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In the Euclidean k-Means problem we are given a collection of n points D in an Euclidean 
space and a positive integer k. Our goal is to identify a collection of k points in the same 
space (centers) so as to minimize the sum of the squared Euclidean distances between each 
point in D and the closest center. This problem is known to be APX-hard and the current 
best approximation ratio is a primal-dual 6.357 approximation based on a standard LP for 
the problem [Ahmadian et al. FOCS’17, SICOMP’20].
In this note we show how a minor modification of Ahmadian et al.’s analysis leads to 
a slightly improved 6.12903 approximation. As a related result, we also show that the 
mentioned LP has integrality gap at least 16+

√
5

15 > 1.2157.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Clustering is a central problem in Computer Science, with many applications in data science, machine learning etc. One of 
the most famous and best-studied problems in this area is Euclidean k-Means: given a set D of n points (or demands) in R�

and an integer k ∈ [1, n], select k points S (centers) so as to minimize 
∑

j∈D d2( j, S). Here d( j, i) is the Euclidean distance 
between points j and i and for a set of points I , d( j, I) = mini∈I d( j, i). In other words, we wish to select k centers so as to 
minimize the sum of the squared Euclidean distances between each demand and the closest center. Equivalently, a feasible 
solution is given by a partition of the demands into k subsets (clusters). The cost wC of a cluster C ⊂ D is 

∑
j∈C d2(c, μ), 

where μ is the center of mass of C . We recall that wC can also be expressed as 1
2|C |

∑
j∈C

∑
j′∈C d2( j, j′). Our goal is to 

minimize the total cost of these clusters.
Euclidean k-Means is well-studied in terms of approximation algorithms. It is known to be APX-hard. More precisely, it is 

hard to approximate k-Means below a factor 1.0013 in polynomial time unless P = NP [6,16]. The hardness was improved 
to 1.07 under the Unique Games Conjecture [9]. Some heuristics are known to perform very well in practice, however 
their approximation factor is O (logk) or worse on general instances [3,4,17,21]. Constant approximation algorithms are 
known. A local-search algorithm by Kanugo et al. [15] provides a 9 + ε approximation.1 The authors also show that natural 
local-search based algorithms cannot perform better than this. This ratio was improved to 6.357 by Ahmadian et al. [1,2]
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using a primal-dual approach. They also prove a 9 + ε approximation for general (possibly non-Euclidean) metrics. Better 
approximation factors are known under reasonable restrictions on the input [5,7,10,20]. A PTAS is known for constant k [19]
or for constant dimension � [10,12]. Notice that � can be always assumed to be O (logn) by a standard application of the 
Johnson-Lindenstrauss transform [14]. This was recently improved to O (logk + log logn) [8] and finally to O (logk) [18].

In this paper we describe a simple modification of the analysis of Ahmadian et al. [2] which leads to a slightly improved 
approximation for Euclidean k-Means (see Section 2).

Theorem 1. There exists a deterministic polynomial-time algorithm for Euclidean k-Means with approximation ratio ρ + ε for any 
positive constant ε > 0, where

ρ :=
⎛
⎝1+

√
1

2
(2+ 3

√
3− 2

√
2+ 3

√
3+ 2

√
2)

⎞
⎠

2

< 6.12903.

The above approximation ratio is w.r.t. the optimal fractional solution to a standard LP relaxation LPk-Means for the 
problem (defined later). As a side result (see Section 3), we prove a lower bound on the integrality gap of this relaxation 
(we are not aware of any explicit such lower bound in the literature).

Theorem 2. The integrality gap of LPk-Means, even in the Euclidean plane (i.e., for � = 2), is at least 16+
√
5

15 > 1.2157.

1.1. Preliminaries

As mentioned earlier, one can formulate Euclidean k-Means in term of the selection of k centers. In this case, it is 
convenient to discretize the possible choices for the centers, hence obtaining a polynomial-size set F of candidate centers, 
at the cost of an extra factor 1 + ε in the approximation ratio (we will neglect this factor in the approximation ratios since 
it is absorbed by analogous factors in the rest of the analysis). In particular we will use the construction in [11] (Lemma 24) 
that chooses as F the centers of mass of any collection of up to 16/ε2 points with repetitions. In particular |F | = O (n16/ε

2
)

in this case.
Let c( j, i) be an abbreviation for d2( j, i). Then a standard LP-relaxation for k-Means is as follows:

min
∑

i∈F, j∈D
xij · c( j, i) LPk-Means

s.t.
∑
i∈F

xij ≥ 1 ∀ j ∈ D

xij ≤ yi ∀ j ∈ D,∀i ∈ F∑
i∈F

yi ≤ k ∀ j ∈ D,∀i ∈ F

xij, yi ≥ 0 ∀ j ∈ D,∀i ∈ F

In an integral solution, we interpret yi = 1 as i being a selected center in S (i is open), and xij = 1 as demand j being 
assigned to center i.2 The first family of constraints states that each demand has to be assigned to some center, the second 
one that a demand can only be assigned to an open center, and the third one that we can open at most k centers.

For any parameter λ > 0 (Lagrangian multiplier), the Lagrangian relaxation LP (λ) of LPk-Means (w.r.t. the last matrix con-
straint) and its dual DP (λ) are as follows:

min
∑

i∈F, j∈D
xij · c( j, i) + λ ·

∑
i∈F

yi − λk LP (λ)

s.t.
∑
i∈F

xij ≥ 1 ∀ j ∈ D

xij ≤ yi ∀ j ∈ D,∀i ∈ F

xij, yi ≥ 0 ∀ j ∈ D,∀i ∈ F

2 Technically each demand is automatically assigned to the closest open center. However it is convenient to allow also sub-optimal assignments in the 
LP relaxation.
2
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max
∑
j∈D

α j − λk DP (λ)

s.t.
∑
j∈D

max{0,α j − c( j, i)} ≤ λ ∀i ∈ F (1)

α j ≥ 0 ∀ j ∈ D

Above max{0, α j −c( j, i)} replaces the dual variable βi j corresponding to the second constraint in the primal in the standard 
formulation of the dual LP. Notice that, by removing the fixed term −λk in the objective functions of LP (λ) and DP (λ), one 
obtains the standard LP relaxation LP F L(λ) for the Facility Location problem (FL) with uniform facility cost λ and its dual 
DP F L(λ).

We say that a ρ-approximation algorithm for a FL instance of the above type is Lagrangian Multiplier Preserving (LMP) if 
it returns a set of facilities S that satisfies:∑

j∈D
c( j, S) ≤ ρ(O P T (λ) − λ|S|),

where O P T (λ) is the value of the optimal solution to LP F L(λ).

2. A refined approximation for Euclidean k-means

In this section we present our refined approximation for Euclidean k-Means. We start by presenting the LMP approxi-
mation algorithm for the FL instances arising from k-Means described in [2] in Section 2.1. We then present the analysis 
of that algorithm as in [2] in Section 2.2. In Section 2.3 we describe our refined analysis of the same algorithm. Finally, in 
Section 2.4 we sketch how to use this to approximate k-Means.

2.1. A primal-dual LMP algorithm for Euclidean facility location

We consider an instance of Euclidean FL induced by a k-Means instance in the mentioned way, for a given Lagrangian 
multiplier λ > 0.

We consider exactly the same Lagrangian Multiplier Preserving (LMP) primal-dual algorithm J V (δ) as in [2]. In more 
detail, let δ ≥ 2 be a parameter to be fixed later. The algorithm consists of a dual-growth phase and a pruning phase. 
The dual-growth phase is exactly as in the classical primal-dual algorithm JV by Jain and Vazirani [13]. We start with 
all the dual variables set to 0 and an empty set Ot of tentatively open facilities. The clients such that α j ≥ c( j, i) for 
some i ∈ Ot are frozen, and the other clients are active. We grow the dual variables of active clients at uniform rate until 
one of the following two events happens. The first event is that some constraint of type (1) becomes tight. At that point 
the corresponding facility i is added to Ot and all clients j with α j ≥ c( j, i) are set to frozen. The second event is that 
α j = c( j, i) for some i ∈ Ot . In that case j is set to frozen. In any case, the facility w( j) that causes j to become frozen is 
called the witness of j. The phase halts when all clients are frozen.

In the pruning phase we will close some facilities in Ot , hence obtaining the final set of open facilities I S . Here J V (δ)

deviates from J V . For each client j ∈ D, let N( j) = {i ∈ F : α j > c( j, i)} be the set of facilities i such that j contributed 
with a positive amount to the opening of i. Symmetrically, for i ∈ F , let N(i) = { j ∈ D : α j > c( j, i)} be the clients that 
contributed with a positive amount to the opening of i. For i ∈ Ot , we let ti = max j∈N(i) α j , where the values α j are 
considered at the end of the dual-growth phase. We set conventionally ti = 0 for N(i) = ∅. Intuitively, ti is the “time” when 
facility i is tentatively open (at which point all the dual variables of contributing clients stop growing). We define a conflict 
graph H over tentatively open facilities as follows. The node set of H is Ot . We place an edge between i, i′ ∈ Ot iff the 
following two conditions hold: (1) for some client j, j ∈ N(i) ∩ N(i′) (in words, j contributes to the opening of both i and 
i′) and (2) one has c(i, i′) ≤ δ · min{ti, ti′ }. In this graph we compute a maximal independent set I S , which provides the 
desired solution to the facility location problem (where each client is assigned to the closest facility in I S).

We remark that the pruning phase of J V differs from the one of J V (δ) only in the definition of H , where condition (2) 
is not required to hold (or, equivalently, J V behaves like J V (+∞) for λ > 0).

2.2. The analysis in [2]

The general goal is to show that∑
j∈D

c( j, I S) ≤ ρ(
∑
j∈D

α j − λ|I S|),

for some ρ ≥ 1 as small as possible. This shows that the algorithm is an LMP ρ-approximation for the problem. It is 
sufficient to prove that, for each client j, one has
3
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c( j, I S)

ρ
≤ α j −

∑
i∈N( j)∩I S

(α j − c( j, i)) = α j −
∑
i∈I S

max{0,α j − c( j, i)}.

Let S = N( j) ∩ I S and s = |S|. We distinguish 3 cases depending on the value of s.

Case A: s = 1 Let S = {i∗}. Then for any ρ ≥ 1,

c( j, I S)

ρ
≤ c( j, I S) = c( j, i∗) = α j − (α j − c( j, i∗)).

Case B: s > 1 Here we use the properties of Euclidean metrics. The sum 
∑

i∈S c( j, i) is the sum of the squared distances 
from j to the facilities in S . This quantity is lower bounded by the sum of the squared distances from S to the centroid 
μ of S . Recall that 

∑
i∈S c(μ, i) = 1

2s

∑
i∈S

∑
i′∈S c(i, i

′). We also observe that, by construction, for any two distinct i, i′ ∈ I S
one has

c(i, i′) > δ ·min{ti, ti′ } ≥ δ · α j,

where the last inequality follows from the fact that j is contributing to the opening of both i and i′ . Altogether one obtains
∑
i∈S

c( j, i) ≥
∑
i∈S

c(μ, i) = 1

2s

∑
i∈S

∑
i′∈S

c(i, i′) ≥ (s − 1)δα j

2
.

Thus ∑
i∈S

(α j − c( j, i)) ≤ (s − δ(s − 1)

2
)α j = (s(1 − δ

2
) + δ

2
)α j

δ≥2,s≥2≤ (2 − δ

2
)α j .

Using the fact that α j > c( j, i) for all i ∈ S , hence α j > c( j, I S), one gets

(
δ

2
− 1)c( j, I S)

δ≥2≤ (
δ

2
− 1)α j .

We conclude that∑
i∈S

(α j − c( j, i)) + (
δ

2
− 1)c( j, I S) ≤ (2− δ

2
)α j + (

δ

2
− 1)α j = α j .

This gives the desired inequality assuming that ρ ≥ 1
δ/2−1 .

Case C: s = 0 Consider the witness i = w( j) of j. Notice that α j ≥ ti and α j ≥ c( j, i) = d2( j, i). Hence

d( j, i) + √
δti ≤ (1+ √

δ)
√

α j .

If i ∈ I S , then d( j, I S) ≤ d( j, i). Otherwise there exists i′ ∈ I S such that d2(i, i′) ≤ δmin{ti, ti′ } ≤ δti . Thus d( j, I S) ≤ d( j, i) +
d(i, i′) ≤ d( j, i) + √

δti . In both cases one has d( j, I S) ≤ (1 + √
δ)

√
α j , hence

c( j, I S) ≤ (1+ √
δ)2α j .

This gives the desired inequality for ρ ≥ (1 + √
δ)2.

Fixing δ Altogether we can set ρ = max{ 1
δ/2−1 , (1 + √

δ)2}. The best choice for δ (namely, the one that minimizes ρ) is the 
solution of 1

δ/2−1 = (1 + √
δ)2. This is achieved for δ 
 2.3146 and gives ρ 
 6.3574.

2.3. A refined analysis

We refine the analysis in Case B as follows. Let 	 = ∑
i∈S c( j, i). Our goal is to upper bound

c( j, S)

α j − ∑
i∈S(α j − c( j, i))

= c( j, S)∑
i∈S c( j, i) − (s − 1)α j

= c( j, S)

	 − (s − 1)α j
.

Instead of using the upper bound c( j, S) ≤ α j we use the average

c( j, S) ≤ 1

s

∑
c( j, i) = 	

s
.

i∈S

4
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Then it is sufficient to upper bound

1

s

	

	 − (s − 1)α j
.

The derivative in 	 of the above function is 1
s

−(s−1)α j

(	−(s−1)α j)
2 < 0. Hence the maximum is achieved for the smallest possible 

value of 	. Recall that we already showed that 	 ≥ (s−1)δα j
2 . Hence a valid upper bound is

1

s

(s−1)δα j
2

(s−1)δα j
2 − (s − 1)α j

= 1

s

δ/2

δ/2− 1

s≥2,δ≥2≤ δ/4

δ/2− 1
.

This imposes ρ ≥ δ/4
δ/2−1 rather than ρ ≥ 1

δ/2−1 in Case B. Notice that this is an improvement for δ < 4. The best choice 

of δ is now obtained by imposing δ/4
δ/2−1 = (1 + √

δ)2. This gives δ = 1
2 (2 + 3

√
3− 2

√
2 + 3

√
3+ 2

√
2) 
 2.1777 and ρ =(

1+
√

1
2 (2+ 3

√
3− 2

√
2+ 3

√
3+ 2

√
2)

)2

< 6.12903.

2.4. From facility location to k-means

We can use the refined ρ :=
(
1+

√
1
2 (2+ 3

√
3− 2

√
2+ 3

√
3+ 2

√
2)

)2

approximation for Euclidean Facility Location from 

previous section to derive a ρ+ε approximation for Euclidean k-Means, for any constant ε > 0. Here we follow the approach 
of [2] with only minor changes. In more detail, the authors consider a variant of the FL algorithm described before, whose 
approximation factor is ρ + ε rather than ρ . A careful use of this algorithm leads to a solution opening precisely k facilities, 
which leads to the desired approximation factor. In their analysis the authors use slight modifications of the inequality 
(1 + √

δ)
√

α j ≥ d( j, i) + √
δti (coming from Case C, which is the same in their and our analysis). The goal is to prove that 

the modified algorithm is ρ + ε approximate. Here δ and ρ are used as parameters. Therefore it is sufficient to replace their 
values of these parameters with the ones coming from our refined analysis. The rest is identical.

3. Lower bound on the integrality gap

In this section we describe our lower bound instance for the integrality gap of LPk-Means. It is convenient to consider 
first the following slightly different relaxation, based on clusters (with wC as defined in Section 1):

min
∑
C∈C

wCxC LP ′
k-Means

s.t.
∑

C∈C: j∈C
xC ≥ 1 ∀ j ∈ D

∑
C∈C

xC ≤ k

xC ≥ 0 ∀C ∈ C

Here C denotes the set of possible clusters, i.e. the possible subsets of points. In an integral solution xC = 1 means that 
cluster C is part of our solution.

Our instance is on the Euclidean plane, and its points are the (10) vertices of two regular pentagons of side length 1. 
These pentagons are placed so that any two vertices of distinct pentagons are at large enough distance M to be fixed later. 
Here k = 5. We remark that our argument can be easily extended to an arbitrary number of points by taking 2h such 
pentagons for any integer h ≥ 1 so that the pairwise distance between vertices of distinct pentagons is at least M , and 
setting k = 5h.

A feasible fractional solution is obtained by setting xC = 0.5 for every C consisting of a pair of consecutive vertices in 
the same pentagon (so we are considering 10 fractional clusters in total). Obviously this solution is feasible. The cost wC of 
each such cluster C is 2(0.5)2 = 0.5. Hence the cost of this fractional solution is 10 · 0.5 · 0.5 = 5

2 .
Next consider the optimal integral solution, consisting of 5 clusters. Recall that the radius of each pentagon (i.e. the 

distance from a vertex to its center) is r =
√

2
5−√

5

 0.851 and the distance between two non-consecutive vertices in the 

same pentagon is d =
√
5+1
2 
 1.618. A solution with two clusters consisting of the vertices of each pentagon costs 10r2 . 

Any cluster involving vertices of distinct pentagons costs at least M2/2, hence for M large enough the optimal solution 
forms clusters only with vertices of the same pentagon. In more detail the optimal solution consists of x ∈ {1, 2, 3, 4}
clusters containing the vertices of one pentagon and 5 − x clusters containing the vertices of the remaining pentagon. 
5
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Let w(x) be the minimum cost associated with one pentagon assuming that we form x clusters with its vertices. Clearly 
w(1) = 5r2 = 10

5−√
5
. Regarding w(4), it is obviously convenient to choose two consecutive vertices in the unique cluster of 

size 2. Thus w(4) = 1/2. For x ∈ {2, 3}, we note, as is easy to verify, that clusters with consecutive vertices are less expensive 
than the alternatives. For w(2), one might form one cluster of size 1 and one of size 4. This would cost 3(1+d2)

4 = 15+3
√
5

8 . 
Alternatively, one might form one cluster of size 2 and one of size 3, at smaller cost 12 + 2+d2

3 = 10+√
5

6 . Thus w(2) = 10+√
5

6 . 
For x = 3, one might form two clusters of size 1 and one of size 3, or two clusters of size 2 and one of size 1. The associated 
cost in the two cases is 2+d2

3 > 1 and 2 · 1
2 = 1, resp. Hence w(3) = 1. So the overall cost of the optimal integral solution is 

min{w(1) + w(4), w(2) + w(3)} = w(2) + w(3) = 16+√
5

6 . Thus the integrality gap of LP ′
k-Means is at least 16+

√
5

6 · 2
5 = 16+√

5
15 .

Consider next LPk-Means. Here a technical complication comes from the definition of F which is not part of the input 
instance of k-Means. The same construction as above works if we let F contain the centers of mass of any set of 2 or 
3 points. Notice that this is automatically guaranteed by the construction in [11] for 16/ε2 ≥ 3. In this case the optimal 
integral solutions to LPk-Means and LP ′

k-Means are the same in the considered example. Furthermore one obtains a feasible 
fractional solution to LPk-Means of cost 5/2 by setting yi = 0.5 for the centers of mass of any two consecutive vertices of 
the same pentagon, and setting xij = 0.5 for each point i and the two closest centers j with positive y j . This concludes the 
proof of Theorem 2.
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