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Dictionary Attacks on Speaker Verification

Mirko Marras™, Member, IEEE, Pawet Korus

Abstract—In this paper, we propose dictionary attacks against
speaker verification-a novel attack vector that aims to match a
large fraction of speaker population by chance. We introduce
a generic formulation of the attack that can be used with
various speech representations and threat models. The attacker
uses adversarial optimization to maximize raw similarity of
speaker embeddings between a seed speech sample and a proxy
population. The resulting master voice successfully matches
a non-trivial fraction of people in an unknown population.
Adversarial waveforms obtained with our approach can match
on average 69% of females and 38% of males enrolled in the
target system at a strict decision threshold calibrated to yield false
alarm rate of 1%. By using the attack with a black-box voice
cloning system, we obtain master voices that are effective in the
most challenging conditions and transferable between speaker
encoders. We also show that, combined with multiple attempts,
this attack opens even more to serious issues on the security of
these systems.

Index Terms— Authentication, biometrics (access control),
speaker recognition, adversarial machine learning, impersonation
attacks.

I. INTRODUCTION

IOMETRIC technologies constitute one of the most pop-

ular solutions to user authentication. They can offer high
reliability and better user experience than classic password-
based systems, especially on mobile devices [1]. Among the
plethora of available modalities, the most commonly deployed
verification systems look at faces [2], fingerprints [3], and
speech [4] - all of which can be used in modern smartphones.
In this study, we focus on speaker verification, a key compo-
nent of voice assistants, which represent a rapidly growing
human-computer interaction method popularized by smart
speakers [5], [6].

Like other biometric modalities, speech remains suscep-
tible to attacks [1] which target both speech recognition
(e.g, by crafting hidden voice commands [7]) and speaker
verification (e.g., impersonation via spoofing, re-play or voice
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synthesis/conversion [8], [9]). Speaker impersonation studied
to date exclusively focuses on targeted attacks, which make
two critical assumptions: (i) there is a specific single victim
(i.e., a target identity whose voice the attacker tries to imitate)
and (ii) a sample of the victim’s voice is available (or needs to
be obtained). While the required sample size varies, and tends
to change depending on the attack method and authentication
protocol (e.g., text-independent [10], [11], [12] or interactive
challenge-response [13], [14]), the principle remains the same.

In this paper, we propose a novel attack vector against
speaker verification systems: untargeted dictionary attacks.
In contrast to targeted attacks, the goal is to match a non-trivial
fraction of the user population by pure chance, without any
knowledge of the victim’s identity or voice. Such an attack
could be leveraged for unlocking a phone found on the
street or facilitating mass-scale voice commands to voice
assistants in compromised home networks [15]. Our approach
involves adversarial optimization of a novel attack objective
and can be applied to arbitrary speech representations (e.g.,
waveforms, spectrograms, speaker embeddings), making it
adaptable to different systems and verification protocols (e.g.,
text-dependent or independent). This attack opens up a novel
threat against the voice modality.

The feasibility of dictionary attacks has recently been shown
for the fingerprint [16], [17] and the face [18] modalities.
The inspiration comes from biometric menagerie [19], a well-
established principle of numerous biometrics to exhibit large
variations of matching propensity across individuals. In par-
ticular, the most relevant group for our work is represented by
people who tend to match others easily (wolves) and people
highly susceptible to be matched (lambs). Dictionary attacks
aim to exploit this phenomenon to generate master biomet-
ric examples that maximize the impersonation capability of
generated samples. Combined with rapidly improving gen-
erative machine-learning models, e.g., generative adversarial
networks [20] or variational auto-encoders [21], this attack
may soon create the perfect storm for biometric authentication.

Our study makes the first step to formalize and extensively
evaluate dictionary attacks against speaker verification sys-
tems. The main contributions of our work are listed below.

1) We propose a generic formulation of the attack based
on adversarial optimization driven by raw similarity of
speaker embeddings. The attack can be applied to vari-
ous speech representation domains and threat models.

2) We evaluate the attack, comparing three speech repre-
sentations and several speaker encoders, under white-
and black-box settings, showing strong generalization
to an unseen speaker population and (in some settings)
non-trivial transferability to unseen encoders.
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3) We show that speaker verification systems are suscep-
tible to this attack and that the effect varies across
genders. In our experiments, an accidental intrinsic bias
of speaker encoders made female speakers remarkably
more vulnerable to the attack.

Compared to our prior study [22], we have revised and
generalized the attack to enable seamless application to various
speech representation domains. We also extended the evalua-
tion to include several speaker encoders and various threat
models. Our version in this paper leads to substantially better
results and can be even used in challenging conditions, e.g.,
to evolve transferable master voices based on black-box access
to a third-party voice cloning system with variable output.

II. RELATED WORK
A. Speaker Modelling

Speaker recognition involves two main tasks [4]: identifi-
cation aims to identify the speaker among a set of possible
hypotheses; verification aims to confirm the identity of the
claimed speaker and operates in an open-set regime based on
a gallery of enrolled speech samples. Speaker modeling has
recently been dominated by deep neural networks [23] (DNNs)
which remarkably outperform classic solutions like GMM-
UBM [24] or i-vector [25]. DNNs are typically pre-trained
for the identification task, but are then adapted to open-set
verification by discarding the classification head and extracting
a compact intermediate representation, referred to as a speaker
embedding. The embeddings are then compared between
the query and enrolled samples to confirm the speaker’s
identity.

Speaker enrollment typically involves the collection of mul-
tiple speech samples, whose embeddings need to be combined.
Some of the traditional methods (e.g., a PLDA model [4])
assume statistical independence, which is hard to achieve
in practice. As a result, simpler scoring strategies are often
preferred, e.g., averaging the embeddings or taking the one
with maximum similarity. A recent study [26] showed that
the average embedding often leads to superior performance,
which makes it a popular choice [27], [28].

Countless model architectures have been proposed for
speaker encoding. Some of the most prominent differences
involve selection of the input acoustic representation, back-
bone network, and temporal pooling strategy. While directly
using waveforms to learn a representation is possible [29], it is
much more common to use a hand-crafted 2D representation
(e.g., spectrograms or filterbanks). The latter enables adap-
tation of successful backbones from computer vision, e.g.,
VGG [30] or residual networks (ResNet) [31], [32], [33].
Dealing with the time dimension can rely on recurrence [34],
pooling [33], [35] or specialized architectural designs. As an
example, Time Delay Neural Networks (TDNNs) use a 1D
convolution structure along the temporal axis and are adopted
in the popular x-vector architecture [36], [37].

Usually, trainable pooling layers achieve better results than
simple pooling operators, (e.g., average pooling [33] or statisti-
cal pooling [38]). Some of the most successful learned designs
include the family of VLAD models. NetVLAD [39] assigns
each frame-level descriptor to a cluster and computes residuals

to encode the output features. Its variant GhostVLAD [39]
improved performance by excluding some of the original
NetVLAD clusters from the final concatenation, such that
undesirable speech sections are down-weighted.

B. Adversarial Attacks in Speech Processing

Originally introduced in computer vision [20], adversarial
attacks refer to genuine samples imperceptibly modified by
tiny perturbations to fool classifiers with high chance. In the
context of speech, this type of attack can be broadly cate-
gorized based on the targeted task, i.e., speech or speaker
recognition. In the former, the goal is to embed carefully
crafted perturbations to yield automatic transcription of a
specific malicious phrase. In [40], the attacker uses inverse
feature extraction to generate obfuscated audio played over-
the-air, which allows for issuing hidden commands to voice
assistants. Later, [41] proposed a white-box attack based on
gradient optimization, leading to quasi-perceptible adversarial
perturbations, finally improved using psychoacoustic model-
ing [42]. To avoid repeated optimization hindering real-time
use, a recent work by [43] designed an algorithm to find
a single universal perturbation, that can be added to any
speech waveform to cause an error in transcription with high
probability. Finally, [7] showed that adversarial commands can
be also hidden in music. The authors used a surrogate model
to create transferable adversarial examples that can achieve
this goal.

Attacking speaker verification systems initially relied on
spoofing and replay attacks. Susceptibility to adversarial exam-
ples has gained attention only recently. The goal is to craft an
attack sample from a voice uttered by a seed speaker, so that
it is misclassified as a different one (either specific or any),
while still being recognized as the seed speaker by human
listeners. In a white-box setting, the FGSM attack made it
possible to generate adversarial examples with high success
rate [9]. [44] constrained the perturbation based on a psychoa-
coustic masking threshold to obtain imperceptible samples.
To obtain robustness against reverberation and noise, [45]
proposed a gradient-based optimization that generates robust
universal adversarial examples (though the attack was not
tested over-the-air). Reference [46] used a gradient estimation
algorithm (NES) in a black-box setting. While the study used
a small dataset, the attack had a high success rate in a practical
setting.

All of the existing attacks (including both spoofed and
adversarial samples) are targeted, i.e., they aim to pass
authentication as a specific individual. However, biometric
systems exhibit large variations in matching propensity across
individuals, which can be exploited to open a novel threat
vector. Hence, the untargeted nature of the proposed dictio-
nary attacks is fundamentally different from the untargeted
nature of adversarial attacks on machine learning models.
In this context, the latter would aim to prevent authentication
as a particular person without specifying the desired target
identity.

C. Dictionary Attacks in Biometrics

Dictionary attacks use prior knowledge about the expected
success rate to triage brute-force authentication attempts. They
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naturally apply to passwords, but until recently have not been
considered for other authentication modalities. In biometrics,
such attacks are qualitatively different from spoofing and do
not require any knowledge about the victim (e.g., speech sam-
ples) [47]. This threat is enabled by large variation in matching
propensity across individuals (biometric menagerie [19]) and
further exacerbated by the usability-security trade-offs in mass
deployments (e.g., partial finger impressions [16]).

The concept of dictionary attacks in biometrics was intro-
duced only recently. The vulnerability was first demonstrated
on fingerprints [16] and subsequently extended to faces [18].
Initially, an existing fingerprint with the highest impostor score
was selected as a master print [16]. In the next iteration, syn-
thetic master prints were created by first-order hill-climbing,
initialized on the most promising real fingerprints from the first
approach. However, local search algorithms may get stuck in
local minima or take a long time to converge. Reference [17]
used diversity-quality evolution to address this issue and
a generative adversarial network (GAN) to parametrize the
search space. The same approach was successful for faces [18].

So far, dictionary attacks have not been studied for speech.
Our preliminary work [22] demonstrated that adversarial opti-
mization of spectrograms in a white-box setting consistently
increases impersonation rates in VGGVox [30]. The resulting
adversarial samples could match, on average, 20% (10%) of
female (male) speakers in an unseen population. In this paper,
we generalize our attack and test it against multiple systems
and diverse speech representations. We achieved substantially
improved impersonation rates and demonstrate non-trivial
transferability across speaker encoders.

III. PROBLEM STATEMENT AND ATTACK METHODS

In this section, we formally define the problem and provide
a generic formulation of the attack.

A. Speaker Verification Pipeline

We consider a standard text-independent speaker verification
pipeline where a fixed-length speaker embedding f € R°
is extracted from a speech waveform of variable length
w € [—1,1]* using a speaker encoder (£). Verification for
a given user u involves comparison of the speaker embedding
f extracted from a presented test sample with a set of enrolled
embeddings F,, = {fy; : u = u}. Without loss of generality,
we assume a fixed number of enrolled samples per person
(n). The number of collected samples and their combination
depend on an enrollment and scoring strategy. We discuss each
step in detail below. Our notation is shown in Table I.

a) Speaker encoder: The speaker encoder £ is typically a
DNN trained on an acoustic representation A(w) = A € RK**
(e.g., spectrogram or filter banks):

L1 sw D AcRV* S peRre (1)

The model is typically pre-trained for fully supervised
closed-world speaker classification on a large corpus with
thousands of speakers. Ultimately, the classification head is
discarded and the preceding layer is used to extract the speaker
embedding.

775

TABLE I
KEY SYMBOLS AND NOTATION SUMMARY

waveform w € [-1,1]*
acoustic representation A A(w) € Rex*
speaker embedding f E(A) e R®
speech parametrization/generation  G(w, v|6)

collection of speaker embeddings ~ F' = {fy,1} € RnXmxe
... for user u Fy ={fyi:u=u}
... for population Uy Fe = Uyev, Fu
optimization (proxy) population U,

test population U

# enrolled users m |U¢|

# enrolled samples n

# presentation attempts c

b) Enrollment and scoring strategy: The system collects
multiple speech samples of each user and stores the resulting
speaker embeddings, i.e., the database is a collection F =
{fu,1} where u denotes users and i indexes their successive
samples (for simplicity, assume a constant number of samples
n per user). During verification, the system returns a binary
decision indicating whether a test sample matches a claimed
identity u. The test waveform w is encoded analogously to
enrollment and processed according to a verification rule:

vp e (W ulF) =0, ., F,) : R xR"™ = {0,1} (2)

which involves the choice of a scoring strategy p for combin-
ing multiple embeddings/scores and a threshold 7. We consider
two popular policies [26]: (1) any-n scores similarity with
each of the enrolled embeddings and takes the maximum
one; (2) avg-n scores similarity to the average embedding.
Formally:

Oany,z (f, ) = any ({fofu,i >7:i=1,. ..,n}) 3)
Dan,‘[(fa F,) =fof, >1 4)

1
=fo (; Z_lfu’i) > 7 (5

where operator f; of, — R denotes a similarity function (e.g.,
the cosine similarity or the inverse of the Euclidean distance).

B. Dictionary Attack Formulation

In contrast to classic speaker spoofing, the goal of dictionary
attacks is to match a large fraction of an unknown population
by pure chance. Formally, the goal of the attacker is to find
a master voice sample w,. that maximizes false matching rate
within some user population U:

Wy = argivnaquEEU [vp,c (W, u)] (6)

This formulation assumes only a single presentation attempt
and is referred to as a master voice (MV). However, many
verification systems allow for several trials, each possibly
using a different utterance. Hence, we distinguish a maximum
coverage master voice sequence (MCMV) W.,:

W, = argmax E [v, (Wi, u) V...V, (We,u)] (7)
(wla---,wc)ueU

This attack is more powerful, since each subsequent attempt
can be optimized to target the remaining speaker embedding
subspace. See Section III-F for more details.
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Fig. 1.

Proposed adversarial optimization protocol for finding master voice samples: (1) a seed sample is used to initialize the attack; (2) a speaker embedding

is computed and compared with a collection of enrolled embeddings from a proxy optimization population; (3) the gradient of the adopted similarity metric
is computed and leveraged to update a chosen speech representation (e.g., waveform, spectrogram, or speaker embedding); depending on the adopted threat
model either full gradient (white-box setting) or its approximation (black-box) is used.

C. Attack Implementation

The proposed attack is untargeted. Its goal is to maximize
the impersonation rate (IR) in an unseen fest population Uy.
The IR is defined as the expected fraction of user population
that can be matched by an attack on an identity verification
system.! It can be considered for a single speech sample, or for
a sequence of samples crafted for a multi-presentation attack
(7). The distinction is clear from context. Formally, given
a population U and the corresponding database of enrolled
speaker embeddings F, the IR of a set of utterances W is
estimated as:

1
IR(W) = Tl > min{ 1, D v, (W, ulF) )

uelU weW

A practical implementation of our attack may use a proxy
optimization population U,. Our implementation uses adver-
sarial optimization driven by mean similarity of speaker
embeddings in U,:

w, = argmax S(w, F%) 9)

f = E(Aw)) (10)

S(w, F%) = ﬁ > > ok, (11)
uel, i=1

where m is the number of speakers and F° denotes the gallery
of speaker embeddings from the optimization population.
As we will demonstrate in the experimental section, the attack
transfers between different user populations. Due to observed
distinct characteristics of male and female speech (and the
resulting remarkable differences in their impersonation sus-
ceptibility [22]), we focus on attacking a single gender at a
time. To avoid unnecessary complexity, we do not reflect this
in our notation and simply remark that, unless stated otherwise,
we assume and report results for each gender separately.

1Our definition of IR can be seen as a special case of spoof false acceptance
rate (SFAR) commonly used in biometric literature and defined as the number
of times an active attack or an impostor is accepted as legitimate divided by
the total number of attack or impostor attempts [48].

We show a schematic illustration of the attack in Fig. 1. The
process starts with a seed sample (wg) used for initialization of
the attack. Then, the speaker encoder £ extracts the embedding
f, for the optimized sample and its similarity to pre-computed
embeddings from the optimization population is calculated
as in (11). The gradient of the similarity score is then used
to iteratively update the chosen representation of the speech
sample. Let t denote the current step and T the total number
of steps. The update process has the following general form:

Vil = vE 40V, 8(G(wo, vE10), F°)

W, = G(wo, vl |6)

(12)
13)

where G(w, v|0) defines a speech representation/generation
function driven by an adversarial attack vector v appropriate
for that optimization domain. Our attack is generic and can
work with various domains. We experimented with optimiza-
tion of waveforms, spectrograms, and speaker embeddings
(e.g., voice cloning). Each domain has its own peculiarities:

o Waveform: this attack aims to find an adversarial pertur-
bation directly in the waveform domain. It starts with a
seed sample and has a simple formulation that allows for
straightforward inclusion of data augmentation, e.g., via
playback simulation (Section III-E):

gw,v|0) =w+v (14)

o Spectrogram: this attack aims to find an adversarial
perturbation in the acoustic representation accepted by
the speaker encoder as an input. It starts with a seed
sample and requires invertibility of the representation to
reconstruct the adversarial waveform:

Gw,v|0) = A1 (Aw) + V) (15)

Practical solutions would short-circuit inversion and feed
the distorted acoustic representation to the encoder. Inver-
sion can be performed once at the end. For spectrograms,
we used the Griffin-Lim algorithm [49], but some acoustic
representations may not be invertible.

o Speaker embeddings: this attack finds a voice that maxi-
mizes impersonation by optimizing a speaker embedding
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f’ used for conditioning a speech generation model C:

CHt,0) =R xT* - we[-1, 1] (16)

where C(f’,0) denotes a voice cloning system able to
generate any utterance (with content specified by a string
of tokens 6 € T*) spoken by any speaker (specified by a
speaker embedding f’ returned by a different encoder £”)
[50], [51]. The attack sample generation is:

G(w,v|0) =C(v,0) (17)

In our implementation, we used a seed sample to initialize
the embedding, i.e., v = £ (wo), but one may skip this
step and simply sample a random one instead.

Following the same logic, the attack can be defined in other
domains too, e.g., the latent space of a generative adversarial
network [52], a (variational) auto-encoder [53], or the speaker
embedding of a voice conversion system [54].

In practice, we implemented the attack using stochastic
gradient descent. Processing the optimization population in
batches is both necessary (due to constraints on available
GPU memory) and advantageous to the speed of convergence
(making more update steps requires fewer epochs). Depend-
ing on the size of the speaker encoder, we used batches
of 64-256 items. We pre-shuffled the stored embeddings to
diversify speaker identities within each batch. Choice of the
update step A and the number of epochs depend on the attack
configuration. To speed up convergence and parameter choice,
we use gradient normalization (with L, and Lo, norms). The
impact of these parameters is shown in detail in Section V-A.

D. White-Box Vs. Black-Box Attacks

Our attack can be carried out under both the white-box and
black-box threat models. The white-box attack uses gradients
computed by automatic differentiation in machine learning
frameworks. This allows for fast and accurate optimization but
is limited to known models operating in a fully differentiable
pipeline. In contrast, the black-box attack uses surrogate gradi-
ents estimated by querying any model. This leads to a general
attack applicable to all pipelines, but requires larger computa-
tional cost. We used the natural evolution strategy (NES) [55]
to estimate the gradient based on a small number of queries
with a Gaussian search distribution with antithetic sampling.
Rather than maximizing an objective function directly, NES
maximizes the expected value of the objective in the vicinity
implicitly defined by a stochastic search distribution. This
allows for gradient estimation in fewer queries than typical
finite-difference methods. We leveraged NES as follows:

Vs(w) ~ V‘;I:Z/[s(w/)] A ﬁ > Gis(wxod) (18)
i=1

o ~ N(,T)
s(w)y=S(w, F*): F* ~ F°

19)
(20)

where F* is a batch sampled from the optimization population.

Such an attack requires fine-tuning of two additional hyper-
parameters (s, o) but can be effective against various models.
We discuss this in more detail in Sections V-C and V-E.
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E. Playback Simulation

To assess (and improve) robustness to distortions,
we include an optional playback simulation step. This step can
be included both during evaluation and attack optimization.
Let ® denote 1D convolution and (K;, k,, k) denote the
impulse responses of the speaker, room, and microphone,
respectively. The waveform after playback can be computed
as:

w = (W®ks)+n) @k, ®Kky,
n ~ N(0, al)

21
(22)

To increase augmentation diversity, we randomize the sim-
ulation by sampling the AWGN strength /a ~ N (0, 0.025)
and choosing random kernel combinations from a small data-
base with 4 speakers, 9 rooms and 7 microphones.

F. Multiple Presentation and Coverage Optimization

Due to their imprecise nature, biometric systems often allow
for a few authentication attempts before falling back to a PIN
or passphrase. This behavior can be exploited and the attacker
can craft a sequence of diverse speech samples that maximize
the overall success rate. Let ¢ denote the number of allowed
attempts. The attacker can simply generate a set of master
voices {We : ¢ = 1,...,c'}, optimized independently as in
Eq. (6) based on ¢’ > ¢ randomly chosen seed samples.
Finally, the best ¢ samples (W¢,, ..., We,) are chosen for the
attack.

In our experiments, we simply reuse the optimization
population U, to assess viability of candidate samples. The
attacker computes B = [b¢ ], a binary impersonation matrix
indicating matching success for the c-th sample against user
ueU,:

Up,r(Wh uy) Up,r(wh Um)
Bysm =
Up,r(wc/» uy) ... qvp,z(wc/» Up)
Aggregation along the user dimension yields expected IRs.
We hence test two simple strategies:
o naive independent selection takes the top-c speech sam-
ples based on their IR on the entire optimization popula-
tion, i.e., the i-th sample is simply:

1
W, iCj = argmax — z beu (23)

célcy,....ci—1} M uel,

o complementary selection takes a single best sample step-
by-step, each time maximizing the IR on the still uncov-
ered subset of the optimization population, i.e., the i-th
sample is chosen as:

W, 1 C; = argmax Z be,u 24)
cé¢{cop,...,ci—1} |Ui| uel;
U — U, fori =1
N \{u:v,:(We,_,u)} fori>1
(25)

An interesting extension of this problem would be to jointly
optimize all C samples. We leave this aspect for future work.
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TABLE 11
DATASET PARTITION

Dataset Partition  Scope U |A]2 |Al/|U]
VoxCelebl-Dev Pl SV Train 1,211 148,642 122
VoxCelebl-Test P2 SV Eval. 40 4,874 122
VoxCeleb2-Dev  P3a MYV Opt. 1,000 50,000 50
P3b MV Eval. 1,000 100,000 100
P3c SV Train 3,994 895,664 224

11U refers to the number of included users in total
2 | A| refers to the number of included utterances in total

IV. EXPERIMENTAL SETUP

In this section, we show our experimental setup and the
details of the used datasets, speaker encoders etc. We explain
our model pre-training and calibration, and provide an exhaus-
tive benchmark evaluation of the resulting speaker verification
systems, including key aspects of their menagerie analysis.

A. Datasets

We used two public datasets in our work: VoxCeleb [30]
and LibriSpeech [56]. VoxCeleb [30] is a large, state-of-the-art
dataset of human speech composed of two parts: VoxCelebl
(dev set: 1,221 speakers and 148,642 utterances; test set:
40 speakers and 4,874 utterances) and VoxCeleb2 (dev set:
5,994 speakers and 1,092,009 utterances; test set: 119 speakers
and 36,237 utterances). Both parts are fairly gender-balanced
(55% and 61% of male speakers, respectively) and feature
speakers from various ethnicities, accents, and age groups.
Original videos used for speech extraction were shot in a
wide range of challenging environments, including red carpet
interviews, outdoor stadiums, indoor studios, speeches given to
large audiences, excerpts from professionally shot multimedia,
and amateur footage shot on hand-held devices. Crucially,
they represent challenging real-world conditions which vary
in background chatter, room acoustics, overlapping speech,
recording equipment quality, and surrounding noise.

We divided the VoxCeleb speakers into disjoint partitions
(Table II). First, we sampled two gender-balanced subsets of
1,000 people for master voice optimization and testing (parti-
tions P3a and P3b, respectively). The remaining 5,205 speak-
ers (P1 and P3c) were used for speaker encoder training. For
consistency with standard evaluation methodology, we used
the VoxCelebl test partition (P2) for speaker encoder bench-
marking and calibration. In contrast, LibriSpeech is a clean
and transcribed dataset with high-quality recordings of English
speakers reading excerpts from audio books in studio condi-
tions, used only in our final voice cloning experiments.

In all experiments, we use single-channel 16-bit audio with
16 kHz sampling rate. The waveforms are normalized to [0,1]
and standardized to be 2.58 second long, which is achieved
by random cropping (mostly) or zero-padding (occasionally).

B. Speaker Encoders

We used speaker encoders based on various CNN back-
bones and acoustic representations, including adapted VGG
(VGGVox [30]) and ResNet models (ResNet 50 [30] and Thin
ResNet [39]) trained on spectrograms, and x-vector based on
filter banks [38]. VGG and ResNet models were adapted from

computer vision to spectrogram inputs by replacing the last
fully-connected (FC) layer with two layers: a FC one with
support in the frequency domain and average pooling with
support on the time domain. X-vector [36] is a TDNN, which
allows neurons to receive signals spanning multiple frames.
Given a filter bank, the first five layers operate on speech
frames, with a time context centered at the current frame.
A pooling layer aggregates frame-level outputs and computes
mean and standard deviation. Two FC layers aggregate statis-
tics across the time dimension. We used a GhostVLAD pooling
layer [39], with 10 clusters plus 2 ghost clusters, on all models.

C. Pre-Processing and Training

We trained our speaker encoders from scratch using samples
from 5,205 speakers (partitions P1 and P3c). We randomly
sampled segments from each of their utterances and standard-
ized the inputs to 2-second clips (by cropping or padding,
respectively). No voice activity detection or silence removal
was applied. Spectrograms (filter banks) were generated in a
sliding window fashion using a Hamming window of width
25ms and step 10ms. We used 512-point (Fast Fourier Trans-
forms) FFTs yielding spectograms of size 257 x 200 and filter
banks of size 24 x 300 (frequency x temporal). Each acoustic
representation was normalized by subtracting the mean and
dividing by the standard deviation of all frequency components
in a single time step. The model was trained for classification
using Softmax and the Adam optimizer, with an initial learning
rate of 0.001, decreased by a factor of 10 after every 10 epochs.

D. Speaker Verification Performance

The pre-trained speaker encoders are deployed in a
speaker verification system (Section III-A) by stripping their
classification heads. We performed a detailed assessment of
open-set speaker verification performance that includes two
key aspects:

e Raw performance: we test discriminability of speaker
embeddings on the standard VoxCelebl test pairs
(37,720 pairs; partition P2). Based on the collected cosine
similarities, we find the ROC and derive common metrics,
e.g., area under the curve (AUC) and equal error rate
(EER).

o Deployment performance: we test performance that
accounts for the enrollment and scoring strategy. We used
a larger population of 1,000 people (partition P3a).

The resulting evaluation will be used for threshold calibration -
to summarize the behavior we focus on thresholds correspond-
ing to the EER and a 1% false acceptance rate (FAR-1).2 The
obtained results are summarized in Table III (extended version
is reported in Table A.I and the corresponding ROC curves
are shown in Fig. A.1). To enable comparison with related
work and investigate the potential gap in typical deployments,
we distinguish between evaluation on full audio clips (as
performed in the literature) and short utterances only (as used
in real deployments). For the latter, we randomly crop a
2.58 second segment. On full-length clips from the standard

2False Rejection Rate (FRR) and False Acceptance Rate (FAR) are often
referred to as “miss” and “false alarm rates” in speaker verification literature.
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TABLE III
SPEAKER ENCODER MODELS AND THEIR BENCHMARK PERFORMANCE

AUC EER FRR @ FAR1%
R! R%Z  Any Avg R!' R? Any Avg R! R%Z  Any Avg
VGG Vox 095 098 09 093 118 69 145 113 521 270 432 232
ResNet 50 096 098 092 094 99 52 140 108 437 199 376 186
Thin ResNet 097 098 092 094 91 56 147 113 373 185 393 203
X-Vector 096 097 091 093 109 82 160 125 402 282 448 292

RT standard VoxCeleb test pairs (no enrollment), tested on short (2.58 s) clips
R? standard VoxCeleb test pairs (no enrollment), tested on full-length clips

test set, our models reach EER of ~5-8% - higher than the
best reported results (*2.5-5%), but reasonable given our
substantially smaller training population.> On shorter clips,
this deteriorates across all models down to ~9-11%.
Enrollment of multiple samples and using a scoring strategy
(tested on short clips only) can substantially improve per-
formance, especially in the low FAR regime. We observed
the best results with the avg-10 policy, which is consistent
with earlier findings [26]. The any-10 policy was consistently
inferior to the use of even a single speaker embedding.

E. Dictionary Attack Implementation Details

We rely on two disjoint populations for master voice opti-
mization (partition P3a) and testing (P3b). Each population
contains 1,000 speakers. We treat male and female speakers
separately since their speech exhibits distinct properties and
leads to differences in verification performance and vulnerabil-
ity to impersonation attacks. Specifically, a menagerie analysis
on the seed utterances included in partition P3a, whose details
are reported in Fig. A.2, showed that women often have a
higher average imposter score. This gender-wise difference
is emphasized when we consider the impersonation rates
achieved by the same seed voices against users from the two
genders. Fig. A.3 shows that women tend to be impersonated
more, even under the most secure setting (avg-10, raw far-1
threshold). VGGVox and x-vector are the least secure systems
and exhibit the largest difference in the maximum IR between
genders.

The optimization process starts with a seed sample. We ran-
domly sampled 100 seeds for both male and female speakers
from P3a. While this step could also possibly be exploited
to further improve IRs, we opted for fully random selection
to simplify the experiments and rely on a single set of seed
voices regardless of the target model. The way seed voices are
used differs among the attacks. When optimizing waveforms
or acoustic representations, we start with the full content of
a seed sample for the target gender. For other attacks, e.g.,
based on voice cloning, we used seed samples to initialize
speaker embeddings that condition the generator. Based on the
adopted representation and capabilities of the synthesis model,
seed samples may not be needed.

During the attack, the speaker encoder operates in a con-
figuration which compares the current attack sample with a
batch of samples from the optimization population. We shuffle
samples from various users to promote speaker diversity within

3Note that in contrast to the standard practice in speaker verification liter-
ature, we excluded 2,000 people from the training set (*30% of the training
population) for our master voice analysis. In our preliminary experiments we
performed sanity checks on the entire population (= 7, 200 people) and were
able to obtain EERs within 0.8% (percentage points) of the results in [30].
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each batch. After each batch, we normalize the gradients.4
and apply the update. Using stochastic gradient descent is
beneficial and leads to remarkably reduce optimization time
(fewer passes over the entire population, compared with gradi-
ent accumulation). We used batches of 64-256 samples, based
on the model size and GPU memory (single RTX 8000 GPU).

To monitor, we track IRs for a single scoring strategy
after each epoch (any-10, raw far-1 threshold). At this
stage, we stay with the adopted representation. If applicable,
we return to the waveform domain (e.g., Griffin-Lim inver-
sion [49]) after optimization ends. We then test speaker verifi-
cation performance and compare IRs for seed-master voice
samples. We initially compare various enrollment policies
and decision thresholds, but then focus on one representative
configuration.

V. EVALUATION OF THE PROPOSED ATTACK

In this section, we perform a detailed evaluation of the
proposed attack. First, we compare two speech representa-
tion domains (waveforms and spectrograms) and investigate
the impact of attack and speaker verification settings. The
following experiments focus on a single system configuration
(avg-10, raw far-1 threshold) and address playback simulation,
threat models (white-box vs. black-box) and transferability.
We then show efficacy of our attack in a challenging setup
with black-box access to a voice cloning system able to gener-
ate master voices with arbitrary content. Finally, we consider
coverage experiments with multiple presentation attempts.

A. Impact of Attack and Verification Settings

We first explore the impact of attack and speaker verifica-
tion settings and measure the success (impersonation) rates.
We target the VGGVox encoder and consider various scoring
strategies and threshold settings. We consider representative
attack variations including optimization in the spectrum and
waveform domains and with different update steps, including
both Ly and L, normalization and various step sizes A (for
the Loo variant with budget €, we use steps size A = {; to
allow for more flexibility).

Fig. 2 shows how the female IR changes with successive
epochs (passes over the entire population) for various step
sizes (4). Successive columns correspond to spectrum opti-
mization with L, gradient normalization (1st column), and
waveform optimization with L, (2nd) and L, normalization
(3rd). We can observe that our attack is highly effective
- it substantially improves IRs across various settings and
transfers well between user populations. For the monitored
any-10 policy, the average impersonation rate on the unseen
population increases from 7% to ~66%. Convergence rates
vary with step size, but the attack saturates at a comparable
level. L tends to converge faster than L, but reaches lower
success rates across all distortion levels (see column 4).

While at the time of the attack waveform and spectrogram
optimization seem to reach similar IRs, the latter requires
spectrogram inversion to yield an adversarial waveform

4To control the change in magnitude for the gradients and facilitate the
selection of the learning rate, we divided the gradients by their Ly norm.
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Fig. 2.
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Epochs PESQ

Changes in IR (any-10 policy using raw far-1 threshold) at successive optimization steps: (1st col.) spectrogram optimization; (2nd col.) waveform

optimization with updates based on Lp-normalized gradient; (3rd col.) waveform optimization with a Lo constraint and binarized gradient; trade-off between

attack success (impersonation) rate and distortion (PESQ).

seed voice spectrum master voice (PESQ=4.2) difference

waveform opt. (005

master voice (PESQ difference

seed voice spectrum master voice (PESQ=2.8)

difference

Fig. 3. Visualization of frequencies affected by the attack when optimizing
the waveform (top 2 rows) and the spectrogram (bottom 2 rows); for the latter,
we re-compute the spectrum from a reconstructed adversarial waveform.

(we used the Griffin-Lim algorithm). While the attack still
works, it operates at an evidently reduced efficacy (down to
~ 20 —30% in this experiment) and suffers from reduction of
audio fidelity (see the gap in Perceptual Evaluation of Speech
Quality PESQ [57] scores in column 4; higher scores for
higher audio fidelity). We also visually compare the character
of adversarial distortions in Fig. 3. Top rows depict 2 pairs of
seed-master voice samples got with waveform optimization,
and bottom rows depict 2 pairs of seed-master voice sam-
ples got with spectrum optimization. Waveform optimization
affects a wider and higher range of frequencies.

In Table IV, we summarize IRs obtained for both female
and male populations across several enrollment policies and
decision thresholds. For clarity, we report only one set of

TABLE IV

AVERAGE IRS FOR SEED VOICES (SV) AND MASTER VOICES (MV) FOR
VARIOUS SETTINGS SCORING STRATEGIES

waveform optimization spectrum optimization

female male female male

SV. MV SV. MV SV. MV SV. MV
any, 7 : farl! 73 669 2.1 212 73 679 22 232
any, 7 : farl 73 670 20 212 72 281 2.1 5.7
any, T : eer 375 96.1 17.1 91.7 37.6 745 177 390
avg, 7 : farl 6.9 847 1.6 633 6.7 3717 1.7 107
avg, 7 : farl? 24 695 04 380 25 194 0.5 35
avg, T : eer 323 967 13.0 97.1 320 747 139 398

T optimization-time measurements without spectrogram inversion
2 attack with good performance at a low distortion level

master voice samples which corresponds to a good trade-off
between efficacy and audio fidelity. Our attack is effective
regardless of system configuration and achieves non-trivial
matching rates even in the most restrictive setting. At a
far-1 threshold calibrated for the avg-10 policy, our master
voice samples still impersonate 69% of females and 38% of
males in a population unknown to the attacker.

Based on these results, in subsequent experiments we
will restrict our attention to waveform-based attacks with
L, gradient normalization and to speaker verification based
on the avg-10 policy operating at a raw far-1 threshold.

B. Experiments With Playback Simulation

To test robustness of our attack to various distortions,
we implemented playback simulation, which combines addi-
tive Gaussian noise with characteristics of a speaker, micro-
phone, and surrounding environment (Section III-E). The sim-
ulation can be included both at testing and optimization time
- assuming the representation domain precedes playback (e.g,.
waveform or speaker embedding in synthesis systems). We
therefore experiment with waveform optimization and assess
the impact of the distortion at each of the mentioned stages.

In the following description, we use the terms standard
and augmented optimization to indicate presence of play-
back. We randomly choose playback settings (noise strength,
impulse response) for each batch. Apart from this, we follow
the same experimental setup as before, i.e., we vary step
size A and measure IRs at various distortion levels. We show
the obtained results in Fig. 4. The top row illustrates the
trade-off between master voice IR and speech fidelity (PESQ).
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Fig. 4. Impact of playback simulation at the time of testing and optimization:
(top) trade-off between IRs; (bottom) detailed scatter plot of (seed, master)
IRs for selected configurations.
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difference

7

seed voice spectrum master voice (PESQ=3.7) difference

Fig. 5. Visualization of frequencies affected by waveform optimization with
and without playback simulation.

We can observe that without augmented optimization, test-time
playback (solid lines) renders adversarial waveforms nearly
ineffective. The attack success rate can still increase somewhat,
despite obvious saturation (or even rebound), during a standard
test.

Augmentation leads to much more robust adversarial exam-
ples that achieve similar success rates with(out) playback (see
solid vs. dotted lines of the same color). It leads to larger
distortion, but does not obviously alter which frequencies are
affected (Fig. 5). In both cases, the distortion tends to be the
strongest in the middle of the sample. When audible, it sounds
like a hissing modulated noise that does not interfere with the
spoken content or the perceived identity of the speaker.

C. White-Box Vs Black-Box Attacks

Previous experiments relied on full gradients provided by
automatic differentiation features in Tensorflow. While this
leads to an effective attack, it is inflexible and often even
impractical - due to either lack of knowledge or excessive
implementation time to make everything fully differentiable.
We hence switch to black-box optimization with gradients
estimated by NES (Section III-D) from a similarity score

voice IR (ave-10 far-1)
oice IR (avg-10 far-1)

. e ';ﬁ

black-box (NES) : PESQ=1.3
white-box : PESQ=1.1

00 02 0.4 06 08 10 00 02 0.4 06 08 10
~~~~ AR (ave-10 far-1) seed IR (ave-10 far-1)

Fig. 6. Scatter plots of seed-master IRs for white-box optimization with
accurate gradients vs. black-box optimization with NES-estimated gradients:
(left) results for VGGVox at a similar distortion level; (right) results for
x-vector where white-box optimization was not possible.

seed voice spectrum master voice (PESQ=3.7)

VGGVox

Fig. 7. Visualization of frequencies affected by waveform optimization in
the black-box attack based on NES.

returned by the speaker verification system. Based on prelim-
inary experiments on a small grid of feasible values, we set
NES parameters to s = 100 samples and ¢ = 0.001. Due to
large increase in computational requirements, we use a single
step size 4 = 0.01 and limit the number of epochs’ to 10.

Fig. 6 compares white-box and black-box optimization for
VGGVox (left) and shows black-box results for x-vector which
uses non-differentiable filter-banks as its acoustic representa-
tion (right). In both cases, our black-box attack reaches IRs
of 47% for x-vector and 59% for VGGVox (white-box attack
at a comparable distortion reached 85%). Compared to white-
box optimization, the black-box attack uniformly affected all
frequencies at all times (Fig. 7).

D. Experiments With Transferability

We then test master voice transferability between speaker
encoders: ResNet 50, Thin ResNet, VGGVox (all based on
spectrograms) and x-vector (based on filter banks). We used
waveform optimization in the white-box setting and fall back
to black-box NES updates for x-vector. We test all combina-
tions of playback simulation (optimization and testing time).

We collected results in Table V (female speakers). In gen-
eral, waveform optimization does not lead to transferable
master voices. The obtained adversarial speech relies on
carefully crafted noise (see Fig. 3, 5, 7) and not on changes
in speaker characteristics. Playback simulation in augmented
training does provide a small but consistent improvement in
transferability, but insufficient for an effective attack.

SNES relies on many independent function calls, trivially parallel, and could
be optimized. Our naive sequential implementation on one RTX 8000 GPU
required approx. 10 minutes per epoch (with s = 100 function samples). The
corresponding white-box optimization takes approx. 10 seconds per epoch.
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Fig. 8. Optimization progress and final impersonation rates of seed-master voice pairs obtained with voice cloning: (top) optimization targeting the VGGVox
encoder on the LibriSpeech dataset; (middle) optimization targeting VGGVox on the VoxCeleb dataset; (bottom) optimization targeting x-vector on the
VoxCeleb dataset. Targeting VGGVox tends to transfer to other models with best results observed for female speakers and other spectrogram-based encoders
(ResNets). Targeting x-vector yielded stronger impersonation capabilities but poor transferability.

TABLE V

TRANSFERABILITY OF MASTER VOICE OBTAINED WITH WAVEFORM
OPTIMIZATION TARGETING DIFFERENT SPEAKER ENCODERS

w tested w/o playback
2
Target RS0 TR VGG

tested w/ playback

X R50 TR VGG X
standard optimization
MYV : ResNet 50 35.7 44 45 4.1 4.8 2.5 37 04
MV : Thin ResNet 32 68.6 52 44 2.8 7.1 41 04
MV : VGG 2.7 5.5 89.6 47 2.9 2.6 93 04
MV : X-vector? 5.1 9.0 74 733 5.3 4.8 53 1.6
SV : seed voice 2.5 4.6 4.7 35 2.8 24 38 05
augmented optimization
MV : ResNet 50 26.8 49 6.1 42 33.0 3.0 53 04
MV : Thin ResNet 33 433 73 49 33 519 65 04
MV : VGG 34 6.3 36.1 5.1 34 35 392 05
SV : seed voice 2.5 4.5 4.8 3.6 29 23 4.1 04

T Abbrev.: (R50) ResNet 50; (TR) Thin ResNet; (VGG) VGGVox; (X) X-Vector
2 Master voice examples were optimized with A = 0.01
3 uses black-box optimization

E. Experiments With Voice Cloning

Optimization in the waveform domain leads to highly
effective adversarial speech samples (reaching even up to
85% IR) that can be made robust to various distortions
via playback simulation. However, the optimization learns to
embed carefully crafted noise that does not change the content
or speaker identity and generally does not transfer between
encoder architectures. In this section, we take advantage of the
flexibility of our attack and experiment with a more compact,

disentangled representation - we investigate optimization of
the speaker embedding in a complex voice cloning system.

We used an open source system [51], [58] that gener-
ates speech based on a text prompt and a 256-d speaker
embedding. The system uses Tacotron [59] for waveform
synthesis, WaveRNN [60] as a vocoder, and an LSTM-based
encoder [34]. All models are implemented in PyTorch, and
we integrated the system with our Tensorflow-based attack
framework via a simple black-box API that exposes two
functions:

- get_speaker_embedding (speech_sample)
- generate_speech (text, speaker_embedding,
max_len)

The generated output is stochastic and exhibits variations in
sound and length of the waveforms. As a result, it represents
a realistic and challenging attack scenario.

We fixed the text prompt to “The assistant is triggered
by saying hey google” and use NES to evolve the speaker
embedding, initialized from a seed voice by the black box
speaker encoder £’. Based on preliminary experiments, we set
NES parameters to s 50, ¢ = 0.025 and step size to
J = 0.1. We also clip® the embedding to stay within the
expected domain of [0, 11?56 and normalize the length of the
output waveforms to 2.58 seconds. The cloning system was

6Clipping was performed to avoid deviations from the domain of seed
vectors of the generative model. Departure from the commonly used
n-dimensional hypercube or high-density regions of a standard multivariate
Gaussian tend to introduce artifacts or break the synthesis entirely.
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Fig. 9. Spectrograms of two pairs of seed and master voice samples obtained
with voice cloning; the attack adapts the speaker characteristics and does not
in result in tailored adversarial noise.

trained using LibriSpeech [61], so we conduct our experiments
on this dataset as well. On VoxCeleb, we used the same
setup as before. On LibriSpeech, we used a popular subset
train-clean-100 with 250 speakers which we split into two
disjoint populations (optimization and testing) with 100 peo-
ple, each with equal balance between genders. We randomly
chose 10 samples per speaker both for optimization and for
enrollment into the verification system. Due to much larger
computational footprint, we repeat the attack based on 25 seed
samples and run the attack for 15 (or 10) epochs for the
LibriSpeech (VoxCeleb) datasets, respectively. We target the
VGGVox and x-vector encoders and assess transferability.
We show the obtained results in Fig. 8. The left column
shows attack progress for male and female speakers along with
top and bottom percentiles (90-th and 10-th, respectively) of
the observed impersonation rates (on the unseen test popu-
lation). Despite the randomness of the generation and large
variations in numbers, our attack consistently increases IRs
for both male and female speakers, although the effect is
substantially stronger for the latter. We compare the initial and
final IRs using scatter plots (columns 2-5) for all considered
speaker encoders. Each row corresponds to one targeted model
(VGGVox or x-vector) and successive columns correspond
to different test models and demonstrate transferability of
the obtained samples. On the small LibriSpeech dataset (1st
row) master voices optimized using VGGVox successfully
transferred across all encoders. Again, the effect depends on
the gender and tends to be much stronger for female speakers.
On VoxCeleb the results are similar with the exception of
male speakers tested on x-vector (which surprisingly has a
strong negative effect). Targeting x-vector yielded much more
effective, but generally non-transferable master voice samples
- although for female speakers a weak effect seems to exist.
We summarize the average impersonation rates in Table VI.
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TABLE VI
TRANSFERABILITY OF MASTER VOICES OBTAINED
WITH VOICE-CLONING
seed voice master voice
R50 TR VGG X R50 TR VGG X
(LibriSpeech) far-1 calibrated on raw embedding similarity
VGG (female) 4.1 7.8 52 44 190 299 385 129
VGG (male) 3.1 8.0 1.6 2.3 5.4 19.7 144 5.7
(VoxCeleb) far-1 calibrated on raw embedding similarity
VGG (female) 43 44 29 9.6 108 14.1 274 16.8
VGG (male) 1.5 53 0.4 4.2 2.9 9.4 8.7 0.9
(VoxCeleb) far-1 calibrated on raw embedding similarity
X-vector (female) 3.9 3.5 2.3 9.0 5.2 6.1 7.6 72.5
X-vector (male) 1.7 6.5 1.0 29 1.2 7.3 0.7 40.2

In contrast to waveform optimization, the attack does not
result in obvious adversarial artifacts and appears to adapt the
speaker characteristics (see Fig. 9). This may explain improved
transferability between speaker encoders (Table VI and Fig. 8)
and appears to match cross-system biometric menagerie evalu-
ation. We assessed correlations of impersonation rates between
all systems as a further validation (see Fig. A.4).

F. Experiments With Multiple Presentation Attempts

We finally evaluated seed and master voices in a set-
ting where the speaker verification system allows users to
do more than one attempt (we considered ¢ = 5 allowed
attempts). We tested two simple strategies (see Section III-F):
naive independent selection (ind) and complementary selection
(comp). To obtain more stable results, a strategy was repeated
100 times, each on a different subset of the seed/master
voice population composed by 75% of randomly sampled
users (results were averaged). We compared the two strate-
gies against a random selection (rand). Due to their high
impersonation power and transferability, we focus on master
voice examples optimized (with playback) for the speaker
embedding in a voice cloning system, targeting VGGVox (see
Section V-E).

We collected the results for VGGVox in Fig. 10, for each
gender separately (first two rows) and for a setting where we
assume the attacker does not know the victim’s gender (third
row). In general, a complementary selection on master voices
leads to the highest overall and cross-attempt IRs, except for
x-vector. The adversarial speech relies on carefully crafted
perturbations targeting a CNN-like architecture (VGGVox),
and those perturbations might not be comparably effective
on a different type of encoder architecture (x-vector is a
TDNN based on filter banks; the others are CNN based on
spectrograms). This is confirmed also by a transferability
analysis in Fig. 14, which shows that FARs and IRs for seed
utterances tend to not transfer between CNN-like encoders
and x-vector. The explored selections obtain substantial gains
for the male speakers, often doubling the IR of the best
seed setting at that attempt. These two strategies also allow
to improve transferability against Thin ResNet and ResNet
50. Similar observations were made while targeting x-vector
during optimization (Fig. A.5).
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target=VGGVox, test=ResNet 50 target=VGGVox, test=Thin ResNet
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Fig. 10.

0.0

presentation attempt presentation attempt

Impersonation rates of seed and master voices under multiple presentation attempts (n = 5) in the black-box attack based on NES against the

VGGVox speaker encoder, under an avg-10 policy with raw far-1 threshold. (top) female gender, (middle) male gender, (bottom) unknown gender.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed dictionary attacks against speaker
verification, a novel attack vector which aims to match a large
fraction of user population by pure chance. In contrast to well
known spoofing attacks that target one specific individual, our
attack aims to exploit the biometric menagerie property - an
inherent diversity in matching propensity/susceptibility across
different people. Our approach is general and can be applied
in various domains, including waveforms, acoustic representa-
tions, or even speaker embeddings in voice synthesis systems.
We tested several different speaker encoder architectures and
considered both white-box and black-box threat models.

We performed the first comprehensive evaluation of dictio-
nary attacks against deep learning based speaker verification

systems. The key conclusions from our work are as follows:
1) Speech appears to be susceptible to dictionary attacks.

We were able to consistently and substantially increase
IRs for all considered speaker encoders. Even for the
most restrictive threshold (far-1 calibrated for the avg-
10 scoring strategy), we were able to craft adversarial
waveforms matching 69% of females and 38% of males
in a population of 1,000 people (Table IV).

2) Susceptibility to the attack can vary remarkably across
genders. We consistently observed much larger IRs for
female speakers. The cause of this discrepancy is not
clear. Our training set was only slightly imbalanced
(64% of male speakers) and recent studies found only
weak impact of gender balance on the overall error
rates even for more unbalanced settings [62]. Further
investigation of this aspect is needed.

3) Adversarial optimization driven by raw embedding sim-
ilarity on a proxy population is a simple and effective

attack strategy (e.g., it does not depend on configuration
details, such as enrollment policy or decision threshold).
The attack works well across speech representations
(waveform, spectrogram, speaker embedding) in white-
and black-box threat models. In a challenging scenario,
our black box attack based on NES was highly effective
even when targeting a complex black-box voice cloning
system with highly variable output (Section V-E).

4) Our attack transfers across populations but not nec-
essarily across genders. No notable differences in
IRs between test and optimization populations were
observed. Male and female speech tend to have different
characteristics, and targeting both appears to be ineffec-
tive. We got best results when seed and target genders
match.

5) Choice of speech representation has crucial impact on
the attack. Optimization in the waveform and spectro-
gram domains leads to adversarial samples with crafted
noise. Despite being very effective against the targeted
model, it does not transfer between encoder architec-
tures. Optimization of the speaker embedding in voice
cloning led to a less effective but transferable attack.

Our results show that dictionary attacks could be a serious
threat to speaker verification. We suspect there are two main
factors at play. First, the speaker embedding space is likely
not distributed uniformly. Regions of high and low den-
sity manifest themselves as differences in matching propen-
sity/susceptibility which are characterized via the biometric
menagerie. Our attack can take advantage of modern optimiza-
tion methods and generative models to find speech properties
that exploit this property. The higher transferability obtained
through voice cloning suggests the existence of high-level
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TABLE Al
EXTENDED BENCHMARK PERFORMANCE FOR SPEAKER ENCODERS
A (k) AUC EER EER Threshold FRR @ FAR1% FAR Threshold

Raw! Raw? Any-10 Avg-10 Raw! Raw? Any-10 Avg-10 Raw! Raw? Any-10 Avg-10 Raw! Raw? Any-10 Avg-10 Raw! Raw? Any-10  Avg-10
VggVox S (256) 0.95 0.98 0.90 0.93 11.81 6.87 14.47 1128 0717  0.768 0.716 0.775  52.12  26.99 43.21 2325 0.806 0.834 0.824 0.859
ResNet 50 S (256) 0.96 0.98 0.92 0.94 9.96 521 13.98 10.79 0739 0.774 0.723 0.773  43.72  19.92 37.61 18.61  0.821  0.834 0.824 0.852
Thin ResNet S (256) 0.97 0.98 0.92 0.94 9.11 5.56 14.75 11.28  0.738  0.769 0.715 0.775  37.33 18.47 39.26 20.28 0.802 0815 0.807 0.844
XVector F (24) 0.96 0.97 0.91 0.93 10.88 8.24 16.01 1254 0.807 0.842 0.806 0.842  40.19 2825 44.78 29.21 0.854  0.881 0.868 0.891
0 acoustic representations (of size k): (S) spectrogram; (F) filter banks;

T tested 2.58 seconds;

2 tested on full-length

E 2 E 2

I <4 I <4

: :

E Avg-10 aue=0.93 cer=11.2 E  Raw-258 auc=096 cer=0.9 E  Raw-258 auc=0.97 cer=9.1 E  Raw-2.58 auc=096 eer=10.8

i —— Any-10 auc=0.90 cer=14.4 F] —— Raw-Unli auc=0.98 cer=5. B —— Raw-Unli auc=0.98 cer=5.5 B —— Raw-Unli auc=0.97 cer=82

F o4 —— Raw-Unli auc=0.98 cer=6.8 504 —— Any-10auc=0.92 eer=13.9 w04 —— Any-10 auc=0.92 eer=14.7 £ o4 —— Any-10 auc=091 eer=16.0
—— Raw-258 auc=095 cer=118 Avg-10 auc=0.94 eer=107 Avg-10 auc=094 eer=112 Avg-10 auc=093 eer=125

021 | 024 | 021 | 021 |
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False Positive Rate False Pasitive Rate

(a) VGGVox

(b) ResNet 50

(c) Thin ResNet

(d) X-vector

Fig. A.1. Receiver operation characteristics of the considered speaker encoders. We include both raw discriminability of the embeddings and final performance
accounting for the enrollment and verification policy. It can be observed that the avg policy leads to a more secure system in the low FAR regime.
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For each speaker encoder, a menagerie analysis plot. Each point in a plot represents a user, defined by their own average imposter score (when

matched with other people) and the average genuine score (when matched with others of their own examples). For both the x- and y-axis, the two dashed
lines indicate the 25% and 75% percentile. It should be noted that female users tend to have a higher average imposter score. The range of similarity scores
is small, therefore even small differences in these average scores can determine highly important differences in impersonation rates between the genders. An
ideal speaker recognition system should locate users at the lower right corner. Ideal impersonators would be located in the top part of the plot.
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Fig. A.3. For each speaker encoder, a ranking of all seed utterances according to their Impersonation Rate (IRs) against male (blue) and female (pink) users,
under avg-10 enrolment/verification policy with a raw far-1 threshold. Utterances are sorted by left to right based on an increasing IR. The higher the IRs,
the more the utterance tends to match users. It should be noted that female users tend to be impersonated more. VGGVox and x-vector exhibit the larger
difference in the maximum IR between genders and represent the least secure system.

master voice characteristics. Secondly, it appears that speaker
encoders lack adversarial robustness and allow for finding
noise-like perturbations that can maximize similarity even
further.

That being said, our work has several limitations and should
be seen as the first step in this direction. We designed our

study to include both various speaker encoders and acoustic
representations and to evaluate them fairly under the same
conditions. Nevertheless, the state-of-the-art in both speaker
verification and speech synthesis is moving quickly and more
work will be needed to consider both classic approaches
(e.g., GMM-UBM [24] or i-vector [25]) and emerging
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Fig. A4. On the left (a) and (b), Spearman correlation respectively between the female and male False Acceptance Rates (FARs) raised by a given seed
utterance between two speaker encoders, under an avg-10 enrolment and verification policy with a raw far-1 threshold. The higher the correlation, the more
the utterances tend to have a high impersonation rate on both encoders. On the right (c) and (d), Spearman correlation respectively between the female and
male Impersonation Rates (IRs) experienced by the same user between two speaker encoders, under an avg-10 enrolment and verification policy with a raw
far-1 threshold. The higher the correlation, the more the same users end up being impersonated consistently between encoders. It should be noted that FARs

and IRs tend to not transfer between CNN-like encoders and x-vector.
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presentation attempt
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Impersonation rates of seed and master voices under multiple presentation attempts (n=5) in the black-box attack based on NES against the

X-vector speaker verification system, under an avg-10 enrolment/verification policy with a raw far-1 threshold. It should be noted that master voice samples
appear to generalize well across populations within X-vector and to transfer well to VGGVox. Transferability performance for the other systems is lower than
for the former, though the master voice samples still lead to substantially higher impersonation rates than seed voice examples.

architectures (e.g., TDNN [63] or s-vectors based on
transformers [64]).

The second main limitation of our current attack is the
need for validation in a real over-the-air setting. So far,
we relied on playback simulation which reveals that the signal
distortion introduced by the channel can most likely be dealt
with by means of augmented training. However, attacking
real deployments will also need to address other factors, e.g.,
temporal shifts stemming from unknown start and duration of
the sample. Another limitation is that both the feasibility of
the attack and applicability of various potential countermea-
sures will come down to the root cause of the vulnerability.
While noise-based adversarial samples will be difficult to
use in practice (e.g., due to unknown model architecture

or the need to perform real-time adversarial optimization in
a challenge-response regime), identity-based samples could
potentially scale quite easily (e.g., with pre-computed master
embeddings used in a real time voice conversion system).
Given the observed transferability of master voice samples
obtained with voice cloning, it will be exciting to explore other
speech representations and generators, such as disentangled
representations [53] and voice conversion systems [54].

If our attack will become a viable threat vector, further work
will be needed to devise countermeasures (e.g., by deploying
an additional background population that reveals mass imper-
sonation capabilities of the given sample). Overall, we believe
our work will ultimately lead to a better understanding of the
speech modality and more secure human-computer interaction.
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APPENDIX A

To better understand the context of our study, this appendix
collects a range of supplementary results and material:
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[9]
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(1]

[12]

[13]

[14]

[15]

[16]

Detailed benchmark performance of the considered
speaker encoders at different security thresholds.
Receiver operation characteristics (ROC) curve for the
speaker encoders considered in our study.

Menagerie analysis conducted under each of the consid-
ered speaker encoders.

Seed utterances ranking based on their impersonation rate
against male and female users.

The susceptibility of a utterance to achieve high imper-
sonation rates between two speaker encoders.
Impersonation rates of seed and master voices in
case of multiple presentation attempts for NES-based
attacks.

Source code and data accompanying this paper available
at https://github.com/mirkomarras/dl-master-voices.
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