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Abstract

In the 1930s, Psychologists began developing Multiple-Factor Analysis to decompose multivariate data into a 
small number of interpretable factors without any a priori knowledge about those factors. In this form of factor 
analysis, the Varimax factor rotation redraws the axes through the multi-dimensional factors to make them 
sparse and thus make them more interpretable. Charles Spearman and many others objected to factor 
rotations because the factors seem to be rotationally invariant. Despite the controversy, factor rotations 
have remained widely popular among people analyzing data. Reversing nearly a century of statistical 
thinking on the topic, we show that the rotation makes the factors easier to interpret because the Varimax 
performs statistical inference; in particular, principal components analysis (PCA) with a Varimax rotation 
provides a unified spectral estimation strategy for a broad class of semi-parametric factor models, including 
the Stochastic Blockmodel and a natural variation of Latent Dirichlet Allocation. In addition, we show that 
Thurstone’s widely employed sparsity diagnostics implicitly assess a key leptokurtic condition that makes 
the axes statistically identifiable in these models. PCA with Varimax is fast, stable, and practical. Combined 
with Thurstone’s straightforward diagnostics, this vintage approach is suitable for a wide array of modern 
applications.
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1 Introduction

Outside the language of mathematical statistics, Louis Leon Thurstone, Henry Kaiser, and other 
psychologists developed the first forms of Multiple Factor Analysis, or what is referred to herein as 
Vintage Factor Analysis (Kaiser, 1958; Thurstone, 1935, 1947). There are two simultaneous aims 
of Vintage Factor Analysis. The first aim is to provide a low-dimensional approximation of the 
observed data; in this sense, it is like principal components analysis (PCA).1 The second aim is 
to ensure that each factor (i.e., each axis in the lower dimensional representation) corresponds 
to a ‘scientifically meaningful category’ (Thurstone, 1935). A Varimax rotation of the principal 
components is a simple and popular way to find such meaningful dimensions (Jolliffe, 2002; 
Kaiser, 1958).

For example, suppose n students take an exam with d questions, producing a d dimensional vec-
tor of data for each individual. Principal components analysis with k = 2 dimensions will roughly 
approximate the students’ d dimensional data; this is the first aim of factor analysis. In order to 
make those two dimensions more interpretable, Varimax draws different axes through the two- 
dimensional space; a fancier way to say this is that it rotates the points. Selecting the axes does 
not change the quality of the lower dimensional approximation. After inspecting how each 

1 PCA is not the preferred approach in Vintage Factor Analysis. See Remark 6.3 for a further discussion.
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question embeds in the k = 2 Varimax coordinates, an analyst might find the Varimax axes to be 
meaningful; linguistic questions fall onto one axis and mathematical questions onto the other. This 
form of data analysis is often called ‘exploratory’ because the factor dimensions are computed 
from the data without requiring an hypothesis to specify them.

The key source of the controversy is the second aim, producing axes that correspond to what 
Thurstone called scientifically meaningful categories. Anderson and Rubin (1956) showed that 
under the Gaussian factor model, the factors are rotationally invariant; there is nothing in the 
data to suggest where the axes should be drawn. Contemporary multivariate analysis textbooks 
all discuss the result from Anderson and Rubin (1956), but then go on to report the empirical ben-
efits of the factor rotation (e.g., Bartholomew et al., 2011; Johnson & Wichern, 2007; Ramsay & 
Silverman, 2007). For example, after discussing rotational invariance, Jolliffe (2002) says ‘The 
simplification achieved by rotation can help in interpreting the factors or rotated PCs’.

Maxwell’s Theorem starts to resolve this enigma (Feller, 1971 Chapter 3, Section 4; Maxwell, 
1860). It characterizes the multivariate Gaussian distribution as the only distribution of independent 
random variables that is rotationally invariant. So, if the factors are independent random variables 
and come from any non-Gaussian distribution, then the axes are partially identifiable with the poten-
tial to identify scientifically meaningful categories. See Figure 1 for an example in k = 2 dimensions.2

Maxwell’s theorem and some of the core factor analysis methodologies have been rediscovered 
and further developed in the literature on independent components analysis (ICA) (Hyvärinen 
et al., 2004). More recently, Anandkumar et al. (2014) showed how a tensor decomposition 
can estimate a broad class of factor models that is closely related to the class studied herein. 
The current paper demonstrates that tensor methods are not required; an old approach with his-
torical precedence to ICA is sufficient. This old approach comes with a suite of know-how and 
diagnostic practices that are described in Section 5. This old approach provides a unified spectral 
estimation strategy and diagnostic practices that can be applied to many different problems in 
multivariate statistics. It relates projection pursuit, ICA, non-negative matrix decompositions, la-
tent Dirichlet allocation, and stochastic blockmodelling.

Figure 2 shows a motivating data example with a 22, 688 × 22, 688 matrix of citations among 
22,688 academic journals, where Aij ∈ {0, 1} indicates if the papers in journal i cite the papers in 
journal j. Each panel in Figure 2a plots a pair of principal components against one another. Each 
panel in Figure 2b plots these components after the Varimax rotation (i.e., with the Varimax axes). 
Section 3 describes this procedure in more detail. See Section 4.1 for further details on the data and 
the data analysis in Figure 2.

All of the panels in Figure 2 display radial streaks, a phrase used in Thurstone (1947) to identify 
the axes. In Figure 2b, the streaks are aligned with the coordinate axes. This is precisely the desired 
outcome of a factor rotation because when the axes are aligned with the streaks, the resulting com-
ponents are approximately sparse. For this reason, this paper refers to Varimax rotated PCA as 
Vintage Sparse PCA (vsp). Vu and Lei (2013) referred to the vintage notion of subspace sparsity 
as column-wise sparsity. See (F. Chen & Rohe, 2020) for further discussion.

Theorem 7.1, the main result of this paper, shows that vsp can estimate the following semi- 
parametric factor model.

Definition 1 Let Z ∈ R
n×k and Y ∈ R

d×k be latent factor matrices. Under the semi- 
parametric factor model, we observe A ∈ R

n×d which has independent ele-
ments and has expectation

E(A |Z, Y) = ZBYT, where B ∈ R
k×k is not necessarily diagonal. (1) 

This model is semi-parametric because it does not make parametric assumptions on the distri-
bution of Z, Y or A |Z, Y. Section C in the online supplementary appendix describes how this 
model includes the stochastic blockmodel, several of its generalizations, and latent 
Dirichlet allocation.

Importantly, in the semi-parametric factor model, the columns of Z are not the principal com-
ponents of E(A |Z, Y). However, if the elements of Z are independently generated from a 

2 A common point of confusion is to presume that the factors must be Gaussian if we are using PCA; see Section 6 and 
Remark 6.1 to see how PCA performs with non-Gaussian factors.
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leptokurtic distribution, then a Varimax rotation of the principal components estimates Z. This 
means that the Varimax axes for the principal components will align with the axes (i.e., columns) 
of Z; they will have the same set of coordinates (up to statistical errors). The leptokurtic condition 
on the elements of Z is the key identifying assumption for Varimax and vsp.

Definition 2 For a random variable X ∈ R with four finite moments, let η = E(X) and de-
fine the jth centred moment as ηj = E(X − η)j for j = 2, 4. The kurtosis of X is 
κ = η4/η2

2. The random variable X and its distribution are leptokurtic if κ > 3.

For any Gaussian random variable, κ = 3. As such, κ ≠ 3 indicates a non-Gaussian distribution. 
Roughly speaking, when κ > 3, the distribution has a heavier tail than Gaussian. Kurtosis κ was 

Figure 1. Maxwell’s Theorem characterizes the multivariate Gaussian distribution (left panel) as the only rotationally 

invariant distribution of independent variables. The centre panel and the right panel give the same data; the only 

difference is that the right panel gives the axes that Varimax estimates.

(a) (b)

Figure 2. In this example, the data is a 22, 688 × 22, 688 matrix of citations among 22,688 academic journals. Each 

small panel in (a) is a scatter plot of two principal components. Each small panel in (b) is a scatter plot of two Varimax 

rotated components. See Section 4.1 for more details.
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originally named and used by Pearson around 1900 to measure whether a symmetric distribution 
was Gaussian (Fiori & Zenga, 2009). See Section 5 for further discussion of leptokurtosis.

After reading Section 2 and the algorithm in Section 3, one can read Sections 4, 5, 6 and 7 in any 
order. Section 8 should be read after Sections 6.1 and 6.2.

Section 2 introduces Varimax and gives both algebraic and geometric intuition for why it prefers 
‘sparse axes’. Section 3 describes the vsp algorithm and some variations on the algorithm. Section 
4 illustrates how to interpret the results of vsp by applying it to a large citation network and a 
large text corpus. Section 5 provides intuition for the sparsity diagnostics developed in 
Thurstone (1935, 1947) to show that they implicitly assess the leptokurtic assumption. Section 
6 gives the population results for PCA with latent variable models and population results for 
Varimax applied to these population principal components. Section 7 gives the main theoretical 
result, Theorem 7.1. Section 8 discusses what happens when the latent variables are not 
independent.

1.1 Key notation

Let O(k) = {R ∈ R
k×k : RTR = RRT = Ik} denote the set of k × k orthonormal matrices. Let 1a ∈ R

a 

be a column vector of ones. Let Id denote the d × d identity matrix. For x ∈ R
d, let diag(x) ∈ R

d×d 

be a diagonal matrix with diag(x)ii = xi. For M ∈ R
a×b, define Mi ∈ R

b as the ith row of M and 
‖M‖p→∞ = maxi ‖Mi‖p, for p ≥ 1 and ℓp norm for vectors ‖ · ‖p. Let ‖M‖F be the Frobenius 
norm, ‖M‖ be the spectral norm, ‖M‖∞ be the maximum absolute row sum of M, and ‖M‖max 

be the maximum element of M in absolute value. For sequences xn, yn ∈ R, define xn ≍ yn to 
mean that xn → ∞ and yn → ∞ and there exists an N, ϵ, and c all in (0, ∞) such that xn/yn ∈ 

(ϵ, c) for all n > N. Define xn ⪰ yn to mean that for any ϵ ∈ (0, ∞), there exists an N < ∞ such 
that for all n > N, xn/yn > ϵ > 0. Define [k] = {1, . . . , k}.

2 Varimax

Varimax is the most popular way of computing a factor rotation (Kaiser, 1958). It is contained in 
the base R packages and, akin to kmeans, is so popular that it is often not properly cited. Ramsay 
and Silverman (2005) describes Kaiser’s Varimax as an ‘invaluable tool in multivariate analysis’.

Given an n × k matrix U, with columns that form an orthonormal basis (e.g., as in PCA), the 
Varimax rotation is the k × k orthogonal matrix that maximizes the following function:

v(R, U) =
􏽘k

ℓ=1

1

n

􏽘n

i=1

[UR]4
iℓ −

1

n

􏽘n

q=1

[UR]2
qℓ

􏼠 􏼡2
⎛
⎝

⎞
⎠. (2) 

Kaiser (1958) suggests pre-processing U by normalizing each row to have sum of squares equal to 
one. We do not use this normalization herein.3 In later work, Kaiser suggested removing this nor-
malization (Kaiser, 1970; Kaiser & Rice, 1974).

Varimax is not convex; each solution has k!2k optima, all corresponding to the identical set of 
axes, but simply reorder the coordinates (k!) and changing their sign (2k), neither of which changes 
the value of equation (2). In R, varimax is optimized via projected gradient ascent.

2.1 Varimax and sparsity

To see why the Varimax axes prefer sparsity, imagine a single point (x1, x2) ∈ R
2 on the unit circle, 

x2
1 + x2

2 = 1. In this case, optimizing the axes is equivalent to deciding where to put this point on the 
circle. The Varimax objective is x4

1 + x4
2 − 1. To maximize x4

1 + x4
2, notice that

x4
1 + x4

2 = (x2
1 + x2

2)2
− 2x2

1x2
2 = 1 − 2x2

1x2
2.

This is maximized at any ‘sparse point’, where either x1 = 0 or x2 = 0. This argument extends to a 

3 In R, the function varimax has a default argument normalize = TRUE. Note that when U has orthogonal col-
umns (as is the case for PCA) and normalization is not used, then the second term in Varimax is a constant function 
of the matrix R. In such cases, this term can be ignored without changing the optimum.
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single point on the unit sphere in higher dimensions, x ∈ R
d,

􏽘d

i=1

x4
i =

􏽘d

i=1

x2
i

􏼠 􏼡2

−2
􏽘

i,j

x2
i x2

j

􏼠 􏼡
= 1 − 2

􏽘

i,j

x2
i x2

j

􏼠 􏼡
.

This is maximized whenever all but one of the components is equal to zero.
Of course, we are not typically interested in sparsely representing a single point, but multiple 

points. To reach towards this, define R(θ) as a rotation matrix in R2,

R(θ) =
cos θ − sin θ
sin θ cos θ

􏼒 􏼓
.

The left panel in Figure 3 gives a single data point x. The thicker blue line is the curve (θ, v(θ, x)) in 
polar coordinates, where the radius v(θ, x) is the Varimax objective after rotating x by R(θ). An 
angle θ∗ that maximizes v(θ, x) (i.e., the radius of the blue line) is an angle that gives the optimal 
Varimax rotation, R(θ∗); there are four optimal values, all of which give the same axes. The opti-
mal axes are displayed in thinner blue lines. They sparsely represent the single data point.

In the right panel of Figure 3, there are 5,000 points x1, . . . , x5,000 distributed with radial 
streaks. Each data point creates v(θ, xi), a ‘four petal flower’, as in the left panel. Then, the 
Varimax objective function is the sum of these flowers, 

􏽐5,000
i=1 v(θ, xi). The sum of the flowers 

is displayed as the thick blue line in the right panel. The optimal axes are the thin lines at a skewed 
angle; importantly, these new axes align with the radial streaks in this data.

3 vsp: Vintage Sparse PCA

This section describes the methodological details of Vintage Sparse PCA (vsp). First, the algo-
rithm is stated. Then, Remarks 3.1 and 3.2 describe ways in which vsp can be modified for certain 
settings; Table 1 summarizes these settings.

Algorithm: vsp
- Input A ∈ R

n×d and desired number of dimensions k.

Figure 3. These curves are in polar coordinates, where the radius of the curve is the Varimax objective value for that 

angle. The optimal axes are displayed in blue. These axes provide an approximately sparse representation for the 

points because most points are close to the axes.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 4                                                   1041
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1. Centring (optional). Define row, column, and grand means,

􏽢μr = A1d/d ∈ R
n, 􏽢μc = 1T

n A/n ∈ R
d, 􏽢μ. = 1T

n A1d/(nd) ∈ R.

Here 􏽢μr is a column vector and 􏽢μc is a row vector. Define

􏽥A = A −􏽢μr1
T
d − 1n􏽢μc +􏽢μ.1n1T

d ∈ R
n×d. (3) 

2. SVD. If centring is being used, then compute the top k left and right singular vectors of 􏽥A, 􏽢U ∈ 

R
n×k and 􏽢V ∈ R

d×k. These are the principal components and their loadings. Let 􏽢D ∈ R
k×k be a 

diagonal matrix containing the corresponding singular values. So, 􏽥A ≈ 􏽢U􏽢D􏽢VT . If centring is 

not being used, then use the original input matrix A instead of 􏽥A. If A is large and sparse, steps 
1 and 2 can be accelerated. See the online supplementary material, Remark B.

3. Varimax. Compute the orthogonal matrices that maximize Varimax, v(R, 􏽢U) and v(R, 􏽢V). 
Define them as RÛ, RV̂ ∈ O(k) respectively.

– Output:

􏽢Z =
��
n

√ 􏽢URÛ, 􏽢Y =
��
d

√ 􏽢VRV̂, and 􏽢B = RT
Û
􏽢DRV̂/

���
nd

√
(4) 

In modern applications where the row sums (or column sums) of A are highly heterogeneous, the 
degree-normalized version of A can be input into vsp.

Remark 3.1 (Optional degree-normalization step). Define the row ‘degree’, the row regu-
larization parameter, and the diagonal degree matrix as

degr = |A|1d ∈ R
n, τr = 1T

n degr/n ∈ R, Dr = diag(degr + τr1n) ∈ R
n×n, 

where |A|ij = |Aij|. Similarly, define the column quantities degc, τc, Dc with 

degc = 1T
n |A| ∈ R

d and τc = degc1d/d. Define the normalized matrix as L = 

D−1/2
r AD−1/2

c . Then, input L to vsp (instead of A). When using L, vsp esti-
mates a normalized version of Z and Y. To undo this, the output of vsp could 

be renormalized as D1/2
r
􏽢Z and D1/2

c
􏽢Y.

Normalizing the matrix with the regularizer τ improves the statistical performance of spectral 
estimators derived from a sparse random matrix (Amini et al., 2013; Chaudhuri et al., 2012; Le 

Table 1. The motivation for each of the optional steps in vsp

Option Motivated when …

Centring factor modelling, topic modelling, soft-clustering.

See Remarks 3.2 and 6.2, Section 8.1.2 and online supplementary material, Section C.4

Recentring the factor means are desired.

See Theorem 7.1, Remark 6.2, online supplementary material, Section F.1.

Avoid centring hard-clustering, Stochastic Blockmodelling.

See Section 8.1.2 and online supplementary material, Section C.3.

Degree-normalization heterogeneous column sums or row sums in A.

Used in the data example.

Renormalization we want to estimate the distribution of the factors Z.

See Remark 3.1.

1042                                                                                                                                          Rohe and Zeng

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
5
/4

/1
0
8
2
/7

1
0
3
5
0
2
 b

y
 g

u
e
s
t o

n
 2

8
 N

o
v
e
m

b
e
r 2

0
2
3

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad029#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad029#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad029#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad029#supplementary-data


et al., 2017). In many empirical examples, the τr and τc prevent large outliers in the elements of the 
singular vectors that are created as an artefact of noise in sparse matrices (Y. Zhang & Rohe, 
2018). In this paper, the degree-normalization step is used for the analyses in Section 4, but it is 
not studied in the main theorem.

The optional centring step (step 1 of vsp) plays a surprising role. In particular, Proposition 6.1
in Section 6 shows that if A is centred in step 1, then vsp estimates the centred factors in the semi- 
parametric factor model (i.e., Z − E(Z)). See Remark 6.2 and Section 8.1.2 for more discussion. To 
estimate Z, instead of its column centred version, the output of vsp can be recentred as follows.

Remark 3.2 (Optional recentring step). After running vsp with the centring step, it is 
possible to use the quantities already computed to recentre the estimated fac-
tors 􏽢Z and 􏽢Y as a post-processing step. This enables vsp to estimate Z in-
stead of Z − E(Z). Define

􏽢μZ =
��
n

√
􏽢μc
􏽢V􏽢D−1RÛ, and 􏽢μY =

��
d

√
μ̂T

r
􏽢U􏽢D−1RV̂ (5) 

and recentre the estimated factors as follows: 􏽢Z + 1n􏽢μZ and 􏽢Y + 1d􏽢μY. If the 
renormalization step in Remark 3.1 is also used, then recentre before renor-
malizing. Section 6 and online supplementary material, Appendix F.1 justify 
the estimator 􏽢μZ.

Table 1 below lists the variations of vsp that are defined above.

4 An example with academic bibliometrics

This section uses vsp to study academic citation patterns and abstracts from a corpus of over 200 
million academic publications that are curated and provided by the Semantic Scholar project 
(Ammar et al., 2018).4 In order to (1) identify academic areas or disciplines and (2) identify the 
large journals within these disciplines, Section 4.1 applies vsp to the citation patterns among aca-
demic journals. Then, in order to understand where and how ‘factor analysis’ is used, Section 4.2
applies vsp to all abstracts that contain the phrase ‘factor analysis’.

4.1 vsp on journal citations

We apply vsp to the citation patterns among academic journals and find that the columns of 􏽢Y 

identify academic disciplines or areas. For a small value of k, vsp factorizes journals into high 

level groupings (e.g., medicine, biology, physical sciences, mathematics, etc). For a large value 

of k, the academic areas are more resolved (e.g., pure mathematics vs. applied mathematics). 

This section uses degree-normalization, renormalization, centring, and recentring.

In Figure 2 and in this sub-section, the data matrix A is a 22, 688 × 22, 688 matrix. For each 
i ∈ 1, . . . , 22, 688, the ith row and column of A corresponds to a unique journal name in the 
Semantic Scholar database (after putting all letters in lower case and removing all punctuation). 
For computational ease, we took a simple random sample of 5% of the paper citations.5 If there 
were more than five citations from the papers in journal i to the papers in journal j in this 5% sam-
ple, then Aij = 1, otherwise Aij = 0. There were roughly 100,000 journals that appeared in the 
database, but only 22,688 remain after the sampling and thresholding described above. While 
A is a square matrix, it is not symmetric because a citation is directed from one paper to another.

This matrix is sparse with heterogeneous row and column sums. There are 474,841 non-zero 
elements in A, roughly 1/1,000 of the elements, making the average row and column sum roughly 
20. The median row sum is four. The median column sum is two. PLOS ONE has the largest row 
sum, 5,556. Nature has the largest column sum, 4,413. The next table gives the column and row 
sums for Journal of the Royal Statistical Society-Series B (JRSS-B) , Annals of Statistics (AOS), 
Journal of the American Statistical Association (JASA), Annals of Probability (AOP), Nature, 

4 http://s2-public-api.prod.s2.allenai.org/corpus/
5 Specifically, the population of this sample is the edges (u, v) between papers.
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PLOS ONE, Proceedings of the National Academy of Sciences (PNAS), and The New England 
Journal of Medicine (NEJM).

Because the column and row sums of A have a heavy tail, we used the degree-normalization de-
scribed in Remark 3.1. The sparsity in the data matrix makes vsp quick to compute. In R, on a 2.3 
GHz Macbook Pro, it takes 1.3 s for k = 10, 13 s for k = 50, and 23 s for k = 50.

Notice that the columns of A measure how widely a journal is cited. For this reason, the 􏽢Y ma-
trix in vsp, which embeds the columns of A, reveals how widely a journal receives citations. We 
will refer to each column of 􏽢Y as a factor. So, if element 􏽢Yij is large, it suggests that journal i is a 
more central or prestigious journal in factor j. Because the rows of A measure how a journal cites 
other journals, the elements in 􏽢Z reveal how widely the journal sends citations (Rohe et al., 2016). 
Here, we will focus on 􏽢Y.

Figure 4 plots the largest 300 squared singular values of L. Inspecting this scree plot, it seems 
that the typical analyst would hesitate to make k larger than 50. However, with k = 100 there con-
tinues to be radial streaks in 􏽢V that Varimax aligns with the axes in 􏽢Y; Figure 2 shows columns 
1, 2, 3, 4, 5, 96, 97, 98, 99, and 100 of 􏽢V (on the left) and 􏽢Y (on the right). The leading columns 
of 􏽢V have a few radial streaks when they are plotted against one another. The trailing columns of 􏽢V 
show multiple streaks within each plot. The leading columns of 􏽢Y have streaks that are tightly 
aligned with the axes; the trailing columns, even with k = 100 are axis aligned. These later factors 
are more diffuse, suggesting that they contain more noise.6

4.1.1 Journal factors with k = 10

We interpret the meaning of a factor in 􏽢Y by (1) finding external features that correlate with that 
column and then (2) examining the journals that have the largest values in that column. For exter-
nal features, we construct the document-term matrix from the journal titles. Define 
X ∈ {0, 1}22,688×2397, where Xiℓ ∈ {0, 1} indicates whether the title for journal i contains word 
ℓ. Due to the sparse and heterogeneous nature of 􏽢Y and X, simple correlations are unstable. 
We have found better results with the following ‘best feature function’ bff (Wang & Rohe, 
2016). For each factor j, define the sets in(j) = {i :􏽢Yij ≥ 0} and out(j) = {i :􏽢Yij < 0}. Define the im-
portance of word ℓ in factor j as

bff(j, ℓ) =

����������������􏽐
i∈in(j)

􏽢YijXiℓ
􏽐

i∈in(j)
􏽢Yij

􏽶􏽵􏽵􏽴 −

��������������􏽐
i∈out(j) Xiℓ

|out(j)|

􏽳
.

Using k = 10, vsp finds a high level grouping of disciplines. For each factor j = 1, . . . , 10, the lar-
gest seven elements of bff are given below: 

1. medicine, surgery, clinical, american, cancer, official, oncology
2. molecular, cell, biology, immunology, microbiology, genetics, nature
3. psychology, psychiatry, neuroscience, brain, neurology, behaviour, psychological
4. materials, chemistry, physics, chemical, physical, energy, polymer, engineering
5. ecology, plant, biology, evolution, microbiology, marine, environmental
6. geology, earth, geological, geophysical, planetary, atmospheric, geophysics
7. ieee, on, conference, transactions, computer, pattern, vision
8. mathematical, mathematics, arxiv, physics, geometry, analysis, differential

JRSS-B AOS JASA AOP Nature PLOS ONE PNAS NEJM

Column sum 178 146 462 59 4,413 3176 3,928 3,209

Row sum 16 45 51 28 522 5,556 1,283 284

6 In later work, F. Chen et al. (2021) developed a resampling procedure to examine whether a column of 􏽢V is stat-
istically significant. Figure 3 in that paper shows that the first 150 eigenvectors on a symmetrized version of the journal 
citation graph are all highly statistically significant.
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9. economics, economic, review, management, finance, statistics, financial
10. oral, dentistry, dental, surgery, orthodontics, maxillofacial, periodontology
Figure 5 plots factor 1 ‘medicine’ against all of the others; each dot is a journal. ‘Medicine’ has a 

mixing pattern with factor 2 ‘small-scale biology’, because multiple journals rank highly in both. 
With factor 3 ‘psych/neuro’, there is less mixing, but still some. For the other factors, there is nearly 
zero mixing, making the radial streaks increasingly pronounced.

The factors in 􏽢Z identify the same academic areas as 􏽢Y. The leading bff terms for 􏽢Z are given in 

the online supplementary material, Section D.1 and the top 11 journals for both 􏽢Z and 􏽢Y are given 

in the online supplementary material, Section D.2. The difference between 􏽢Z and 􏽢Y is that the lar-

gest elements in 􏽢Y tend to identify the more prestigious journals in that academic area, whereas the 

largest elements in 􏽢Z tend to identify the journals that publish the most papers (and thus send the 

most citations) in that academic area. For example, the largest five elements in the first factor of 􏽢Y 
are highly prestigious journals: JAMA, NEJM, The Lancet, Annals of Internal Medicine, and BMJ, 

in descending order. In the first column of 􏽢Z, none of these journals are among the largest 20 el-

ements. Instead, the leading journal in the first column of 􏽢Z is Medicine, an open access journal 
akin to PLOS ONE.

4.1.2 The middle B matrix

Interpreting 􏽢B can be challenging. Vintage factor analysis does not typically include this matrix.7

In PCA, there is a diagonal matrix of eigenvalues that is mildly analogous to B; typically these ei-
genvalues are absorbed into the components. When 􏽢B is not strictly diagonal, it describes how the 
factors in 􏽢Z relate to the factors in 􏽢Y. The Stochastic Blockmodel, further discussed in the online 

Figure 4. The first 300 squared singular values of L are plotted, along with lines at k = 10, 50, and 100.

Figure 5. Each dot is a journal. The vertical axis gives factor 1, the ‘medicine’ factor. The horizontal axis gives the 

other factors, 2, . . . , 10. If you squint, some panels have multiple horizontal streaks (e.g., factor 6); with a larger 

choice of k, these streaks reveal themselves to be buds that unfurl and branch into their own axes, in a hierarchical 

tree fashion.

7 It does appear in Harris and Kaiser (1964); see Section 8.2 for more.
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supplementary material, Section C.3, provides the most expedient interpretation for the B matrix. 
It is the first parametric model to include the ‘middle B matrix’ (Holland et al., 1983). Under the 
Stochastic Blockmodel, the matrices Z (and Y) have a single one in each row and the rest of the 
elements are zero. If Zij = 1, then we say ‘person i is in block j’. In that model, Buv gives the prob-
ability that a person in block u is friends with a person in block v. Y. Zhang et al. (2014), Jin and Ke 
(2017) generalized this model to allow people to have non-negative, weighted memberships in 
each block. In this generalization, the middle B matrix has an analogous interpretation. In order 
to adopt that interpretation here, the elements of 􏽢Z, 􏽢Y, and 􏽢B must be non-negative.

Figure 6, in the left panel, gives the matrix 􏽢B. Indeed, it is hard to interpret. The middle panel 
gives the non-negative interpretation, defined as follows. For any matrix M, define M+ to be equal 

to M, except setting the negative elements to zero. Define non-negative interpretation (nni) for 􏽢B as

􏽢Bnni = (􏽢ZT
+
􏽢Z+)−1􏽢ZT

+A􏽢Y+(􏽢YT
+
􏽢Y+)−1

􏽨 􏽩
+
. (6) 

In Figure 6, the non-negative interpretation of 􏽢B has a clear diagonal structure, which is consistent 
with our understanding that journals in the same area are more likely to cite one another than jour-
nals from separate areas.

While it seems strange to threshold away all of the negative values, this step is not as severe as it 
first sounds. The right panel in Figure 6 gives a histogram of the elements in 􏽢Z and 􏽢Y that are larger 
than 4 in absolute value. The largest values are all positive. This is because, empirically, the factors 
estimated by Varimax tend to be ‘one-sided’, with large skewness.8 Following Kaiser and Rice 
(1974), we change the signs of all factors to ensure the skewness is positive. With k = 10, the me-
dian skewness of the 20 factors in 􏽢Z and 􏽢Y is 8.1 and all but one of the factors has skewness greater 
than 2. Because of this, thresholding away the negative values enables a clearer interpretation of 􏽢B.

4.1.3 The factors become more refined as k increases

As k increases, the factors provide a more refined specification of academic areas; this refinement is 
roughly hierarchical, e.g., ‘medicine’ splits into different areas. However, it is not perfectly hier-
archical. This can be seen in the loadings for AOP for k increasing from 10, to 50, to 100. In 
the factoring with k = 10, AOS, JASA, and JRSS-B have their largest loading values in both factors 
7 and 9; that is, the rows of 􏽢Y corresponding to these journals have their largest values in columns 7 

(a) (b) (c)

Figure 6. The 􏽢B matrix can be hard to interpret. 􏽢Bnni provides a clearer picture; it is constructed by thresholding away 

the negative values in 􏽢Z , 􏽢Y as in equation (6). The right panel justifies this thresholding, by showing that the largest 

values in 􏽢Z , 􏽢Y are positive. (a) 􏽢B. (b) 􏽢Bnni . (c) Largest elements of 􏽢Z and 􏽢Y .

8 The skewness for a random variable is η3/η3/2
2 where the η’s are the centred moments defined in Definition 2. 

Symmetric random variables have zero skewness and the exponential distribution, which seems quite skewed, has skew-
ness of two. In this section, we are discussing empirical moments.
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and 9. Meanwhile, AOP has its largest loading value in factor 8 (mathematics). None of these jour-
nals rank among the highest 40 journals in these factors. Increasing to k = 50, AOS, JASA, JRSS-B, 
and AOP combine into a ‘Probability and Statistics’ factor. Despite the fact that there is another 
factor of prestigious math journals (Inventiones Mathematicae, Annals of Mathematics, etc), AOP 
has its highest loading in the ‘Probability and Statistics’ factor. The journals with the largest 20 
elements in the ‘Probability and Statistics’ factor are given in a text box below, in decreasing order. 
AOS, JASA, JRSS-B, and AOP all rank highly in this factor. This merging pattern is completely 
sensible and yet not strictly hierarchical.

The top 20 journals in ‘Probability and Statistics’ in k = 50 factoring. Annals of Statistics, 

Annals of Mathematical Statistics, Journal of Statistical Planning and Inference, Journal of 

Multivariate Analysis, Biometrika, Statistics Probability Letters, Journal of the Royal 

Statistical Society-Series B Statistical Methodology, Statistical Science, Scandinavian 

Journal of Statistics, Annals of Probability, Technometrics, Journal of Computational 

and Graphical Statistics, Comput Stat Data Anal, Journal of the American Statistical 

Association, Bernoulli, Journal of Applied Probability, Stochastic Processes and their 

Applications, Annals of the Institute of Statistical Mathematics, Biometrics, Probability 

Theory and Related Fields.

Increasing to k = 100, the ‘Probability and Statistics’ factor from k = 50 splits in a hierarchical 
fashion into two separate factors, one for ‘Statistics’ and one for ‘Probability’. Table 2 gives the 
first bff term for each of these 100 factors in 􏽢Y. The leading five journals in each of these factors 
is given in the online supplementary material, Appendix D.3.

4.1.4 How should we choose k?

In this example, the screeplot in Figure 4 suggests a value of k much smaller than 100. However, 
there is no evidence of over-factoring in the k = 100 factoring above. First, in Figure 2, there are 
still radial streaks in the principal components all the way up to the 96th, 97th, 98th, 99th, and 

Table 2. For each of the k = 100 factors, this table gives the top bff term

gastroenterology microbiology infectious marketing alcohol urology comb

cardiovascular microbiology management materials control animal food

communications neuroscience nephrology mechanics ecology cancer ieee

pharmaceutical parasitology obstetrics neurology ecology comput ieee

otolaryngology pharmacology psychiatry nutrition geology energy ieee

rehabilitation rheumatology psychology numerical nursing health oper

transportation atmospheric psychology political optical marine oral

communication dermatology quaternary radiology physics nature soil

endocrinology probability statistics sociology physics sports inf

environmental accounting toxicology circuits polymer speech de

ophthalmology anaesthesia veterinary genetics sensing vision

astrophysics analytical chemistry language surgery aging

geotechnical entomology economics language surgery child

mathematical immunology education robotics surgery fuzzy

mathematical immunology geography software tourism plant

Note. While there are 9 bff terms that repeat for more than one factor (e.g., mathematical), these repeated factors 
identify sub-disciplines within these areas (e.g., one of the math factors finds ‘applied math’ journals and the other 
appears to find ‘pure math’ journals). See the online supplementary material, Appendix D.3 for the leading five journals in 
all 100 factors.
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100th components and these streaks rotate to become axis aligned. Second, in the online 
supplementary material, Appendix D.3, the journals with the largest loadings in each of the 
100 factors neatly identify academic areas.

While there is certainly an upper bound for k, beyond which the factors behave like noise and 
fail to provide meaningful insights, in this example with academic journals, the screeplot is not 
helpful in detecting this upper bound. When inspecting the screeplot to select k, do not mind 
the eigen-gap too much.

In addition to the meaningful factoring at k = 100, the factors at k = 10 are also meaningful. 
This is a common empirical phenomenon; many times the factors have something resembling a 
hierarchical structure. Perhaps the k = 10 results are more suited for a certain task at hand. The 
Cheshire Cat Rule says that there is not a single correct answer for the choice of k, that the answer 
depends upon where you want to go. 

Alice: Would you tell me, please, which way I ought to go from here?

The Cheshire Cat: That depends a good deal on where you want to get to.

Alice: I don’t much care where.

The Cheshire Cat: Then it doesn’t much matter which way you go. 

—Lewis Carroll, Alice in Wonderland

4.2 How and where is ‘factor analysis’ used?

This section describes where and how ‘factor analysis’ is used. We study the 144,136 papers in the 
Semantic Scholar database that contain ‘factor analysis’ in the title or abstract (case insensitive) 
and for which the abstract is classified as English by Compact Language Detector 3 (Salcianu 
et al., 2020).

4.2.1 Where is factor analysis used?

In order to find where factor analysis is used, we examine where these papers appear in the 􏽢Y 
journal embedding above. Of the 144,136 papers, 64,873 were published in a journal that was 
included in that analysis. For each of these 64,873 papers, take its journal’s row of 􏽢Y from the 
k = 100 analysis and place it into the rows of a new 64, 873 × 100 matrix. Columns of this ma-
trix with a large sum correspond to places in the academic literature where factor analysis 
appears.

In descending order, the largest 16 of these 100 journal factors are child–psychology, psych-
iatry–psychiatric, psychology–social, nursing–nurse, health–care, rehabilitation–occupational, 
environmental–water, aging–gerontology, nutrition–obesity, alcohol–health, education– 
educational, analytical–chromatography, tourism–hospitality, toxicology–environmental, 
management–business, and statistics–statistical. The column with the smallest sum is probabil-
ity–annals. Each of these factor names is constructed from the first two bff terms for that factor 
(Table 2 only gives the first).

This exploratory analysis has numerous lurking variables, such as the number of papers pub-
lished within each factor and the likelihood that a paper using factor analysis includes ‘factor ana-
lysis’ in the title or abstract. That said, it is not surprising that psychology, psychiatry, and 
statistics rank high, while probability ranks low.

4.2.2 How is factor analysis used?

In order to explore how ‘factor analysis’ is used, we study the document-term matrix A constructed 
via the tidytext package (Silge & Robinson, 2016) constructed with the 144,136 abstracts. There are 
240,331 unique words in the corpus. So, A ∈ {0, 1}144,136×240,331 with Aij indicating whether ab-
stract i contains word j. Just as in Section 4.1, A is sparse with highly heterogeneous column 
sums. It contains 16.8 million non-zero elements, which averages to 117 terms per document. 
The column sums of A are highly skewed; the median is 1, the average is 70, and 12 terms appear 
in over 100,000 documents. Stop words (e.g., the, of, and, to) have not been removed.

With k = 50, vsp takes 72 s.9 For comparison, constructing A from the 144, 136 abstracts rep-
resented as character strings requires 23 s in tidytext.

9 In R on a 2020 MacBook Pro with 2.3 GHz Intel i7.
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Seven of the k = 50 factors appear to focus on words that are more ‘methodological’. These seven 
are listed below; in bold font is a name we assigned based upon our interpretation, following that are 
the ten words with the largest loading values in 􏽢Y ∈ R

240,331×50. In addition, we find 32 ‘subject area’ 
factors. These subject area factors use discipline specific words. These 32 factors echo the journal 
factors listed in Section 4.2.1 (e.g., Environment, Nutrition, Psychology, etc). See the online 
supplementary material, Section E.1 for these factors. The final 11 factors are artefacts and anomo-
lies that are further discussed in the online supplementary material, Section E.2.

The seven methodological factors.  

item–response–theory: consistency, cronbach, internal, validity, reliability, retest, version, 

alpha, psychometric, properties  

modern–factor–models: algorithm, bayesian, estimation, carlo, monte, simulation, algo-

rithms, likelihood, inference, markov  

confirmatory–factor–analysis(cfa): invariance, across, fit, confirmatory, measurement, sca-

lar, configural, multigroup, cfa, metric  

structural–equation–modelling(sem): equation, structural, modelling, sem, confirmatory, 

model, mediating, intention, modelling, amos  

cfa–sem–summaries: rmsea, cfi, gfi, df, agfi, nfi, tli, srmr, root, approximation  

qualitative–research: literature, review, development, develop, management, implementa-

tion, process, experts, qualitative, interviews  

vintage–factor–analysis: olkin, kaiser, meyer, bartlett, sphericity, kmo, rotation, varimax, 

principal, adequacy

5 Thurstone’s diagnostics assess whether Varimax can identify the axes

Factors are rotational invariant because redrawing the factor axes does not change the fit to the 

data. In linear regression with more features than samples (p > n), there is also an invariance. 

However, we now know that if there is a sparse solution, it can be unique. Decades before sparsity 

became popular for removing the invariance in p > n regression, Thurstone proposed using sparsity 

to remove rotational invariance in factor analysis. His sparsity diagnostics are still used routinely in 

practice. Theorem 5.1 shows that sparsity implies the key leptokurtic condition that is sufficient for 

Varimax to identify the axes. In this way, Vintage Factor Analysis performs statistical inference.

Step 2 of vsp approximates 􏽥A with the leading k singular vectors, 􏽥A ≈ 􏽢U􏽢D􏽢VT. Step 3 computes 
the Varimax rotations of 􏽢U and 􏽢V. However, for any rotation matrices R1, R2 ∈ O(k), rotating 􏽢U 
and 􏽢V does not change the approximation to 􏽥A,

􏽢U􏽢D􏽢VT = (􏽢UR1)(RT
1
􏽢DR2)(􏽢VR2)T , 

where the rotated factor matrices 􏽢UR1 and 􏽢VR2 still have orthonormal columns. As such, no ro-

tation can improve the approximation to 􏽥A. Many have interpreted this to imply that we can never 
estimate factor rotations from data. This is the misunderstanding of rotational invariance.

In an attempt to resolve the rotational invariance, Thurstone developed a new type of data ana-
lysis to find rotations RÛ ∈ O(k) such that 􏽢URÛ is sparse (Thurstone, 1935, 1947). He developed a 
suite of tools and diagnostics to assess this sparsity and many of these remain in use today. They 
are described in modern textbooks, built into the base R packages for factor analysis, and used rou-
tinely in practice. Section 5.1 describes these diagnostic practices. Section 5.2 and Theorem 5.1
show how these diagnostics can be reinterpreted as assessing whether the factors come from a lep-
tokurtic distribution which is a key condition for Varimax to be able to identify the correct factor 
rotation in Theorems 6.1 and 7.1.
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5.1 Thurstone’s simple structure and diagnostics

Thurstone (1935) and Thurstone (1947) propose using sparsity to remove the rotational invariance. 
‘In numerical terms this is a demand for the smallest number of non-vanishing entries in each row of 
the …factor matrix. It seems strange indeed, and it was entirely unexpected, that so simple and plaus-
ible an idea should meet with a storm of protest from the statisticians’ (Thurstone, 1947, p. 333). 
Thurstone refers to this sparsity as simple structure. Thurstone’s use of sparsity is analogous to 
the modern use of sparsity in high-dimensional regression and underdetermined systems of linear 
equations. In these more modern problems, without any sparsity constraint, there is a large space 
of plausible solutions. However, under certain conditions, the sparse solution is unique. This intu-
ition is analogous to Thurstone’s intuition for resolving rotational invariance.

Thurstone implemented techniques to find rotations which produce sparse solutions, but he 
struggled to find any assurance that the computed solution is the sparsest solution (i.e., unique). 
‘When [a solutions has] been found which produces a simple structure, it is of considerable scien-
tific interest to know whether the simple structure is unique …The necessary and sufficient condi-
tions for uniqueness of a simple structure need to be investigated. In the absence of a complete 
solution to this problem, five criteria will here be listed which probably constitute sufficient con-
ditions for the uniqueness of a simple structure’ (Thurstone, 1947, p. 334). Thurstone’s five con-
ditions are quoted in the online supplementary material, Appendix A. They motivate his radial 
streaks diagnostic, illustrated in Figure 2.

If the diagnostic plots do not show radial streaks, Thurstone suggests that one should proceed 
more cautiously. A few pages after giving the five criteria for simple structure, Thurstone gives a 
diagnostic plot with points evenly spaced inside a circle (i.e., like the Gaussian in Figure 1) and 
explains what happens when you have loadings that appear to come from a rotationally invariant 
distribution. ‘A figure such as [this] leaves one unconvinced, no matter where the axes are drawn, 
unless an interpretation can be found that seems right. Random configurations like this seldom 
yield clear interpretations, but they are not, of course, physically impossible’.

The current paper creates a statistical theory around Thurstone’s key ideas by presuming that 
the factors are generated as random variables from a statistical model and using the Varimax es-
timator. Thurstone does not presume the latent factors are generated from a probability distribu-
tion, and as such, he lacks any statistical notion of the true axes to be inferred. His notion of 
uniqueness is more akin to the uniqueness of an optimization solution.

Thurstone computed rotations by hand and human judgement. Only after Thurstone’s death in 
1955 did it become popular to compute factor rotations such as Varimax on ‘electronic com-
puters’ with numerical optimization techniques. In k = 2 dimensions, Kaiser (1958) gives a a 
unique closed form solution to Varimax. In k > 2, if one assumes the models in this paper, then 
the maximizer to Varimax is unique (up to permutations and sign flips). However, under lesser 
assumptions, uniqueness remains an open problem.

5.1.1 Simple structure in contemporary multivariate statistics

Contemporary textbooks on multivariate statistics still suggest that the rotated factors or the ro-
tated principal components should be inspected to see if they are sparse (Bartholomew et al., 2011; 
Johnson & Wichern, 2007; Jolliffe, 2002; Mardia et al., 1979). These textbooks all share the em-
pirical observation that it is often easier to interpret factors which have been rotated for sparsity. 
The given reason is that sparse factors are ‘simpler’. While this appears to use Thurstone’s word, 
these texts do not discuss whether or not this simple structure might resolve the problem of rota-
tional invariance. Rather, it is an empirical observation that sparse and simple solutions are easier 
to interpret. For example, Ramsay and Silverman (2007) says ‘It is well known in classical multi-
variate analysis that an appropriate rotation of the principal components can, on occasion, give 
components …more informative than the original components themselves’. Johnson and 
Wichern (2007) says ‘A rotation of the factors often reveals a simple structure and aids interpret-
ation’. Bartholomew et al. (2011) says ‘Rotation assumes a very important role when we come to 
the interpretation of latent variables’.

The notion that the data analyst should inspect the factors for sparsity is built into the print 
function for factor loadings in the base R packages; if a loading is less than the print argument 
cutoff then instead of printing a number, it appears as a whitespace.
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This paper shows that sparsity does not merely make the factors simpler; sparsity enables statis-
tical identification and inference. Sparsity and radial streaking are two distinctively non-Gaussian 
patterns. As such, Thurstone’s visualizations and diagnostics can be reinterpreted as assessing 
whether the factors are generated from a non-Gaussian distribution and thus, by Maxwell’s the-
orem, whether the rotation is statistically identifiable. Moreover, Theorem 5.1 in the next sub- 
section shows that sparsity implies leptokurticity, the key identifying assumption for Varimax.

5.2 Kurtosis and sparsity

The next theorem shows that Thurstone’s sparsity diagnostics can be reinterpreted as assessing an 
identifying assumption for Varimax.

Theorem 5.1 Any random variable X that satisfies 5
6 < P(X = 0) < 1 and has four finite 

moments is leptokurtic.

For example, suppose X ∼ Bernoulli(p) with q = P(X = 0). Theorem 5.1 implies that if 
q > 5/6 ≈ .83, then X is leptokurtic. For comparison, in this specific case of the Bernoulli distri-
bution, X is leptokurtic if q (or p) is greater than (

��
3

√
+ 1)(2

��
3

√
)−1

≈ 0.79. While Theorem 5.1
does not provide a sharp results for the Bernoulli distribution, .83 is close to .79. Moreover, 
Theorem 5.1 applies to any random variable, it does not make any parametric assumptions, 
and the moment assumptions are only so that kurtosis is defined. See the online supplementary 
material, Section G.1 in the Appendix for a proof. This theorem assumes hard sparsity (i.e., 
P(X = 0) > 0) for technical convenience. See the online supplementary material, Appendix G.2
for a discussion about softer forms of sparsity.

6 Mathematical intuition for vsp with population results

This section studies each of the three steps in vsp by studying their population behaviour. Statistical 

convergence around the population quantities is rigorously treated in Theorem 7.1 in Section 7.

6.1 Population results for two layers of randomness

The semi-parametric factor model is a latent variable model with two sequential layers of random-
ness. In the first layer of randomness, the latent variables Z and Y are generated. In the second 
layer, the observed matrix A is generated, conditionally on the latent variables. To parallel these 
two layers, there are two types of population results given in the next two subsections.

Propositions 6.1 and 6.2 study the first two steps of vsp applied to the population matrix

A = E(A |Z, Y) = ZBYT (7) 

instead of A. These propositions imply that the population principal components can be expressed 

as 􏽥ZR, where 􏽥Z ∈ R
n×k is Z after column centring and R ∈ R

k×k is defined below. If the nk many 

random variables in Z ∈ R
n×k are mutually independent, then R converges to a rotation matrix. 

These results in Section 6.2 allows for the randomness in Z and Y, but they remove the second layer 
of randomness by using A instead of A. Then, Section 6.3 studies the population version of the 
Varimax step. To do this, take the expectation of the Varimax objective function, evaluated at 

the population principal components (i.e., 􏽥ZR), where the expectation is over the distribution 
of Z. This expectation removes the randomness in Z. Under the identification assumptions for 
Varimax defined below, Theorem 6.1 shows that the rotation that maximizes this function is 

RT ∈ O(k). So, rotating the population principal components with the population Varimax rota-

tion yields the original factors, (􏽥ZR)RT =􏽥Z.

6.2 PCA for latent variable models; population results

Define Z̅ ∈ R
n×k such that Z̅ij equals the sample mean of the jth column of Z. Similarly for 

Y̅ ∈ R
d×k. Define

􏽥Z = Z − Z̅ and 􏽥Y = Y − Y̅. (8) 
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Proposition 6.1 (Step 1 of vsp). Centring A to get 􏽥A as in equation (3) has the effect of 
centring Z and Y.

􏽥A =􏽥ZB􏽥YT 

This does not require any distributional assumptions on Z or Y.

A proof is given in the online supplementary material, Appendix F. The next proposition gives 

the SVD of 􏽥A =􏽥ZB􏽥YT . Define

􏽢ΣZ =􏽥ZT􏽥Z/n, 􏽢ΣY =􏽥YT􏽥Y/d, 

and define 􏽥RU, 􏽥RV ∈ O(k), and diagonal matrix 􏽥D to be the SVD of 􏽢Σ1/2
Z B􏽢Σ1/2

Y ∈ R
k×k,

􏽢Σ1/2
Z B􏽢Σ1/2

Y =􏽥RT
U
􏽥D􏽥RV . (9) 

The next proposition shows that the rotation matrices 􏽥RU and 􏽥RV convert the factor matrices 􏽥Z 

and 􏽥Y into the principal components and loadings U and V.

Proposition 6.2 (Step 2 of vsp). Define the following matrices,

U = n−1/2􏽥Z 􏽢Σ−1/2
Z

􏽥RT
U, D =

���
nd

√ 􏽥D, V = d−1/2􏽥Y􏽢Σ−1/2
Y

􏽥RT
V . (10) 

Then, 􏽥A = UDVT, where U and V contain the left and right singular vec-

tors of 􏽥A and D contains the singular values of 􏽥A. This does not require 
any distributional assumptions on Z or Y.

The proof requires demonstrating the equality 􏽥A = UDVT and showing that U and V have 
orthonormal columns. Substituting in the definitions reveals this result. Taken together, 
Propositions 6.1 and 6.2 show that the first two steps of vsp on A compute U ∝􏽥Z 􏽢Σ−1/2

Z
􏽥RT

U; these 
are the principal components of A.

Remark 6.1 (Relationship between PCA and the factors) Proposition 6.2 relates PCA on 
the population matrix A to the factors Z. This is because the population 
principal components are the columns of the matrix

U = n−1/2􏽥Z 􏽢Σ−1/2
Z

􏽥RT
U. (11) 

So, the principal components are the centred latent factors 􏽥Z, orthogonalized 

with 􏽢Σ−1/2
Z , and rotated by a k × k nuisance matrix 􏽥RT

U. Despite the fact that 

PCA is typically considered a second-order technique, this result implies that 
the principal components themselves do not retain any first or second-order 
information about the latent factors, but retain all other distributional infor-
mation. With Maxwell’s Theorem, this suggests that higher order techniques 
such as Varimax hold the possibility of identifying the nuisance matrix. In 
fact, Theorem 6.1 below shows that Varimax can identify the nuisance 
matrix.
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6.3 Population results for Varimax

The Varimax problem applied to the population principal components U in equation (11) is

arg maxR∈O(k) v(R, 􏽥Z 􏽢Σ−1/2
Z

􏽥RT
U). (12) 

Despite the fact that these are the population principal components, this is still a sample quantity 
because Z is random. This randomness is from the first stage of randomness in the semi-parametric 
factor model. The next theorem gives a population result for the M-estimator in equation (12) by 

studying the expected value of v over Z, to show that it can identify 􏽥RU. Assumption 1 gives the 
identification assumptions on the distribution of Z that will be used in both the population result 
for Varimax (Theorem 6.1) and the main theorem (Theorem 7.1).

Assumption 1 (The identification assumptions for Varimax). The matrix Z ∈ R
n×k satis-

fies the identification assumptions for Varimax if all of the following con-
ditions hold on the rows Zi ∈ R

k for i = 1, . . . , n: 

(i) the vectors Z1, Z2, . . . , Zn are iid,

(ii) each vector Zi ∈ R
k is composed of k independent random variables 

(not necessarily identically distributed),
(iii) Var(Zij) = 1 for all j,10 and

(iv) the elements of Zi are leptokurtic.

Let 􏽥Z1 be the first row of 􏽥Z. Define Zo = Z1 − E(Z1) ∈ R
k. Theorem 6.1 shows that the rotation 

matrix R that maximizes the expected Varimax objective function, E(v(R, Zo􏽥RT
U)), is 􏽥RU. In this 

formulation, several quantities from the sample maximization problem (12) have been replaced. 
First, the sample objective function v in equation (2) has been replaced with its expectation 
over the distribution of Z. Then, Z̅ has been replaced by E(Z1) and Σ−1/2

Z has been replaced 
with its limiting quantity under Assumption 1 (i.e., the identity matrix).

Because the Varimax objective function does not change if the estimated factors are reordered or 
if some of the estimated factors have a sign change, the maximizer of Varimax is actually an 
equivalence class that allows for these operations. Define the set

P(k) = {P ∈ O(k) : Pij ∈ { − 1, 0, 1}}. (13) 

It is the full set of matrices that allow for column reordering and sign changes.

Theorem 6.1 (step 3). Suppose that Z ∈ R
n×k satisfies the identification assumptions for 

Varimax (Assumption 1). Let Z1 ∈ R
k be the first row of Z. Define 

Zo = Z1 − E(Z1). For any nuisance rotation matrix 􏽥R ∈ O(k),

arg max
R∈O(k)

E(v(R, Zo􏽥RT)) = {􏽥RP : P ∈ P(k)}. (14) 

The output step of vsp right multiplies the principal components 
��
n

√
U ≈ 􏽥Z􏽥RT

U with a matrix 

which maximizes Varimax. In the population results, this matrix is 􏽥RU. Thus, the Varimax rota-

tion reveals the unrotated factors, (􏽥Z􏽥RT
U)􏽥RU =􏽥Z.

Remark 3.2 describes a method to recentre the factors 􏽥Z to get Z. The Online supplementary 
material, Section F.1 in the Appendix gives a population justification for this recentring step.

Remark 6.2 (The role of centring). A version of Proposition 6.2 still holds for the SVD of 
A (without centring) by replacing 􏽢ΣZ with ZTZ/n and replacing 􏽢ΣY with 

10 The third assumption in Varimax is not restrictive because the matrix B can absorb a rescaling of the variables. 
That is, let Zrescaled ∈ R

n×k satisfy the first two conditions and presume that A = ZrescaledBrescaledYT . Define 
ΣZ = Cov(Zrescaled

i ), Z = ZrescaledΣ−1/2, and B = Σ1/2Brescaled. Because Zrescaled satisfies the second condition, ΣZ is diagonal. 
So, Z = ZrescaledΣ−1/2 retains independent components and now satisfies the third condition. Moreover, A = ZBYT .
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YTY/d in equation (10). Even if the elements of the matrix Z are independent 
and have unit variance, then the columns of Z will not be asymptotically or-
thogonal (unless E(Z) = 0). As such, right multiplying U = Z(ZTZ/n)−1/2􏽥RT

U 

with an orthogonal rotation (i.e., the one estimated by Varimax) cannot re-
veal Z. This highlights the role of centring in vsp; centring A has the effect of 
centring the latent variables, which in turn makes the latent factors asymptot-
ically orthogonal under the assumption of independence. This allows 
Varimax to unmix them with an orthogonal matrix. This point is further dis-
cussed in Section 8.

Remark 6.3 The first step in Vintage Factor Analysis is to extract the factors. In this paper, we 
extract the factors with PCA. However, this is not the preferred technique in the 
classical approach to factor analysis. To see why, define A = E(A |Z, Y) = 

ZBYT and notice that the diagonal elements of n−1
AA

T are less than or equal 
to the diagonal elements of the expected sample covariance matrix 
n−1

E(ATA |Z, Y). PCA does not adjust for this excess along the diagonal of 
the sample covariance matrix and this makes PCA biased. Traditional ap-
proaches in Vintage Factor Analysis attempt to estimate the diagonal elements 
of n−1

AA
T and replace those estimates down the diagonal of n−1AAT. One 

of the more common approaches begins with the observation that the diagonal 
elements of AA

T are the diagonal elements of UD2UT. So, compute a low rank 
eigendecomposition of AAT ≈ 􏽢U􏽢D2􏽢UT, replace the diagonal elements of AAT 

with the diagonal elements of 􏽢U􏽢D2􏽢UT, then iteratively recompute the eigende-
composition and replace the diagonal elements, until convergence. This problem 
is still an area of research (e.g., Bertsimas et al., 2017; A. R. Zhang et al., 2018). 
Alternatively, Bartholomew et al. (2011) suggests specifying a parametric model 
for both the latent variables Z and the manifest variables A, then using Bayesian 
and/or likelihood based approaches.

7 The main theorem

Theorem 7.1 is the main result for this paper. This theorem does not presume a parametric form 

for the random variables in Z or A. Instead, it uses the identifying assumptions for Varimax 

(Assumption 1) and two further assumptions on the tails of the distributions for Z and A.

Recall that 􏽢μZ estimates the column means of Z defined in Remark 3.2. Let 􏽢Zi be the ith row of 
􏽢Z. Theorem 7.1 shows that for every i ∈ 1, . . . , n, 􏽢Zi +􏽢μZ converges to Zi (after allowing for a 
permutation and sign flip).

Assumption 2 Each column of Z and Y is generated from a distribution that does not 
change asymptotically and has a moment generating function in some 
fixed ϵ > 0 neighbourhood around zero.

Let A be defined in equation (7). Define the mean and maximum of A as

ρn =
1

nd

􏽘

i,j

Aij and ρ̅n = max
i,j

|Aij|. (15) 

Theorem 7.1 allows for A to contain mostly zeros by assuming that as n and d grow, Bn = ρnB for 

some fixed matrix B ∈ R
k×k. If ρn → 0, then A is sparse. This is analogous to the asymptotics in 

Bickel and Chen (2009) for the Stochastic Blockmodel.

Assumption 3 For any valid subscripts i and j, eventually in n,

E[(Aij − Aij)
m] ≤ (m − 1)!max {ρ̅m/2

n , ρ̅n}, for all m ≥ 2, 
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where this expectation is conditional on Z, Y.

Assumption 3 controls the tail behaviour of the random variables in the elements of A. This as-
sumption is more inclusive than sub-Gaussian. For example, this assumption is satisfied when A 
contains Poisson random variables, as happens in Latent Dirichlet Allocation in the online 
supplementary material, Section C.4. This assumption is also satisfied if A contains Bernoulli ran-
dom variables, as happens in Stochastic Blockmodelling. See the online supplementary material, 
Sections J.1.5 and J.2.1 in the Appendix for further discussion.

The quantity

Δn = nρn 

controls the asymptotic rate in Theorem 7.1. So, it is helpful to have some sense for it. For example, 
suppose that (i) A contains Bernoulli elements, (ii) each row and column sum of A grows at a simi-
lar rate, (iii) n ≍ d, and (iv) ρn → 0, then Δn is roughly the expected number of ones in each row 
and column of A.

Theorem 7.1 Suppose that A ∈ R
n×d is generated from a semi-parametric factor model 

that satisfies Assumptions 1, 2, and 3. Presume that asymptotically, A = 

ρnZBYT for some fixed and full rank matrix B. In the asymptotic regime 
where n ≍ d and Δn ⪰ log11.1 n,

‖(􏽢Z + 1n􏽢μZ) − ZPn‖2→∞ = Op(Δ−.24
n log

2.75 n), (16) 

where 􏽢Z is the estimate produced by vsp (with step 1) applied to A and 􏽢μZ is 
the estimate defined in equation (5).

Theorem 7.1 shows convergence in 2 → ∞ norm. This means that every row of 􏽢Z + 1n􏽢μZ con-
verges to the corresponding row of Z in ℓ2. The Pn matrix accounts for the fact that we do not 
attempt to identify the order of the columns in Z, or their sign. If 􏽢Z is used without recentring 
by 1n􏽢μZ, then a similar result holds for estimating 􏽥Z. By symmetry, if Y satisfies the identification 
assumptions for Varimax, then vsp can also estimate Y. If both Z and Y satisfy the identification 
assumptions for Varimax, then B can also be recovered, even when it is not diagonal. The proof for 
Theorem 7.1 begins in the online supplementary material, Appendix G.3. online supplementary 
material, Corollaries C.1 and C.2 in the Appendix extend Theorem 7.1 to the Stochastic 
Blockmodel and Latent Dirichlet Allocation.

8 Correlated factors or ‘Why should the radial streaks be orthogonal?’

Because Varimax provides an orthogonal rotation, it constructs orthogonal axes. One common 
concern in the factor analysis literature is that orthogonal axes cannot detect latent factors that 
are correlated. For example, in Figure 5, the panel with the title ‘3’ has radial streaks that are slight-
ly wider than the vertical and horizontal axes; we will call this phenomenon the appearance of 
non-orthogonal factors. This non-orthogonality can be far more severe than what appears in 
Figure 5. Despite the fact that correlated factors are an often discussed problem, this section shows 
how severe cases can be an of a common data processing step that is not included in vsp.
vsp easily handles correlated factors; Section 8.1 gives more intuition for how and why. Then, 

Sections 8.1.1 and 8.1.2 describe how two data analytic choices can create the appearance of non- 
orthogonal factors (even when the factors are independent). Section 8.2 shows how ‘the middle B 
matrix’ in the semi-parametric factor model provides a path towards deeper understanding of cor-
related factors, a path that we reserve for future research. If the slight misalignment of streaks, 
such as in panel ‘3’ discussed above, needs a solution, then the vsp solution could be refined 
via an iterative approach that involves soft thresholding (e.g., F. Chen & Rohe, 2020).

8.1 vsp can handle correlated factors

Proposition 6.1 and Proposition 6.2 do not make any probabilistic assumptions; both are simply 
results of linear algebra. Together, these propositions show that if the data matrix is not centred, 
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then the principal components are

U = Z(ZTZ)−1/2RT
U 

for some rotation matrix RU. Alternatively, if the data matrix is centred, then the principal com-

ponents are a function of the centred latent factors 􏽥Z,

U =􏽥Z(􏽥ZT􏽥Z)−1/2􏽥RT
U 

for some other rotation matrix 􏽥RU.
In the principal components U, the latent factors Z have been orthogonalized via (ZTZ)−1/2. As 

such, if the original latent factors are correlated, they become orthogonal in the principal compo-
nents U. So, a set of orthogonal Varimax axes could potentially uncover the orthogonalized fac-
tors Z(ZTZ)−1/2. This is good news. If underlying correlated factors had radial streaks, those 
radial streaks will be preserved in Z(ZTZ)−1/2. Those streaks will not necessarily be perfectly or-
thogonal. However, they are often close, as in panel ‘3’ of Figure 5.

This assessment aligns with Kaiser’s. In ‘A Second Generation Little Jiffy’, Kaiser discusses or-
thoblique, which rotates the unit length eigenvectors11 via Varimax without row normalization 
(Harris & Kaiser, 1964; Kaiser, 1970). This differs from vsp only in some pre-processing steps. 
Kaiser says, orthoblique has ‘the tremendous advantage of being 99% of the way’ to the solution 
for recovering correlated factors. He develops a much more complicated winsorizing technique 
and makes the following remark. 

One final comment about this Kaiser-Tukey winsorizing business: above when I said that we were 

99% of the way with orthoblique, I was not using a figure of speech. In some 40 or 50 studies 

involving hundreds of factors the average correlation between an original Harris orthoblique fac-

tor [i.e., vsp] and its winsorized counterpart was .99. It is clear that we have gone to a lot of trou-

ble to apply a very mild polish. Kaiser (1970)

The fact that vsp easily handles correlated factors is an empirical phenomenon that does not 
contradict any of the technical results in this paper. In the technical results, the independence of 
elements in Z is a sufficient condition, not a necessary condition.

8.1.1 Scaling eigenvectors creates the appearance of non-orthogonal factors

A key difference between common factor analysis practice and vsp/orthoblique, is that vsp/or-
thoblique use unit length eigenvectors, whereas common practice scales each eigenvector by the 
square root of its eigenvalue. For example, the popular psych package in R does this scaling 
(Revelle, 2017).

This sub-section describes how the common practice of scaling the eigenvectors creates the ap-
pearance of non-orthogonal factors, even if the factors are independent. Then, Subsection 8.1.2
explores one (necessarily unexciting) place where the remaining 1% from Kaiser’s calculation 
might come from.

For simplicity, suppose that we are not centring and that ZTZ is the identity matrix. So, 
U = ZRT

U. We hope that Varimax provides R∗ = RU. If it does, then vsp rotates and recovers,

UR∗ = Z RT
URU

( 􏼁
= Z.

This is, essentially, why vsp works. However, suppose D is a diagonal matrix containing the sin-

gular values of A (i.e., the square root of the eigenvalues of AA
T). If we scale U by D before 

11 In this section, we refer to the columns of U as eigenvectors, not principal components or singular vectors, because 
they are also eigenvectors of AAT . In the historical literature cited, ‘the eigenvectors’ are typically coming from matrices 
that have been preprocessed in ways discussed in Section 6.3.
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rotation, then the two rotation matrices cannot cancel out like they do above,

UDR∗ = Z RT
UDR∗( 􏼁

.

By scaling with D, the appearance of non-orthogonal factors could become much more severe than 
in Figure 5.

For example, if Z contains independent, mean zero, and unit variance factors, but Y contains 
correlated factors, then the singular values of A = ZY in the diagonal matrix D will be proportion-
al to the eigenvalues of (YTY)1/2 (see Proposition 6.2). In general, Varimax will not be able to re-
cover Z from UD. Moreover, it will appear as though the factors in Z are not orthogonal; in fact, 
the factors in Z are orthogonal, but they are not if you rotate them with RU and then scale by a 
diagonal matrix that is determined by Y, not Z.

Given the numerous data analytic choices that must be made in the course of performing factor 
analysis, Henry Kaiser proposed a sequence of default procedures ‘Little Jiffy’, ‘A second gener-
ation Little Jiffy’, and finally ‘Little Jiffy, Mark IV’ (Kaiser, 1970; Kaiser & Rice, 1974). All of 
these default procedures apply Varimax (without row normalization) to the unit length eigenvec-
tors (of variously transformed matrices); this is the procedure used in this paper too.

Kaiser uses unit length vectors because of an observation in Harris and Kaiser (1964) that it sol-
ves the rotation problem when each row of Z has exactly one non-zero element; they call this 
‘Independent Cluster’ structure. This structure in Z is analogous to the Degree Corrected 
Stochastic Blockmodel discussed in the online supplementary material, Section C.3. However, if 
the structure in Z is not this nice, (Harris & Kaiser, 1964) says this: ‘If the “ideal” common 
part of any one or more variables is of complexity greater than one [i.e., more than one non-zero 
element in that row of Z], then rotating …will not yield [the] “ideal” solution’. In general, this ob-
servation is true. However, if the latent factors are independent and leptokurtic random variables, 
then the rows of Z can have multiple non-zero elements and Theorem 7.1 shows that rotating the 
principal components with Varimax can reveal these structures.

8.1.2 The role of centring

The appearance of non-orthogonal factors can also happen as a result of improper centring. The 
last section has a simple suggestion for data analysis: use the unit length eigenvectors, do not 
scale them by their eigenvalues. Unfortunately, for the problem of centring, there is not a simple 
suggestion. The good news is that this is likely a small problem; akin to the 1% in Kaiser’s 
calculation.

In order for Varimax to be asymptotically unbiased in recovering Z (or 􏽥Z) from U, the ortho-

gonalizing matrix (ZTZ)−1/2 or (􏽥ZT􏽥Z)−1/2 should converge to a diagonal matrix; diagonal matrices 
are acceptable because if Z has radial streaks aligned with the axes, then scaling it by a diagonal 
matrix would keeps the streaks aligned with the axes. However, in certain settings described below 

where Z has orthogonal radial streaks, (ZTZ)−1/2 is not diagonal. In this situation, the orthogon-

alizing matrix (ZTZ)−1/2 will skew the orthogonal streaks and thus give the factors the appearance 

of non-orthogonality. A similar phenomenon can hold for 􏽥Z.
Case I (independent and non-zero mean): Suppose the entries of Z are independent with non- 

zero mean, then E(ZTZ) = Σ + nμzμT
z , where Σ is a diagonal matrix and μz is the expectation of 

one row of Z. This means that (ZTZ)−1/2 does not converge to a diagonal matrix. However, if 

the data matrix is centred, then U is determined by 􏽥Z which has asymptotically orthogonal col-

umns. Thus, (􏽥ZT􏽥Z)−1/2 will converge to a diagonal matrix. In this case, if we centre the data ma-

trix, compute the principal components, and rotate with Varimax, then we can hope to recover 􏽥Z, 
then uncentre to recover Z.

Case II (Independent clusters): Suppose that the latent factor matrix Z has exactly one non-zero 
element in each row, as in the Stochastic Blockmodel or what (Harris & Kaiser, 1964) and others 
call Independent Clusters. In this setting, Z does not have independent entries, but it does have 

orthogonal columns. So, (ZTZ)−1/2 is diagonal. In this case, centring removes the orthogonality; 
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(􏽥ZT􏽥Z)−1/2 is not diagonal. This is the opposite of Case I. In Case II, if we compute the principal 
components (without centring), and rotate with Varimax, then we can hope to recover Z.

Case III (Both independent clusters and factors): Suppose there are k = k1 + k2 columns in Z and 
the first k1 columns correspond to k1 independent clusters and the last k2 columns correspond to 

independent factors. In this setting, neither (ZTZ)−1/2 nor (􏽥ZT􏽥Z)−1/2 will be diagonal. This is a 
troubling scenario that centring alone cannot fix.

Case IV (Mean zero factors): If the latent factors already have mean zero, centring will not 
change anything.

To summarize, centring ensures that independent factors are orthogonal (Case I). However, fac-
tors that are already orthogonal, can become non-orthogonal after centring (Case II). In these 
cases above, the appearance of non-orthogonal factors is not an artefact of latent factors being cor-
related (in any interesting fashion). In our experience, centring or not centring has a minimal, yet 
non-zero, effect on the non-orthogonality of the factors.

8.2 The middle B matrix contains information about factor correlations

One way of understanding the ‘middle B matrix’ in the semi-parametric factor model is that it de-
scribes the correlation among the factors. The Stochastic Blockmodel is the only previous statis-
tical model (that we are aware of) that parameterizes such a matrix. In that model, the Z 
matrix records block memberships and Buv gives the probability of a connection between a 
node in block u and a node in block v (see Section 4.1.2 and online supplementary material, 
Section C.3). This B matrix is not typically imaged as describing the correlation among some latent 
factors (i.e., ‘blocks’), but it certainly could be (e.g., ‘highly correlated blocks form more 
connections’).

Outside of the Stochastic Blockmodel, suppose that the Z factors are correlated; the Y factors 
are centred, independent, and leptokurtic; and B is proportional to the identity matrix. 
Moreover, suppose that 􏽢Z converges to the orthogonalized factors Z(ZTZ)−1/2, then 􏽢B estimates 
(ZTZ)1/2 (e.g., see equation (9)). So, if the data generating model does not have a B matrix (set to 
identity), then the estimated B matrix records information about the correlation among factors. In 
fact, (Harris & Kaiser, 1964) and (Kaiser & Rice, 1974) discuss a quantity that they call L∗ (or L, 
or LSTAR) that is analogous to 􏽢B. Harris and Kaiser (1964) says ‘The matrix L designates the inter-
correlation of the factors’.

Perhaps more directly, hierarchical clustering is one way of imagining how clusters/factors 
could be correlated; more correlated factors are closer in the hierarchy. In some parameterizations 
of the hierarchical Stochastic Blockmodel, the hierarchical structure is not parameterized in the Z 
matrix, but rather in the B matrix (Lei et al., 2020). This is consistent with the idea that B records 
information about factor correlations.

Taken together, this all suggests that the B matrix provides a path to understanding ‘correlation 
among the factors’. Understanding this phenomenon is an active area of research in our lab.

9 Discussion

PCA with Varimax is a vintage data analysis technique. Theorem 7.1 shows that it provides a 
unified spectral estimation strategy for a broad class of semi-parametric factor models. The 
reason is that (1) the principal component subspace is the same subspace as the latent factor 
subspace and (2) under the leptokurtic assumption, Varimax draws a set of axes through this 
space such that each axis aligns with one of the latent factors; this is the intuition gained in 
Section 6. The leptokurtosis condition is satisfied if the factors are sparse and this condition 
can be examined in the data. In fact, Section 5 reinterprets the diagnostics practices developed 
in Thurstone (1935, 1947) as examining that leptokurtic condition. Taken together, the 
results in this paper show that the Vintage Factor Analysis know-how developed by 
Thurstone and Kaiser performs statistical inference. This know-how has survived for nearly 
a century, despite the conventional wisdom that the factor rotation cannot perform statistical 
inference.
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I congratulate the authors on their article, which brings together theory and methods from the estab-
lished areas of factor analysis and independent components analysis, combines these with new re-
sults, and applies the combination to the developing research area of matrix-variate data analysis.

To many statisticians, factor analysis is simply a model that specifies that the covariance matrix 
Σ of a d-variate population is equal to a rank-k matrix M = HH⊤ (with k < d) plus a diagonal ma-
trix D. An appealing feature of such a model is that it can have many fewer parameters than has an 
unrestricted covariance model. But to many researchers, the appeal of the factor analysis model is 
that it might actually be true! As is well known, if the d-vector of variables y is equal to some un-
known linear combination H of k uncorrelated common factors plus uncorrelated noise, that is, 
y = Hf + D1/2e where Var[f ] = Ik and Var[e] = Id, then indeed the variance of y is M + D where 
M = HH⊤.

In the literature that I am familiar with, the conundrum of classical factor analysis has been that 
interest is really in the factor loading matrix H and not M, but M is typically estimated from only 
the first two moments of the data, from which H is not recoverable. The VARIMAX rotation se-
lects an H which may be preferred on aesthetic grounds, or because of some assumptions about the 
process being studied, or because of the invariance properties of VARIMAX—the latter being the 
original motivation in Kaiser (1958).

While the focus of factor analysis is primarily on the factor loading matrix, or ‘column effects’, 
in independent components analysis (ICA) the goal is to recover the uncorrelated latent factors, 
or the ‘row effects.’ This is done by whitening the data by multiplying each data vector by a 
matrix H−1 for any H such that Var[y] = HH⊤. But which whitening matrix to use? If the 
distribution of the latent factors is invariant to orthogonal rotation (i.e., the distribution is 
Gaussian), then the correct H cannot be determined. The assumption of ICA is that the factors 
(or all but one of them) are non-Gaussian, and if this is correct, the latent factors may well esti-
mated by choosing a whitening matrix that makes the estimated factors maximally 
non-Gaussian by some measure.

Standard multivariate statistical procedures, like factor analysis or ICA, typically focus on de-
scribing heterogeneity along only one of the two index sets of the data matrix. However, there has 
been rapid growth in the number of applications where the data are ‘matrix-variate’ and inferences 
about the row objects and the column objects are desired. For example, the rows and columns 
could represent biological samples and genes, or consumers and products, or exporters and 
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importers. Analyses of such data are often based on matrix factorisation models like the one pre-
sented by Rohe and Zeng:

A ≈ ZBY⊤

ai,j = z⊤

i Byj, 

where A is the data matrix, the values of z1, . . . , zn represent heterogeneity along the rows, and 
y1, . . . , yd represent heterogeneity along the columns. As with the identification of the loading ma-
trix in factor analysis, the conundrum of matrix-variate data analysis is that there are infinitely 
many matrix factorizations that give the same low-rank least-squares approximation to A. 
How to select from among them? One approach is to abandon least-squares and instead infer 
the correct factorisation based on specific distributional assumptions about the latent row and 
column factors, often using a parametric statistical model. Such approaches can incorporate 
subject-matter knowledge about the factors into the estimation procedure, but are typically 
very computationally intensive. Alternatively, standard matrix factorisation methods, such as 
the singular value decomposition, are relatively inexpensive computationally, but they select a fac-
torisation using arbitrary identifiability constraints that are not derived from the data.

What has been needed is a data analysis method that is computationally inexpensive, but also 
identifies the factors using information from the data. I propose a vote of thanks to Rohe and 
Zeng for providing just such a method. As they show in their article, the classic VARIMAX criter-
ion, applied to rows or columns of a data matrix, can identify rotations that recover non-Gaussian 
latent factors. Their results unify several multivariate statistical methods, and highlight that much 
of what might be thought of as multivariate data analysis should really be considered as matrix- 
variate data analysis.
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We would like to congratulate the authors on publication of a truly seminal paper. Indeed, they 
managed to accomplish a rare and extremely valuable task: take a technique, Varimax, that has 
been used for half a century for generating sparse PCA, provide conditions for its applicability 
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and produce the error bounds. They name this new version Vintage Sparse PCA (vsp). In particu-
lar, if X = ZBYT , where components of Z = {Zi,j} and Y = {Yi,j} are independent zero mean unit 
variance leptokurtic random variables, and rows of matrices Z and Y are identically distributed, 
then matrices Z and Y are identifiable, and Varimax allows one to do this. The paper provides very 
elegant arguments why kurtosis κ > 3 leads to identifiability of matrices Z and Y. Applications of 
vsp include, among others, Independent Component analysis, Stochastic Block Model (SBM), 
Degree-Corrected Stochastic Block Model (DCBM), Overlapping, Mixed Membership and 
Degree-Corrected Mixed Membership Stochastic Block Models, and sparse dictionary learning.

Since each of the above research areas developed its own techniques, it would be interesting to 
see how vsp performs for specific types of problems. The authors do not provide any numerical 
examination of the precision of the vsp in various scenarios (due to their sheer multitude and 
the fact that the complete paper is already over 100 pages). Therefore, we carry out a limited simu-
lation study that complements the paper.

Specifically, we study three simulations scenarios. Scenario 1 considers SBM with k = 2 commu-
nities, where Z is a clustering matrix with exactly one 1 per row and Y = Z. Scenario 2 examines 
DCBM, where again Z = Y and matrix Z = ΘW, Θ is a diagonal and W is a clustering matrix. 
Scenario 3 deals with matrices Z ∈ R

n×k and Y ∈ R
n×d comprised of independent T random var-

iables with ν degrees of freedom. In the first two scenarios, we generated clusters using multi-
nomial distribution with equal probabilities. Elements of Θ are generated as Uniform on [0, 1]. 
For SBM and DCBM, the diagonal and nondiagonal elements of matrix B are, respectively, equal 
to a and wa. For Scenario 3, elements of B are Uniform on [0, 1].

In order to make matrices Z and Y identifiable, we renormalise Z to have column norms 
��

n
√

with 
the respective readjustment of matrix B. We choose k = d = 2, vary n, w, a, and set X = ZBYT. 
Since E(Θi,i) = 0.5, values a = 0.5 and a = 0.25 for SBM corresponds to a = 1.0 and a = 0.5 for 

Table 1. ΔZ for the spectral clustering in Lei and Rinaldo (2015), vsp and adjusted vsp, averaged over 1,000 runs 

(standard deviations in parentheses)

Estimation in the stochastic block model

n a w Clustering vsp Adjusted vsp

100 0.5 0.6 0.1840 (0.0554) 0.2538 (0.0202) 0.1834 (0.0577)

200 0.5 0.6 0.0396 (0.0421) 0.1776 (0.0095) 0.0404 (0.0428)

300 0.5 0.6 0.0052 (0.0170) 0.1448 (0.0065) 0.0052 (0.0170)

400 0.5 0.6 0.0004 (0.0047) 0.1248 (0.0045) 0.0004 (0.0047)

500 0.5 0.6 0.0000 (0.0014) 0.1118 (0.0037) 0.0000 (0.0000)

100 0.5 0.8 0.5904 (0.0723) 0.5732 (0.0775) 0.5893 (0.0732)

200 0.5 0.8 0.3940 (0.0449) 0.3805 (0.0316) 0.3926 (0.0447)

300 0.5 0.8 0.2772 (0.0321) 0.3012 (0.0155) 0.2765 (0.0321)

400 0.5 0.8 0.2004 (0.0257) 0.2573 (0.0105) 0.2002 (0.0258)

500 0.5 0.8 0.1476 (0.0224) 0.2285 (0.0077) 0.1479 (0.0225)

100 0.25 0.6 0.4877 (0.0787) 0.4736 (0.0748) 0.4848 (0.0795)

200 0.25 0.6 0.2678 (0.0383) 0.3041 (0.0184) 0.2667 (0.0383)

300 0.25 0.6 0.1600 (0.0301) 0.2431 (0.0106) 0.1603 (0.0306)

400 0.25 0.6 0.0989 (0.0275) 0.2097 (0.0076) 0.0996 (0.0271)

500 0.25 0.6 0.0600 (0.0275) 0.1868 (0.0058) 0.0601 (0.0274)

100 0.25 0.8 0.6633 (0.0335) 0.6655 (0.0377) 0.6626 (0.0338)

200 0.25 0.8 0.6502 (0.0396) 0.6421 (0.0461) 0.6502 (0.0393)

300 0.25 0.8 0.6010 (0.0562) 0.5824 (0.0632) 0.6009 (0.0564)

400 0.25 0.8 0.5112 (0.0526) 0.4858 (0.0528) 0.5112 (0.0527)

500 0.25 0.8 0.4345 (0.0319) 0.4138 (0.0243) 0.4340 (0.0318)
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Table 2. ΔZ for the spectral clustering in Gao et al. (2018), vsp and adjusted vsp, averaged over 1,000 runs (standard 

deviations in parentheses)

Estimation in the degree corrected stochastic block model

n a w Clustering vsp Adjusted vsp

100 1.0 0.6 0.4349 (0.1014) 0.4527 (0.0627) 0.4374 (0.0806)

200 1.0 0.6 0.2277 (0.0462) 0.3138 (0.0251) 0.2683 (0.0327)

300 1.0 0.6 0.1543 (0.0280) 0.2555 (0.0161) 0.2055 (0.0188)

400 1.0 0.6 0.1185 (0.0176) 0.2209 (0.0117) 0.1718 (0.0122)

500 1.0 0.6 0.0973 (0.0131) 0.1975 (0.0093) 0.1505 (0.0091)

100 1.0 0.8 0.8816 (0.0941) 0.8611 (0.0963) 0.8857 (0.0981)

200 1.0 0.8 0.7075 (0.1113) 0.6810 (0.1061) 0.7026 (0.1125)

300 1.0 0.8 0.5224 (0.0687) 0.5253 (0.0446) 0.5267 (0.0561)

400 1.0 0.8 0.4108 (0.0510) 0.4488 (0.0286) 0.4321 (0.0385)

500 1.0 0.8 0.3392 (0.0404) 0.3991 (0.0215) 0.3706 (0.0290)

100 0.5 0.6 0.8321 (0.1152) 0.8077 (0.1215) 0.8318 (0.1232)

200 0.5 0.6 0.5725 (0.0862) 0.5545 (0.0622) 0.5691 (0.0744)

300 0.5 0.6 0.4073 (0.0546) 0.4382 (0.0301) 0.4255 (0.0416)

400 0.5 0.6 0.3116 (0.0406) 0.3767 (0.0206) 0.3468 (0.0291)

500 0.5 0.6 0.2489 (0.0327) 0.3366 (0.0161) 0.2967 (0.0221)

100 0.5 0.8 0.9418 (0.0566) 0.9393 (0.0580) 0.9579 (0.0577)

200 0.5 0.8 0.9407 (0.0530) 0.9291 (0.0585) 0.9539 (0.0570)

300 0.5 0.8 0.9148 (0.0638) 0.8978 (0.0743) 0.9263 (0.0710)

400 0.5 0.8 0.8718 (0.0779) 0.8467 (0.0873) 0.8780 (0.0845)

500 0.5 0.8 0.7981 (0.0861) 0.7660 (0.0920) 0.7991 (0.0913)

Table 3. ΔZ and ΔY , averaged over 1,000 runs (standard deviations in parentheses), for the vsp in the case of T 

distribution with ν degrees of freedom and no random errors

Estimation for T-random matrices, no noise

n d ν κ ΔZ ΔY

100 200 5 9 0.1712 (0.1415) 0.1197 (0.1058)

200 400 5 9 0.1229 (0.1091) 0.0869 (0.0753)

300 600 5 9 0.0984 (0.0830) 0.0688 (0.0541)

400 800 5 9 0.0839 (0.0726) 0.0589 (0.0516)

500 1,000 5 9 0.0772 (0.0626) 0.0540 (0.0456)

100 200 10 4 0.2586 (0.1867) 0.2102 (0.1699)

200 400 10 4 0.2068 (0.1663) 0.1508 (0.1399)

300 600 10 4 0.1743 (0.1575) 0.1332 (0.1296)

400 800 10 4 0.1519 (0.1451) 0.1228 (0.1322)

500 1,000 10 4 0.1338 (0.1245) 0.1182 (0.1419)

100 200 16 3.5 0.2886 (0.2033) 0.2616 (0.1924)

200 400 16 3.5 0.2718 (0.2025) 0.2253 (0.1889)

(continued) 
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DCBM. We generate A as symmetric matrix with independent Bernoulli entries for SBM and 
DCBM, while A = X + σΞ where Ξ has iid standard Gaussian entries for Scenario 3.

In Scenarios 1 and 2, we compare vsp with the spectral clustering algorithms in Lei and Rinaldo 
(2015) and Gao et al. (2018), respectively, where matrix Ẑ is based on clustering assignment and 
estimator Θ̂ of Θ. We add the third estimator, adjusted vsp, which leaves only the largest (in ab-
solute value) element of the vsp estimator Û in each row and renormalise Ẑ accordingly. For 
DCBM, we adjust Ẑ to the column norms 

��

n
√

. Note that, for Scenarios 1 and 2, all three algorithms 

Table 3. Continued  

Estimation for T-random matrices, no noise

n d ν κ ΔZ ΔY

300 600 16 3.5 0.2439 (0.1925) 0.2279 (0.1968)

400 800 16 3.5 0.2253 (0.1878) 0.2375 (0.2175)

500 1,000 16 3.5 0.2255 (0.1944) 0.2762 (0.2412)

100 200 28 3.25 0.3378 (0.2094) 0.3168 (0.2130)

200 400 28 3.25 0.3287 (0.2125) 0.2902 (0.2104)

300 600 28 3.25 0.3045 (0.2157) 0.3055 (0.2193)

400 800 28 3.25 0.2932 (0.2089) 0.3616 (0.2345)

500 1,000 28 3.25 0.2966 (0.2153) 0.4184 (0.2430)

Table 4. ΔZ and ΔY , averaged over 1,000 runs (standard deviations in parentheses), for the vsp in the case of T 

distribution with ν = 5 degrees of freedom and iid Gaussian random errors with zero mean and standard deviation σ

Estimation for T-random matrices, ν = 5, noise level σ

n d σ ΔZ ΔY

100 200 0.1 0.2209 (0.2064) 0.2022 (0.2090)

200 400 0.1 0.1721 (0.1799) 0.1399 (0.1753)

300 600 0.1 0.1355 (0.1634) 0.1198 (0.1614)

400 800 0.1 0.1246 (0.1626) 0.1104 (0.1657)

500 1,000 0.1 0.1027 (0.1241) 0.0926 (0.1317)

100 200 0.2 0.2850 (0.2540) 0.2665 (0.2553)

200 400 0.2 0.1870 (0.1934) 0.1757 (0.1918)

300 600 0.2 0.1641 (0.1968) 0.1576 (0.2020)

400 800 0.2 0.1486 (0.1912) 0.1446 (0.1959)

500 1,000 0.2 0.1376 (0.1811) 0.1333 (0.1873)

100 200 0.3 0.3178 (0.2716) 0.3077 (0.2718)

200 400 0.3 0.2342 (0.2454) 0.2306 (0.2486)

300 600 0.3 0.1923 (0.2262) 0.1960 (0.2337)

400 800 0.3 0.1701 (0.2061) 0.1736 (0.2129)

500 1,000 0.3 0.1503 (0.1868) 0.1563 (0.2009)

100 200 0.4 0.3604 (0.2886) 0.3537 (0.2940)

200 400 0.4 0.2624 (0.2659) 0.2633 (0.2684)

300 600 0.4 0.2292 (0.2521) 0.2331 (0.2617)

400 800 0.4 0.1959 (0.2368) 0.1991 (0.2424)

500 1,000 0.4 0.1725 (0.2184) 0.1822 (0.2262)
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recover Z perfectly if matrix X is available. Scenario 3 is remarkably different from 1 and 2 since 
vsp does not recover Z and Y exactly from matrix X, and there is no ‘yardstick’ algorithm for com-
parison. Hence, for Scenario 3, we study performance of vsp only, for both X and A, which cor-
responds to σ = 0 and σ > 0.

Results of simulations are presented in Tables 1–4. The errors are measured as Frobenius norms 
ΔZ = ‖Ẑ − Z‖F/

����

n k
√

and ΔY = ‖Ŷ − Y‖F/
����

n d
√

, averaged over 1,000 runs. The standard devia-
tions of the means are reported in parentheses.

Tables 1 and 2 confirm that the algorithms designed specifically for SBM and DCBM have better 
precision that vsp since they ‘know’ that matrix Z has only one nonzero element per row. 
However, adjusted vsp, which makes use of this information, performs very similarly to algo-
rithms specifically designed for SBM and DCBM, with clustering algorithm of Gao et al. (2018)
being slightly more precise in the case of DCBM. Hence, adjusted vsp can be used for clustering 
in the SBM (with average miss-classification proportion Δ2

Z). The errors grow as a decreases 
and w increases due, respectively to sparsity increase and decline of the signal-to-noise ratio.

Table 3 shows that, as ν grows and kurtosis κ = 3 + 6/(ν − 4) decreases, precision of the vsp de-
clines, even when exact matrix X is available. Therefore, for σ > 0, we carry out simulations only 
with ν = 5 (κ = 9). We set d = 2n for various choices of n. Tables 3 and 4 demonstrate that small 
kurtosis can be as much of a problem for recovering Z and X as noise. Indeed, errors for small κ do 
not decline as n and d grow as they do for larger κ and σ.
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I congratulate Professor Rohe and Dr Zeng on their illuminating paper. Their broad contributions 
will no doubt redouble contemporary research activity in multivariate analysis for years to come. 
Even the paper’s appendices are full of valuable gems, not to be overlooked by readers.
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Rohe and Zeng contextualize their findings vis-à-vis classical developments in psychometrics 
and statistics. This choice is apt, for the authors champion a newfound understanding of varimax 
factor rotations as inferential, not merely exploratory. In a secondary capacity, the paper further 
complements a burgeoning body of contemporary work dedicated to the entrywise study of eigen-
vector estimation, perturbations, and asymptotics, in network analysis (e.g., Abbe et al., 2020; 
Tang & Priebe, 2018) and in high-dimensional statistics (e.g., Cape et al., 2019b; Fan et al., 
2018). Under certain data-generating conditions, these works characterize the behaviour of indi-
vidual vectors and their coordinates in low-dimensional point cloud representations of data, in a 
much more precise manner than was considered in past decades, let alone during the time of 
Thurstone or Kaiser.

Rohe and Zeng emphasize two forms of sparsity in their treatment of stochastic blockmodel 
random graphs (SBMs) in the appendix: network sparsity, and latent variable sparsity. The con-
temporary literature has heretofore largely overlooked the latter and its implications, notably in 
papers dedicated to adjacency spectral embedding in the time since (Sussman et al., 2012).

For SBMs, Rohe and Zeng establish a high-probability uniform error bound which I summarize 
as max1≤i≤n ‖􏽢Z − ZPn‖i,ℓ2

= oP(1) in the moderately sparse regime nρn ≽ ( log n)c. Here ‖ · ‖i,ℓ2 
de-

notes the ℓ2 vector norm of the i-th row of a given matrix, while nρn reflects nodal expected degree. 
Consequently, perfect clustering (discrimination) is achieved using 􏽢Z; more interestingly, the 
sparse latent variable matrix $Z$ can be element-wise directly estimated uniformly well.

More can be said. The eigenvector analysis in Cape et al. (2019a) and Rubin-Delanchy et al. 
(2022) hints that asymptotic normality might hold for the varimax-based estimator at the scaling 
����
nρn

√
. Indeed, it has recently been established in Cape (2022) that for certain SBM graphs, loosely 

speaking, the i-th row vector of 
����
nρn

√
(􏽢Z − ZPn) is conditionally asymptotically multivariate 

Gaussian, with block-specific asymptotic covariance matrix.
Unanswered questions abound. Among them, it would be interesting to quantify the estimation 

performance of varimax rotations in dimension 􏽢k ≠ ktrue and when the coefficient matrix $B$ is 
rank degenerate.
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I congratulate Drs. Rohe and Zeng for their elegant paper that advances our understanding of the 
classical Varimax algorithm. Varimax was originally proposed by Kaiser (1958) as an analytic cri-
terion for determining interpretable factors. Despite its extensive applications and tremendous 
success, theoretical understanding is still lacking. Statisticians are further perplexed by negative 
results showing the nonidentifiability of Gaussian factor models. Toward resolving the dilemma, 
Rohe and Zeng proved that Varimax performed on the spectral embedding of data indeed recovers 
meaningful structures under a wide class of semi-parametric factor models. Below I briefly sum-
marize their key insights and discuss new avenues of research.

The authors assumed that the observed data A ∈ R
n×d satisfies E(A|Z, Y) = ZBY

⊤, where 
Z ∈ R

n×K, Y ∈ R
d×K are random latent factor matrices and B ∈ R

K×K a deterministic matrix. 
The ith row zi of Z consists of latent factors of the ith sample, e.g., community membership of 
an individual, topics of a document, etc. The authors showed that if elements of zi are independent 
and leptokurtic, then Varimax consistently estimates them. Interestingly, leptokurticity can be 
guaranteed by sparsity (Theorem 4.1), which is ubiquitous in high-dimensional models.

The paper opens up exciting possibilities for further study. Recall that Varimax searches for a K × K 
orthonormal matrix that maximizes the sum of kurtoses of the K transformed factors. However, kur-
tosis maximization fails to recover factors if the leptokurticity assumption is violated. As a toy example, 
consider K = d = 2, A = Z and let {zi}

n
i=1 be i.i.d. from the degenerate Gaussian mixture 

1
2 N(e1, e2e⊤

2 ) +
1
2 N( − e1, e2e⊤

2 ). The two canonical coordinates correspond to independent factors 
and the first one is platykurtic. Elementary calculation shows that as n → ∞, Varimax rotates the 
data by 45 degrees and returns noninterpretable coordinates. So, how should one choose the objective 
function in general? Hyvarinen (1997) showed advantages of several objectives over the kurtosis. More 
research is needed for modern statistical models. Another question is whether one should compute an 
orthonormal matrix in one shot or K orthogonal directions one by one. The latter may have computa-
tional advantage while the former is more stable numerically. Moreover, they generally yield different 
solutions even as n → ∞. Their statistical properties are worth investigating. Last but not least, the 
nonconvex objective functions call for studies of efficient algorithms with convergence guarantees.
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Rungang Han and Anru R. Zhangs 

contribution to the Discussion of ‘Vintage 

factor analysis with varimax performs 

statistical inference’ by Rohe & Zeng
Rungang Han and Anru R. Zhang

Duke University

Address for correspondence: Anru R. Zhang, 2424 Erwin Road, Durham, NC 27705, USA. Email: anru.stat@gmail.com

We wholeheartedly congratulate Drs. Rohe and Zeng for their insightful paper on vintage factor 
analysis with Varimax rotation. Varimax rotation is a basic scheme to simplify the expression of a 
particular subspace and is included in build-in standard packages stats in R and PROC FACTOR 
statement in SAS. Drs. Rohe and Zeng nicely show that the principal component analysis with 
Varimax rotation actually performs statistical inference for the explainable factors.

Drs. Rohe and Zeng suggested leptokurtosis as a key identifiability condition for Varimax ro-
tation; the number of factors often increases as the data dimension and sample size grow. It is 
thus natural to ask whether Varimax works with vanishing leptokurtosis and/or a growing num-
ber of factors. This note discusses when Varimax recovers the subspace rotation in such high- 
dimensional regimes. As a first step, we assume the factor matrix Z ∈ R

n×k includes a collection 
of i.i.d. centered random variables satisfying

EZij = EZ3
ij = 0, EZ2

ij = 1, EZ4
ij = κ > 3. (1) 

We also assume Zij’s are sub-Gaussian such that E exp (λZij) ≤ ecλ2

, ∀λ ∈ R for some constant 

c > 0. Let Ẑ ∈ R
p×r be the observed factors generated as

Ẑ = ZR∗, 

where R∗ is an unknown k-dimensional orthogonal matrix that represents the rotation to be re-
covered. Due to vanishing mean of Z, we focus on the following centred Varimax:

R̂ = argmax
R∈O(k)

􏽘

n

i=1

􏽘

k

j=1

(ẐR⊤)ij

􏼐 􏼑4

, 

where O(k) is the set of k-by-k orthogonal matrices. Consider the following error metric:

dist(R∗, R̂) = min
P∈P(k)

‖R̂ − PR∗‖F

‖R∗‖F

= k−1/2 min
P∈P(k)

‖R̂R∗⊤ − P‖F, 

where P(k) = O(k) ∩ {0, ± 1}k2 

is the set of orthogonal matrices that allow for column reordering 
and sign changes as defined in Equation (12). The following theorem characterizes the conditions 
of n, k, κ under which Varimax works or fails.

Theorem 1
1Let δ ∈ (0, 1/2] be any fixed value and κ ≤ C0 for some universal constant 
C0 > 3. 

1 See the online full version at arXiv preprint arXiv:2205.10151 for a complete proof.
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• If n ≳ max { k log n

(κ−3)2 , k2 log2 n
κ−3 }, then

lim sup
n→∞

P(dist(R∗, R̂) ≥ δ) = 0; 

• if k < n ≲ k2, then

lim inf
n,k→∞

P(dist(R∗, R̂) ≥ δ) = 1.

If the kurtosis κ > 3 is a constant, Theorem 1 suggests that a necessary and nearly sufficient con-
dition for consistent rotation recovery is n ≳ k2—this bound is tight up to log

2
(n). Theorem 1 also 

shows when the leptokurtosis of factors is insignificant, i.e., κ → 3+, a sufficient sample size to en-
sure rotation recovery by Varimax is max {k log (n)/(κ − 3)2, k2 log

2
(n)/(κ − 3)}, while it is un-

clear if this bound is sharp. It is of future interest to investigate the tight condition that 
guarantees the consistency of Varimax.

https://doi.org/10.1093/jrsssb/qkad034 

Advance access publication 5 April 2023  

Alexander Van Werde’s contribution to the 

Discussion of ‘Vintage Factor Analysis with 

Varimax Performs Statistical Inference’ by 

Rohe & Zeng
Alexander Van Werde

Eindhoven University of Technology

Address for correspondence: Alexander Van Werde, Department of Mathematics and Computer Science, Eindhoven 
University of Technology. Email: a.van.werde@tue.nl

I would like to point out that the author’s results have potential applications in the theory of ran-
dom graphs beyond those for block models which are explicitly remarked upon in the paper. In 
particular, the results could be used to resolve the nonidentifiability associated with random dot 
product graphs (Athreya et al., 2017, Remark 1).

The authors are most likely already aware of this connection: they have previously worked on 
generalized random dot product graphs in Rohe et al. (2018). Thus, I would like to invite the au-
thors to share further insights concerning the connection between this work and random dot prod-
uct graphs in their reply. Some concrete questions are as follows: 

Q1: Does the assumption of leptokurtic entries for the latent positions appear to be satisfied in 
real-world graphs?

Q2: Are there other considerations which one should take into account when applying the theory 
of the current paper to random dot product graphs? For instance, are there situations where 
one should be careful?
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For the sake of the reader unfamiliar with the topic, I will now sketch the connection between 
random dot product graphs and the current paper. A random dot product graph with latent posi-
tions X1, . . . , Xn ∈ R

k is a random graph whose adjacency matrix A ∈ R
n×n has independent en-

tries with Aij ∼ Bernoulli(〈Xi, Xj〉). Here, it should be assumed that the latent positions are such 
that 〈Xi, Xj〉 ∈ [0, 1] for all i, j ∈ {1, . . . , n}. The key problem in the theory is to estimate the latent 
positions X1, . . . , Xn given an observation of A. There is however an unidentifiability in the mod-
el: for any orthogonal transformation R ∈ O(k) it holds that 〈RXi, RXj〉 = 〈Xi, Xj〉. Thus, if no 
additional assumptions are made concerning the nature of the latent positions, then estimation 
is only possible up to an orthogonal transformation.

If, however, it is further assumed that the latent positions are generated as Xi = BZi where 
Z1, . . . , Zn ∈ R

k are i.i.d. random vectors with independent and leptokurtic components of vari-
ance one and B ∈ R

k×k is a fixed matrix. Then, with Z : = [Z1, . . . , Zn]T it holds that

E[A ∣ Z] = Z(BTB)ZT 

which falls in the scope of the current paper. Hence, estimation of the Zi and the kernel BTB is 
possible up to permutations and sign flips. Viewing the Zi as the true latent positions may lead 
to more interpretable representations of the graph since there is less ambiguity and more sparsity. 

The corresponding random graph model, allowing for a kernel BTB, is called a generalized ran-
dom dot product graph.
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2

Department of Statistics, Columbia University, New York, USA
3

Columbia University, New York, USA

Address for correspondence: Yinqiu He, Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA. 
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We congratulate the authors on an impressive paper that demystifies the popular Varimax rota-
tion. They showed that the Varimax rotation can identify true axes of latent factors under the 
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leptokurtic condition in a low-rank semiparametric factor model

E(AN×J ∣ ZN×K, YJ×K) = ZN×K × BK×K × Y⊤
J×K. (1) 

Different from (1), the exploratory Item Factor Analysis (IFA), widely used in social and behav-
ioural sciences, adopts a nonlinear transformation of the low-rank structure:

E(RN×J ∣ ΘN×K, ΛJ×K) = F(ΘN×K × Λ⊤
J×K), (2) 

where the binary data matrix R contains N individuals’ responses to J items, Θ represents N indi-
viduals’ K latent factors, Λ is the loading matrix, and F is a prespecified monotone increasing func-
tion. The relationship between the two models can be seen by letting F(x) = x, B = IK, Z = Θ, and 

Y = Λ. However, in IFA, F(·) is usually taken from a distribution function, e.g., FNormal(x)= ∫x−∞ 

e−t2/2/(2π)dt and FLogistic(x) = ex/(1 + ex); see Reckase (2009). For such a model, it is of interest 

to develop a similar Vintage Factor Analysis with Varimax.
For (2), Zhang et al. (2020) proposed a two-step approach: (1) use SVD to obtain a low-rank ap-

proximation to the data matrix, denoted as 􏽢R; (2) use F−1(􏽢R) as an estimate of ΘΛ⊤ and apply SVD 

to obtain 􏽢Θ and 􏽢Λ. We add a third step that incorporates the Varimax rotation: (3) apply Varimax 

rotation to the initial estimate 􏽢Θ. Our preliminary studies show some promising signs. Specifically, 
we conduct simulations under four settings of Θ, given in Figures 1–4, respectively. In each setting, 

we consider three F(·) in (2): FNormal(x), FLogistic(x), and FCauchy(x) = π−1arctan(x) + 1/2. For 

d ∈ {Normal, Logistic, Cauchy}, we generate a binary data matrix Rd with a population mean ma-

trix Fd(ΘΛ⊤).
(i) Population (Columns 2–4 in Figures 1–4). We apply the two-step algorithm in Zhang et al. 

(2020) to Fd(ΘΛ⊤) and obtain initial estimated factors 􏽢Θ(d)
P,Initial

. We then apply Varimax to 􏽢Θ(d)
P,Initial 

and obtain rotated factors 􏽢Θ(d)
P,Rotate. For d ∈ {Logistic, Cauchy}, rotated factors 􏽢Θ(d)

P,Rotate are close 

to true Θ, whereas 􏽢Θ(d)
P, Initial 

with d ∈ {Normal} can substantially deviate from Θ. The results show 

that latent axes might be statistically identified given a nonlinear F in (2). However, the perform-
ance varies with the choice of F: FLogistic and FCauchy (heavy tail) outperform FNormal (light tail).

(ii) Sample (Columns 5–7 in Figures 1–4). Similarly, we first apply the two-step algorithm to bin-

ary matrix Rd to obtain 􏽢Θ(d)
S, Initial

, and then 􏽢Θ(d)
S,Rotate via Varimax rotation. In Figures 1–2, binary Θ 

renders finite number of clusters, and the estimated factors can recover the clusters. This could be 

Figure 1. Setting (I): N = J = 500, K = 2. True factors Θ = (θik ) are binary and give orthogonal columns: (θi1, θi2) are 

i.i.d. Multinomial(0.5, 0.5). Data are not centred, as factors are orthogonal. The loading matrix Λ has i.i.d. entries 

following U( − 2, 2). Point i in red circle if θi1 = 0, and blue triangle otherwise. The first figure in the first row gives the 

scatterplot of true factors Θ, and the other figures plot estimated factors that are obtained following the subtitles 

above themselves.
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Figure 2. Setting (II): N = J = 500, K = 2. True factors Θ = (θik ) are binary and independent: for k ∈ {1, 2}, 

θik = norm(ζ ik ), where ζ ik are i.i.d. Bernoulli(1/7), and norm(ζ ik ) represents normalizing ζ ik by its population mean and 

standard deviation. Kurtosis(θik ) > 3 for k ∈ {1, 2}. Data are centred, as true factors are mean zero. The loading matrix 

Λ has i.i.d. entries following U( − 2, 2). Let ζ i = (ζ i1, ζ i2). For i = 1, . . . , N, point i is in red circle if ζ i = (0, 0), in blue 

triangle if ζ i = (0, 1), in yellow square if ζ i = (1, 0), and in green diamond if ζ i = (1, 1).

Figure 3. Setting (III): N = J = 500, K = 2. True factor Θ = (θik ) is nonbinary and give orthogonal columns: for 

k ∈ {1, 2}, θik = ϱik × mik , where ϱik are i.i.d. Poisson(1), (mi1, mi2) ∼ Multinomial(0.5, 0.5), and Kurtosis(θik ) > 3. Data 

are not centred, as factors are orthogonal. The loading matrix Λ has i.i.d. entries following U( − 2, 2). Point i is in red 

circle if θi1 = 0, and blue triangle otherwise.

Figure 4. Setting (IV): N = J = 500, K = 2. True factors Θ = (θik ) are independent and include nonbinary: 

θi1 ∼ norm(ζ i1), where ζ i1 are i.i.d. Bernoulli(1/7), and θi2 ∼ ρi2 − 1, where ρi2 are i.i.d. Poisson(1). Data are centred, 

as true factors have zero mean. The loading matrix Λ has i.i.d. entries following U( − 2, 2). Point i is in red circle if 

ζ i1 = 0, and blue triangle otherwise.
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because in this case, (2) can be alternatively viewed as a Latent Class Model (Goodman, 1974), 

and Fd(ΘΛ⊤) always exhibits an exact low-rank structure even with a nonlinear Fd. This observa-

tion aligns with the authors’ findings. However, in Figures 2–4, the sample estimate 􏽢Θ(d)
S,Rotate can 

deviate from true Θ more significantly than its population counterpart 􏽢Θ(d)
P,Rotate does. This may be 

due to the special signal-to-noise structure of a binary variable, i.e., its variance can always be com-
puted from its mean, so the sampling noise can have a significant impact on the recovery accuracy. 

Nevertheless, comparing 􏽢Θ(d)
S,Initial 

and 􏽢Θ(d)
S,Rotate, Varimax can indeed find one rotation aligned with 

the axes of the true latent factors. This suggests that similar Vintage Factor Analysis with varimax 
may also apply in the IFA model (2) with a nonlinear F and Θ that satisfy leptokurtic conditions.

Conflict of interest: None conflict of interest declared. The discussion does not contain real-world 
data. The codes of simulation that support the findings of this study are available from the author, 
Yinqiu He, upon reasonable request. 
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We compliment the authors for their unification of old and new latent variable models. Their mo-
tivation seems to have come from Thurstone’s Factor Analysis and the wish to explain the some-
what mysterious success of Kaiser’s Varimax rule in that context. However, their major 

1074                                                                                                                Discussion Paper Contribution

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
5
/4

/1
0
8
2
/7

1
0
3
5
0
2
 b

y
 g

u
e
s
t o

n
 2

8
 N

o
v
e
m

b
e
r 2

0
2
3

https://doi.org/10.1093/biomet/61.2.215
https://doi.org/10.1007/s11336-020-09704-7
https://doi.org/10.1093/jrsssb/qkad036
mailto:bickel@stat.berkeley.edu


applications and notation stem from overlapping network community detection and Latent 
Dirichlet Allocation (LDA) (Blei et al., 2003). Inference for these models can be unified in another 
way via a provably consistent algorithmic framework (Mao et al., 2018) because of the inherent 
similarities in the geometrical structure of eigenvectors of appropriate matrices. It would be inter-
esting to see how the identifiability conditions tied to these models, which typically involve the ex-
istence of pure nodes or anchor words relate to those needed for Varimax.

We elaborate on a connection to Independent Component Analysis (ICA) (Hyvärinen, 2013; 
Hyvärinen et al., 2001), which they have noted, and make explicit a connection between 
Varimax and the FastICA algorithm of Hyvarinen (1999a). The factor analysis/ICA model we 
consider has n independent observations with the following structure:

A = BZ + E (1) 

where A and E are d × 1, Z is a K × 1 random vector independent of E, and B is d × K, full rank and 
nonrandom. The elements of Z are independent with no Gaussian component, and have mean zero 
and unit variance. Also, E ∼ N(0, Σ), with unknown covariance matrix Σ. This noisy ICA model is a 
special case of the model of this paper. When d = K, the goal is to estimate a nonsingular C such that 
CA = PZ + CE, where P is some permutation matrix. If E = 0 and A is prewhitened, C (and B) are 
orthogonal yielding factors with Z as the vector of loadings. By a theorem of Comon (1994), B is 
identifiable up to a permutation as is Σ. FastICA (Hyvarinen, 1999a, 1999b), which estimates C by 
maximizing the sum of the squared empirical kurtoses of the coordinates of CA after prewhitening, 
yields consistent estimates if all the Zj have nonzero kurtoses and E = 0 or Σ is known. The kurtosis 

assumption can be dropped (Chen & Bickel, 2005) using a different fast algorithm. The authors’ 
main Theorem 6.1 requires ‘leptokurtosis’. Is that necessary? Another latent variable model of 
interest is NonGaussian Components Analysis (Blanchard et al., 2006), where A is viewed as the 
sum of an unknown nonGaussian signal and independent Gaussian noise with the aim of estimating 
the linear space in which the signal lies. Is there a relation to the model of this paper?

Conflict of interest: None declared.
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We congratulate the authors on their excellent article (Rohe & Zeng, 2022). Factors and commu-
nities in networks are often hierarchically structured, as demonstrated in the academic bibliomet-
rics example in the paper. In order to (1) identify factors/communities with hierarchical structure 
and (2) identify the important individuals/nodes within these factors/communities, we propose 
hierarchical vintage sparse PCA (Hvsp) to account for the hierarchical structure while taking ad-
vantages of vsp’s capability of performing statistical inference.

Hvsp combines the idea of hierarchical clustering and vsp. Specifically, Hvsp follows a top- 
down hierarchical partitioning by recursively applying vsp with dimension k = 2 to split the nodes 
into two communities and eventually produce a binary tree. Compared with the existing hierarch-
ical clustering methodologies in network analysis, Hvsp can explore the hierarchical structure but 
also inherits vsp’s advantages in computation and interpretability. In addition, the rotated princi-
pal component provides a score of importance for each individual/node in its corresponding fac-
tor/community, analogous to the popular eigenvector centrality measure in network analysis. The 
detailed algorithm is described in Algorithm 1.

Algorithm 1. The hierarchical vintage sparse PCA (Hvsp) algorithm.

1. Apply vsp with dimension k = 2 to the network/community A ∈ R
n′×n′

and obtain the factor Ŷ ∈ R
n′×2 at the 

corresponding level;

2. for each node i = 1, …,n′:

(a) Cluster label: assign cluster label as 0 if |Ŷ i,1| ≥ |Ŷ i,2| and as 1 otherwise;

(b) Importance score: obtain the importance score as Ŷ i,1 if it was clustered as 0 in step 2 and otherwise as Ŷ i,2;

3. Repeat steps 1–2 for each community until the stopping rule is reached.

Remarks:

(a) The above algorithm is for the binary split but it can be extended to multiple split.

(b) For directed networks, one can instead use the other factor Ẑ obtained from vsp. The interpretations of using Ŷ 

and Ẑ are different: Ŷ embeds the columns of A while Ẑ embeds the rows.

(c) Possible stopping rule includes Le & Levina (2015); Li et al. (2020); Chen et al. (2021); Jin et al. (2022).

(d) The package is available at https://jh-cai.com/Hvsp.
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Figure 1. A four-cluster binary tree stochastic block models (BTSBM) (Li et al., 2020). The binary tree has three 

layers where Layer 1 includes all nodes, Layer 2 splits into two mega-communities {0, 1}, and Layer 3 further splits 

into four communities {00, 01, 10, 11}. Each colour corresponds to each community in Layer 3. In Layer 2, the 

mega-community {0} includes {00, 01} (red and purple) and the mega-community {1} includes {10, 11} (green and 

teal). Edges between nodes within the same community/mega-community are assumed to be independently 

Bernoulli with probability p0, p1, and p2 depending on the layer. It is most natural to assume the communities are 

assortative p0 > p1 > p2 so that the communities are more closely connected as the hierarchical tree goes deeper; or 

vice versa dis-assortative where p0 < p1 < p2. In the toy example, we generate a balanced four-clustered BTSBM 

with 2,048 nodes where each mega-community at Layer 2 has 1,024 nodes and each community at Layer 3 has 512 

nodes. We let p0 = 1, p1 = 0.3, and p2 = 0.09 and scale accordingly so that the average degree of nodes is expected 

to be 50.

(a) (b)

Figure 2. Scatter plot of pairs of principal components by SVD in figure (a) and pairs of varimax rotated components 

in figure (b). The colour corresponds to each community at Layer 3 in Figure 1. The radial streaks appear in figure (a) 

while the Varimax rotation aligns the streaks with the coordinate axes in figure (b), providing a sparse representation. 

However, neither provides a hierarchical structure.
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Figure 3. Scatter plot of pairs of principal components by SVD and pairs of Varimax rotated components. The rows 

correspond to hierarchical community detection (HCD-sign) (Li et al., 2020), which first performs SVD with dimension 

k = 2 and then assigns labels based on the sign of the second component, and the proposed Hvsp; while the columns 

correspond to the first split among all nodes (Layer 1) and the split of the mega-community {0} of {00, 01} and 

mega-community {1} of {10, 11} (Layer 2). The colour corresponds to each community at Layer 3 in Figure 1. HCD and 

Hvsp split the community layer by layer and reveal the hierarchical structure. In addition, Hvsp aligns the principal 

components to the coordinate axes so as to provide a sparse representation. The rotated components further provide 

a measure of the importance (importance score) of each node in each community as suggested by Rohe & Zeng 

(2022). Furthermore, the importance score can be provided by layers.

Figure 4. The normalized mutual information (NMI) (Yao, 2003) between the true and estimated labels obtained by 

HCD-sign, Hvsp, and vsp varying the number of communities and the average degree of nodes. The simulation 

setup follows Section 4.1 in Li et al. (2020). A larger NMI suggests better clustering performance. HCD-sign and 

Hvsp perform similarly while vsp falls behind. We compare the performance with more metrics at https://github. 

com/cccfran/Hvsp-paper.
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Figure 5. The dendrogram of 11 communities of the three-core of the statistics citation network from 2003 to 2012 was 

obtained by Hvsp using edge cross-validation (ECV) as a stopping rule (Li et al., 2020). Research areas are manually 

labelled based on the research interests of the 10 statisticians with highest importance scores in Table 1, which are 

followed by the community size labelled in parentheses. The labelling can be made algorithmic such as using the ‘best 

feature function’ bff (Wang & Rohe, 2016). We provide the clustering result of using the nonbacktracking method (Le & 

Levina, 2015) as the stopping rule in https://github.com/cccfran/Hvsp-paper.

Table 1. The 15 statisticians with the highest importance scores in each community of the 2003–2012 citation 

network

Community (size) Top 15 contributors

Bayesian 

methodology (66)

Alan E. Gelfand, David Dunson, Abel Rodriguez, Gary L. Rosner, Peter Muller, Steven 

N. MacEachern, Lawrence Carin, Mark F. J. Steel, Gareth Roberts, Ju-Hyun Park, 

Omiros Papaspiliopoulos, Yee Whye Teh, David M. Blei, Matthew J. Beal, Michael I 

Jordan

Bayesian theory (31) Mike West, Hemant Ishwaran, J. Sunil Rao, Carlos M. Carvalho, James O. Berger, Helene 

Massam, James G. Scott, Chris Hans, Anirban Bhattacharya, Nicholas G. Polson, 

Adrian Dobra, Robert J. Kohn, Joseph E. Lucas, Frederick Wong, Christopher K. Carter

Design of 

experiments (40)

Boxin Tang, Randy R. Sitter, Derek Bingham, C. Devon Lin, Dennis K. J. Lin, David 

M. Steinberg, Neil A. Butler, Hongquan Xu, V. Roshan Joseph, Shan Ba, Ching-Shui 

Cheng, Peter Z G Qian, Frederick K. H. Phoa, Hegang H. Chen, John Stufken

Multivariate & 

dimension 

reduction (17)

Bing Li, R. Dennis Cook, Peng Zeng, Liqiang Ni, Francesca Chiaromonte, Yuexiao Dong, 

Robert E. Weiss, Zhishen Ye, Ronghua Luo, Xiangrong Yin, Shaoli Wang, Xin Chen, 

Louis Ferre, Tao Wang, Songqiao Wen

High-dimensional 

theory (54)

Alexandre B. Tsybakov, Marten H. Wegkamp, Iain M. Johnstone, Florentina Bunea, 

Vladimir Koltchinskii, Alexandre Belloni, Victor Chernozhukov, Karim Lounici, 

Yaacov Ritov, Bernard W. Silverman, Theofanis Sapatinas, Felix Abramovich, 

Emmanuel J. Candes, Olivier Bousquet, Peter L. Bartlett

Sampling & 

hypothesis testing 

(54)

Joseph P. Romano, Michael Wolf, Etienne Roquain, Gilles Blanchard, Sylvain Arlot, Larry 

Wasserman, Christopher Genovese, E. L. Lehmann, Chunming Zhang, Tao Yu, Luc 

Devroye, Nicolas Broutin, Louigi Addario-Berry, Isabella Verdinelli, M. Perone Paci_co

Multiple testing & 

inference (56)

John D Storey, T. Tony Cai, Yoav Benjamini, Jiashun Jin, Bradley Efron, David L Donoho, 

Jonathan E. Taylor, David Siegmund, Sanat K. Sarkar, Thorsten Dickhaus, Helmut 

Finner, Markus Roters, Wenge Guo, Daniel Yekutieli, Wenguang Sun

Functional data 

analysis (13)

Hans-Georg Muller, Jane-Ling Wang, Fang Yao, Peter Hall, R. Todd Ogden, Philip 

T. Reiss, David Ruppert, Je_rey S. Morris, Gerda Claeskens, Jianwei Chen, Bani 

Mallick, J. N. K. Rao, David Daniel Smith

Functional data & 

time series (60)

Lajos Horvath, Robertas Gabrys, Chong-Zhi Di, Ana-Maria Staicu, Siegfried Hormann, 

Piotr Kokoszka, Tailen Hsing, Kehui Chen, Ci-Ren Jiang, Pascal Sarda, Bitao Liu, 

Ciprian M Crainiceanu, Alois Kneip, Jeng-Min Chiou, Ulrich Stadtmuller

Non- & 

semiparametric 

methods (114)

Raymond J. Carroll, Xihong Lin, Naisyin Wang, Xuming He, Donglin Zeng, Enno 

Mammen, Guosheng Yin, Hua Liang, Joseph G. Ibrahim, Jing Qin, Zhezhen Jin, Arnab 

Maity, Kyusang Yu, Byeong U Park, Zhongyi Zhu

High-dimensional 

methodology 

(201)

Hui Zou, Jianqing Fan, Yi Lin, Peter Buhlmann, Trevor J. Hastie, Ming Yuan, Hao Helen 

Zhang, Jian Huang, Hansheng Wang, Ji Zhu, Cun-Hui Zhang, Runze Li, Heng Peng, 

Jinchi Lv, Shuangge Ma
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To gauge the performance of Hvsp in community detection, we adopt the binary tree stochastic 
block models (BTSBM) that capture a binary tree community structure (Li et al., 2020).1 We first 
use a toy example of a four-cluster balanced BTSBM (Figure 1) to provide insights and compare 
singular value decomposition (SVD) vs. vsp with dimension k = 4 and hierarchical community de-
tection (HCD) (Li et al., 2020) vs. Hvsp in Figures 2 and 3. As expected, we observe the radial 
streaks from the pairs of principal components in Figure 2a, and the Varimax rotation aligns 
the streaks with the coordinate axes in Figure 2b. However, neither accounts for the hierarchical 
structure. On the other hand, HCD and Hvsp split the community layer by layer. In addition, Hvsp 
aligns the principal components to the coordinate axes, which provide a measure of the import-
ance/centrality of each node in each community at different levels. We further compare the clus-
tering performance using normalized mutual information (NMI) (Yao, 2003) of HCD, Hvsp, and 
vsp varying the number of communities and the average degree of nodes in Figure 4. HCD and 
Hvsp perform similarly while vsp falls behind.

Finally, we apply Hvsp to the three-core of the largest connected component of a statistics cit-
ation network (2003–2012) (Ji & Jin, 2016; Li et al., 2020). Figure 5 shows the hierarchical com-
munities whose labels are based on the research interests of the ten statisticians with the highest 
scores within each community in Table 1. Hvsp clusters related communities together and the 
communities become more refined as the hierarchical tree goes deeper.

Conflicts of interest: none declared.

Data availability

We included a Github repo in our manuscript that provides all the codes and data.
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Discussion

Rohe and Zeng (2020) made an advancement to show that Vintage Factor Analysis with 
Varimax can perform statistical inference, with a wide range of applications. I appreciate that 
the authors made the whole vsp (Vintage Sparse PCA) package1 available in R for the general 
public.

I have several questions regarding the paper: 

1. Why was Multiple Factor Analysis first developed by psychologists (Thurstone, 1935), 
instead of statisticians or computer scientists? Was there any historical context at that 
time?

2. Could the authors briefly describe the data cleaning process of the academic bibliometrics cor-
pus? In the topic modelling results, the word ‘biology’ appears in both factors 2 and 7, which 
is a bit confusing. Some factors also include nontechnical words like ‘on’ and ‘conference’. 
Finally, words of the same stem appear as separate words, such as ‘chemistry’ vs. ‘chemical’ 
and ‘economics’ vs. ‘economic’.

3. The authors specified the compute resources for the code running time, indicating that 
Vintage Factor Analysis with Varimax can be implemented on a personal laptop within a rea-
sonable time. Since the computation involves sparse matrices, are data structures like 
scipy.sparse.csr matrix2 used in the code to save memory space?

4. Are there particular types of applications that can benefit more from Vintage Sparse PCA, ra-
ther than just traditional PCA for dimensionality reduction? For instance, I investigated the 
relationship between the microbiome and environmental characteristics as a team 
(Beckman et al., 2015), and PCA projected the high-dimensional data to the first two principle 
components. Given the small n large p data, would Vintage Sparse PCA be more helpful than 
PCA?

References

Beckman E., Chai C., Lyu J., Mahserejian S., Tran H., Yavari S., Mitchell H., Calatroni A., & Kang E. L. (2015). 

Investigating the relationship between the microbiome and environmental characteristics. In Twenty-first 

Mathematical and Statistical Modeling Workshop for Graduate Students (pp. 89–112). North Carolina 

State University.

1 https://rdrr.io/github/RoheLab/vsp/man/vsp.html
2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr˙matrix.html
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Rohe K., & Zeng M. (2020). ‘Vintage factor analysis with Varimax performs statistical inference’, arXiv, 

arXiv:2004.05387, preprint: not peer reviewed.

Thurstone L. L. (1935). The vectors of mind: Multiple-factor analysis for the isolation of primary traits. 

University of Chicago Press.
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We congratulate Rohe and Zeng for this insightful paper that elegantly connects psychometric 
methods and statistical and machine learning applications. We would like to mention several lines 
of related research. First, the problem is closely related to the latent variable selection problems 
(e.g., Y. Chen et al., 2015; Xu & Shang, 2018), where regularised estimation procedures are pro-
posed to learn sparse loading structures. In fact, the vsp procedure can be viewed as the limiting 
case of a regularised estimation procedure, in the sense that Û from Algorithm vsp is the limit of

Ûλ
= arg min

U
min
D,V

‖Ã − UDVT‖2
F − λ

􏽘

k

l=1

1

n

􏽘

n

i=1

[U]4
il −

1

n

􏽘

n

q=1

[U]2
ql

􏼠 􏼡2
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠, λ > 0,

when λ goes to zero if the solution path is smooth, where U and V satisfy the same constraints as in 
singular value decomposition, while D is allowed to be non-diagonal (F. Chen & Rohe, 2020). 
Note that the regularisation is used to learn the sparse loading structure rather than to avoid over- 
fitting, and thus, it does not require the tuning parameter to depend on the noise level. We agree 
that rotation is more convenient under many models, but the regularised estimation approach 
might be more general for some more complex latent variable models.

Second, various rotation methods have been proposed in the psychometric literature to find sim-
ple and scientifically meaningful factor loading structures. For example, consider the L1 criterion 
that minimises the objective function

c(R, U) =

􏽘

n

i=1

􏽘

k

l=1

|[UR]il|.

This criterion is closely related to L1 regularisation and ensures statistical consistency under suit-
able conditions (Jennrich, 2004, 2006; Liu et al., 2022). We run a small simulation study to com-
pare the Varimax and L1 rotations, where data are generated from the current factor model. Two 
settings are used to generate Z—one sparse setting where P([Z]ij = 0) = 0.5 and one dense setting 

where [Z]ij follows a heavy-tail distribution. The L1 rotation method only replaces v(R, Û) in step 
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3 of the vsp algorithm with c(R, Û). The mean squared errors for the estimation of Z are given in 
Figure 1, where the L1 rotation performs better under the sparse setting while the vsp outperforms 
under the dense setting.

Finally, another interesting extension of the current work is to non-linear factor models that as-
sume E([A]ij |Z, B, Y) = f ([ZBYT]ij), for some known smooth and strictly monotone non-linear 
function f (e.g., logistic function for binary data). Due to the non-linear transformation, the cur-
rent vsp procedure does not directly apply. One solution is to first apply the universal singular val-
ue thresholding procedure (Chatterjee, 2015) to A to estimate (f ([ZBYT]ij))n×d, which yields an 
estimate of ZBYT through element-wise f −1 transformations; see Zhang et al. (2020) for more de-
tails and the related consistency theory. Then, one can learn Z by steps 2 and 3 of Algorithm vsp.

Conflict of interests: None declared.
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Data availability

The data supporting the findings of this study are available within the article.
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Figure 1. Box plots of mean squared errors ‖Ẑ − ZPn‖2
F/(nk) from 100 simulations. The four box plots correspond to 

the combinations of two settings (k = 5, n = d = 100, 200) and two rotation methods (Varimax and L1). In the 

simulations, we generate A = ZY T
+ W , where [A]ij and [W ]ij are independent standard normal variables. Under 

Setting 1, [Z ]ij =

��

2
√

[C]ij [S]ij , where [C]ij are independent standard normal random variables and [S]ij are independent 

Bernoulli random variables with success probability 0.5. Under Setting 2, [Z ]ij = [T ]ij/
�����

5/3
􏽰

, where [T ]ij follows a t 

distribution with five degrees of freedom. R code for the simulation can be found on https://stats.lse.ac.uk/ 

cheny185/L1˙rotation.R.
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Data Analysts are quite often confused between principal component analysis (PCA) and factor 
analysis. Both are the same data reduction techniques that are immensely helpful in big data ana-
lysis in many other areas. I personally think factor analysis is just an offshoot of PCA and as the 
authors have mentioned PCA with Varimax is a vintage data analysis technique. So, should the 
title of the paper be Vintage PCA with Varimax performing statistical inference?

I am quite impressed with the systematic study of 144,136 papers done by the authors on ‘How 
and where factor analysis is used’. No wonder it is one of the most widely used statistical techni-
ques in many areas of social sciences, business, medicine, etc. I will just like to add that the ‘vintage’ 
book written by Professor Ian Jolliffe on PCA in 1986 and published by Springer has received more 
than 48,000 citations which is one of the highest citations of any statistical books. Professor 
Jolliffe has also written a series of well-cited seminal papers on PCA Jolliffe (2022), and his recent 
paper on his ‘vintage’ 50 years personal journey through time with PCA is worth reading in this 
context. 
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I congratulate Rohe and Zeng for the fascinating piece of work. They discovered that sparse 
principle components analysis (PCA) with Varimax rotation (vsp) identifies and consistently re-
covers latent factors in a broad class of semi-parametric factor models. I have a number of com-
ments to share regarding identification assumptions, asymptotic results, and interpretation of 
factors.

Identification Assumptions. The identification of the low-rank matrix M = ZBY⊤ (when treated as 
fixed) has been well understood in the literature of matrix completion (e.g., Chatterjee, 2015; Fan 
et al., 2019). The main contribution of the present paper is to establish that, not only M, but also 
the factorization of M can be uniquely identified when the factors are random and sparse/lepto-
kurtic. The connection between sparseness and leptokurticity is an intriguing standalone result. 
However, the sparsity requirement in Theorem 4.1 is still restrictive in some applications when 
k is small: For example, a bifactor structure (Holzinger & Swineford, 1937) wherein each row 
of Z (or Y) has two non-zero entries does not satisfy the condition if k < 12. I am wondering if 
results similar to Theorem 5.1 (i.e., uniqueness of rotation) can be established under more general 
sparseness conditions.

Asymptotic Result. Seeing the close resemblance between vsp and matrix completion, it is natural 
to ask how different their asymptotic rates of convergence are. In matrix completion, the low-rank 
matrix M is considered fixed. I conjecture that an error bound for an identifiable Z may be ob-
tained by combining 

1. an error bound for the low-rank matrix M;
2. an error bound for the singular vectors U (up to a rotation matrix);
3. Proposition 5.2 that relates U to Z.

Such a result is not yet readily comparable to Theorem 6.1 as M is random in the present paper; 
however, it may be possible to conclude that the bound holds with a large probability given the 
distributional assumptions for Z and Y. Considering that vsp is computationally much cheaper, 
I do not expect that it outperforms matrix completion in accuracy.

Interpretation of Factors. My following comments are based on a more ‘vintage’ specification of 
factor analysis, in which Z is random and unstructured (i.e., scores) and Ỹ = YB⊤ is fixed and 
sparse (i.e., loadings). First, factor analysis is not just about finding a low-dimensional approxima-
tion to the data—it also implies that the low-dimensional factors fully account for the dependen-
cies in data (Fabrigar et al., 1999). Second, Thurstone’s reference to ‘scientifically meaningful 
category’ cannot be simply translated to ‘statistically identifiable factors’. It is sometimes meaning-
ful to have two different explanations, corresponding to two differently rotated solutions, on the 
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same identifiable, low-dimensional structure. Here is a toy example deduced from the well-known 
Schmid-Leiman transform (Schmid & Leiman, 1957):

Z1iid∼N (0, Φ1), Φ1 =
1 1/4

1/4 1

􏼒 􏼓

, Ỹ1 =

1 0

1 0

1 0

0 1

0 1

0 1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Z2iid∼N (0, Φ2), Φ2 =

1 0 0

0 1 0

0 0 1

⎛

⎜

⎝

⎞

⎟

⎠
, Ỹ2 =

0.5
�����

3/4
􏽰

0

0.5
�����

3/4
􏽰

0

0.5
�����

3/4
􏽰

0

0.5 0
�����

3/4
􏽰

0.5 0
�����

3/4
􏽰

0.5 0
�����

3/4
􏽰

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(1) 

in which $Z_1$ and $Z_2$ contain independent and identically distributed normal variates. It is ob-

vious that Z1Ỹ
⊤

1 =
d

Z2Ỹ
⊤

2 because Ỹ1Φ1Ỹ
⊤

1 = Ỹ2Φ2Ỹ
⊤

2 . Both Ỹ1 and Ỹ2 have meaningful interpreta-
tions in psychological theory: The former represents correlated traits indicated by distinct observable 
responses, while the latter contains one overall and two specific traits that are mutually orthogonal.
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I want to congratulate Rohe and Zeng on solving a long-time puzzle (and fight between statisticians 
and practitioners) of ‘why/whether the varimax rotation works’. Their inspiring results have some 
implications in the literature of latent space models for social networks (Hoff, 2021; Hoff et al., 
2002). One of the appealing features of the latent space model is that one can extract the latent fac-
tors and analyse the unobserved features through the latent positions. However, it is a random 
orientation that we are interpreting due to the rotational invariance. It is less problematic if we 
are only interested in the relative locations. It becomes more of an issue when we are analysing dy-
namic networks or trying to compare networks across different subjects. In those situations, we need 
a ‘true’ orientation. A common approach is to pick a (random) orientation and perform Procrustes 
transformation, which could potentially diminish some of the structural changes and signals. Some 
more sophisticated effort towards solving the nonidentifiability issue includes Poworoznek et al. 
(2021), which also utilizes varimax. This rotational invariance happens because we assume normal 
factors, mostly due to computational convenience. If we are willing to move away from normality to 
something leptokurtic (such as a t-distribution), we would be able to have an ‘identifiable latent 
space model’. In fact, the normal mixture that Handcock et al. (2007) used is leptokurtic so the fac-
tor version of their clustering model is identifiable and could potentially be extended to a dynamic 
model to study latent position changes without the trouble of matching the orientations.
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As psychologists, we appreciate Rohe & Zeng’s (R&Z; Rohe & Zeng, 2022) new insights into 
‘vintage’ principal component analysis with varimax rotation (PCA+VR). Theories of intelligence 
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and personality, perhaps psychology’s contributions best known outside of our field, have been a 
direct product of PCA. PCA+VR is still widely used for developing and evaluating psychological 
tests and questionnaires, although the literature has fought against it in favour of more complex 
factor analytic techniques (Fokkema & Greiff, 2017).

In our opinion, abandoning the simpler PCA(+VR) is a mistake and R&Z refute a common ar-
gument by proving that PCA+VR can perform statistical inference in latent variable models: The 
factor indeterminacy problem which plagued VR since its invention only applies for the special 
case of normally distributed factors. For any other distribution, perfect factor indeterminacy 
does not apply, although identifiability might be weak. However, distributions producing sparse 
components fulfil a sufficient leptokurtic condition, which can be confirmed by simple diagnostics.

Because the results are complicated, we relate them to psychological applications. The examples in 
R&Z only deal with sparse binary network data, but in typical psychological applications, the A ma-
trix consists of responses of n persons to d items which are either binary (e.g. intelligence tests), integer- 
valued (e.g. personality questionnaires), or continuous (e.g. digital sensors). Psychologists are often in-
terested in whether (i) items can be structured in a simple way to represent a small number of mean-
ingful components and (ii) those components can be interpreted as psychological constructs that 
describe interindividual differences. R&Z show that ‘radial streaks’ in the rotated loading matrix 􏽢Y 
suggest that item loadings are identified and can be estimated with PCA + VR from the data. 
Similarly, streaks in the component matrix 􏽢Z suggest that person scores can be estimated.

However, we question whether streaks are common in psychology with regard to both aspects. In 
our online materials (https://osf.io/5symf/), we analyse a data set (Stachl et al., 2020) containing both 
personality items (n = 687, d = 300) and smartphone sensing variables (n = 624, d = 1821). Streaks 
were found only in 􏽢Y but not in 􏽢Z. It is also a cautionary example of how the imputation of missing 
values in combination with inappropriate data processing seemingly produce streaks in 􏽢Z that be-
long to uninterpretable components. Finally, we demonstrate R&Z’s side result that the matrix 􏽢Z􏽢B 
from PCA+VR can estimate person scores simulated from oblique leptokurtic components.

In our opinion, the main usefulness of PCA + VR not necessarily stems from its ability to 
estimate latent variable models. PCA excels at providing meaningful descriptions in practical 
applications but R&Z’s and our examples also show that there is rarely a single definite structure. 
Components are most useful when they predict other meaningful quantities, regardless of the 
assumed epistemological nature of psychological constructs (Yarkoni, 2020).
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Thanks to the authors for their very interesting, thoughtful, and thorough reconsideration of the 
topic of factor analysis.

We know to be a weakness of factor analysis that an issue is that analysts must chose the type of 
rotation (e.g., SPSS lists Varimax, Direct Oblimin, Quartimax, Equamax, & Promax) to use, and 
this choice tends to be subjectively based on how useful or interpretable the rotation was in the 
context of the study. So multiple rotations might be considered.

Given the author’s assertion that rotations can be interpreted as performing statistical inference, 
could the authors additionally comment on whether this has consequences for multiple testing? 
i.e., Is there any danger that p-hacking could occur if multiple rotations are being considered? 
In some sense, searching for results that fit the preconceived ideas of the analyst.

Conflicts of interest: None declared.

https://doi.org/10.1093/jrsssb/qkad044 

Advance access publication 5 April 2023  

Konstantin Siroki and Korbinian Strimmer’s 

contribution to the Discussion of ‘Vintage 

factor analysis with varimax performs 

statistical inference’ by Rohe and Zeng
Konstantin Siroki and Korbinian Strimmer

Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 
9PL, UK

Address for correspondence: Korbinian Strimmer, Department of Mathematics, University of Manchester, Alan Turing 
Building, Oxford Road, Manchester M13 9PL, UK. Email: korbinian.strimmer@manchester.ac.uk

We congratulate Rohe and Zeng on their interesting paper and would like to share two comments 
and propose one question for their consideration.

Discussion meeting contribution: https://rss.org.uk/training-events/events/key-events/discussion-papers/
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First, it is impressive to see the large variety of models addressed by the ‘vintage sparse PCA’ 
(vsp) framework, ranging from traditional factor models to explainable and sparse PCA but 
also including topic models and stochastic block models. In our view, the demonstration of 
the broad applicability of the ‘compress and rotate’ strategy is a major contribution of this art-
icle. Unfortunately, much of this material is relegated to the Appendix of the article. This ex-
tends earlier discussions of the benefits of rotating and sparsifying principal components in 
more classical use cases, e.g. by Jolliffe (2002, Chapter 11) and by Trendafilov and Adachi 
(2015).

Second, the problem of identifiability of loadings and factors in factor analysis is mirrored in 
the problem of identifying optimal whitening transformations (Jendoubi & Strimmer, 2019; 
Kessy et al., 2018). There are infinitely many such transformations, and just like in factor ana-
lysis it is only the constraints on the covariance-based or correlation-based loadings that allow to 
distinguish among and select corresponding whitening methods (to include PCA-based whiten-
ing, ZCA whitening, and Cholesky whitening). Crucially, PCA-based whitening is itself already 
the result of a rotation, so vsp may be interpreted as two consecutive rotations, not just one, the 
first leading to optimal compression and the second to sparsify the loadings of the top-ranking 
factors.

This leads to our main question. It is shown by Rohe and Zeng that under the leptokurtic 
distributional assumption the varimax rotation is able to identify the original underlying 
factors. Now, varimax that lies at the heart of vsp is part of the larger orthomax family 
(Harman, 1976) which comprises not only varimax, but quartimax, biquartimax, equamax, 
and parsimax, and in fact many other types of rotations. In turn, the orthomax family is itself 
a special case of even richer families (e.g. Browne, 2001) that also include oblique transforma-
tions. A result by Bernaards and Jennrich (2003) suggests that all members of the orthomax 
family allow to recover simple structure, not just varimax. The key argument in Bernaards 
and Jennrich (2003) is essentially the same as the motivation put forward by Rohe and Zeng 
about varimax and sparsity. Hence, we ask whether the leptokurtic condition is strict enough 
and sufficient to single out varimax or whether perhaps the whole orthomax family may be 
compatible with it?

Conflict of interest: None declared.
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Tyler J. VanderWeele’s contribution to the 

Discussion of ‘Vintage Factor Analysis with 

Varimax Performs Statistical Inference’ by 

Rohe & Zeng
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John L. Loeb and Frances Lehman Loeb Professor of Epidemiology, Harvard University, Cambridge, MA, 
USA

Address for correspondence: Tyler J. VanderWeele, 677 Huntington Avenue, Boston MA 02115, USA. Email: tvanderw@ 
hsph.harvard.edu

Rohe and Zeng (2022) have provided important results concerning properties of ‘vintage fac-
tor analysis’ that assist with interpretability, especially for non-Gaussian and leptokurtic data. 
I would like to focus my remarks on one particular comment, also present in Thurstone (1935)
that, one aims “to ensure that each factor…. corresponds to a ‘scientifically meaningful cat-
egory.’” This is an important goal, but I would argue that (i) questions of the meaning of fac-
tors always extend beyond empirical analyses; (ii) the very notion of a ‘scientifically 
meaningful category’ is ambiguous; and (iii) that the neglect of the prior two points has led 
to inappropriate interpretation of factors in practice. On the first point, the interpretation 
of factors is often controversial and always requires some external knowledge. Rohe and 
Zeng’s interpretation of their analyses, while sensible, did require the use of external features 
(words in journal-title; Section 3.1.1) and then still requires a reader who is aware that the 
cluster of title words forms a coherent whole and how to interpret that whole. Meaning is al-
ways external, and in some sense prior, to the empirical analysis (Mauran, 1996). On the se-
cond point, what is a ‘scientifically meaningful category’? The notion of a ‘discipline,’ 
supposedly corresponding to the factors in their analysis, is a meaningful concept, but does 
it correspond to a ‘scientific category’? There are various ways specific disciplines might be 
precisely defined, with varying levels of scope, but this then is again a conceptual, rather 
than an empirical, question. Moreover, the non-hierarchical nature of the categories as the 
number of factors increases (Section 3.1.3), indicates that while these are potentially interpret-
able categories, they are not fixed scientific realities. Perhaps more problematic is when factors 
are thought to correspond to univariate latent variables that actually represent real entities 
that are causally efficacious. Often it is presumed that if we had knowledge of the entity’s 
quantity, the indicators would be irrelevant. This assumption, however, is so strong that it 
has empirically testable implications even though we never observe the supposed latent vari-
able; the assumption will often be false, and, moreover, even if such entities did exist, the fac-
tor model is still consistent with multiple causal structures (VanderWeele & Vansteelandt, 
2022). Consequently, concerning the third point, the neglect of questions of meaning and dif-
ferent causal structures being consistent with factor models routinely results in the practice of 
erroneously concluding that we uncover real entities by factor analysis and that the meaning of 
a construct can be established by empirical analysis. Vintage factor analysis is a powerful tool 
for uncovering patterns of association, but we must still go through the difficult interpretative 
work of trying to assess why the patterns of correlation are present, and what they mean 
(VanderWeele, 2022; VanderWeele & Batty, 2022).

Conflicts of interest: None declared.
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I congratulate the authors on their excellent paper studying the fundamental mechanism of PCA 
with the Varimax rotation. The paper thoughtfully establishes theorems to demonstrate that the 
Varimax rotation can supply an unified estimating technique for a wide range of semiparametric 
factor models. My discussion will be primarily centred on clarification and potential extensions.

The paper illustrates that if PCA is performed on a matrix with independent elements, PCA with 
the Varimax rotation can be utilized to fit the semiparametric model under certain assumptions. Is 
the proposed technique applicable in the case of Quartimax or Equamax rotation? In comparison 
to oblique rotation, the interpretability of the resulting components from orthogonal rotation is 
not always satisfied (may oversimplify the data). Although the paper reveals that the developed 
technique can handle correlated factors, to broaden the scope of the paper’s application, I wonder 
if the built theorems apply to oblique rotations such as Oblimin and Promax. Also, the paper em-
ploys the scree plot (better if using parallel analysis scree plot), which is somewhat subjective, to 
argue the number of PCs to extract in order to obtain the most parsimonious factor structure. 
According to the paper, ‘there is not a single correct answer for the choice of k’. Provided that 
the primary purpose of the paper is to lay the theoretical groundwork for a widely used model, 
I am intrigued whether the authors can deliver a more theoretically justified method for selecting 
which factors to retain.

In addition, the paper demonstrates that the procedure as a whole is effective on condition that 
the principal component matrix entries are reasonably nonnormal. Practically, we may assume that 
the original dataset is normally distributed to ensure that the PCs are independent and the results are 
more robust. In this case, I am concerned with the implications of the nonnormal condition on fac-
tor analysis using a normally distributed dataset. Given the leptokurtic condition on the elements of 
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Z that must be satisfied for Varimax rotation to function, the validity of the multivariate normal-
ity assumption regarding the distribution of observable variables or latent constructs appears to 
be compromised. Aside from that, the variation around the mean for symmetric distributions is a 
useful measure of dispersion. Nonetheless, it can fail when dealing with skewed or asymmetric 
distributions; see (Tran et al., 2019). Is the developed method capable of accommodating asym-
metric distributions or distributions lacking moments (or with undefined or infinite variance)? 
There has been substantial research towards the robustification of PCA in the field of robust sta-
tistics; see (Candès et al., 2011). Will the Varimax rotation work if we consider a more robust 
PCA method or are interested in capturing the tail behaviour of the data such as quantile 
estimation?

Conflict of interest: None declared.

Data availability

Data sharing not applicable–no new data generated.
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We congratulate Rohe and Zeng for their inspiring work on providing theoretical support for 
Varimax rotation in factor analysis. A key contribution of the article is the demonstration that 
if the factors in the semi-parametric factor model follow heavy-tailed distribution, then perform-
ing principal components analysis (PCA) on the observed data matrix along with Varimax rota-
tion applied to the principal components does produce interpretable explanatory variables. We 
have the following comments and questions: 

(a) The article mainly discussed the semi-parametric model, which seems to exclude the classical 

factor model in the form AT
= LF + ε, where observation matrix A ∈ R

n×d, loading matrix 

L ∈ R
d×k, factor matrix F ∈ R

k×n, error term matrix ε ∈ R
d×n. One question is whether there 
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is a similar result applicable to the classical factor model. If not, what are the obstacles? And 
what properties of semi-parametric factor model facilitate the identification? The main the-
orem in the article concerns the factor matrix F (A in their notation), while in many applica-
tions, people are interested in the loading matrix L. It appears there is no loading matrix in 

semi-parametric factor model. Perhaps BYT in Definition 1 is somewhat related to loading 
matrix. This lead to the question that, if there is a parallel result for Y.

(b) As one of the modern factor models, the Independent Components Analysis is an unsuper-
vised learning algorithm and can be applied for feature extraction. Would it be possible to 
integrate class information with the Varimax rotation for extracting features that belong 
to well-separated classes? It would be interesting to see if the Vintage Factor Analysis can 
be used in a supervised fashion.

(c) If we understand it correctly, derivation of the population results for PCA with latent vari-

able models and Varimax uses 􏽢Σ−1/2
Z to show how U can be recovered from Z. In theory, di-

mension d can be of the same order as n. However, in this case, the sample covariance matrix 
􏽢ΣZ may not be invertible and an alternative estimation of Σ−1/2

Z is needed. Can similar results 

be established? The factors Z are allowed to be correlated, will the corresponding theory be a 
direct generalisation from the independent setting?

Conflicts of interest: None declared.

The authors replied later, in writing, as follows.
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Statistics as a field has been tremendously successful in creating and propagating the quantitative 
theories, techniques, and tools to do quantitative science. Because of our success, our community is 
continually fragmented into methodological subdisciplines within other fields1 , each a certain 
type of universe in which methodologies are continuously evolving (almost independently) in par-
allel. This phenomenon has happened slowly over time and as a result, we think it is time to re-
appraise the role of Statisticians with a capital S (i.e. in Statistics departments). In this vein, the 
history of Varimax provides a parable.

Statisticians often perceive of our field as producing methodology by deriving it from our foun-
dational theories (e.g. Maximum Likelihood, Bayesian, etc.). And then, other fields consume our 

1 psychometrics, signal processing, econometrics, epidemiology, demography, chemeometrics, actuarial sciences, 
machine learning, bioinformatics, etc.
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methodologies. One issue with this perception is that the methodological subdisciplines are pro-
ducing their own methodologies; what about the Statisticians with a capital S? Sometimes our 
foundational theories help them. Sometimes our theories do not help them. Sometimes their the-
ories go beyond our own and then we call them Statisticians (with a capital S). Regardless, these 
are all skilled craftspeople and we fool ourselves when we pretend that Statisticians are the all- 
knowing producers.

The history of factor analysis is an antidote to our illusions of grandeur. In 1935, Thurstone (a 
psychologist) was inspired by the idea of multiple types of intelligence and set out to create a way 
to measure them. Inspired by this and without an ‘electronic’ computer, he whittled a blunt tool, a 
way of iteratively plotting data and cleverly picking a tiny bit of a rotation and then iterating again. 
This was not derived from our theories. Moreover, this process was ‘subjective’ at every iteration. 
In 1956, Anderson and Rubin wrote a Gaussian theory that discounted factor rotations; their the-
ory appears in every textbook on Multidimensional Statistics. But already in 1953, Carroll intro-
duced an optimisation problem to ‘objectively’ pick a rotation using 4th-order moments. Then, 
Varimax came in 1958. Despite the protesting Statisticians, psychologists used factor rotations 
and conveyed them to future generations because factor rotations solved a problem. They did 
not need a ‘theoretical foundation’ and they should not need one now. We hope that the ‘theor-
etical foundation’ we have started to provide is that it might convince researchers in other disci-
plines to try using factor rotations on their problems.

This parable of factor analysis is extreme because Statisticians have opposed it for nearly 90 
years. Our fundamental claim is more general. Successful methodologies, the ones that spread, 
will have a consilience of a product-market-fit, ‘statistical theory’ (of models, theorems, and algo-
rithms), and practical-know-how. In the successful diffusion of a methodology, Statistics as a dis-
cipline has an essential role. Ideally, we would be in a position to develop methodologies with 
product-market-fit, but often we are not. Our primary strength is that we can (1) provide a ‘stat-
istical theory’, and then (2) leverage our central position in the academic network of methodo-
logical subdisciplines to convey this methodology and statistical theory.

Before (1) developing a theory and (2) propagating it, there is a step (0). We believe Statisticians 
need to get better at step zero for our field to continue flourishing. The zero-problem is this: which 
methodologies should we support? Where should we direct our attention? Our journals are (un-
fortunately) filled with methodologies that lack a product-market-fit.

There is a direct path to ensuring the methodology is fit: we can learn from others. This alter-
native path leverages and reinforces our central role in the network of quantitative subdisciplines. 
When we learn popular techniques from others, they already have product-market-fit and likely 
already have practical-know-how. Our job is to give it a model and a theory (broadly interpreted) 
and to make it into something that other researchers might enjoy. Maybe this also inspires new 
algorithms and new estimators. Maybe it does not. By developing this framework, we enable other 
fields to learn. Importantly, this is not an entirely new way of doing Statistics; its the way it is al-
ready happening.

In this process, methodologies are not derived, but rather methodologies evolve. We 
Statisticians can play a fundamental role in methodologies evolving and reaching consilience, 
but we should stop assuming that product-market-fit is easy. Instead, we should recognise the 
more realistic role that we play in the evolution of quantitative methodologies and leverage the 
subdisciplines that are simultaneously and endlessly refining numerous different methodologies 
and testing their product-market-fit. Varimax is a parable for this point.

1 Thank you

Thank you to the Discussion Meetings Committee for hosting this discussion. Thank you 
Dr. C. Grazian for chairing the meeting. Thank you Professors Hoff and Pensky for leading the 
discussion. Thank you to the discussants for your thoughtful and inspiring comments. It was an 
honour to take part in this venerable tradition.

We are excited for the interest in Varimax. Many of the discussants highlight additional areas 
that need more exploration. We agree. There is so much more work to be done. We will use the rest 
of this rejoinder to find common themes for future directions and emphasise some ways that we 
might learn from the subdisciplines to pursue these directions. We aim bring together some key 
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threads in this discussion; as such, many excellent and interesting questions and comments from 
the discussants are not captured here. In places where we express scepticism, we do not say this to 
discourage any research in these directions, but instead to identify the key challenges that we sus-
pect will need to be addressed with various approaches.

2 Interpreting factors

2.1 Rotations

The basis for Principal Components Analysis (PCA) comes from the singular value decomposition 
(SVD), which provides the optimal low-rank approximation for a data matrix in a least-squares 
sense. We show that Varimax can pick new axes for this subspace that are reasonable under a 
broad class of models. However, Varimax is certainly not the only way to choose the axes (i.e. ro-
tate the PCs).

Kaizheng Wang gives a counter example where Varimax fails because the natural (sparse) factor 
coordinates are platykurtic. Similarly, Bickel, Bean, Chen, and Sarkar highlight that our theorem 
requires Leptokurtosis, a specific kind of non-Gaussianity. Some Independent Components 
Analysis (ICA) objectives can recover natural coordinates in other or perhaps more general con-
ditions. In our limited experience with social networks, there is always degree heterogeneity 
and this heterogeneity always manifests with radial streaks in the pairs plot (e.g. Figure 2 in the 
discussed paper). These radial streaks are a key diagnostic for leptokurtic factors. In such situa-
tions, in our experience, other rotation techniques tend to create local optima that are not empir-
ically beneficial.

Bickel, Bean, Chen, and Sarkar mention an assumption from the literature on Non-Negative 
Matrix Factorisation about ‘pure nodes or anchor words’ (Donoho & Stodden, 2003). Under 
this identifying assumption, for each column in Z, there must be a row of Z that only loads in 
this column. While the existence of such pure nodes will likely (approximately) exist under inde-
pendent leptokurtic factors in fixed dimension k, finding them might be tricky. Moreover, aesthet-
ically, it seems not as satisfying as an objective function (like Varimax) that smoothly incorporates 
all data. In fact, it was precisely the assumption of ‘pure nodes’ that led us to search for smoother 
alternatives; we then happened upon Varimax.

It is tempting to consider new types of rotations and we do not wish to discourage that. In add-
ition, we hope that we can also direct our attention to unifying the disjoint literatures on rotations. 
The literature on ICA has developed theory and algorithms that are comparatively underdevel-
oped in the literature on factor analysis. At the same time, the deeper theoretical understandings 
in the literature on Independent Component Analysis rests primarily on the heuristic of non- 
gaussianity, which seems comparatively underdeveloped to the heuristic notions of sparsity, radial 
streaks, and simple structure in the literature on factor analysis.

To re-emphasise a point of the paper, Varimax has survived for close to 70 years despite strong 
pressure against it. We suspect that this survival is linked to its empirical fitness. What is it about 
Varimax that make researchers tend to prefer it to other rotations? Perhaps ‘leptokurtosis’ is a bet-
ter assumption? Alternatively, perhaps Varimax is better behaved algorithmically. Perhaps, it has 
better statistical performance in the presence of noise? Perhaps it is the ‘Kaiser normalisation’ that 
we do not account for in our paper? It is possible that we will discover more beneficial rotations for 
certain settings and as theoreticians, we are all drawn to that prospect. It is also important to fur-
ther understand the successes that have existed over the past 90 years and ensure our theory cap-
tures those success as fully as possible. This point aligns with the first paragraphs of this rejoinder.

Going forward, a key aspect of this theory could be a more unifying lens to understand rotations 
and their relationships. In this vein, Siroki and Strimmer ask a brilliant question that unifies the 
spirit of ICA with the algorithms of factor analysis: ‘[is the] leptokurtic condition strict enough 
and sufficient to single out Varimax or whether perhaps the whole orthomax family may be com-
patible with it?’ We do not know, but we are curious and hope that someone will find out! For a 
path forward, it will likely be helpful that Chu and Trendafilov (1998) give the first- and second- 
order conditions for Orthomax. We hope for more inquiries that bring together the richness of 
understanding that we have from 90 years of factor rotations and 30 years of ICA.
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2.2 Sense making

Vintage factor analysis is a powerful tool for uncovering patterns of association, but we must still 

go through the difficult interpretative work of trying to assess why the patterns of correlation are 

present, and what they mean.

-Tyler VanderWeele

VanderWeele argues that the meaning of factors extends beyond anything inside the factor ana-
lysis; it is a necessary post-hoc step to give them meaning. We agree. He continues that Thurstone’s 
notion of a ‘Scientifically Meaningful Category’ is ambiguous. We strongly agree. Speaking to our 
analysis of scientific publishing, he writes ‘There are various ways specific disciplines might be pre-
cisely defined, with varying levels of scope, but this then is again a conceptual, rather than an em-
pirical, question’. Here, we partially disagree. Whenever we seek to cut nature at the seams (e.g. 
perform clustering or factor analysis), it is important to know the purpose of cutting; identifying 
our purpose is clearly conceptual. That said, once we understand our purpose, we see no reason to 
exclude empirical evidence from such tailoring.

Yang Liu discusses the classical framing of ‘sense making’ with rotations. In particular, multiple 
different rotations can all make sense and can have different types of sparsity. Liu presents an in-
teresting counter example from The development of hierarchical factor solutions (Schmid & 
Leiman, 1957), where the second solution is rank deficient, but has a convenient hierarchical in-
terpretation. This suggests a connection to hierarchical clustering.

2.3 Interpreting with hierarchies

Liu was not the only discussant to highlight a connection to hierarchies. Cai, Yang, Zhao, and Zhu 
propose using Varimax within previous approaches to hierarchical clustering. Moreover, 
VanderWeele correctly critiques our analysis and the semi-parametric factor model for lacking 
hierarchical structure; ‘the non-hierarchical nature of the categories as the number of factors in-
creases (Section 3.1.3), indicates that while these are potentially interpretable categories, they 
are not fixed scientific realities’. Here, there is room for the theory and methods of hierarchies 
and factor analysis to hybridise and grow.

Unbeknownst to most Statisticians, a great deal of statistical theory for hierarchical clustering 
has been developed in the literature on phylogenetic tree reconstruction. In that literature, ‘hier-
archical clustering’ is not simply an exploratory technique. Rather, it deeply informed by the the-
ories and models of evolution. This backdrop has provided an environment with strong selection 
pressures for the fittest hierarchical clustering methodologies. We should all seek to incorporate 
what they have learned, identify the parts that likely generalise to other fields, and hybridise it 
with techniques from other subdisciplines.

In a forthcoming manuscript, Sijia Fang and co-author Rohe study one such relationship in hier-
archical modelling of social networks. They propose the T-Stochastic Graph model; vsp can be 
used to identify part of the hierarchy T. We hope to see much more inquiry into the relationship 
between factoring and hierarchies and much more inquiry into hierarchical clustering.

3 Other models

Marianna Pensky’s simulations suggest that in certain settings, more fully (and still correctly) spe-
cified model fitting techniques can out-perform vsp. We imagine vsp as one step in a fitting pipe-
line. Even in situations where one does not use vsp in the final estimates, it can (1) provide the 
opportunity to first diagnose what structure the latent space appears to have and then, potentially 
and (2) provide a statistically consistent initialisation for a more refined fitting procedure. In par-
ticular, we hope that this insight could be built into the choice of latent space prior for Bayesian 
approaches as Xiaoyue Niu discusses. This choice of prior can be diagnosed by inspecting the pairs 
plots (i.e. Figure 2 in the discussed paper).

What other models can we better understand with rotations? We are optimistic that Statisticians 
will become more involved in making sense of the black box Large Language Models (LLMs) such 
as the GPTs; within these models, there are ‘low-dimensional’ embeddings with K > 700. These 
essentially have K > 700 factors, where the individual dimensions have not yet been interpreted. 
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These dimensions were not computed with SVD, but rather with Stochastic Gradient Descent and a 
far more complicated objective functions. But the same questions remain. What do these dimensions 
mean? Do they display radial streaks (we hypothesise that they do)? If so, perhaps one component of 
that sense making might be factor rotations and hierarchies.

4 Localisation; regularisation, normalisation

Alexander Van Werde asks ‘Are there situations where one should be careful [applying the theory 
of the current paper]?’ In our experience, the biggest obstacle to successfully using PCA and 
Varimax in empirical applications is the problem of localisation, something that is drastically 
under discussed in any related literature.

Localisation can be diagnosed. Look at the pairs plots of your Varimax factors (i.e. Figure 2 in 
the discussed paper). Do you see any axes that do not have a streak, but instead look like a one to 
three outliers? If so, then we say that the component has localised. It might have identified a very 
important data point/measurement. Or, it could be an artefact of noise. Either way, it is irritating 
to dedicate an entire dimension to identifying a few measurements. Sometimes, all of your dimen-
sions will look this way and you might need to dramatically increase k to find meaningful factors. 
In classical factor analysis, there are ‘Heywood cases’ and in neural networks there is ‘neural col-
lapse’; in an heuristic sense, we think of these three things as similar types of failures of three dis-
tinct techniques.

Chen and Xu combine vsp into one objective function. However, there is an extreme tension 
between PCA and Varimax that is not discussed in the paper. PCA can localise, with extreme out-
liers in one element (or perhaps a few elements). Such localised dimensions have a massive kurto-
sis. So, both PCA and Varimax will enjoy finding these dimensions. By combining PCA and 
Varimax into a single objective, we worry that it would amplify these failures.

Le et al. (2017) provide the first improved bounds for spectral convergence with regularisation. 
Ke and Wang (2022) use the phrase ‘pre-PCA normalisation’ and discuss the benefits of normal-
isation and regularisation. Zhang and Rohe (2018) illustrate the types of patterns in random 
graphs that generate localisation and how regularisation addresses this issue. More work is needed 
in these directions. In particular, there is relatively little methodological and applied work that 
could communicate most directly with newcomers to PCA with high dimensional data.

5 Theory

Han and Zhang provide a large step forward in our understanding of the Varimax solution to U 
when the dimension K increases. There is room to explore how it behaves with Û. In a related vein, 
we suspect that the bound in our main theorem can and will be improved. This is not something 
that we are currently pursuing. Joshua Cape hints at a result on the asymptotic normality of the 
rows of Ẑ. We hope that others will join them in exploring these direction.

References

Chu M. T., & Trendafilov N. T. (1998). Orthomax rotation problem. a differential equation approach. 

Behaviormetrika, 25(1), 13–23. https://doi.org/10.2333/bhmk.25.13

Donoho D., & Stodden V. (2003). When does non-negative matrix factorization give a correct decomposition 

into parts? Advances in Neural Information Processing Systems, 16.

Ke Z. T., & Wang J. (2022). ‘Optimal network membership estimation under severe degree heterogeneity’, arXiv, 

arXiv:2204.12087, preprint: not peer reviewed.

Le C. M., Levina E., & Vershynin R. (2017). Concentration and regularization of random graphs. Random 

Structures & Algorithms, 51(3), 538–561. https://doi.org/10.1002/rsa.20713

Schmid J., & Leiman J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22(1), 

53–61. https://doi.org/10.1007/BF02289209

Zhang Y., & Rohe K. (2018). Understanding regularized spectral clustering via graph conductance. Advances in 

Neural Information Processing Systems, 31.

https://doi.org/10.1093/jrsssb/qkad074 

Advance access publication 24 August 2023  

1098                                                                                                                Discussion Paper Contribution

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
5
/4

/1
0
8
2
/7

1
0
3
5
0
2
 b

y
 g

u
e
s
t o

n
 2

8
 N

o
v
e
m

b
e
r 2

0
2
3

https://doi.org/10.2333/bhmk.25.13
https://doi.org/10.1002/rsa.20713
https://doi.org/10.1007/BF02289209
https://doi.org/10.1093/jrsssb/qkad074

	qkad029
	Vintage factor analysis with Varimax performs statistical inference*
	Acknowledgments
	Conflict of interest
	References


	qkad030
	qkad031
	qkad032
	qkad033
	qkad034
	qkad035
	qkad036
	qkad037
	qkad038
	qkad039
	qkad040
	qkad041
	qkad042
	qkad043
	qkad044
	qkad045
	qkad046
	qkad054
	qkad055
	qkad056
	qkad074

