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best approximation ratio is a primal-dual 6.357 approximation based on a standard LP for
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Approximation algorithms In this note we show how a minor modification of Ahmadian et al.’s analysis leads to
Euclidean k-means a slightly improved 6.12903 approximation. As a related result, we also show that the
Euclidean facility location mentioned LP has integrality gap at least % > 1.2157.

Integrality gaps © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Clustering is a central problem in Computer Science, with many applications in data science, machine learning etc. One of
the most famous and best-studied problems in this area is Euclidean k-Means: given a set D of n points (or demands) in R¢
and an integer k € [1, n], select k points S (centers) so as to minimize Zjep d%(j, S). Here d(j, i) is the Euclidean distance
between points j and i and for a set of points I, d(j, I) = min;¢; d(j, i). In other words, we wish to select k centers so as to
minimize the sum of the squared Euclidean distances between each demand and the closest center. Equivalently, a feasible
solution is given by a partition of the demands into k subsets (clusters). The cost w¢ of a cluster C C D is ZjeC d?(c, ),

where p is the center of mass of C. We recall that w¢ can also be expressed as ﬁ Zjec Zj’ec d%(j, j"). Our goal is to
minimize the total cost of these clusters.

Euclidean k-Means is well-studied in terms of approximation algorithms. It is known to be APX-hard. More precisely, it is
hard to approximate k-Means below a factor 1.0013 in polynomial time unless P = NP [6,16]. The hardness was improved
to 1.07 under the Unique Games Conjecture [9]. Some heuristics are known to perform very well in practice, however
their approximation factor is O(logk) or worse on general instances [3,4,17,21]. Constant approximation algorithms are
known. A local-search algorithm by Kanugo et al. [15] provides a 9 + & approximation.! The authors also show that natural
local-search based algorithms cannot perform better than this. This ratio was improved to 6.357 by Ahmadian et al. [1,2]
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using a primal-dual approach. They also prove a 9 + ¢ approximation for general (possibly non-Euclidean) metrics. Better
approximation factors are known under reasonable restrictions on the input [5,7,10,20]. A PTAS is known for constant k [19]
or for constant dimension ¢ [10,12]. Notice that ¢ can be always assumed to be O(logn) by a standard application of the
Johnson-Lindenstrauss transform [14]. This was recently improved to O (logk + loglogn) [8] and finally to O (logk) [18].

In this paper we describe a simple modification of the analysis of Ahmadian et al. [2] which leads to a slightly improved
approximation for Euclidean k-Means (see Section 2).

Theorem 1. There exists a deterministic polynomial-time algorithm for Euclidean k-Means with approximation ratio p + ¢ for any
positive constant € > 0, where

2

1
pi= 1+\/2(2+\3/3—2\/5+\3/3+2«/§) <6.12903.

The above approximation ratio is w.r.t. the optimal fractional solution to a standard LP relaxation LPy_peans for the
problem (defined later). As a side result (see Section 3), we prove a lower bound on the integrality gap of this relaxation
(we are not aware of any explicit such lower bound in the literature).

Theorem 2. The integrality gap of LPy_pjeans, €ven in the Euclidean plane (i.e., for £ = 2), is at least % > 1.2157.

1.1. Preliminaries

As mentioned earlier, one can formulate Euclidean k-Means in term of the selection of k centers. In this case, it is
convenient to discretize the possible choices for the centers, hence obtaining a polynomial-size set F of candidate centers,
at the cost of an extra factor 1+ ¢ in the approximation ratio (we will neglect this factor in the approximation ratios since
it is absorbed by analogous factors in the rest of the analysis). In particular we will use the construction in [11] (Lemma 24)
that chooses as F the centers of mass of any collection of up to 16/£2 points with repetitions. In particular |F| = O(nw/ez)
in this case.

Let c(j, i) be an abbreviation for d?(j, i). Then a standard LP-relaxation for k-Means is as follows:

min Z Xij-c(j, 1) LPy-Means
ieF,jeD

S't'ZXUZ] VjeD
ieF
Xij < Vi VjeD,Vie F
Zy,-§k VjeD,VieF
ieF
Xij, ¥i >0 VjeD,Vie F

In an integral solution, we interpret y; =1 as i being a selected center in S (i is open), and x;; =1 as demand j being
assigned to center i.” The first family of constraints states that each demand has to be assigned to some center, the second
one that a demand can only be assigned to an open center, and the third one that we can open at most k centers.

For any parameter A > 0 (Lagrangian multiplier), the Lagrangian relaxation LP (1) of LPy peans (W.L.t. the last matrix con-
straint) and its dual DP()) are as follows:

min Y xijec( i) +A- Y yi—rk LP(M)
ieF,jeD ieF

S.l’.ZX,’jzl VjeD
ieF
Xij < Yi VjeD,Vie F
Xij, ¥i >0 VjeD,VieF

2 Technically each demand is automatically assigned to the closest open center. However it is convenient to allow also sub-optimal assignments in the
LP relaxation.
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max » " aj — ik DP(})
jeD

S‘t.ZmaX{O,aj—C(j,i)}f)\. VieF (1)
jeD
oj>0 VjeD

Above max{0, aj—c(j, 1)} replaces the dual variable gj; corresponding to the second constraint in the primal in the standard
formulation of the dual LP. Notice that, by removing the fixed term —\k in the objective functions of LP(A) and DP()), one
obtains the standard LP relaxation LPf;(A) for the Facility Location problem (FL) with uniform facility cost A and its dual
DPpr(A).

We say that a p-approximation algorithm for a FL instance of the above type is Lagrangian Multiplier Preserving (LMP) if
it returns a set of facilities S that satisfies:

> cj,S) < p(OPT() — IS,
jeD

where OPT (1) is the value of the optimal solution to LPg(A).

2. Arefined approximation for Euclidean k-means

In this section we present our refined approximation for Euclidean k-Means. We start by presenting the LMP approxi-
mation algorithm for the FL instances arising from k-Means described in [2] in Section 2.1. We then present the analysis
of that algorithm as in [2] in Section 2.2. In Section 2.3 we describe our refined analysis of the same algorithm. Finally, in
Section 2.4 we sketch how to use this to approximate k-Means.

2.1. A primal-dual LMP algorithm for Euclidean facility location

We consider an instance of Euclidean FL induced by a k-Means instance in the mentioned way, for a given Lagrangian
multiplier A > 0.

We consider exactly the same Lagrangian Multiplier Preserving (LMP) primal-dual algorithm JV (§) as in [2]. In more
detail, let § > 2 be a parameter to be fixed later. The algorithm consists of a dual-growth phase and a pruning phase.
The dual-growth phase is exactly as in the classical primal-dual algorithm JV by Jain and Vazirani [13]. We start with
all the dual variables set to 0 and an empty set O; of tentatively open facilities. The clients such that «; > c(j, i) for
some i € O are frozen, and the other clients are active. We grow the dual variables of active clients at uniform rate until
one of the following two events happens. The first event is that some constraint of type (1) becomes tight. At that point
the corresponding facility i is added to O; and all clients j with « > c(j, i) are set to frozen. The second event is that
aj=c(j,i) for some i € O;. In that case j is set to frozen. In any case, the facility w(j) that causes j to become frozen is
called the witness of j. The phase halts when all clients are frozen.

In the pruning phase we will close some facilities in O, hence obtaining the final set of open facilities IS. Here JV (8)
deviates from JV. For each client j e D, let N(j) ={i € F : oj > c(j, 1)} be the set of facilities i such that j contributed
with a positive amount to the opening of i. Symmetrically, for i € F, let N(i) = {j € D : «j > c(j, i)} be the clients that
contributed with a positive amount to the opening of i. For i € O, we let t; = maX;en() ¢j, where the values «; are
considered at the end of the dual-growth phase. We set conventionally t; =0 for N(i) = . Intuitively, t; is the “time” when
facility i is tentatively open (at which point all the dual variables of contributing clients stop growing). We define a conflict
graph H over tentatively open facilities as follows. The node set of H is O;. We place an edge between i,i’ € O; iff the
following two conditions hold: (1) for some client j, j € N(i) N N(i") (in words, j contributes to the opening of both i and
i’) and (2) one has c(i,i’) < § - min{t;, ty}. In this graph we compute a maximal independent set IS, which provides the
desired solution to the facility location problem (where each client is assigned to the closest facility in IS).

We remark that the pruning phase of JV differs from the one of JV(§) only in the definition of H, where condition (2)
is not required to hold (or, equivalently, JV behaves like JV (4o0) for A > 0).

2.2. The analysis in [2]

The general goal is to show that
Y e 1) < p()_aj—AlIS),
jeD jeD
for some p > 1 as small as possible. This shows that the algorithm is an LMP p-approximation for the problem. It is
sufficient to prove that, for each client j, one has
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c(j,IS)
P

<aj— Y (@j—c(.D))=a;— Y max{0.a;—c(j.D}

ieN(HNIS iels

Let S=N(j)NIS and s = |S|. We distinguish 3 cases depending on the value of s.

CaseA:s=1 Let S={i*}. Then for any p > 1,
c(j,1S) . . .
——— =¢(j, IS) =c(j,i") = aj — (@) — c(j, i")).

Case B: s > 1 Here we use the properties of Euclidean metrics. The sum ;s c(j, i) is the sum of the squared distances
from j to the facilities in S. This quantity is lower bounded by the sum of the squared distances from S to the centroid
p of S. Recall that 3" s c(i, i) = 2 36 Sies €(i, i'). We also observe that, by construction, for any two distinct i, i € IS
one has

c(i,i") > § - min{t;, ty} > 8 - aj,

where the last inequality follows from the fact that j is contributing to the opening of both i and i’. Altogether one obtains

2_cU:D ZZC(I’L’D:%ZZC(LV) > %

ieS ieS ieS i'eS

Thus
S —cGiin=6-22"Da— 502+ 2 P 2 - Oy
P 2 2 2 2

Using the fact that o > c(j, i) for all i € S, hence «; > c(j, IS), one gets

1) . 5>2 §
(G = De(19) 'S (5 — e,
We conclude that

1) 1) $
D@ = e D) + (5 = De( 1) < @ = D)ej + (5 — Dej =a.

ieS

This gives the desired inequality assuming that p > 5/21—71

Case C: s =0 Consider the witness i = w(j) of j. Notice that aj > t; and aj > c(j, i) =d?(j, i). Hence

d(j, i) + v/8ti < (1 +/8) ;.

If i €IS, then d(j, IS) <d(j, i). Otherwise there exists i’ € IS such that d2(i, i) < § min{t;, ty} < 8t;. Thus d(j, IS) <d(j,i) +
d(, i) <d(j, i) + +/3t;. In both cases one has d(j, IS) < (1+ +/3)./a;, hence

c(j, 1) < (1 + V&) *a;.
This gives the desired inequality for p > (1 + +/8)2.

Fixing 8 Altogether we can set p = max{m%l, (1+ +/8)2}. The best choice for § (namely, the one that minimizes p) is the

solution of 5/2% = (1+ +/8)2. This is achieved for § ~2.3146 and gives p ~ 6.3574.

2.3. Arefined analysis

We refine the analysis in Case B as follows. Let A =3, _¢c(j,i). Our goal is to upper bound

c(j,S) _ c(j,S) _ c(j,S)
o —Yies(aj—c(j, D) Yiesc(, D) —(s—Daj A—(s—Daj

Instead of using the upper bound c(j, S) < o we use the average

o1 A
¢, =Y el =—=

; s’
ieS
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Then it is sufficient to upper bound

1 A
SA—(s—Daj’

1 —(—Daj

The derivative in A of the above function is =y

< 0. Hence the maximum is achieved for the smallest possible

value of A. Recall that we already showed that A > % Hence a valid upper bound is
1 Sl 182 s 54
S (5*12)50‘)' — (s — D sé/2—1 = §/2-1

This imposes p > 5/82/%1 rather than p > 5/2%1 in Case B. Notice that this is an improvement for § < 4. The best choice

of § is now obtained by imposing % = (1 + /3)% This gives § = 12+ V3 —2v2 + V3 +242) ~2.1777 and p =

2
(1 +\/%(2+ V3-242+ 3 +2ﬁ)) <6.12903.

2.4. From facility location to k-means

2
We can use the refined p := <1 + \/%(2 + \3/3 —2V2+ \3/3 + Zﬁ)) approximation for Euclidean Facility Location from

previous section to derive a p+¢ approximation for Euclidean k-Means, for any constant ¢ > 0. Here we follow the approach
of [2] with only minor changes. In more detail, the authors consider a variant of the FL algorithm described before, whose
approximation factor is p + ¢ rather than p. A careful use of this algorithm leads to a solution opening precisely k facilities,
which leads to the desired approximation factor. In their analysis the authors use slight modifications of the inequality
1+ JS)Ja_j >d(j, i) + +/8t; (coming from Case C, which is the same in their and our analysis). The goal is to prove that
the modified algorithm is p 4+ ¢ approximate. Here § and p are used as parameters. Therefore it is sufficient to replace their
values of these parameters with the ones coming from our refined analysis. The rest is identical.

3. Lower bound on the integrality gap

In this section we describe our lower bound instance for the integrality gap of LPy peans- It iS convenient to consider
first the following slightly different relaxation, based on clusters (with w¢ as defined in Section 1):

: !
min Z WcXc LPy Means
ceC

s.t. Z xc>1 VjeD
CeC:jeC

Zxcsk

CceC
xc>0 VCeC

Here C denotes the set of possible clusters, i.e. the possible subsets of points. In an integral solution xc = 1 means that
cluster C is part of our solution.

Our instance is on the Euclidean plane, and its points are the (10) vertices of two regular pentagons of side length 1.
These pentagons are placed so that any two vertices of distinct pentagons are at large enough distance M to be fixed later.
Here k = 5. We remark that our argument can be easily extended to an arbitrary number of points by taking 2h such
pentagons for any integer h > 1 so that the pairwise distance between vertices of distinct pentagons is at least M, and
setting k = 5h.

A feasible fractional solution is obtained by setting xc = 0.5 for every C consisting of a pair of consecutive vertices in
the same pentagon (so we are considering 10 fractional clusters in total). Obviously this solution is feasible. The cost w¢ of
each such cluster C is 2(0.5)2 = 0.5. Hence the cost of this fractional solution is 10-0.5-0.5 = %
Next consider the optimal integral solution, consisting of 5 clusters. Recall that the radius of each pentagon (i.e. the

distance from a vertex to its center) is r = /ﬁ ~0.851 and the distance between two non-consecutive vertices in the

same pentagon is d = @ ~1.618. A solution with two clusters consisting of the vertices of each pentagon costs 10r2.

Any cluster involving vertices of distinct pentagons costs at least M2/2, hence for M large enough the optimal solution
forms clusters only with vertices of the same pentagon. In more detail the optimal solution consists of x € {1, 2, 3, 4}
clusters containing the vertices of one pentagon and 5 — x clusters containing the vertices of the remaining pentagon.

5



E. Grandoni, R. Ostrovsky, Y. Rabani et al. Information Processing Letters 176 (2022) 106251

Let w(x) be the minimum cost associated with one pentagon assuming that we form x clusters with its vertices. Clearly
w(l) = 5r2 f Regarding w(4), it is obviously convenient to choose two consecutive vertices in the unique cluster of

size 2. Thus w(4) =1/2. For x € {2, 3}, we note, as is easy to verify, that clusters with consecutive vertices are less expensive
2
than the alternatives. For w(2), one might form one cluster of size 1 and one of size 4. This would cost 3(]+d 15+3I

. . . . 2
Alternatively, one might form one cluster of size 2 and one of size 3, at smaller cost % + % = %. Thus w(2) = %.

For x = 3, one might form two clusters of size 1 and one of size 3, or two clusters of size 2 and one of size 1. The associated
cost in the two cases is 2+d >1and 2-5 =1, resp. Hence w(3) = 1. So the overall cost of the optimal integral solution is

min{w(1) + w(4), w(2) + w(3)} —w2)+ w(3) 16495 Thus the integrality gap of LP ;... is at least 1645 . 2 — 16445

Consider next LPy_peans- Here a technical compllcatlon comes from the definition of F which is not part of the mput
instance of k-Means. The same construction as above works if we let F contain the centers of mass of any set of 2 or
3 points. Notice that this is automatically guaranteed by the construction in [11] for 16/ > 3. In this case the optimal
integral solutions to LPy_peans and LPk Means areé the same in the considered example. Furthermore one obtains a feasible
fractional solution to LPy peans Of cost 5/2 by setting y; = 0.5 for the centers of mass of any two consecutive vertices of
the same pentagon, and setting x;; = 0.5 for each point i and the two closest centers j with positive y;. This concludes the
proof of Theorem 2.
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