ory card (133x)), this task aims to predict whether they refer to
the same product [19]. It is considered as the entity matching
task in product domain. For each product pair pi; pj, we first
feed them into Context Encoder of KINDLE, then we feed
their contextual embeddings to the knowledge suite to get
their knowledge-aware representations pi; pjpi; pjpi; pjpi; pjpi; pjpi; pjpi; pj respectively.
Finally a simple binary classifier is applied on the concatena-
tion of them (i.e., [pi; pjpi; pjpi; pjpi; pjpi; pjpi; pjpi; pj]) to perform prediction.

4.2 Product Classification
As shown in Fig. 5b, given an input product title p, this task
aims to retrieve all the categories in a predefined hierarchy
T that p belongs to. We use the final representation of
KINDLE along with multiple flat binary classifiers to per-
form prediction.

4.3 Personalized Product Search
As shown in Fig. 5c, given input query qi, user profile uj,
this task aims to return the products that the user is most
likely interested in, ranked by scores. Similarly, given a
training triple (qi; uj; pk), we first obtain the representation
of them via KINDLE respectively (i.e., qqqqqqqi, uuuuuuuj, pppppppk). To be
noted, only product representation (pppppppk) is obtained via the
entire pipeline (Context Encoder + knowledge suite) while
qqqqqqqi, uuuuuuuj are averaged contextual embeddings. Then we mini-
mize the personalized search loss defined in [2] for fine-tun-
ing (equivalent to maximizing the likelihood of observed
user-query-item triples)

Fig. 5. Fine-tuning KINDLE on three downstream tasks.
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Lps ¼ (
X

ði;j;kÞ2Dps

logP ðpppppppkjuuuuuuuj; qqqqqqqiÞ

¼ (
X

ði;j;kÞ2Dps

log s pppppppk * ðguuuuuuuj þ ð1( gÞqqqqqqqiÞ
# $

þ z *Ek0)Pk log s (pppppppk0 * ðguuuuuuuj þ ð1( gÞqqqqqqqiÞ
# $% &

; (17)

where z is the number of negative samples and Pk is the
uniform noise distribution for negative sampling. g is a
hyperparameter controlling the weight of user-side and
query-side information.

5 EXPERIMENTS

We conduct a series of experiments to validate the effective-
ness of KINDLE on three downstream tasks (i.e., product
matching, personalized product search, product classification) as
well as their zero-shot versions for new products. Details of
each task and the corresponding KINDLE based fine-tuning
architecture are presented in the Section 4. In addition, we
propose a new task, zero-shot knowledge recovery to verify the
knowledge acquisition ability of KINDLE, and real examples
are presented for better understanding.

5.1 Experimental Settings

5.1.1 Tasks and Datasets

We create the pre-training dataset leveraging resources
publicly available. Then we use existing benchmark data-
sets or create new datasets for downstream tasks. Table 2
presents the statistics of all the datasets.

Pre-Training Data. The pre-training dataset consists of a
product corpus (1M product titles and descriptions) and a
product knowledge graph (1M products, 52,582 attributes
and 5,891 categories). Each product has 7.2 attributes, 6.5
categories and 27.8 neighbors in average, revealing the
noisy and sparse nature of the heterogeneous product
knowledge. Fig. 6 shows the length distributions of product
title and description in our dataset, which are similar across
different categories.

Downstream Task Data. (i) Product Matching (P-M) aims to
predict whether two given products refer to the same prod-
uct, we use the benchmark dataset described in [19], which
extracts more than seven thousands products from various
online retailer sources. It consists of 82,420 training pairs
(36,908 positive + 45,512 negative), and 2,200 testing pairs
(600 positive + 1,600 negative). We use 10% of the training

data as validation set. (ii) Personalized Product Search (P-S)
aims to predict a ranking score for a product given a query
and user profile, we follow the same procedure in work [2]
to create a dataset using Amazon Electronics subset, consist-
ing of 61,324 products and 562,345 huser, query, producti
triples. We divide them into train/validation/test set with
the ratio of 7:1:2. (iii) Product Classification (P-C) aims to
return all the categories that a given product belongs to, we
create an evaluation dataset by extracting Amazon product
metadata, consisting of 21,039 product titles and 133 fine-
grained categories. We divide them into train/validation/
test set with the ratio of 7:1:2.

5.1.2 Evaluation Metrics and Baselines

Product Matching. We use Precision, Recall and F-1 to evalu-
ate the matching results. We compare our pre-trained model
with a state-of-the-art entity matching baselineMagellan [11],
and four strong deep learning solutions described in Deep-
Matcher, i.e., SIF, RNNs, Attention,Hybrid [14].

Personalized Product Search. We adopt several rankingmet-
rics following prior work for evaluation of this task, i.e.,
mean reciprocal rank (MRR), normalized discounted cumu-
lative gain (NDCG@10), and the proportion of correct result
ranked in the Top 10 (Hit@10). We compare with state-of-
the-art baseline as well as strong baselines in prior work of
this field. The full names of compared baselines are: Trans-
former-based Embedding Model (TEM [4]), Zero Attention
Model (ZAM [1]), Attention-based Embedding Model (AEM
[1]), Hierarchical Embedding Model (HEM [2]), Query
EmbeddingMode (QEM).

Product Classification. We adopt multi-class classification
metrics, i.e., Accuracy, Micro-F1, and Macro-F1 to evaluate
this task. We compare with strong DL baselines for title clas-
sification including Long Short Term Memory networks
(LSTM), Attentive LSTM, Hierarchical Attention Network
(HAN).

For all the three tasks, we also compare with vanilla BERT
and BERT-K. The former is post-trained on our corpus with-
out considering any product knowledge, the latter has sec-
ond knowledge pre-training stage supervised by multi-task
knowledge classification (without considering the training
discrepancy, knowledge noise, sparsity issues). We average
the output of BERT to generate product representation and
use the same task-specific architectures as KINDLE for fine-
tuning.

Internal Baselines. Besides task-specific baselines, we also
compare with several internal baselines of KINDLE for abla-
tion study. They are pre-trained following the same two-stage

TABLE 2
Statistics of the Datasets

Datasets Pre-training P-M P-S P-C

# Products 1M 7,851 61,324 21,039
# Attributes 52,582 ( 1,332 1,594
# Categories 5,891 ( 267 133

# Attributes/item 7.2 ( ( (
# Categories/item 6.5 ( ( (
#Neighbors/item 27.8 ( ( (
# (q; u; p) triples ( ( 562,345 (
# (pi; pj) pairs ( 82,420 ( (

Fig. 6. Length distributions of product titles and descriptions under differ-
ent categories.
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framework, but employ different ways to generate the final
product representation in fine-tuning stage: (1) p1p1p1p1p1p1p1; p2p2p2p2p2p2p2; p3p3p3p3p3p3p3, three
local representations are used to represent products directly,
they incorporate neighbor, attribute, category knowledge
respectively. (2) KE, averaging the output of Knowledge
Encoder while Skeleton Attention (SA) and Mixture of
Experts are not used. (3) SA, averaging SA’s output (i.e.,
p1p1p1p1p1p1p1; p2p2p2p2p2p2p2; p3p3p3p3p3p3p3) by weights learned from a softmax function. To be
noted, our full version of KINDLE is achived by averaging
p1p1p1p1p1p1p1; p2p2p2p2p2p2p2; p3p3p3p3p3p3p3 withMixture of Experts (MoE).

5.1.3 Hyper-Parameters

Pre-Training Parameters. For each internal baseline of KIN-
DLE, we start pre-training with the first stage, i.e., language
acquisition tasks. Then we fix the language model and start
the second stage pre-training, i.e., optimizing the knowledge
suite supervised by knowledge acquisition tasks and pre-
trained knowledge embeddings. We use BERTbase,uncased (12
layers, 768 hidden dimensions, 12 heads) to initialize Context
Encoder. Token masking ratio for MLM is 15%, title descrip-
tion corruption ratio for TDM is 50%. The transformer in
Knowledge Encoder is set to be lighter, with 4 layers, 768 hid-
den dimensions, 6 heads, and the projection layer is equiva-
lent to 2-layer perceptron with the same input and output
dimensions as KE. For both stages, we set the maximum

epochs as 10, batch size 32, learning rate 1e-5, also, use early
stopping to avoid overfitting.

Fine-Tuning Parameters. For all the external baselines, we
either use the best parameter configuration described in
previous papers (P-M and P-S tasks) or obtain the best con-
figuration using our validation set (P-C task). For fine-tun-
ing KINDLE on each task, please refer to the Section 4 for
implementation details. We choose the batch size, learning
rate and epochs from {16, 32, 64}, {5e-6, 1e-5, 2e-5, 5e-5} and
{2, 4, 6, 8, 10}. We pick the best parameters on the validation
set and report the corresponding test results. We found the
setting that works best across most tasks and models is 32
batch size, 4 or 6 epochs and a learning rate of 2e-5. All
results are reported as averages of 10 runs.

5.2 Experimental Results

5.2.1 Overall Performance and Ablation Study

Tables 3, 4, and 5 show the results of product matching, per-
sonalized product search and product classification respec-
tively. And Fig. 7 shows the effects after incorporating
different product knowledge and fusing them all in KINDLE.
The key observations are: (1) Transformer based models (i.e.,
TEM, BERT) achieved the best performances among external
baselines, indicating the effectiveness of contextualized
semantics. (2) Compared with BERT, our internal baselines
with a second-stage knowledge acquisition pre-training, achieved

TABLE 3
Performance on Product Matching

Matching Metrics (%)

Model Precision Recall F1

Baselines

Magellan 61.51 76.77 68.33
DeepMatcher (SIF) 61.73 77.54 69.23

DeepMatcher (RNNs) 62.98 78.96 70.12
DeepMatcher (Attention) 63.22 79.35 70.37
DeepMatcher (Hybrid) 63.73 79.76 70.84

BERT 65.51 81.23 72.52
BERT-K 65.78 81.42 72.35

KINDLE
KE 67.20 81.23 73.73
SA 68.51 82.53 74.86
MoE 69.21 83.34 75.62

The best performance is highlighted in boldface.

TABLE 4
Performance on Personalized Product Search

Ranking Metrics (%)

Model MRR NDCG@10 Hit@10

Baselines

QEM 24.52 25.31 28.67
HEM 27.86 27.91 30.14
AEM 28.04 28.23 30.55
ZAM 29.31 30.51 31.22
TEM 31.53 32.95 31.98
BERT 32.85 33.94 33.02

BERT-K 33.12 33.99 32.88

KINDLE
KE 37.57 38.04 37.98
SA 39.57 39.15 39.37
MoE 41.11 40.02 42.49

TABLE 5
Performance on Product Classification

Classification Metrics (%)

Model Accuracy Mi-F1 Ma-F1

Baselines

LSTM 75.84 84.90 80.87
Attentive LSTM 76.34 85.22 82.47

HAN 77.37 86.90 82.47
BERT 78.24 86.98 82.65

BERT-K 78.55 86.56 82.28

KINDLE
KE 81.15 89.76 84.65
SA 82.23 90.14 84.97
MoE 83.38 91.45 86.16

Fig. 7. The effect of incorporating individual facet of product knowledge
and combining all facets. We show their performances on three tasks
(nine metrics) together in a radar map. For a clear comparison, all the
values are first standardized.
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further improvement (5% accuracy on product matching,
24% MRR on product search and 6% accuracy on product
classification over the second best), which validated the effec-
tiveness of product knowledge for PRL. However, BERT-K
did not get much improvements even after incorporating
knowledge by multi-task learning, indicated addressing the
learning discrepancy issue is critical to successful knowledge
acquisition. (3) Not all product knowledge contributed
equally to the performance. For product search, ppppppp1 (Neighbor
knowledge) achieved themost improvements over baselines,
ppppppp3 (Category) followed, ppppppp2 (Attribute) got very limited
improvements. In product matching, ppppppp2 (incorporated attri-
bute knowledge) obtained clear improvements over BERT. In
product classification, however, ppppppp3 (incorporated category
knowledge) obtained obvious improvements. (4) Compared
with combining both Knowledge Encoder and Skeleton
Attention, solely using Knowledge Encoder did not get nota-
ble improvements, indicating that by capturing key informa-
tion, our attention mechanism actually helps encoding
product knowledge in a more effective way. We conjecture
this is due to there exist certain correlations between key
information in product title (e.g., Baby Monitor with Remote
Pan-Tilt-Zoom Camera and 3.2” LCD Screen ) and product
knowledge (e.g., category: video monitor). (5) Furthermore, for
all tasks, combining different product knowledge by MoE
achieved the best result in internal baselines, indicating that
the dynamic weights generated by input-aware gating ena-
bles more robust fusion of heterogeneous multi-faceted
knowledge.

5.2.2 Transferability on New Products

To validate the transferability on unseen products, we pro-
posed the zero-shot versions of the three downstream tasks.
Specifically, for each task, we create 5,000 zero-shot testing
samples (denoted by DZ), in which not only all the samples
but also the related products are never appeared in the pre-
training data (DP ) and task-specific training data (DF ). In
addition, 30% of them are OOD samples from other
domains. Then we directly measure the performance of all
models (pre-trained on DP , fine-tuned on DF ) on DZ with-
out further fine-tuning. Fig. 8 shows the performance com-
parison between the best baselines and our model. We
observed that BERT outperformed non-BERT models, and
KINDLE-MoE obtained the best results in all tasks. We con-
clude that (1) Contextualized transformer-based models
have better transferability than other deep models; (2) Incor-
porating product knowledge can further improve the trans-
ferability of product representation; (3) Compared with
averaging SA, Mixture-of-Experts is a better way to deal

with the heterogeneity of product knowledge, this is consis-
tent with what we observed in the regular setting of down-
stream tasks.

5.2.3 Zero-Shot Knowledge Recovery

We propose this new task to validate the knowledge acquisi-
tion ability of KINDLE. Formally, given a product title, we
aim to retrieve its most likely neighbor products, attributes,
categories from the pre-defined knowledge sets. We compare
pre-trained KINDLE with a simpler variant KINDLE-C (C
indicates classification). Both models are only pre-trained in
an unsupervised fashion, not fine-tuned in any tasks. While
KINDLE uses pre-trained heterogeneous knowledge embed-
dings as targets to guide the knowledge acquisition tasks, and
KINDLE-C treats each knowledge element as a classification
label and use a classification loss to optimize p1p1p1p1p1p1p1; p2p2p2p2p2p2p2; p3p3p3p3p3p3p3, i.e., it
does not consider the relatedness between different knowl-
edge elements. Specifically, we sample 10,000 products that
have never appeared in our pre-training data and feed their
titles into both models to obtain three local representations
p1p1p1p1p1p1p1; p2p2p2p2p2p2p2; p3p3p3p3p3p3p3 respectively. Then we use them to retrieve three
types of knowledge respectively. For KINDLE, we calculate
the L2 distance between pipipipipipipi and all knowledge elements as the
retrieve scorewhile for KINDLE-Cwe use the classifier scores
over all elements. Based on the scores, we retrieve and rank
all knowledge elements to report the Mean Rank (the lower
represents better) and Hit@10 of ground truth knowledge in
Fig. 9. KINDLE outperformed KINDLE-C consistently, indi-
cating our heterogeneous knowledge embeddings success-
fully captured the relatedness between knowledge elements
to alleviate the noise and sparsity issues. We show two real
examples of knowledge recovery in Table 6. KINDLE got
more robust results than KINDLE-C, i.e., less wrong answers,
usually at least correlated or neutral answers.

5.3 System Deployment
We deploy KINDLE on a Business Matching platform of
NEC, which aims to find business partners for companies
according to their business need and product information.

Fig. 8. Performance on the zero-shot settings of downstream tasks.

Fig. 9. Performance on zero-shot knowledge recovery.
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We apply our model to learn contextualized representations
of needs and knowledge-aware representations of products
respectively. Since the number of needs and products of a
company may vary from 1 to more than 100, during training
time, we run 100 duplicates of our model in parallel on 10
GTX-1080-Ti GPUs to generate representations efficiently.
Given a query company, to avoid large latency on returning
top-k results, we employ Maximum Inner Product Search
(MIPS) algorithms using running time and storage space
that scale sub-linearly with the number of candidates [21],
[25]. Both real-world historical ground-truth and manually
annotated matching data shows that compared with exist-
ing deep matching baselines, KINDLE achieves 9.8% and
15.2% improvements on Precision in normal setting and
zero-shot setting, respectively.

6 RELATED WORK

Our work is related to unsupervised representation learning
and e-commerce computing. Ever since the advent of word2-
vec [13], a varieties of unsupervised representation learning
methods have been proposed for a broad range of domains
and applications [8], [12], [16], [28], [37]. In e-commerce,
item2vec [3] is the first work that generalized skip-gram
based representation learning to product recommendation.
Following it, more advanced embedding model have been
proposed for recommendation [30], [41], [42]. For personal-
ized product search, [2] proposed a series of models that
jointly optimizes product, query and user representations
[1], [2]. Other following work [38], [39] jointly learns embed-
dings for product search and recommendation to achieve
improvements for both tasks. A major limitation of these
prior work is that they do not consider contextualized
semantics. Although recent work [4], [9] leverage trans-
former and BERT for search and ranking, none of them uti-
lize rich product knowledge. Product knowledge has
shown effectiveness [35] in product-related tasks, whereas
none existing work considers both knowledge and contex-
tual embeddings. Our work is the first unified work to
incorporate contextual word embeddings and product
knowledge for product representation learning.

Our work is also related to Pre-trained Language Models
(PLMs). Recently, the emergence of PLMs [6], [17], [20] has
dominated the progress of natural language processing.
Compared with traditional word embedding [13], PLMs
learn to represent words based on the entire input context

to deal with word polysemy, thus captures semantics
more accurately. Besides, it inherits strong transfer learn-
ing ability from the paradigm of pre-training and fine-tun-
ing. Following PLMs, many endeavors (e.g., SpanBERT
[10], ERNIE [27], etc.) have been made for further optimi-
zation. On the other hand, to enable PLMs with world
knowledge, several attempts [18], [26], [32], [33], [40] have
been made to inject knowledge from external KGs into
BERT. Most of these work is based on the “BERT+entity
linking” paradigm, however, it is not suitable for product
representation learning as retailer-based product knowl-
edge are usually heterogeneous and noisy. Our knowledge
pre-training suite is designed to be flexible and robust to
overcome these issues.

7 CONCLUSION

In this work, we proposed a novel knowledge-driven pre-
training framework for learning product representations. It
integrated multi-faceted product knowledge into language
model smoothly by extending PLMwith a knowledge acquisi-
tion stage. Multi-objective heterogeneous knowledge embed-
dings were also utilized in knowledge acquisition tasks to
calibrate knowledge noise and sparsity issues. Moreover,
an input-aware gating network was utilized to re-weight dif-
ferent knowledge facets for different tasks. Experiments on
three downstream tasks demonstrated the effectiveness of our
framework.
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