
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

A New Basis for Sparse Principal Component
Analysis

Fan Chen & Karl Rohe

To cite this article: Fan Chen & Karl Rohe (08 Sep 2023): A New Basis for Sparse
Principal Component Analysis, Journal of Computational and Graphical Statistics, DOI:
10.1080/10618600.2023.2256502

To link to this article:  https://doi.org/10.1080/10618600.2023.2256502

View supplementary material 

Published online: 08 Sep 2023.

Submit your article to this journal 

Article views: 93

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2023.2256502
https://doi.org/10.1080/10618600.2023.2256502
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2256502
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2256502
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2256502
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2256502
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2256502&domain=pdf&date_stamp=08 Sep 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2256502&domain=pdf&date_stamp=08 Sep 2023


JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2023, VOL. 00, NO. 0, 1–14
https://doi.org/10.1080/10618600.2023.2256502

A New Basis for Sparse Principal Component Analysis

Fan Chen and Karl Rohe

Department of Statistics, University of Wisconsin–Madison, Madison, WI

ABSTRACT
Previous versions of sparse principal component analysis (PCA) have presumed that the eigen-basis (a
p × k matrix) is approximately sparse. We propose a method that presumes the p × k matrix becomes
approximately sparse after a k × k rotation. The simplest version of the algorithm initializes with the leading
k principal components. Then, the principal components are rotated with an k × k orthogonal rotation to
make them approximately sparse. Finally, soft-thresholding is applied to the rotated principal components.
This approach differs from prior approaches because it uses an orthogonal rotation to approximate a sparse
basis. One consequence is that a sparse component need not to be a leading eigenvector, but rather a
mixture of them. In this way, we propose a new (rotated) basis for sparse PCA. In addition, our approach
avoids “deflation” and multiple tuning parameters required for that. Our sparse PCA framework is versatile;
for example, it extends naturally to a two-way analysis of a data matrix for simultaneous dimensionality
reduction of rows and columns. We provide evidence showing that for the same level of sparsity, the
proposed sparse PCA method is more stable and can explain more variance compared to alternative
methods. Through three applications—sparse coding of images, analysis of transcriptome sequencing data,
and large-scale clustering of social networks, we demonstrate the modern usefulness of sparse PCA in
exploring multivariate data. An R package, epca, and the supplementary materials for this article are
available online.
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1. Introduction

Principal component analysis (PCA), introduced in the early
20th century (Pearson 1901; Hotelling 1933), is one of the
most prevalent tools in exploratory multivariate data analysis.
PCA projects higher-dimensional data into a lower-dimensional
space that is spanned by some uncorrelated principal compo-
nents (PCs), with the vast majority of the variance in the data
kept. It is, however, commonly conceived that PCs are difficult
to interpret (e.g., Jeffers 1967), as each PC is a linear combi-
nation of many, if not all, original variables. To remedy such
disadvantage, sparse PCA estimates “sparse” PCs, each of which
consists of a small subset of original variables (Zou and Xue
2018).

Sparse PCA is originally formulated as an optimization prob-
lem over the loading coefficients with a cardinality constraint.
Such nonconvex constraint results in an NP-hard problem in
the strong sense (Tillmann and Pfetsch 2014). In order to cir-
cumvent the obstacle, various methods have been proposed,
such as the iconic regression-based approach by Zou, Hastie,
and Tibshirani (2006), a convex relaxation to semidefinite
programming (d’Aspremont et al. 2007), the penalized matrix
decomposition framework of Witten, Tibshirani, and Hastie
(2009), and the generalized power method due to Journée et al.
(2010). More recently, theoretical developments of sparse PCA
have covered the consistency (Johnstone and Lu 2009; Shen,
Shen, and Marron 2013), variable selection properties (Amini
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and Wainwright 2009), rates of convergence, the minimax-
ity over some Gaussian or sub-Gaussian classes (Vu and Lei
2013; Cai, Ma, and Wu 2013), and the statistical-computational
tradeoffs under the restricted covariance concentration condi-
tion (Berthet and Rigollet 2013; Wang, Berthet, and Samworth
2016).

Despite the extensive literature of sparse PCA, there are two
enigmas. First, sparse PCA often explains far less variance in the
data than PCA does (Figure 1). While this may appear to be a
tradeoff for sparsity, our results show that a substantial improve-
ment is possible. Second, the most common formulations of
sparse PCA rely on a matrix deflation after estimating each
component. The deflation entails complications of multiple tun-
ing parameters, nonorthogonality, and sub-optimality (Mackey
2008). Identifiability and consistency present more subtle issues;
there is no reason to assume a priori distinct eigenvalues or
that the gaps between the eigenvalues are small (Vu et al. 2013).
Estimating the subspace spanned by multiple sparse PCs at once
overcomes this dilemma (Vu et al. 2013).

There are two distinct notions of subspace sparsity: row
sparsity and column sparsity (Vu and Lei 2013). Contemporary
approaches to sparse PCA primarily focus on row sparsity, which
implies that the eigenvectors of the covariance matrix them-
selves are sparse (e.g., Moghaddam, Weiss, and Avidan 2006).
The second notion, column sparsity, is an alternative. A column
sparse subspace “is one which has some orthogonal basis con-
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https://doi.org/10.1080/10618600.2023.2256502
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2256502&domain=pdf&date_stamp=2023-11-02
http://orcid.org/0000-0003-4508-6023
mailto:fan.chen@wisc.edu
http://www.tandfonline.com/r/JCGS


2 F. CHEN AND K. ROHE

Figure 1. Comparison of the proportion of variance explained (PVE) by the 16
PCs estimated by PCA (gray), GPower (yellow, see Journée et al. (2010)), and the
proposed sparse PCA method (blue). For each method, an error bar (based on
the three-sigma rule) depicts the variation of PVE over 30 repeats of experiments.
More details about the simulated data and settings (e.g., sparsity constraints) are
described in Section 4.1

sisting of sparse vectors. This means that the choice of basis is
crucial; the existence of a sparse basis is an implicit assumption
behind the frequent use of rotation techniques by practitioners
to help interpret principal components” (Vu and Lei 2013). Row
sparsity is the most prevalent notion of sparsity used in contem-
porary sparse PCA, yet it does not appear to describe many con-
temporary parametric multivariate models; conversely, many
contemporary parametric models in multivariate statistics can
be estimated with the sparse PCA approaches that can identify
column sparsity (Rohe and Zeng 2020).

In high-dimensional regression, sparse penalties such as the
Lasso resolve an invariance; there is an entire space of solutions
b which exactly interpolate the data Y = Xb and presuming
that the solution b is sparse can make the solution unique.
Interestingly, there is no analogue to “sparsity resolving an
invariance” for the estimation of row sparse subspace, but there
is a very clear analogue in estimating column sparse subspace;
the basis is determined by the one that provides the most sparse
representation of data.

1.1. Our Contributions

In this work, we propose a new method, sparse component
analysis (SCA), to estimate multiple PCs that are column sparse.
The column sparsity is achieved by allowing an orthogonal
rotation to PCs prior to imposing any sparsity constraints. The
algorithm is motivated by two facts. First, an orthogonal rotation
does not affect the total variance explained by a given set of
PCs. Second, by choosing the orthogonal rotation carefully,
PCs can be aligned closely with the coordinate axes, making
them approximately sparse (Figure 2). This technique has been
commonly adapted in factor analysis, a close cousin of PCA
(Thurstone 1931; Kaiser 1960; Jolliffe 1995). For example, the
varimax rotation (Kaiser 1958) is a popular choice in the psy-
chology literature. SCA incorporates the orthogonal rotation
and sparsity constraints to find the sparse and orthogonal basis
in a subspace (i.e., column sparse PCs). We show in Proposi-
tion 1 (Section 2.1.2) that

column sparse PCs can explain more variance in the data than
row sparse PCs.

We validated this with numerical experiments. Additionally,
the simulations suggest that SCA is more stable and robust
across tuning parameters than existing sparse PCA methods.
Our framework of SCA generalizes naturally to a two-way
analysis of a data matrix for simultaneous row and column
dimensionality reductions. For this, we introduce a low-rank
matrix approximation method called sparse matrix approxima-
tion (SMA). The SMA builds on the penalized matrix decom-
position previously proposed by Witten, Tibshirani, and Hastie
(2009). Furthermore, the SMA provides a unified view of sparse
PCA and other modern multivariate data analysis, including
sparse independent component analysis (see, e.g., Comon 1994).
Finally, we demonstrate our sparse PCA methods with vari-
ous high-dimensional data applications, including sparse cod-
ing of images, blind source separation, analysis of single-cell
transcriptome data, and large-scale clustering of social net-
works. We find compelling evidence for the practical use of our
approach, despite concerns about the consistency of PCA in
high-dimensions.

1.2. Organization

The rest of this article goes as follows. Section 2 describes
the methods. Section 3 compares SCA to existing methods.
Section 4 compares different sparse PCA methods using sim-
ulated data. Section 5 applies SCA to several high-dimensional
datasets. Section 6 concludes the article with some discussions.

1.3. Notations

In this article, we discuss the entrywise matrix norm only. For
any matrix A ∈ R

m×n, its entrywise �p-norm is defined as
‖A‖p,p = (

∑m
i=1

∑n
j=1

∣∣Aij
∣∣p

)
1/p. For simplicity, we also use

the notation ‖A‖p for entrywise norm, rather than the norm
induced by a vector norm. In particular, the Frobenius norm
(or the Hilbert-Schmidt norm) is then an alias of entrywise �2-
norm, ‖A‖F =

√∑m
i=1

∑n
j=1 A2

ij = ‖A‖2. Throughout, the
following sets of matrices are frequently considered. U(n) =
{U ∈ R

n×n | UTU = UUT = In} denotes all orthogonal
(unitary) matrices in R

n. V(n, k) = {V ∈ R
n×k | VTV = Ik}

represents the Stiefel manifold in R
n, and B(n, k) = {V ∈

R
n×k | VTV � Ik} is its convex hull (Gallivan and Absil 2010).

2. The Methods

We present a new formulation of sparse PCA as follows. After
revisiting PCA, we give the new formulation (2) (Section 2.1)
and elaborate how it represents column sparsity (Section 2.1.1)
and how it outperforms a row sparsity based method (Sec-
tion 2.1.2). Next, we present an iterative algorithm to compute
sparse PCA (Section 2.2). Lastly, we apply the column sparsity
concept to a more general matrix decomposition method (Sec-
tion 2.3).

Consider the data matrix X ∈ R
n×p of n observations (or

samples) on p variables. Without loss of generality, we assume
that each column of X is centered (i.e., mean-zero) unless oth-
erwise noted. Throughout this article, we presume the number
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Figure 2. Loadings of seven principal components (PCs) from a large scale social network matrix. Each (off-diagonal) panel shows the loadings of two PCs on the original
variables (displayed as points). The lower-triangular panels (yellow) depict the PCs before a rotation. The upper-triangular panels (blue) display the PCs after an orthogonal
rotation. The PCs before and after the rotation have no special or corresponding relationship. In each panel, two perpendicular dotted lines (gray) indicate the coordinate
axes. See Section 5.3 for details about the data analyzed.

of underlying PCs, k, is known (see, e.g., Chen et al. (2021) for a
separated work on estimating k from data using “cross-validated
eigenvalues”). PCA finds k uncorrelated linear transformations
of the original variables such that after the linear transforma-
tions, the most variance is kept. That is,

maximize
Y

‖XY‖F subject to Y ∈ V(p, k), (1)

where the feasible set is the Stiefel manifold, V(p, k). The jth PC
is the linear combination of original variables whose coefficients
are in the jth columns of Y . The coefficients are often called
loadings (or loading coefficients). Note that loadings are usually
nonzero (i.e., Y is usually not sparse). The transformed data
S = XY ∈ R

n×k contains the scores. That is, Sij is the score of
the ith sample on the jth PC.

In PCA, PCs are often defined sequentially. That is, in order
to find the kth PCs, we fix the previous k − 1 PCs and solve
(1); repeat this for k = 1, 2, . . . in order. Such definition ensures
the first k PCs together always explain the most variance in the
data. By contrast, for sparse PCA, we reason in the following
that it is sufficient to solve the optimization problem for all
PCs at once. Note first that the solution to (1) is a subspace,
because if Y∗ is an optimizer of (1), then for any orthogonal
matrix R ∈ U(k), Y∗R is also an optimizer. The solution
to (1) being a rotation-invariant subspace is desirable because
it allows a sparsity-enabling orthogonal rotation to any given
solution. Importantly, such rotation exists under the assumption
of column sparsity (see Section 2.1.1 and Vu and Lei 2013). We
thereby propose a new method for sparse PCA.

2.1. Sparse Component Analysis

For sparse PCA, we impose an �1-norm constraint1 on the
loadings and formulate the following minimization of matrix
reconstruction error (MRE)2:

minimize
Z,B,Y

∥∥X − ZBYT∥∥
F (2)

subject to Z ∈ V(n, k), Y ∈ V(p, k), ‖Y‖1 ≤ γ ,
where γ > 0 is the sparsity controlling parameter, and the
columns of Y are PC loadings. ZBYT is an approximation of X.

The fundamental difference between formulation (2) and
previous sparse PCA formulations is that the middle B matrix is
not necessarily diagonal. Compared to the diagonal B case, this
added flexibility has two merits—(i) it allows PCs to be column
sparse and (ii) it allows sparse PCs to explain more variance in
the data.

2.1.1. SCA Presumes Column Sparsity
Our formulation (2) presumes the PCs are column sparse. That
is, given the subspace of ordinary PCs, there exists an orthogonal
rotation, such that after the rotation, the PCs are approximately
sparse.

Let UDVT be the low-rank singular value decomposition
(SVD) of X, where U ∈ V(n, k) and V ∈ V(p, k) contain singular

1The �1-norm constraint could be replaced by other sparsity constraints, for
example, the �0-norm analogue.

2MRE depicts the unexplained variation in the data, akin to the sum of squares
error in regression.
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vectors, and D ∈ R
k×k is a diagonal matrix with the diagonal

entries in decreasing order, and k ≤ min{n, p} is the rank. For
any two orthogonal matrices O, R ∈ U(k), define Z = UO,
B = OTDR, and Y = VR. With these definitions,

X ≈ UDVT = (UO)(OTDR)(VR)T = ZBYT.

As such, ZBYT approximates X as well as UDVT. In particular,
the middle B matrix is not diagonal because it absorbs the
orthogonal matrices (O and R). Z and Y are orthogonally rotated
from U and V , and both matrices still have orthogonal columns.
Hence, by imposing an �1-norm constraint on Y to make it
approximately sparse, we presume that there exists at least one
orthogonal basis for the column space of V (i.e., the eigenvectors’
subspace), which is not necessarily the original coordinate basis,
such that the PCs are sparse under that basis.

Remark 1. The formulation of SCA does not explicitly defines an
ordering for sparse PCs. This is because permuting the columns
of Y , which can be absorbed by the orthogonal matrix R, does
not change the approximation of ZBYT. As such, the solution
to (2) is not unique. In practice (see Section 4.1), we sort sparse
PCs by the explained variance (EV) of individual PCs, which is
defined as

∥∥Xy
∥∥2

2, where y ∈ R
p contains the loadings of a PC.

As such, the first sparse PC explains the most variation in the
data, and the second PC the second most, etc.

2.1.2. Column Sparsity versus Row Sparsity
Column sparsity does not assume the loadings of ordinary PCs
(i.e., singular vectors of X) to be already approximately sparse;
they only need to be so after some orthogonal rotations. By
contrast (or more strictly), row sparse PCA presumes that the
loadings of ordinary PCs are by themselves approximately sparse
(i.e., the singular vectors align closely with the natural coordi-
nate axes already).

In SCA, the nondiagonal middle B matrix facilitates the more
general formulation of column sparse PCA. Specially, if B is
restricted to diagonal, the formulation reduces to row sparse
PCA.3 The next proposition compares column and row sparse
PCA in terms of MRE (the proof is simple and provided in
Appendix A for completeness).

Proposition 1 (Comparison of row and column sparsity). Let
X ∈ R

n×p be any matrix. Suppose SZ ⊆ R
n×k and SY ⊆

R
p×k are the feasible sets for Z and Y , respectively, where k ≤

min(n, p). Then, subject to Z ∈ SZ , Y ∈ SY , and D is diagonal, it
holds that

min
Z,B,Y

∥∥X − ZBYT∥∥
F ≤ min

Z,D,Y

∥∥X − ZDYT∥∥
F.

In particular, the inequality is strict if SZ and SY are defined
in (2).

Recall that MRE reflects the unexplained variance in the data.
Under the same constraints in (2), the left-hand side of the
inequality corresponds to the MRE objective of column sparse
PCA, and the right-hand-side row sparse one. Proposition 1 says

3This restricted formulation is essentially a low-rank SVD with an additional
sparsity constraint on the right singular vectors.

that the solution to column sparse PCA has an optimal MRE
strictly less than that of row sparse PCA. In other words, column
sparse PCA can capture more variance in the data than row
sparse PCA.

Remark 2. From a parametric perspective, SCA explains more
variance because it uses k2 −k more parameters in the B matrix.
Relative to the total number of parameters, this is typically a
small increase; the Z and Y matrices contain roughly (n + p)k
parameters, and typically k is much smaller than n+p. Whether
these additional parameters in B are statistically justified must
be addressed in a case-by-case basis. In our limited experience
with these techniques, the additional parameters are easily jus-
tified because the proportion of variance explained dramatically
increases (see Section 4.1); the output becomes more stable
against initializations, perturbations, and tuning parameters (see
Section 4.2); and the estimated factors are easily interpretable
(see Sections 5.2 and 5.3).

2.2. An Algorithm for SCA

To solve SCA, the following lemma translates (2) into an equiv-
alent and more convenient form (the proof can be found in
Appendix A).

Lemma 1 (Bilinear form of SCA). Solving the minimization in
(2) is equivalent to solving the following maximization problem,

maximize
Z,Y

∥∥ZTXY
∥∥

F subject to Z ∈ V(n, k),

Y ∈ V(p, k), ‖Y‖1 ≤ γ . (3)

In particular, for the optimizer in (2), B = ZTXY .

Due to the non-convexity of �2-equality constraints (Z ∈
V(n, k) and Y ∈ V(p, k)), the feasible set in (3) is not convex
in general. We replace the feasible set with its convex hull using
some �2-inequality constraints for simplicity,

maximize
Z,Y

∥∥ZTXY
∥∥

F subject to Z ∈ B(n, k),

Y ∈ B(p, k), ‖Y‖1 ≤ γ . (4)

Due to the Karush-Kuhn-Tucker conditions (see, e.g., Nocedal
and Wright 2006), one could expect the solution to fall on the
boundary (i.e., Z ∈ V(n, k), Y ∈ V(p, k), and ‖Y‖1 = γ ) so long
as the sparsity parameters are chosen such that k ≤ γ ≤ k√p4.

Algorithm 2 describes an iterative algorithm that computes
sparse PCs as formulated in (4). The input includes a data
matrix X, the desired number of sparse PCs k, and optionally
the sparsity controlling parameters γ . The algorithm outputs the
loadings of k sparse PCs. In our experiences, a default value of
γ = √

pk appears to generate robust and interpretable sparse
PCs (see, e.g., Section 4.2). We discuss a data-driven method of
tuning the sparsity parameters in supplementary section S1. In
general, Algorithm 2 does not necessarily converge to a global
optimum for (4); however, our empirical studies indicate that

4This is for the set {Y ∈ R
p×k | ‖Y‖1 = γ } to intersect with the Stiefel

manifold V(p, k).
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the algorithm does converge to interpretable factors for appro-
priate choices of the sparsity parameters. Note that each iteration
results in a decrease in the objective.

The SCA algorithm initializes Z ∈ V(n, k) and Y ∈ V(p, k)
with the top k left and right singular vectors of X respectively.
Once initialized, the algorithm alternatively updates Z and Y ;
fixing one and optimizing the other until convergence. The
iteration is because the objective function is bilinear in Z and
Y , allowing for fast updates. Specifically, with Y fixed, (4) takes
the form

maximize
Z

∥∥ZTXY
∥∥

F subject to Z ∈ B(n, k). (5)

With Z fixed, (4) takes the form
maximize

Y

∥∥ZTXY
∥∥

F subject to Y ∈ B(p, k), ‖Y‖1 ≤ γ . (6)

Input: A ∈ R
p×k,

sparsity parameter γ (optional, default to
√

pk)
Procedure PRS(A):

Ỹ ← left singular vectors of A
Y∗ ← rotate Ỹ with varimax // Section 2.2.3

Ŷ ← soft-threshold Y∗ with parameter γ

Output: Ŷ
Algorithm 1: Polar-Rotate-Shrink (PRS)

Input: Data matrix X and a number of components k
Procedure SCA (X, k):

Initialize Ẑ and Ŷ with the top k left and right
singular vectors of X

repeat
Ŷ ← PRS(XTẐ) // Algorithm 1

Ẑ ← polar(XŶ) // Lemma 2
until convergence

Output: Sparse loadings Ŷ
Algorithm 2: Sparse Component Analysis (SCA)

2.2.1. Update Z fixing Y
The update of Z fixing Y in (5) is algebraic. The following
lemma provides a set of solutions to (5), which is extended
from Theorem 7.3.2 in Horn and Johnson (1985) (the proof is
included in Appendix A for completeness).

Lemma 2 (Maximization without sparsity constraint). Given a
full-rank matrix X ∈ R

n×p, with p ≤ n, let the singular values
of X be σi for i = 1, 2, . . ., p. Then,

max
Y∈V(n,p)

∥∥XTY
∥∥

F =
p∑

i=1
σi

with the maximizer Y∗ = polar(X), up to any orthogonal
rotation from the right. Here, polar(X) = X(XTX)−1/2 is the
polar of X.

Due to Lemma 2, the SCA algorithm updates Z with the polar
of XY , Ẑ = polar(XY), which can be computed in O(nk) time
(Journée et al. 2010).

2.2.2. Update Y Fixing Z
To update Y fixing Z, we start by solving the nonsparse version
of (6) (i.e., remove the sparsity constraint ‖Y‖1 ≤ γ ),

maximize
Y

∥∥ZTXY
∥∥

F subject to Y ∈ B(p, k). (7)

Let Ỹ = polar(XTZ). Then, Ỹ is one element in the subspace
of the solutions to (7). Before imposing the sparsity constraint,
we look for an orthogonal rotation R to Ỹ to minimize ‖ỸR‖1.
However, ‖Y‖1 is not a smooth function of Y if it contains
at least one zero entry, entailing the complications of defining
sub-gradients. Alternatively, the SCA algorithm minimizes a
smoother criterion based on the �4/3 norm:

minimize
R

∥∥∥ỸR
∥∥∥ 4

3
subject to R ∈ U(k). (8)

This sub-problem leads to the varimax rotation (see Sec-
tion 2.2.3) that is widely applied in factor analysis (Kaiser 1958).
We denote Y∗ = ỸR∗ to be the orthogonally rotated solution
to (7), where R∗ is the solution to (8). Finally, considering the
�1-norm sparsity constraint, we apply the element-wise soft-
thresholding of Y∗ with the sparsity parameter γ , which is
defined as (Donoho 1995; Tibshirani 1996)[

Tγ (Y∗)
]

ij = sign(Y∗
ij ) ·

(
|Y∗

ij | − t
)

+ , (9)

where t > 0 is the threshold determined by the equation∥∥Tγ (Y∗)
∥∥

1 = γ , and x+ equals x if x > 0 or 0 otherwise. We
discuss several properties of soft-thresholding in Supplementary
Section S2. In summary, the update of Y given Z consists of three
steps that we call “Polar-Rotate-Shrink” (PRS, Algorithm 1)—
first, compute a solution to the unconstrained problem (7);
second, rotate with varimax; third, soft-threshold all of the ele-
ments.5

2.2.3. Orthogonal Rotations: Varimax and Quartimax
For any matrix A ∈ R

p×k, the varimax criterion is defined as
the sum of column (sample) variance of squared elements (A2

ij)
(Kaiser 1958):

Cvarimax(A) =
k∑

j=1

⎡
⎣1

p

p∑
i=1

A4
ij − 1

p2

( p∑
i=1

A2
ij

)2⎤⎦ .

For a fixed matrix Y ∈ R
p×k, the varimax rotation seeks

an orthogonal rotation R ∈ R
k×k to maximize the varimax

criterion evaluated at YR,

maximize
R

Cvarimax(YR) subject to R ∈ U(k). (10)

It is commonly used in factor analysis for producing nearly
sparse and interpretable loadings of PCs, especially in the psy-
chology literature. The varimax rotation is easy to compute; for
example, the base function varimax in R implements a gra-
dient projection algorithm of it (Bernaards and Jennrich 2005).

5More investigation is needed in order to understand the statistical prop-
erties of PRS. For example, in a recent paper (Rohe and Zeng 2020), we
showed that PCA with the varimax rotation is a consistent estimator for a
broad class of modern factor models, that includes the degree corrected
stochastic block model (Karrer and Newman 2011).
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Jennrich (2001) showed that the gradient projection algorithm
converges to a local optimum from any starting point and enjoys
geometric (or linear) convergence rate.

The varimax criterion naturally links to the �4/3-norm objec-
tive function in (8). Since Y ∈ V(p, k), the columns of Y have
unit length. Hence,

∑p
i=1 Y2

ij = 1, and the varimax criterion
reduces to a simpler form (also known as the quartimax criterion
as introduced by Carroll (1953)) up to an additive constant:

Cquartimax(Y) =
p∑

i=1

k∑
j=1

Y4
ij = ‖Y‖4

4,

which is the �4-norm of Y to the power of 4. Next, by the
Hölder’s inequality (using the Hölder conjugates 4/3 and 4) and
the power mean inequality (and that ‖Y‖F = √

k), ‖Y‖ 4
3
‖Y‖4 ≥

‖Y‖1 ≥ ‖Y‖F = √
k. This implies that maximizing the

varimax criterion is the dual problem of minimizing the �4/3-
norm objective. Hence, to update Y in the algorithm of SCA, we
invoke the varimax rotation in (10) as a proxy of (8).

Remark 3. Besides varimax, we experimented the orthogonal
rotation that directly minimizes the �1 norm, which we call the
“absmin” rotation:

minimize
R

‖YR‖1 subject to R ∈ U(k). (11)

However, the objective function is not smooth at those R where
YR contains at least one zero element; this posts challenges to
solving (11). For example, we tried a gradient projection algo-
rithm using the gradient direction YT sign(YR), where sign(·)
is the element-wise sign function, yet the algorithm hardly con-
verges. It is worth noting that in our limited experiments, where
we used the absmin rotation but only allowed 15 iterations of this
gradient projection algorithm, we obtained marginally better
solutions, in terms of explained variance, than using the varimax
rotation (see Section 4.1). It is of future interest to investigate
alternative orthogonal rotations that are easy to compute and can
generate approximately sparse structure.

2.3. Sparse Matrix Approximation

In the SCA algorithm above, a sparsity constraint can also be
applied to Z, in addition to Y . We call this sparse matrix approx-
imation (SMA). We define SMA as the solution to a matrix
reconstruction error minimization problem:

minimize
Z,B,Y

∥∥X − ZBYT∥∥
F (12)

subject to Z ∈ B(n, k), P1(Z) ≤ γz,
Y ∈ B(p, k), P2(Y) ≤ γy,

where γz > 0 and γy > 0 are the sparsity controlling parameters,
and P1 and P2 are some penalty functions that promote sparsity.
If γZ is so large that P1(Z) ≤ γz is always satisfied, then (12) is
equivalent to SCA. Similar to Lemma 1, we transform (12) into
an equivalent and more convenient form (the proof is almost
identical to that of Lemma 1 thus is omitted),

maximize
Z,Y

∥∥ZTXY
∥∥

F (13)

subject to Z ∈ B(n, k), P1(Z) ≤ γz,
Y ∈ B(p, k), P2(Y) ≤ γy.

The two criteria in (12) and (13) are equivalent if and only if B =
ZTXY . We interpret B as the “score” of SMA, since the solution
to (12) maximizes the sum of squares of its elements,

∑
i,j B2

ij. It
is also worth noting that the squared matrix reconstruction error
equals to ‖X‖2

F − ‖B‖2
F (see the proof of Lemma 1).

Since SMA is a simple extension from SCA, we extend Algo-
rithm 2 for SMA in Algorithm 3, where we apply PRS to Z in
addition to Y . The output includes the estimated Z, B, and Y .

Input: data matrix X ∈ R
n×p and the approximation

rank k
Procedure SMA (X, k):

Initialize Ẑ and Ŷ with the top k left and right
singular vectors of X

repeat
Ẑ ← PRS(XŶ) // Algorithm 1

Ŷ ← PRS(XTẐ) // Algorithm 1
until convergence
B̂ ← ẐTXŶ

Output: Ẑ, B̂, and Ŷ
Algorithm 3: Sparse Matrix Approximation (SMA) with
P1 (A) = P2 (A) = ‖A‖1.

We highlight that SMA generalizes the popular penalized
matrix decomposition (PMD) proposed by Witten, Tibshirani,
and Hastie (2009), which is also similar to the method of Shen
and Huang (2008). The PMD also approximates a data matrix
X ∈ R

n×p by the product of three matrices, ZDYT, where Z ∈
V(n, k) and Y ∈ V(p, k) are presumed sparse, and D ∈ R

k×k

is a diagonal matrix whose diagonal entries are in decreasing
order, and k is the rank of the matrix approximation. For sparsity,
PMD applies penalty functions to Z and Y , leading to the matrix
reconstruction error minimization formulation of PMD:6

minimize
U,D,V

∥∥X − ZDYT∥∥
F

subject to Z ∈ B(n, k), P1(Z) ≤ γz,
Y ∈ B(p, k), P2(Y) ≤ γy,
D is diagonal,

where γz, γy > 0 are parameters that control the sparsity of Z
and Y , and P1 and P2 are some convex penalty function (e.g.
�1-norm).

The single difference between SMA and PMD is the diagonal
constraint on the middle matrix. In this way, SMA generalizes
PMD, because, SMA estimates k2 − k more parameters in B
than PMD (see Remark 2). Proposition 1 suggests that the recon-
struction error of SMA is less or equal to that of PMD (see also
Remark 4 in Appendix A). Algorithmically, in order to compute
PMD, Witten, Tibshirani, and Hastie (2009) proposed to find the
solution by sequentially maximizing Bii for i = 1, 2, . . ., k (recall
that B = ZTXY). By contrast, solving the SMA in (13) amounts
to maximizing the entirety of the score matrix, that is, ‖B‖F.

6The article originally considers the PMD with k = 1. The PMD finds multiple
factors sequentially using a deflation technique.
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3. Connections to Existing Methods

As mentioned in Section 1.1, SCA is related to factor analysis
in that they both use a rotation. One key difference is that the
sparsity constraint in SCA creates actual zeros. In this section,
we compare SCA with several existing methods of sparse PCA.
Then, we introduce two existing data processing techniques that
are related to SCA.

3.1. Existing Sparse PCA Methods

The formulation of SCA is akin to multiple existing sparse PCA
formulations. However, the possibility of orthogonal rotations
has not been explored thoroughly, despite the plethora of avail-
able methods. In this section, we elucidate these connections and
point to some differences.

SPCA (Zou, Hastie, and Tibshirani 2006) SPCA is motivated to
maximize the explained variance in the data (Jolliffe,
Trendafilov, and Uddin 2003). The formulation of SPCA
minimizes a “residual sum of squares plus penalties” type of
criterion,

minimize
U,V

∥∥X − XVUT∥∥2
F + λ1‖V‖2

F + ∑k
j=1 λ2,j

∥∥vj
∥∥

1

subject to U ∈ V(p, k),

where vj is the jth column of V ∈ R
p×k containing the

sparse loadings of the jth PC, and λ1 and λ2,j are tuning
parameters. In this formulation, the first and the third terms
are not invariant to orthogonal rotations (on V). Specially, the
first term

∥∥X − XVUT∥∥2
F is minimized when V corresponds

to the k ordinary PCs. Based on this, Zou, Hastie, and Tib-
shirani (2006) shows that the algorithm of SPCA searches
for a sparse approximation of the ordinary PCs, yet without
sparsity-enabling orthogonal rotations (i.e., it assumes row
sparsity).

SPC (Witten, Tibshirani, and Hastie 2009) SPC finds one sparse
PC at a time,

maximize
u,v

uT
i Xvi subject to ‖ui‖2 = 1,

‖vi‖2 = 1, ‖vi‖1 ≤ γ , (14)

where vi ∈ R
p contains the loadings of the ith sparse PC, for

1 ≤ i ≤ k. When k = 1, our formulation of SCA in (3) takes
the same form as the SPC formulation, where an orthogonal
rotation is unnecessary. When k > 1, however, SPC searches
for sparse PCs sequentially and does not rotate PCs, unlike
SCA, which computes k sparse PCs simultaneously. SPC is
similar to the rSVD proposed by Shen and Huang (2008) and
the TPower proposed by Yuan and Zhang (2013) in that all
the three methods rely on a deflation technique for multiple
PCs. This technique entails complications of, for example,
non-orthogonality and sub-optimality (Mackey 2008). More
generally, these methods can each be viewed as a special case
of the following GPower formulation.

GPower (Journée et al. 2010) GPower has a “block version” that
computes multiple sparse PCs simultaneously by considering
a linear combination of individual sparse PCA (as formulated

in SPC),

maximize
U,V

k∑
j=1

μjuT
j Xvj −

∑
j

λj
∥∥vj

∥∥
1

subject to U ∈ B(n, k), V ∈ V(p, k),

where V contains the PC loadings, and uj and vj are the jth
column of U and V respectively, and μj is the weight for the
jth sparse PC, and λj is the sparsity tuning parameter for the
jth sparse PC. The algorithm of GPower fundamentally deals
with sparse PCs individually, which prohibits orthogonal
rotations (on V).

SPCArt (Hu et al. 2016) SPCArt is the first (to our knowledge)
sparse PCA method that concerns orthogonal rotations in its
formulation. It searches for sparse PCs by directly approxi-
mating the singular vectors (as opposed to minimizing the
reconstruction error or maximizing the explained variance),

minimize
Y ,R

‖V − YR‖2
F + λ‖Y‖1

subject to Y ∈ V(p, k), R ∈ U(k),

where V ∈ V(p, k) contains the top k singular vectors of X,
and Y contains the sparse loadings. Conceptually, introduc-
ing an orthogonal rotation (R) allows a larger searching space
for Y . However, the algorithm of SPCArt does not specifically
update R to promote sparsity (e.g., minimize ‖Y‖1 as in SCA);
instead, SPCArt simply computes R so as to align the polar of
V and Y (i.e., R̂ = polar(YTV)). As such, the performance of
SPCArt could be sensitive to the initialization of Y . Empiri-
cally, SPCArt yields results that are nearly comparable to the
GPower based method, as concluded by the authors.

3.2. Sparse Coding and Independent Component Analysis

Sparse coding concerns low-rank representations of individual
samples. We view it as a variant of PCA, where we presume the
component scores to be sparse. Recall that the scores are the
representations of individual data points in R

k, where k is the
number of PCs. In particular, presuming sparse scores implies
that each data point is correlated with only a small subset of
PCs. Sparse coding is useful to generate simple representations
of individual date points, and the basis of such representations
(i.e., PCs) usually provide scientific insights. For example, sparse
coding of natural images recovers the common understanding of
how the primary visual cortex in mammalian perceives scenes
(see, e.g., Section 5.1).

The SCA algorithm can be used to solve sparse coding. This is
because, similar to SCA, sparse coding can be viewed as a special
case of the SMA problem. To see this, simply omit the sparsity
constraint on Y in (12),

minimize
Z,B,Y

∥∥X − ZBYT∥∥
F

subject to Z ∈ B(n, k), Y ∈ B(p, k), P1(Z) ≤ γz

Here, Z contains the sparse scores, and BYT contains the basis
of sparse coding. To solve sparse coding, we apply the SCA
algorithm (Algorithm 2) to the transposed data matrix, XT. In
doing this, the output of the algorithm is actually an estimate of
sparse component scores for the original data matrix.
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More broadly, independent component analysis (ICA) is
widely applied for sparse coding in the signal processing liter-
ature. Despite the different motivations, sparse PCA on a trans-
posed data matrix appears to perform very similarly to sparse
ICA on the original data. We elaborate on this in Supplementary
Section S3 and apply SCA to blind source separation of images.

4. Simulation Studies

In this section, we compare several sparse PCA methods
using simulated data. Specifically, we focused on (a) their
ability of explaining variance in the data, (b) the robustness
against varying sparsity parameters, and (c) the computational
speed. We selected SPCA, SPC, GPower, the SPCAvRP method
recently proposed by Gataric, Wang, and Samworth (2020),
SCA, and another variant of SCA which deploys the absmin
rotation (SCA-absmin, see Remark 3 of Section 2.2.3). For SCA
and SCA-absmin, we implemented the algorithms in R.7 For
SPCA, SPC, and SPCAvRP, we invoked the original R packages
elasticnet, PMA, and SPCAvRP, respectively. The imple-
mentation of GPower (in MATLAB) was obtained from the
authors’ website. For all the iterative methods, we specified
maximum number of iterations to 1000 and the stopping (con-
vergence) criterion to 10−5. Overall, our numerical experiments
showed that the SCA algorithm converges faster and produces
more robust sparse PCs that capture a larger amount of variance
in the data.

4.1. Proportion of Variance Explained

In this simulation, we compared the abilities of sparse PCA
methods in explaining variance in the data. To this end, we
simulated 30 data matrices with n = 100 observations and p =
100 variables from the following low-rank generative model:

X = SYT + E,

where S ∈ R
100×16 contains the component scores, and Y ∈

R
100×16 contains the loadings of sparse PCs, and E ∈ R

100×100

is some noise. To generate S, we randomly sampled U ∈
V(100, 16) and V ∈ U(16) and set S = U�VT, where �

is a diagonal matrix with the diagonals σl = 10 − √
l for

l = 1, 2, . . ., 16. To simulate a sparse Y , we took a random
element from V(100, 16), then soft-threshold its elements with
sparsity parameter γ = 20 (i.e., T20 as defined in (9)).8 Note
that, it is unnecessary to re-scale the columns of loadings to unit
length, because the column of S can absorb these scalars. Lastly,
the elements in E were drawn independently from the normal
distribution, Eij∼N(0, 0.12).

We applied the six sparse PCA methods to each simulated
data matrix X with k = 2, 4, 6, . . ., 16. For each k, we imposed
the same �1-norm constraint on the sparse loadings for all meth-
ods. Specifically, for SCA, and SPC, we directly configured the

7We provide an R package epca, for exploratory principal component
analysis, which implements SCA and SMA with various algorithmic options.
The package is available from CRAN (https://CRAN.R-project.org/package=
epca).

8We also experimented with γ = √
pk = 40. The results are comparable.

Figure 3. Comparisons of sparse PCA methods using simulated data. The propor-
tion of variance explained (PVE) by sparse principal components (PCs) with the
number of targeted PCs varying from 2 to 16.

Table 1. Comparison of the computational efficiency of sparse PCA methods.

Method # of iterations Mean run time (s) Environment

SCA 10 ∼ 65 (all PCs) 0.96 R
SPC 25 ∼ 1000 (each PC) 1.21 R
GPower 30 ∼ 150 (each PC) 0.19 MATLAB
SPCA 470 ∼ 920 (all PCs) 56.30 R
SPCAvRP / 28.67 R
SCA-absmin / 23.5 R

NOTE: Each method is tasked to find 16 PCs on a single CPU (2.50GHz). SPCAvRPs is
not iterative (yet is parallelizable), hence, the number of iterations is not applica-
ble. The absmin rotation is less efficient, so we halted the algorithm of SCA-absmin
after the 15th iteration.

sparsity controlling parameters to 2.5k.9 As for SPCA, GPower
and SPCAvRP, to ensure a fair comparison, we tuned the param-
eters using binary search such that the returned loadings all
have the same �1 norm of 2.5k. To evaluate sparse PCs, we
define the cumulative proportion of variance explained (PVE)
by the first k sparse PCs as ‖XY‖2

F, where XY = XY(YTY)−1YT

(Shen and Huang 2008). Note that the PVE by sparse PCs is
upper bounded by that of ordinary PCs (no sparsity constraint).
Therefore, we also applied PCA to X for comparison. Figure 3
displays the mean PVE for different PCA methods, varying the
requested number of PCs from 2 to 16. It can be seen that
SPCAvRP and SPCA explained less than half of the PVE by PCA,
and that GPower and SPC both exhibited some improvements
over SPCA. For GPower, we tested both the single-unit and
the block versions, but the block version often converged to a
defective solution with some columns decaying to all zeros. This
happened when the number of targeted PCs went above five in
this simulation. As such, we display only the single-unit version
of the results. Overall, SCA performed the best among sparse
PCA methods and were the closest to PCA. In addition, the SCA
algorithm converged with fewer iterations than the other sparse
PCA methods (see Table 1 for a comparison when k = 16).
We also observed that using the varimax rotation (SCA), the
algorithm was more computationally efficient than using the
absmin rotation (SCA-absmin).

9The coefficient 2.5 is calculated from λ/16, assuming that the 16 sparse PCs
have equally distributed �1-norm.

https://CRAN.R-project.org/package=epca
https://CRAN.R-project.org/package=epca
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Figure 4. Comparisons of SCA and SPC using simulated network data. Heat maps of the loadings (900 × 4 matrices) returned by SCA and SPC using three different sparsity
parameters (γ = 24, 36, 48). In each heat map, rows correspond to nodes, which are grouped by the true community membership, and each column corresponds to one
sparse PC. The color shade indicates the absolute of loadings.

4.2. Robustness Against Tuning Parameters

This simulation study investigates the robustness of sparse PCA
to the choice of sparsity parameters. For this, we applied sparse
PCA to detect communities in networks (or graph partitioning)
(see, e.g., Fortunato 2010), using the graph adjacency matrix
(see the definition below) as input. This application is possible
thanks to the recent consistency results (Rohe and Zeng 2020)
showing that under the stochastic block model (SBM, see for
example Holland, Laskey, and Leinhardt 1983), the support of
each sparse PC estimates the membership (indicator) of one
community. Hence, we could evaluate sparse PCs by examining
their support.

We simulated 30 undirected graphs with n = 900 nodes
and four equally sized blocks from the SBM. Under the SBM,
the edge between node i and j is sampled from the Bernoulli
distribution, Bernoulli(Bz(i),z(j)), where z(i) ∈ {1, 2, 3, 4} is the
membership of node i, and

B = 0.05 ×

⎡
⎢⎢⎣

0.6 0.2 0.1 0.1
0.2 0.7 0.05 0.05
0.1 0.05 0.6 0.25
0.1 0.05 0.25 0.6

⎤
⎥⎥⎦

is the block connectivity matrix. Under this setting, the expected
number of edges connected to each node is 45. For each simu-
lated graph, we defined the adjacency matrix A ∈ {0, 1}n×n with
Aij = 1 if and only if i and j are connected.

We applied SCA, SPC, and GPower10 to each of the 30 sim-
ulated adjacency matrices with k = 4. We varied the sparsity
parameter γ to take value in {18, 24, 36, 48, 60, 66}. For SPC,
we required each of the four PCs to have �1 norm γ /4. As for
GPower, we tuned its parameters such that the returned loading
matrix has the �1 norm of γ . Figure 4 depicts the estimated
loadings returned by SCA and SPC. On the left two columns of
panels (γ = 48 and 36), the supports of the four sparse PCs were

10Since SPCA and SPCAvRP performs worse than SPC and GPower (Zou and
Xue 2018), we excluded the two methods in this simulation for simplicity.

Figure 5. Comparisons of sparse PCA methods using simulated network data. The
accuracy of SCA, GPower, and SPC in community detection using various sparsity
parameters (γ ). Each point indicates the mean accuracy across 30 replicates, and
the error bar indicates the standard deviation of the evaluated accuracy.

well separated and indicated block memberships. This suggested
that we could use the loadings to cluster nodes and quantitatively
assessed the quality of sparse PCA methods. Specifically, we
assigned node i to cluster j if Yij is the largest absolute value in
the ith row of Y , that is, |Yij| > |Yil| for all l 
= j. In the case of
ties or all-zero rows, the cluster label is randomly assigned. For
each estimate, let C ∈ {1, 2, 3, 4}n contain the assigned cluster
labels and C∗ ∈ {1, 2, 3, 4}n contain the true labels. Define the
accuracy as

Accuracy(C, C∗) = max
π∈P(4)

{
1
n

n∑
i=1

1
(
π (Ci) = C∗

i
)}

,

where P(4) contains all the possible permutation functions of
the set {1, 2, 3, 4}, and1(x) is the indicator function of x. We used
the accuracy to assess the quality of the sparse PCA solutions.
Figure 5 depicts the accuracy of the three methods with varying
sparsity parameters. It can be seen that the performance of
GPower and SCA were less affected by the changing of sparsity
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Table 2. Comparison of the SPC objective values,
∑4

i=1(uT
i Avi)

2 (see (14)), evaluated using the output of the SCA and SPC algorithms with various sparsity parameter (γ ).

γ = 18 γ = 24 γ = 36 γ = 48 γ = 60 γ = 66

Using SCA solution 191.47 323.36 1135.03 1906.25 2554.86 2783.73
Using SPC solution 544.81 705.01 1029.04 1195.91 1334.67 1423.95

Bold values represent the p-value < 0.001, based on the paired t-test of 30 replicates.

parameter, while SPC was profoundly influenced. As γ became
smaller, SPC quickly lost its power in community detection,
suggesting that SPC is more sensitive to the choices of tuning
parameter. Although less sensitive to the change in γ , GPower
produced poorer estimation of sparse PCs, with the accuracy
slightly better than random guesses (accuracy = 0.25). Overall,
SCA yielded higher accuracy with smaller deviation compared
to the others, suggesting that SCA is less dependent on the choice
of sparsity parameters.

In this example, SCA outperforms SPC because it finds a
better optimization solution. This comparison could be made
difficult by the fact that they have different objective functions.
However, in this case, even though SCA is optimizing a different
objective function, it outperforms SPC at optimizing the SPC
objective function. Table 2 lists the objective values of SPC (14)
evaluated using the solutions of the SCA and SPC algorithms
with various γ . When γ ∈ {36, 48, 60, 66}, the SCA algorithm
outputs a solution that achieves a higher value of the SPC objec-
tive, suggesting that the SPC algorithm is likely to return local
optima.

5. Applications

In this section, we applied SCA to real data. The first application
is the sparse coding of natural images. It illustrates the utility of
sparse PCA as independent component analysis. Supplementary
Section S3.1 contains another application of SCA to blind source
separation of images. Next, we demonstrate the ability of SCA
in handling high-dimensional problems (i.e., p > n) through
a transcriptome sequencing dataset and a targeted sample of
Twitter friendship network. These datasets are of large scale. To
our knowledge, no other current implementations of sparse PCA
can efficiently handle a large matrix at the scale. As such, we will
restrict our discussion to SCA.

5.1. Sparse Coding of Images

Low-level visual layers, such as retina, the lateral geniculate
nucleus, and the primary visual cortex (V1) are shared process-
ing components in mammalian. The receptive fields in the V1
can be characterized as being spatially localized, oriented and
bandpass (i.e., selective to structure at different spatial scales).
To understand V1, one line of research focuses on finding sparse
and linearly independent codes for natural images, which pro-
vides an efficient representation for later stages of processing
(Field 1994; Olshausen and Field 1996; Bell and Sejnowski 1997).
This type of research is based on the hypothesis of sparse coding,
that is, any perceived scenes can be synthesized via the linear
combination of some small subsets of basis images (Lee et al.
2006; Gregor and LeCun 2010)). In this application, we show
that sparse PCA produces a set of bases for natural images that
resembles those found in Olshausen and Field (1996).

We used 10 natural images from Olshausen and Field (1996),
each of which contains 512 × 512 pixels. We followed the
same whitening process as described by the authors. Next, we
randomly sampled a total of 12,000 small image patches the
ten images, where each patch contains 16 × 16 pixels. This was
followed by a centering step that subtracts each pixel by the mean
of all 256 pixels. We vectorized each patch of image and put them
into the rows of a data matrix, X ∈ R

n×p, where n = 12,000 and
p = 256. Finally, we applied SCA to the transposed data matrix,
XT (note that this is sparse coding). For this exploratory analysis,
we set k = 49 to find 49 sparse PCs (the same result holds for
various selections of k) with the default sparsity parameter, γ =√

pk. In particular, for the varimax rotation, we normalized the
rows to unit length rescaled them afterward, as recommended
by Kaiser (1958). In the output of SCA, the estimated scores
S ∈ R

p×k contains the basis images, and the estimated sparse
loadings Y ∈ R

n×k encodes how the basis images are linearly
combined to form each image patch (i.e., Y contains the linear
coefficients).

Figure 6 displays the 49 image bases returned by PCA and
SCA, where each image represents one column of S (transformed
into a 16×16 array). For SCA, all of the basis images appeared to
exhibit simple patterns, such as lines and edges. As for PCA, the
oriented structure in the first few basis images does not arise as a
result of the oriented structures in natural images, yet more likely
because of the existence of those components with low spatial
frequency (Field 1987).

5.2. Analysis of Single-Cell Gene Expression Data

Single-cell transcriptome sequencing (scRNA-seq) provides
high-throughput transcriptome expression quantification at
individual cell level. It has been widely used across biological
disciplines. For example, patterns of gene expression can be
identified through clustering analysis. This helps uncover the
existence of rare cell types within a cell population that have
never been seen (Plasschaert et al. 2018; Montoro et al. 2018).
In this application, we aimed to use SCA to extract the sparse
PCs of genes that characterize some known cell types.

For this application, we used the human pancreatic islet cell
data from Baron et al. (2016). We removed the genes that do not
exhibit variation across all cells (i.e., zero standard deviation)
and removed the cell types that contain fewer than 100 cells. This
resulted in a data matrix X ∈ R

n×p of n = 8451 cells across
nine cell types and p = 17,499 genes, with Xij measuring the
expression level of gene j in cell i. X is sparse; it contains 10.8%
nonzero elements. We applied SCA on X to find k = 9 sparse
gene PCs. We set the sparsity parameter to γ = log(pk) ≈ 12,
as we aimed for particularly sparse PCs (i.e., each PC is consist
of a small number of genes). The algorithm took about 5 min
(24 iterations) to complete on a single processor (3.3GHz). As
a result, each column of the loading matrix contains a small
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Figure 6. Sparse image encoding using PCA (left) and SCA (right). For both method, shown are the 49 image bases (i.e., component scores) extracted from natural images.
Each image basis is in 16 × 16 pixel.

Table 3. Sparse gene PCs estimated by SCA.

PC # of genes Gene name(s)

1 1 INS
2 1 SST
3 1 GCG
4 8 CTRB2, REG1A, REG1B, REG3A, SPINK1 ...
5 15 CELA3A, CPA1, CTRB1, PRSS1, PRSS2 ...
6 1 IAPP
7 1 PPY
8 3 CLU, GNAS, TTR
9 61 ACTG1, EEF1A1, FTH1, FTL, TMSB4X ...

NOTE: For each gene PC, the number of genes (i.e., the number of nonzeros in the
loadings) and the top five genes according to the absolute loadings are reported.

number of nonzero elements, suggesting that most of the gene
PCs consist of one or a few genes. Table 3 lists the names of
these genes for each PCs. For example, the PC 2 consists of only
one gene, SST. Despite the simple structure of PCs, these PCs
picked up informative gene markers for individual cell types. To
see this, we calculated the scores for each cell using the 9 PCs
(That is, each cell gets 9 scores, each of which corresponds to
one of the nine PCs.) Figure 7 displays the box plots of the scores
stratified by cell type. For example, the expression of the SST
gene (which solely composes the 2nd PC) identifies the “delta”
cells. This result highlights the power of scRNA-seq in capturing
cell-type specific information and suggests the applicability of
our methods to high-dimensional biological data.

5.3. Clustering of Twitter Friendship Network

This application serves in a grand efforts of ours to study
political communication on social media, like Twitter. The
information on Twitter is organized so that users primar-
ily read the tweets of their “friends.” In order to select con-
tent, a user can freely “follow” (and “unfollow”) any other
accounts, and we call these other accounts the friends of it.
Thanks to this design, the communication on Twitter can
be contextualized by the friendship network. As such, we
hypothesize that user’s community membership in the network
offers the context of user’s opinion expression on social media
(Zhang, Chen, and Rohe 2022; Zhang, Chen, and Lukito 2022;
Zhang et al. 2022). To study the hypothesis, a key step is to

cluster Twitter accounts using their friendship network. In this
section, we demonstrate large-scale network clustering using
sparse PCA.

For this application, we collected a targeted sample from the
Twitter friendship network in August 2018 (Chen, Zhang, and
Rohe 2020). In this sample, there are n = 193,120 Twitter
accounts who follow a total of p = 1,310,051 accounts, after
filtering out the accounts with few followers or followings. We
defined the graph adjacency matrix A ∈ {0, 1}n×p with Aij = 1
if and only if account i follows account j.11 This resulted in a
sparse A with about 0.02% entries being 1. We applied SMA to A
with k = 100 and default sparsity parameters. This analysis was
computationally tractable; one iteration of the SMA algorithm
took about 54 min on a single processor (2.5GHz), thanks to
the efficient algorithm that computes the sparse SVD (Baglama
and Reichel 2005). Figure 2 displays seven example columns of
Y . Using the output Z ∈ R

n×k and Y ∈ R
p×k from SMA, the

clusters of Twitter accounts were determined as follows (same
as in Section 4.2): the ith row account of A was assigned to the
lth row cluster if Zil was the greatest in the ith row of Z, that is,
|Zil| ≥ |Zil′ | for all l′ = 1, 2, . . ., k, and the jth column account
of A was assigned to the lth column cluster if Yjl was the greatest
in the jth row of Y , |Yjl| ≥ |Yjl′ | for all l′ = 1, 2, . . ., k. Upon
detailed evaluation of these clusters, we showed that our cluster-
ing of Twitter accounts formed homogeneous, connected, and
stable social groups (Zhang, Chen, and Rohe 2022). For example,
we found that a user is more likely to retweet the content that
originated from another member in the same clusters (p-value <

10−16 in a χ2 test). More interestingly, the estimated row clusters
and column clusters are matched (Rohe, Qin, and Yu 2016), that
is, the kth row cluster tends to follow the accounts in the kth
column cluster. To illustrate this, we quantified the number of
followings from the row clusters to the corresponding column
clusters. Figure 8 displays the results for 50 selected clusters that
are related to U.S. politics. It can be seen that the number of

11The columns of A are not centered nor scaled. One alternative is to use
the normalized version of A. For example, define the regularized graph
Laplacian as L ∈ R

n×p with Lij = Aij/
√

(ri + r̄)(cj + c̄), where ri = ∑
j Aij is

the sum of the ith row of A, cj = ∑
i Aij is the sum the jth column of A. Here,

r̄ and c̄ are the means of ri ’s and cj ’s respectively. (Zhang and Rohe 2018).
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Figure 7. Scores of sparse gene principal components (PCs) stratified by cell types. Each panel displays one of nine cell types with the names of cell types and the number
of cells reported on the top strips. For each cell type, a box depicts the component scores for nine sparse gene PCs.

Figure 8. Heat map of friend counts between row and column clusters of Twitter accounts. Each row and column corresponds to a cluster. The row and column panels
indicate cluster category, with the category names shown in the top and right strips. The color shades indicate the number of followings from the row cluster to the column
cluster, after the square root transformation.

followings between each paired row and column clusters (i.e.,
the diagonals in Figure 8) showed marked enrichment. These

results suggest the efficacy of our methods for analysis of social
network data.
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6. Discussions

In this article, we introduced SCA, a new method for sparse
PCA, and SMA, an extension for two-way matrix analysis. SCA
differs from the existing sparse PCA methods in that it estimates
column sparse PCs, that is PCs that are sparse in an orthogo-
nally rotated basis. This is particularly useful when the singular
vectors of a data matrix (or the eigenvectors of the covariance
matrix) are not readily sparse. We demonstrated that it explains
more variance in the data than the state-of-the-art methods of
sparse PCA. In addition, the algorithm is also stable and robust
against a wide choices of tuning parameters. In practice, SCA is
advantageous when multiple PCs are desired because it does not
require the deflation.

Supplementary Materials

The supplementary materials contain: (1) additional discussion on choos-
ing the sparsity parameters and a data-driven cross-validation framework
for it, (2) further discussion on the soft thresholding step of SCA algorithm,
(3) a comparison between SCA and independent component analysis, with
a data example.
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Appendix A. Technical proofs

Proof of Proposition 1. Since D is diagonal, and B can be any matrix
including diagonal, the inequality result holds. Furthermore, given any
fixed Z and Y subject to the constraints in (2) (i.e., Y ’s columns are not
the leading eigenvectors of X), the maximizer on the left-hand-side is
B∗ = ZTXY which is not diagonal.12 Hence, the inequality is strict.

Proof of Lemma 1. We rewrite the objective function:
∥∥∥X − ZBYT

∥∥∥2

F
= tr

[(
X − ZBYT

)T (
X − ZBYT

)]

= ‖X‖2
F − 2 tr

(
XTZBYT

)
+ tr

(
BTB

)
= ‖X‖2

F − tr
[

BT
(

2ZTXY − B
)]

.

12Generally, B∗ =
(

ZTZ
)−1

ZTXY
(

YTY
)−1

if Z and Y are full-rank, or B∗ =(
ZTZ

)+
ZTXY

(
YTY

)+
if either Z or Y is singular, where A+ is the Moore–

Penrose inverse of matrix A.

For fixed Z and Y , take the derivative of B and set it to zero. We
have the optimizer B∗ = ZTXY and the squared optimal value is

‖X‖2
F −

∥∥∥ZTXY
∥∥∥2

F
. Recognizing that ‖X‖2

F is determined, the desired
formulation (13) follows.

Remark 4 (Minimal matrix reconstruction error of PMD). If B is
constrained to a diagonal matrix in (12), then the squared minimal
value is ‖X‖2

F − ∑k
i=1 d2

i , where di =
[

ZTXY
]

ii
for i = 1, 2, ..., k.

Proof. From the proof of Lemma 1, we have
∥∥∥X − ZDYT

∥∥∥2

F
= ‖X‖2

F − tr
[

DT
(

2ZTXY − D
)]

.

Then, take the derivative of D and set it to zero. This yields the
solution D̂ = diag(di), where di =

[
UTXV

]
ii

. Finally, plugging-in the

maximizer D̂ gives the claimed optimal value. Note that
∑k

i=1 d2
i ≤∥∥∥UTXV

∥∥∥2

F
.

Proof of Lemma 2. Suppose the low-rank SVD of C ∈ R
p×k is UDVT,

where U ∈ V(p, k), V ∈ U(k), and D ∈ R
k×k is diagonal. Then,

∥∥∥CTX
∥∥∥2

F
= tr

(
XTCCTX

)
= tr

(
XTUD2UTX

)
.

The trace quadratic form is maximized at X∗ = UR, for any orthogonal
matrix R ∈ U(k). In particular, when R = V , X∗ = polar(C).
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