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Using exact diagonalization, we study the spin-orbit coupling and interaction-induced mixing
between t2, and ey d-orbital states in a cubic crystalline environment, as commonly occurs in
transition metal oxides. We make a direct comparison with the widely used ¢24 only or ey only model,
depending on electronic filling. We consider all electron fillings of the d-shell and compute the total
magnetic moment, the spin, the occupancy of each orbital, and the effective spin-orbit coupling
strength (renormalized through interaction effects) in terms of the bare interaction parameters,
spin-orbit coupling, and crystal field splitting, focusing on the parameter ranges relevant to 4d and
5d transition metal oxides. In various limits we provide perturbative results consistent with our
numerical calculations. We find that the to4-e4 mixing can be large, with up to 20% occupation of
orbitals that are nominally “empty”, which has experimental implications for the interpretation of
the branching ratio in experiments, and can impact the effective local moment Hamiltonian used
to study magnetic phases and magnetic excitations in transition metal oxides. Our results can aid
the theoretical interpretation of experiments on these materials, which often fall in a regime of

intermediate coupling with respect to electron-electron interactions.

I. INTRODUCTION

Transition metal oxides have undergone intensive
study because of their remarkably rich phase dia-
grams and sensitivity to external fields, strain, disor-
der, and doping.[1-4] High-temperature superconductors
(e.g., cuprates) and colossal magnetoresistance materials
(e.g., manganites) are two notable examples, but both of
these have light transition elements drawn from the 3d
series.[5, 6] On the other hand, the study of topological
insulators in recent years[7—10] has brought attention to
the importance of large spin-orbit coupling, which may
induce topological phase transitions in materials. As a
result, some focus has shifted to the heavier transition
metals from the 4d and 5d series, which have significantly
enhanced spin-orbit coupling relative to those in the 3d
series.[11-13]

Iridates, in particular, have undergone much theo-
retical and experimental study.[11-13] An interesting
body of theoretical studies has suggested that novel
interaction-driven topological states in which the quan-
tum numbers of the electron are fractionalized may
appear.[14, 15] However, in some of the iridates even
the nature of the conventional order, such as the mag-
netic order (and the underlying microscopic spin Hamil-
tonian), is not easy to determine,[16-24] in part due to
the large neutron absorption cross-section which makes
neutron scattering experiments challenging.[25] An ex-
perimental tool known as resonant inelastic X-ray scat-
tering (RIXS) is particularly well suited to studies of the
iridates.[26-32] While there is some understanding of the
microscopic details revealed in the RIXS signal, the the-
ory is still under development.[33] Our work will facilitate
that development.

A further challenge to understanding the iridates and
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other 4d/5d transition metal oxides is that the materi-
als fall into a regime of comparable energy scales where
it is difficult to argue a priori that a particular term in
the Hamiltonian is small compared to the others: The
typical kinetic energy, interaction energies, Hund’s cou-
pling, spin-orbit coupling, and crystal field splitting are
all on the scale of an electron volt.[11-13] With respect
to theoretical analysis, this means it is not clear if one
should approach the iridates from a weak-coupling band-
like description in which correlations are included within
the band description,[34-38] or from the strong-coupling
limit in which a local moment model[39-47] is natural to
describe the various types of magnetic orders that typ-
ically occur in the 4d/5d transition metal oxides (char-
acteristic magnetic transition temperatures are on the
order of 100K).[11-13] In this work, we start from an
atomic limit of the transition metal ions and treat the
interaction effects non-pertubatively using exact diago-
nalization. In this way, we are able to work within an
intermediate regime that reduces to a tight-binding-type
Hamiltonian (for multiple ions) in the limit of vanishing
interactions and a local moment model in the limit of
strong interactions.

In a large class of transition metal oxides, the local
oxygen environment of the transition metal ions is an
octahedral cage (see Fig. 1) that produces a cubic en-
vironment that splits the d-orbitals into a lower lying
triply degenerate to, set of orbitals and a higher lying
doubly-degenerate e, set of orbitals. A feature that is
shared by nearly all weak (aside from ab initio studies)
and strong-coupling theoretical studies of the heavy tran-
sition metal oxides is that they assume the t24-e, mixing
is negligible.[39-47] In addition, many theoretical studies
motivated by the iridates assume the infinite spin-orbit
coupling limit which splits the t, orbitals into a total
angular moment Jog = 3/2 and Jog = 1/2 set of states
(that do not mix). For iridates with a nominal d-shell
filling of 5 electrons, this results in a half-filled Jog = 1/2
band, and thus reduces the Hamiltonian to a one-band
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model that often helps theoretical studies that rely on
methods developed in the context of the cuprates.

In this work, we revisit the assumption of negligible
tag-€4 mixing and study the single ion limit in detail us-
ing exact diagonalization that allows a non-perturbative
treatment of interaction effects. We consider all d-shell
fillings and find the neglect of ¢y4-e, mixing is not in
general justified, with the greatest mixing occurring for
fillings of 5,6, and 7 electrons. Our work has implications
for the interpretation of RIXS and X-ray absorption spec-
troscopy (XAS) data for the heavier elements with strong
spin-orbit coupling, and the spectra of transition metal
ions in oxides more generally. Our work can also be used
as a more realistic starting point for determining the best
form of the magnetic interactions between two nearby
ions: Exchange interactions, exchange anistropies, and
the size of local moments differ as a consequence of to4-
ey mixing.

Our paper is organized as follows. In Sec. II we sum-
marize the effects of a local cubic crystal field on the d-
orbital level structure of a transition metal ion. In Sec. ITI
we provide the details of the Hamiltonian with and with-
out t24-e4, mixing in the presence of spin-orbit coupling.
In Sec. IV and Sec. V we describe the interaction terms
and conserved quantities of the full system we study, and
in Sec. VI we present the results of our exact diagonaliza-
tion studies for all electron fillings. We present the main
conclusions of the work in Sec. VII.

II. OCTAHEDRAL CRYSTAL FIELDS
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FIG. 1. (Color online) Symmetry lowering and level splitting
in a cubic crystal field environment. A transition metal ion
in free space has a full rotational SO(3) symmetry reduced
to octahedral symmetry Op. The five-fold degenerate d-levels
in the vacuum split into a lower-lying triply degenerate tag4,
and a higher-lying doubly degenerate e, set of levels, with an
energy difference A (called the crystal field splitting) between
them.

A transition metal ion in free space has rotational sym-
metry SO(3) and therefore five-fold degenerate d-orbitals.
Frequently, transition metal ions in crystals are held in-

side regular octahedral cages, surrounded by ligands. A
common type of these ligands is oxygen, which form the
large class of transition metal oxides. When a free ion
is placed inside an octahedral cage, the symmetry is re-
duced from the full rotational SO(3) symmetry of the
d-orbital states in the free space, to the symmetry group
of the octahedron, SO(3)— Op,. This consists of all the
rotations which take the octahedron into itself. Thus, Oy,
is a subgroup of the rotation group: O CSO(3). Hence,
any representation of SO(3) provides a representation of
O},. However, irreducible representations of SO(3) will
become reducible representations of Op. Thus, the five-
fold degeneracy of the d-states is lifted by the crystal
field and the d-levels are split into a higher-lying two-
fold degenerate e, and a lower-lying three-fold degener-
ate to, manifold, as seen in Fig.1, where A is the en-
ergy difference between them. The oxygen ligands are
approximated as point charges siting in the corners of
the octahedral cages. The o4 d-orbital charge distribu-
tions point in between the point charges of the oxygens,
and the e, states point towards the point charges, raising
their energy relative to the ¢y, levels, as shown in Fig. 2.

dy2oy2 dz?

 d-orbitals pointing directly at ligands,
are repelled more from them.

d-orbitals pointing in-between ligands,
are repelled less from them.

FIG. 2. (Color online) The t2, wavefunctions have electron
clouds pointing in between the point charges of the ligands,
thus they repel less and have lower energy, compared to the
ey states which point towards the oxygen ligands.

The to; and e, orbitals are formed by linear
combinations[5] of the spherical harmonics ¥}, with the
orbital angular momentum [ = 2. The magnetic quan-
tum number m takes values from —[ to [. For ¢y, these
orbitals states are:

1

dy = —m(yzl +Y;h,
1 _
dey = _m(YQl - Y2 1)a (1)
1 _
dmy = ﬁ(yzg -Y, 2)7



and for e, they are:

d3227r2 = Yv207
1

V2

The crystal field term in the Hamiltonian, Hcp, can
be written in a diagonal form as (taking the energy of
the to, states as the zero of energy),

(Y5 + Y5 %) ®

dpo_yp =

Her = Z A(|322 = r?,0)(32% — r?, o
o=+1/2 (3)
+ 2?2 — y?, o)z — 2, o),

where o = £1/2 refers to the spin of the electron in a
given orbital state.

III. SPIN-ORBIT COUPLING IN A CRYSTAL
FIELD

The spin-orbit coupling strength is comparable to
other energy scales in heavy transition metal oxides.[11—-
13] In its presence the orbital angular momentum and
spin angular momentum are no longer independently con-
served quantities. Moreover, the spin-orbit coupling can
also induce mixing between the ¢z, and e, manifolds.

The matrix elements of orbital angular momentum [
for a single electron in the basis of the ¢34, Eq. (1), and
eg, Eq.(2), states: {dy.,d.z,dyy,dss2_r2,dy2_y2}, and
that of a single electron in atomic p-orbitals in the basis
{Pz, Dy, p-} are:[48]

[0 0 0|-v3i —i
0 0 il 0 0 00 0
l.=| 0 —i 0] 0 0 [,,=100—i], 4
V3 0 0] 0 0 04i 0
i 00/ 0 0|
[0 0 —il 0 0]

0 0 0 |vV3i —i 0 0 i
ly=|i 0 0]0 o= o000], (5
0—v3i 0|0 0 —-i 00

0 i 0|0 O]
0 i 0100
-0 0100 0 —i 0
IL=|100 002 |,.l=|4di 00 (6)
00 0100 000
0 0 —2i(0 0

By comparing the matrix elements of [ in the ¢y, states
with those in the p-states in free atoms, one can map the
former | = 2 ty4-states onto the latter p-states with | =
1 using the relation:

Utag) = —U(p)- (7)

This relation is called the T-P equivalence, [48, 49] ac-
cording to which the orbital angular momentum in ta,
states is partially quenched from | = 2 to [ = 1. When
the cubic crystal field splitting is large, one can neglect
the off-diagonal elements between to, and e, manifolds
and the T-P equivalence can be conveniently used. Note,
however, that the spin-orbit coupling generally mixes the
tag and e, states so if the spin-orbit coupling is large
enough compared to the crystal field splitting (and we
will see it can be enhanced by electron-electron interac-
tions) then the mixing may have non-negligible effects.
Using the expression of the orbital angular momentum
l of Egs.(4)-(6) and the Pauli matrices, we can construct
the spin-orbit interaction matrix. Written in the basis
uh= {dlzr’d;zwdlyu‘l;Z—ﬂudLZ‘—y%’

tot gt it t : ‘
Aoy sy Ay d322—r21" dxz_sz} it becomes,

Hsoc = %‘I’Ul‘lh (8)

where W is a row vector, and W is the complex conjugate
column vector, and

0 —i i| V3 -1
;0 —1|—iv3 —i
- -1 0| 0 —2 0
V3i/3 0] 0 0
-1 4 2| 0 0

0 i i | =3 1 ’
- 0 1 |—iv3 —i
0 —i 1 0 0
-3 V3 0 0 0
1 1 =23 0 0

expresses the spin-orbit coupling in the full 10 states of
the t9, and e, manifolds, including spin. The matrix
elements are split into terms that act only on the to4-
subspace, Hé%‘)’c, terms that acts only one the e; sub-
space, Hgl o, and terms that have matrix elements be-
tween tog and e, states, Héz’o"g . The angular momen-
tum matrix elements in the e, states are zero. Thus, the
matrix elements of the H;f)c are zero as well.
The full Hamiltonian of the one-electron states is

H = Hsoc + Her. (10)

In the T-P equivalence one neglects the off-diagonal ma-
trix elements of the angular momentum, Hég’g “ that
connect the ta4-¢4 subspaces,

Hrp = HE + HS o + Her, (11)

which is given from the expressions above without the
tag — g mixing. Diagonalizing Eq.(11), the states evolve
as shown in Fig. 3 via the green lines. In particular, the e,
states are not affected by the spin-orbit coupling, and are
separated from the to, states by an energy difference A.
On the other hand, the ¢2, states are split into eigenstates



of energy =1 = ¢:

o = 3m =) = %uym f|dm> %dzyw,
o = 5m = 5) = Z=bdyes) + Jeldens) + el
(12)
and eigenstates of energy €Ju=3 = —%:
o = 5om = =3 = 5ldye) = =ldsy)
| Jeft = g,m = g) = —%\dyzﬁ - %ldm,ﬁ,

3
|J8ff = §7m = 77> \[|dy2T> \[ldrzT \/7|d7"y¢

3 1
| et = =, m =

9’ §> = _%‘dyzw - %|d12¢> + \/;|dryT>~

(13)

The results in Eq.(12) and Eq.(13) are commonly used
in the literature. Beyond the T-P equivalence one needs
to consider the neglected mixing of the t24-¢, subspaces
of the spin-orbit coupling Hézo"a = Here, we consider it
as a perturbation H; = Héfogc_eg to the Hy = Hpp T-P

equivalence terms of Eq. (11).
Writing Hy+ H; in the diagonal basis of Hy, we have in
the basis & = {\f 77) %,Jr%), |dg,2_y2, —1),
3

2 9
|dx27y 7_2>’|2’ 2>’ g’_ > |d32277‘27+%>7|27+% )
|dw2—y27+%>}7

Ho+H, = gCIﬁB@ (14)

where ® is a row vector, and ® is a complex conjugate
column vector,

21 0 00 0O
o] -1 6] 0 0
0|—iv6 6 | 0 0 0
0] 0 0 | -1 —iv6
|00 0 |iv6 6
2T 0 o0 [ 0o 0 |
0] -1 —iv6| 0 0
0 0liv6 ¢ 0 0
ol o 0 | -1 /6
0| 0 0 |—iv6 6

(15)
where § = 2A/¢. Note that H, are the diagonal ma-
trix elements, and H; are the non-diagonal ones, of the
B-matrix, Eq.(15). One sees that there are no matrix
elements involving |Jeg = 2, m = £1) states. Thus they
remain unaffected. However, the |Jeg = %> and e4 sub-
spaces are mixed. Thus, going beyond the T-P equiva-
lence involves mixing the upper and the lower states as
seen in Fig. 3 indicated with red lines. Hence the evolu-
tion of the t5, and e, states in the presence of spin-orbit

eg '743{/2/—_—1—‘~,\_~~‘ J=5/2
e g . T
5d /’, \ ’ -7 — \\\ 5d
L NS ‘Lff:llz“/ .
—— A Rt ¢ P—
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FIG. 3. (Color online) Evolution of d-orbital states under a
cubic crystal field and spin-orbit coupling. The green lines
correspond to the commonly used T-P equivalence that ne-
glects ta4-e4 mixing by spin-orbit coupling. The red lines in-
dicate an extra mixing contribution going beyond TP equiva-

lence, of the Jog = 3/2 by a factor of :I:z\/zc/2+A|eg>
the upper quartet ey, by the same factor of Jeg = 3/2 states,
as shown in Egs. (16), (17) The energies of the lower quar-

tet is shifted down by —

shifted up by +5
not affected.

and to

2 C/2+A’ and of the upper quartet is

5 (/22+A Notice that the Jeg = 1/2 states are

coupling is more complex than the commonly used T-P
equivalence assumes.

To first order in the wavefunctions, the lower quartet
is modified by

3
|chf*§a - \/7C/2+A| 322—r2, T3 >
(16)
3
eff = 5, M = dy2_ )
e = \fc/2+A| )
and to second order in energy we find a shift by—%c/gﬁ.
The upper quartet is modified by
1 13 < 3 3
d3,2_p2,F=) =+ P a—— eff = 5> ==x7),
| 3z2—r2 :F2> Z\/QA—FC/Q'JH D) m 2> (17)
1 13 < 3 1
dy2_ iy o———|Jeg = =, m = %),
o) 2iyf 3 S = Sm= )
with shifts in energies of —I—%ﬁz/z. Note for ¢

0.5eV, A = 3eV typical values for 5d systems, the mixing
is \/gwﬁ ~ 0.19, a 20% effect.

IV. INCLUSION OF ELECTRON-ELECTRON
INTERACTION

Having treated the octahedral crystal field Hcp in
Sec. II and the spin-orbit interaction Hgoc in Sec. III,
we are now ready to add the electron-electron interac-
tions, H._.. We are especially interested in how electron-
electron interactions will interplay with the ¢34-e, mixing
highlighted in the previous section. This mixing is often
ignored in the literature.




A. T-P equivalence in 3d systems

In the presence of electron-electron interactions, the
Hamiltonian of the ion is

H = Hcr 4+ Hsoc + He—e, (18)

which contains the crystal field part Hcg, the spin-orbit
part Hsoc, and the interacting part H._,. Within the
crystal field approximation several different cases arise:
weak, intermediate, and strong crystal field.[49, 50] The
simplest is the weak crystal field case,

Ee—e >> Ecr > Esoc,

where the energy of the interacting part £._. is much
larger than the crystal field energy terms Ecp, and the
spin-orbit coupling is smaller still. The intermediate
crystal field case is

Ee—e > EcF > Es00C,

which follows the same order, but the crystal fields are
no longer much weaker than the electron-electron inter-
actions.

In 3d systems, the on-site Coulomb interaction is on
the order of U= 3-10 eV, crystal fields are A=1.5-2 eV,
Hund’s coupling is Jg=0.8-0.9 eV, and the spin-orbit
coupling is in the order of 0.01eV-0.1eV (A=0.02 eV for
Ti, and A= 0.07 eV for heavier Co).[5] Thus, 3d systems
fall into the weak and intermediate crystal field regimes.

Following the above scheme from the most dominant
term to the weakest, we have the interacting Hamilto-
nian, which is rotationally invariant with spin indepen-
dent (Coulomb) interactions. Thus, the orbital angular
momentum L and spin .S are conserved quantum numbers
and can be used to label the states. The next important
term, the crystal field, is not rotationally invariant and
mixes different L terms. Because the energy difference of
different L terms is 3-10 eV, and the crystal field is 1.5-2
eV, as a first approximation we neglect the mixing of dif-
ferent L values, and we consider the effect of crystal field
splitting within the ground state manifold of the L term,
following the conventions of the field. The smallest term
in the hierarchy, the spin-orbit coupling, mixes states of
different crystal field levels (t24 and e, in our case), and
terms of different L levels as well, but we neglect those
and only include the splitting within the ground state
multiplet of crystal field split levels.

Since the electron-electron interaction is the most dom-
inant term in the above hierarchy and the crystal field
mixes states within a given (L,S) term, Hund’s first
and second rule are valid even in the presence of crys-
tal fields. This means that 3d ions can form high spin
structures, where the 4** and 5" electrons go into the
eg orbitals, as indicated from Hund’s first rule of max-
imal spin. The condition for the low-spin to high-spin
transition where the 4" electron prefers to go into the €g
orbitals is approximately Acp =~ 3Jy (larger Jy favors a

high-spin configuration, smaller Jg a low-spin configura-
tion). Since Acp=1.5-2 ¢V and Jy=0.8-0.9¢V, this con-
dition is satisfied. However, since crystal fields dominate
over the spin-orbit coupling, Hund’s third rule ceases to
apply. This means that though L and S remain valid
quantum numbers, and their values are still given by
Hund’s first and second rule, the total angular momen-
tum J is no longer a good quantum number.
In the case of strong crystal fields,

Ecr 2 Ee—e > Esoc;

the crystal fields are comparable to (or larger than) the
electron-electron interaction giving rise to Hund’s first
and second rule. Thus, they even mix states belonging
to different (L, S) terms. It is quite usual to find strong
crystal fields in 4d and 5d transition metal compounds.
On the other hand, there are only rare instances of in-
sulating solids where 3d ions are subject to such strong
crystal fields that even Hund’s first rule is put out of ac-
tion. In next section we will more extensively discuss the
case of 4d and 5d systems.

Regardless of the particular energy hierarchy that is
relevant, one has

[He—o + Hor, 8?1 =0, [He—e + Hcr, S*] =0,  (19)

so that §2 and S* commute with H,_, and Hcp since
they are spin independent. As a consequence, H._ +
Hep has a ground state with well defined spin quan-
tum number. This holds for arbitrary strength of the
Coulomb interaction (including none at all).

Summarizing, the ground state multiplet of H, . +
Hcr is only tog (for up to 6 electrons) if the ion is in
the low spin configuration. For finite spin-orbit coupling,
S and S* are no longer good quantum numbers. As
discussed in Sec. III, Hgoc splits into HéQOQC + Hé%"(;eg
(Hsle = 0). Since in 3d systems the spin-orbit cou-
pling is on the order of 0.02-0.07 eV and crystal fields
A = 1.5 — 2eV, the mixing of ¢y, and e, states in the
low-spin configuration will be on the order of (/A =~
0.02eV/2eV = 1/100 and can be neglected to first order.
Consequently, it is a good approximation in 3d systems
to neglect the off-diagonal matrix elements of angular
momentum in tz, systems and use the T-P equivalence.
This is no longer the case for the heavier transition ele-
ments.

B. Limitations of the T-P equivalence in 4d and 5d
systems

As one moves from 3d to 4d to 5d transition metals
the outermost electronic wavefunctions become more and
more extended, and thus scale of the typical Hubbard
U becomes smaller, reaching down to U=0.5-3eV in 5d
elements. The Hund’s coupling is reduced as well, to
Jg=0.6-0.7 €V in 4d elements and to Jg=0.5eV in 5d



elements. Similarly, the larger spatial extent of the out-
ermost electronic states increase the crystal field split-
ting to A=1-5eV in 5d elements. Heavier elements have
larger spin-orbit coupling, and its value is increased to
¢ = 0.1 — 1eV in 5d elements. These values bring the
4d/5d elements into the strong crystal field scenario men-
tioned in the previous section, where the energy scale of
the crystal fields is greater than or comparable to the
electron interactions.

Since &._. &~ EcF there is mixing of (L, S) terms. Due
to stronger crystal fields and smaller Hund’s coupling Jg,
even Hund’s first rule of maximal spin is violated in 4d
and 5d systems. Since A < 3Jy (the approximate crite-
rion with A = 3eV,Jg=0.5¢V) is not satisfied, a low-spin
tag ground state configurations are preferred. However,
a crucial difference of 4d/5d systems relative to their 3d
counterparts is the strong spin-orbit coupling.

To help understand the relevant physics, it is useful to
briefly consider 4f systems where,

Ee—e > Esoc > Ecr,

since the spin-orbit coupling is greater than crystal fields,
Hund’s third rule, takes precedence over lattice effects.
Crystal field mixing of different J-manifolds are dropped
in a first approximation and crystal field effects are con-
sidered only within a given J-manifold.

Returning to 5d systems, we have the following hier-
archy:

Ecr = Ee—e Z EsoC-

In this scenario, which occurs mainly in 5d systems and
is intermediate to 3d systems and 4f systems, all energy
scales are comparable, with spin-orbit coupling smaller,
but still the same order of magnitude as the others. None
of the approximations used in 3d and 4f systems work in
this regime. Therefore, in order to study this regime in
detail we turn to an exact diagonalization study.

As mentioned in Sec.ITI, the off-diagonal elements of
spin-orbit coupling mix the to4 and e, states. In 5d sys-
tems spin-orbit coupling is an order of magnitude greater
than 3d systems, and although crystal fields are larger
as well, they remain of the same order of magnitude.
Thus, the first order correction in perturbation theory of
the wavefunction due to t24-e, mixing coming from the
off-diagonal elements of the spin-orbit coupling is of the
order of (/A ~ 0.5/3 = 1/6. When electron-electron in-
teraction is present, the competition between the Hund’s
coupling Jy, and the crystal field strength A will reduce
further the energy difference between low spin states(of
tag only) and high spin states(tog — e4) inducing further
mixing. Therefore, it is not as small as in 3d systems
and neglecting the e, states by using the T-P equiva-
lence will result in more dramatic differences from the
full to4-e4 space of states.

V. MODEL AND CALCULATIONS

To study the mixing between t9, and e, orbitals, we use
a five-orbital model, taking in account all the d-orbitals.
Depending on the electron filling, we compare the five-
orbital model with a three-orbital t94-only model, or to a
two-orbital eg-only model. We compute various observ-
ables as a function of the mixing parameter (of to; and
ey states), which is the bare spin-orbit coupling strength,
¢. We do this for every electron filling, from one electron
to nine electrons.

We model the electron-electron interaction with the
Kanamori Hamiltonian,[5, 51]

H(Kanamori)
=U> fumthimy + U Ay
m m#m/
+ (U = Ju) D et —J Y dl dnydl dot
m<m/,o m#m/
+dg Y dl ol doydiy,

m#m/

(20)

where d(d') is the electron annihilation(creation) op-
erator, dy.,d.z, gy, d3.2_p2,dy2_ 2 are associated with
labels m,m’ = 1,2,3,4,5 respectively, and f,,, =
dl,odmo. For the three orbital ta,-only model m,m’ =
1,2,3 and for the two orbital e;-only model m, m' =4, 5.
We assume that the relation U = U’ + 2Jy is satisfied,
which is a good approximation for many materials.[5] We
take U’ = 1eV in all calculations, leaving only one free
parameter, the Hund’s coupling Jg. For the five-orbital
model, Eq.(20) is supplemented by Hcp, which is given
in the Eq. (3). The full Hamiltonian we consider is then

H = gKanamord) L I 4 Hyoe, (21)

with m,m’ =1-5. For the three-orbital ts,-only model

H = HFanamor) 4 [129  with m,m’ = 1,2,3, and for
the two-orbital eg-only model H = H (Kanamori) ith
m,m’ = 4,5. Using exact diagonalization we will com-
pare the results of the full Hamiltonian in Eq.(21) with
the to4-only model and the eg-only model.

_ We calculate expectation values of different operators
O, O = (¢Yo|Obg), where 1y is the ground state of
the many-electron system. We compute the expectation
value of the total spin angular momentum S2, the total
orbital angular momentum L2, the zero, the single, and
the double occupancies of different orbitals defined by[52]

Zi =1 —ng — nyy + ngpngy, (22)
S, = Nt + NG — 2N,y , (23)
Di = nnnu, (24)

where ¢ stands for the orbital index. The amplitudes of
the spin, orbital, and total angular magnetic moments,



respectively, are defined by Ms/up = | >, st|, Mi/pup =
|20, and Myor/ps = |32,(IL 4 sb)], where s and
% are the z components of the spin and orbital angular
momenta of the i*"-electron respectively, and the effective
spin-orbit interaction is

— 1
(= _ZHSOCa (25)
_ 10,
Cloy = _ZHS%Ca (26)
- 1 tag—eq
Ctzg—eg = _EHS%)C ) (27)

where ( is in units of h2.

We note that the effective spin-orbit coupling can be
probed experimentally through X-ray absorption spec-
troscopy (XAS) measurements.[53-55] Core electrons
from the occupied states 2p; /o and 2p3/, are excited to
the unoccupied states 5d3/5 and 5ds 2, respectively, since
these are allowed from the selection rules AJ = 0, +£1.
These absorption processes are referred to as the in-
tensity peaks Iy, and Ir,, respectively. Van de Laan
and Thole[53-55] have shown that the ratio of the in-
tegrated intensities (area) of the peaks, BR = I, /I},
[called the branching ratio (BR)] is directly related to
the ground state expectation value of the spin-orbit cou-
pling (L - S) (which we call {), through the relation
BR = (24 r)/(1 —r), where r = (L - S)/{n), and
(np) is the average number of holes in the unoccupied
d-states (including the full five d orbitals), which is ap-
proximately valid even in case of strong crystal fields,
and particularly when A > ¢ [54]. When the spin-orbit
coupling is zero, the J=3/2 and J=5/2 d-states are de-
generate (see right side of Fig. 3), and the ratio of the
intensities Ir, /Iy, is equal to the ratio of the occupied
states 2p3 /5 and 2p; /o which is 2:1. This yields a branch-
ing ratio of BR = Iy, /I, = 2. A deviation from this
value is a clear indication of strong spin-orbit coupling,
and can give information on the nature of the ground
state.

Since the effective spin-orbit coupling is a local prop-
erty of the ion, a single-site calculation is expected to
capture the essential physics of the experimental mea-
surements. In our exact diagonalization (ED) calcula-
tions, we place an infinitesimal magnetic field in the z-
direction, H? of the order of 1076 eV, in order to lift
the degeneracy of the ground state, and obtain a unique
expression for the eigenvectors of the ground state. We
have verified this small value does not numerically change
the expectation values we compute.

VI. EXACT DIAGONALIZATION RESULTS
A. Comparison of t35-e¢, model with ¢, only model

For electron filling from one to six electrons, we will
compare the results of the full ¢54-e, model with the o
only model.

FIG. 4. (Color online) Exact diagonalization 1 electron re-
sults. (a) Total magnetic moment, My, (b) effective spin-
orbit coupling, ¢, (c) single S5, zero Zs, and double Ds oc-
cupancies of the ey d,2_,2-orbital, for different crystal field
values a1 : A = 1eV,azs : A =2¢eV,and az : A = 3 eV.
Note there is substantial enhancement of the total magnetic
moment and effective spin-orbit coupling in the t24-e4 model
relative to the ¢4 only model.

1. 1 electron

In the ta4-only model, we have [ = 1 for the orbital
angular momentum, and s=1/2. Thus, there is no mag-
netic moment M=-14+2s=0, since due to spin-orbit cou-
pling, orbital angular momentum and spin angular mo-
mentum favor an antiparallel alignment. This is what
we see in Fig.4(a). However, the quenching of the or-
bital angular momentum is overestimated in the t54-only
model. As we see in the 5-orbital model (for which [ = 2),
the restoration of orbital angular momentum due to spin-
orbit coupling becomes significant. We compute the total
magnetic moment for crystal field energy A =1,2,3 eV
and find it is reduced as the crystal field splitting is in-
creased. A significant moment remains, for example, for
A=3eVand ( =0.5¢eV.

As shown in Sec. IIT using perturbation theory for a
single electron, the off diagonal ts4-¢, matrix elements
of the spin-orbit coupling creates a small occupancy of
eg-orbitals in the ground state. This is seen in Fig.4(b),
with the single, zero, and double e4-occupancy of the e,
22 — y2-orbital, for three different crystal field energies
A =1,2,3 eV (the single, zero, and double e4-occupancy
of the 322 — r2-orbital are zero). As expected, the oc-
cupancies are reduced as the crystal field energy is in-
creased, and they are increased as the spin-orbit cou-
pling strength is increased. In Fig.4(c) we see for the
tog only model thg = 0.5, coming from %(H?g) in the
|J = 3/2) ground state. In the 5-orbital model, by us-



FIG. 5. (Color online) Exact diagonalization 2 electron re-
sults for crystal field splitting A = 3 eV. (a) Total mag-
netic moment My, (b) spin quantum number S, (c) single
Si, zero Z;, double D; occupancy per eg-orbital, (d) effective
spin-orbit coupling ¢. Different Hund’s coupling parameters
a1 :Jg =0.1eV,as : Jg = 0.5eV are used.

ing Eq.(16) in calculating the extra contribution from
<H 297¢9) of the off-diagonal matrix elements of ma-

tr1X B in Eq.(15), we get 1<H225769> = 3ara /2+A, thus
= —¢(Hso) = <Ht2q>—*<Ht2q76q>_05+3 TR

which gives the correct trend shown in Fig.4(c), ex-
plaining the missing part not captured from the t4-only
model.

2. 2 electrons

In the t34-only model, for zero spin-orbit coupling ({ =
0) I =1 and s = 1. Thus, a non-zero magnetic moment
Mo = =1+ 2s = 1 is achieved. However, for ( = 0
the 5-orbital model gives I = 2.7 because the crystal field
mixes different (L, S) terms (with the same s = 1 as the
tag-only model, following Hund’s first rule) as discussed
in Sec. IVB. At ¢ = 0 one has the same total magnetic
moment as with the fa4-only model, Mo =1, +2s, = 1.

However, when the spin-orbit coupling is turned on,
l, = 0 and s, = 0, so the magnetic moment abruptly
plunges to zero, consistent with the approximate rule [ ~
2, s =1, Myos = =1+ 2s = 0. In Fig.5(a) we see for the
tag-only model with Jr = 0.1 eV the magnetic moment is
reduced as the spin-orbit coupling is increased. This can
be understood as a competition with the Hund’s coupling
aligning the spins of the electrons, while the spin-orbit
coupling “unaligns” them as it tries to align the spin
with the orbital motion. Thus, for Jg = 0.5 eV where
Hund’s coupling is stronger, the effect of the spin-orbit
coupling is weaker.

In Fig.5(b) we see the spin quantum number S, for

Jg = 0.1,0.5 eV for the ty4-only and for the 5-orbital
model as a function of the spin-orbit coupling. We see
that for the smaller Hund’s coupling the reduction of the
spin is greater, due to the same explanation given for
the magnetic moment. The two models match for small
spin-orbit coupling, but for Jg = 0.1 eV a deviation
between them appears for ¢ > 0.5 eV. In Fig. 5(c) we see
the single, zero and double e, occupancy per e, orbital,
for crystal field energy A = 3 eV and Jg = 0.5 eV is
increased as the spin-orbit coupling is increased. While
the curves are similar to the one-electron case, the total
result is roughly doubled since it is per egs-orbital.

In Fig.5(d) the effective spin-orbit coupling ¢ is shown
for Jg = 0.1,0.5 eV for the ty4-only model and for the
5-orbital model. As the Hund’s coupling is increased, the
effective spin-orbit coupling is decreased. As the crystal
field is increased, the results from the two models ap-
proach each other. However,  is quite robust even for
A =3¢eV,( =05¢eV,and Jg = 0.1 eV where the
t24-only model gives ¢ ~ 1 and the 5-orbital model gives

¢~ 1.8.

We can understand these results qualitatively using a
single particle analysis. By taking the ground state to be
a tensor product of the single-particle eigenstates given
in Sec. I1I for the ¢54-only model and the 5-orbital model,
we get for two electrons, ( = —¢(Hso) = —%(ng(%) -

<Ht2g Y =1+2x 3§/2+A
correlatlons (i.e. Jg = 0.1eV), the closer one gets to this
single electron result. Using this result for the t4-only
<Ht29> = 1 and the 5-orbital model

The weaker the electronic

model gives Zt2g =

gives an extra contrlbutlon th_eg = —%(H;25765> =
2 x 3 /2 x> Which for reasonable values in the 5d ele-

ments (i.e A =3 eV,( = 0.5 eV), gives for the 5-orbital
model C5_ rpitar = CtQQ + (th,eg =140.96 = 1.96 close
to what is observed in Fig.5(d). We also see that the
two models match at ¢ < 0.1. Thus, for 3d systems the
T-P equivalence is a good approximation even for the
most dramatically different expectation value, the effec-
tive spin-orbit coupling.

8. 8 electrons

For zero spin-orbit coupling for the ¢24-only model we
have I = 0, and s = 3/2, while for the 5-orbital model
I =3 and s = 3/2, as predicted from Hund’s first rule for
maximal spin. With this in mind, we turn our attention
first to the total magnetic moment, which we expect to
reduce with increasing spin-orbit coupling because the
spin-orbit coupling tends to “unalign” the spins. This
will be true for both models. However, comparing our re-
sults for the total magnetic moment with Ref. [52] where
a tag-only model was used, we find a significant differ-
ence using a 5-orbital model, as seen in Fig.6(a). Thus,
the quenching of orbital angular momentum is underes-
timated in the #54-only model. There is an increased I,



FIG. 6. (Color online) Exact diagonalization 3 electron results
for crystal field splitting A = 3 eV. (a) Total magnetic mo-
ment Myot. (b) Spin quantum number S. (c) Single S4, zero
Z4, and double D4 occupancies of the ds,2_,2 orbitals. (d)
Single S5, zero Z5, and double Ds occupancies of the d 2_ 2
orbitals. (e) Effective spin-orbit coupling, ¢. Different Hund’s
coupling parameters a1 : Jg = 0.1eV, a2 : Jg = 0.5eV.

and decreased s, in the 5-orbital model compared to the
tag-only model. When (¢ > Jy) the magnetic moment is
reduced rapidly with spin-orbit coupling. For Jgz = 0.1,
when ¢ becomes greater than Jg (¢ > Jg) spin-orbit
coupling overcomes the aligning of the spins caused from
Hund’s coupling. For Jg = 0.1 eV there is a transition
at ( =~ 0.5 eV, and for Jy = 0.5 eV at ( = 1.2 eV.
The transitions can be seen from the discontinuity in the
eg occupancies where some small electron occupancy is
transferred from one e, orbital to the other (the aver-
age eg-occupancy remains constant). There is also some
transfer of double occupancy from two to, orbitals to the
third one, where the average ty4-occupancy remains con-
stant as well.

As one increases the spin-orbit coupling strength, the
total spin is more affected compared to the two-electron
system, because it is tightly connected to the orbital an-
gular momentum. The S of the ¢y, and 5-orbital models
begin to deviate with increasing strength of the spin-
orbit coupling, as seen in the Fig.9(b). For small Hund’s
coupling this deviation is small, and for larger Hund’s

FIG. 7. (Color online) Exact diagonalization 4 electron results
for crystal field splitting A = 3eV. (a) Single S4, zero Z4, and
double D4 occupancies of the ds,2_,2 orbitals. (b) Single S5,
zero Zs, and double D5 occupancies of the d,2_,2 orbitals. (c)
Spin quantum number, S. (d) Effective spin-orbit coupling,
¢. Different Hund’s coupling parameters a1 : Jg = 0.1eV, az :
Ju =0.5eV, a3 : Jg =0.7eV.

coupling this deviation is larger.

For the effective spin-orbit coupling, there is a more
dramatic difference between the two models compared to
the two-electron system, where for ( = 0.5 eV and A =3
eV we have (;, _,n;,,=1.5 for the ty4-only model, while

for the 5-orbital model Cs5_ 411 =2-8. Using a single
particle analysis similar to that of two-electron filling,
we get Cp,, = 1.5, (s onpitar = 15 +3 X 3z, which is
very close to what we observe in Fig.6(e) for Jy = 0.1
eV, while for Jgy = 0.5 eV a significant decrease occurs

in the effective spin-orbit coupling.

4. 4 electrons

For four electrons the total magnetic moment is zero
in both models: I,,s, = 0. In the ty4-only model, [ =
1, s =1 and J = 0 as indicated from the J = —[ 4 s law
of the T-P equivalence. In the five-orbital model there
is a low-spin to high-spin transition. For A = 3 eV at
zero spin-orbit coupling and Jg = 0.5 eV, we find [ = 4,
and s = 1 (low-spin). While at Jy = 0.7 €V there is
a transition to a high-spin state with [ = 2, and s = 2.
This can be seen in Fig.7 (c) and Fig.7(a). For Jg = 0.7
eV the fourth electron is shared between the egz-orbitals
and the to4-orbitals in a non-monotonic way as a function
of spin-orbit coupling.

In Fig.7 (¢), for Jg = 0.1 €V (low-spin) at { =0, s =1
for both models. However, they start to deviate for { >
0.5 eV. For Jg = 0.5 eV there is a significant deviation



FIG. 8. (Color online) Exact diagonalization 5 electron re-
sults for crystal field splitting A = 2.7 ¢V. (a) Spin quantum
number S. (b) Single S;, zero Z;, and double D; occupancies
per eg-orbital. (c) Total magnetic moment M. (d) Effective
spin-orbit coupling ¢. Different Hund’s coupling parameters
a1 :Jg =0.1eV,az : Jg = 0.5V, az : Jg = 0.6eV.

between the two models even at small spin-orbit coupling.
At Jyg = 0.7 eV there is a high-spin transition, s = 2, but
there is a rapid reduction of the spin quantum number
as a function of spin-orbit coupling, approaching the low-
spin value for large (.

The effective spin-orbit coupling is seen in Fig.7(d).
We see that the effect of Hund’s coupling is weak within
each model, although the models show the strong quan-
titative differences with respect to each other observed
at smaller electron numbers. The single electron ap-
proach used in smaller electron fillings gives here ZtQQ:Q,

ind ZtQQ_eg =4 x 3%, giving for the t54-only model
Ctyg—onty=2, and for A = 3 eV, and ¢ = 0.5 eV, giv-
ing for the 5-orbital model C5_, pira = qu + Zth,eq =
2+4x 3% = 3.85, close to what observed in the
figure.

5. 5 electrons

At zero spin-orbit coupling with A = 2.7 in the five-
electron configuration, Fig.8(a) shows a low-spin config-
uration s = 1/2 for Jy = 0.1 eV and Jy = 0.5 eV, and
a high-spin s = 5/2 configuration for Jg = 0.6 eV. Both
the high and low-spin configurations evolve continuously
as a function of (, approaching the same asymptotic value
of s =1.

The high-spin to low-spin transition is also seen in the
eg-occupancies, S;, Z;, D;, where i stands for either of
the eg-orbitals, plotted in Fig.8(b). For Jg = 0.6 eV, at
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zero spin-orbit coupling each e, orbital is singly occupied.
As the spin-orbit coupling is increased, there is a rapid
decrease in the eg-occupancies, indicating a high-spin to
low-spin transition. However, even in the low-spin case
with Jg = 0.5 eV and ¢ = 0.5 eV (typical values of
5d systems), there is S; = 0.2 single occupancy per e,
orbital, giving a total of 0.4 electrons in the eg-orbitals
and an equivalent depletion from the ¢54-orbitals which
cannot be captured from the ¢54-only model.

Fig.8(c) shows the total magnetization which stays
very close to 1.0, except for the case of Jy = 0.6 eV
for very small spin-orbit coupling. The t34-only model
gives My,y = lpup. In the five-orbital model the low-
spin state Jg = 0.5 eV, A = 2.7 eV gives a value very
close to that, with slightly reduced [, and increased s,.
The high-spin configuration Jy = 0.6 eV, A = 2.7 eV
which at { = 0 has 5 parallel spins, one in each of the
5-orbitals, starts from M;,; = 5up, but rapidly reduces
to Myt = lup as the spin-orbit induced high-low spin
transition occurs. Thus the state (Jg = 0.6 eV, (=0.5eV,
A = 2.7 eV) which has 0.8 electrons in the eg-orbitals,
the state (Jg = 0.5 eV, ¢ = 0.5 eV A = 2.7 ¢V) which
has 0.4 electrons in the e4-orbitals, and the t54-only state
all share the same total magnetic moment M, = lup.
Therefore in this example, the magnetic moment is not
a good quantity to distinguish between them.

In Fig.8(d) we see the effective spin-orbit coupling
(. The tyg-only model, for which Jog = 1/2, gives
a contribution of th =1. However in Ref.[56], experi-
ments using X-ray ai)sorption spectroscopy in iridium-
based compounds in oxygen octahedral fields (Jy =
0.5eV, A = 3¢V, ( =0.5eV), a branching ratio BR=6.9
was reported. This gives an effective spin-orbit coupling
¢ = 3.1, which is what we find as well within the five-
orbital model.

The authors of Ref.[56] emphasize that they find large
branching ratios in all Ir compounds studied, with lit-
tle or no dependence on chemical composition, crystal
structure, or electronic state and speculate that unusu-
ally strong spin-orbit coupling effects maybe a common
feature of all the iridates, or at least those possessing an
octahedral local crystal field environment. These proper-
ties are explained well by our model. First, the effective
spin-orbit coupling is a local ion property. Second, an oc-
tahedral field environment such as the one studied here
shows that the large branching ratio should be a common
feature to all the iridates compared.

The authors of Ref.[56] interpret their experimental re-
sults as an indication of a Jeg = 1/2 pure state, which
has been put forward to explain[57, 58] the insulating
properties of SralrOy4, and NaglrOs. In the Jog = 1/2
scenario, the Jog = 3/2 band derived from the J = 3/2
states will be completely occupied, effectively prohibiting
any Lo transitions (2p;/; — 5ds/2) and only L3 transi-
tions will be allowed processes (2p3/2 — 5d3/2,5/2), since
the Jog = 1/2 is separated from the J = 5/2 states
(the lowest unoccupied states). Hence Iy, =~ 0, explain-
ing the large branching ratio observed. Whereas in the



Sef = 1/2 scenario, on the other hand, the lowest un-
occupied state possesses mixed J = 3/2 and J = 5/2
character that allows both Ly and L3 transitions, having
lower a BR. (Recall the BR = Ir,/I;,.) The authors
of Ref.[56] suggested that the difference between the two
BR can distinguish between the two scenarios, and reveal
the nature of the ground state.

However, in the first case the e, states have been as-
sumed to be infinitely separated from the ¢y, ones, which
gives pure Jog = 3/2 and Jog = 1/2 but as we see in Fig.3
going beyond the T-P equivalence from the strong spin-
orbit coupling side, the octahedral crystal field mixes
J = 3/2 and J = 5/2, which are not mixed at zero
octahedral crystal field.

The reported tetragonal distortions of the octahedral
oxygen cages mixes Jog = 1/2 and Jog = 3/2 and takes
one away from the pure Jog = 1/2 scenario. We show in
this work that even at large crystal fields of A = 3 eV,
the mixing between ¢5, and e, manifolds is not negligible.
Accounting for it can explain the remarkably large BR
in a more natural, and more general way, for all the Ir-
compounds in an octahedral field. Foyevtsova et al.,[59]
study NaoIrOs using DFT calculations with and without
spin-orbit coupling. To compare the results of their pro-
posed molecular orbital scenario with experiments, they
report ¢ = 1.91 by including the eg orbitals and ¢=0.73
by keeping only the t5,4 in their calculations, supporting
a non-pure Jog = 1/2 state. Others have reached similar
conclusions regarding the admixture of e, orbitals.[60—
62]

Measurements of XAS on BalrOs,[63] report a BR=4,
which gives a ¢ = 2.1-double the canonical value for the
Jof = 1/2 state that gives ( = 1-and they attribute the
larger value to the mixing with the e, states. Katukuri
et al.[64, 65] using quantum chemistry calculations for
several iridate oxides report ¢ & 2 where they considered
hybridization between e, orbitals and neighboring oxy-
gen ligands, which reduces the value of (. In addition,
they report that such large deviations from the canon-
ical value of ¢ = 1 of the tag-only model of Jog = 1/2
cannot be accounted for without the mixing with the e,
states. In Ref. [66] XAS measurements for SroIrOy4 report
a BR=4.1 which gives ( = 2.1 and the deviation from
¢ = 1 is attributed to the mixing of tag and e, states.
In Ref. [67] x-ray resonant magnetic scattering (XRMS)
measurements on BalrO3 gives a BR=5.45, which gives
¢ =2.67.

Closing this discussion of the effective spin-orbit cou-
pling in the literature, and coming back to our calcula-
tions, a single particle analysis captures well the observed
trend, giving C(s_pppipar = 1 + 4 X 302% = 3.03, for
¢ =0.5eV and A = 2.7 eV. In Fig.8(d) in the vicinity
of ( = 0.5 the effect of the Hund’s coupling is to increase
the effective spin-orbit coupling. Also, for Jg = 0.6 €V,
C starts from zero because in this high-spin configuration
l=0and s=5/2 for ( =0.
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FIG. 9. (Color online) Exact diagonalization 6 electron re-
sults. (a) Spin quantum number S. (b) Total magnetic
moment Myot). (c) Single S;, zero Z;, and double D; oc-
cupancy per ey orbital. (d) Effective spin-orbit coupling
(. Parameters for predominately low-spin configurations:
a1 : A =3eV,Jg = 0.5eV a2 : A = 2.5eV, Ju = 0.5V, a3 :
A = 3eV,Jg = 0.7eV,as : A = 3eV,Jg = 0.1eV. Pa-
rameters for predominately high spin-configurations 8 : A =
2.5eV, Jug = 0.7eV.

6. 06 electrons

The six-electron results are shown in Fig.9. For the t54-
only model the results are trivial: The spin, total mag-
netic moment, effective spin-orbital coupling are all zero,
since we have 6 electrons completely occupying all the
ta4 orbitals. However, adding two more orbitals changes
the picture. As we see from Fig.9 (a), the spin quantum
number at zero spin-orbit coupling is S = 0, but for fi-
nite spin-orbit coupling it deviates from that, reaching
S =~ 0.5 around ¢( = 0.5eV for the configurations that
have S = 0 at ( = 0. The low-spin configurations have
completely filled ¢, orbitals at ( = 0. These configura-
tionsare ay : A = 3eV,Jg = 0.5¢V,as : A = 2.5eV, Jg =
0.5eV,az : A = 3eV,Jy = 0.7eV,aq : A = 3eV,Jg =
0.1eV.

Comparing these cases, one sees that when the ra-
tio Jg /A is increased the spin quantum number in-
creases with increasing spin-orbit coupling. If we con-
tinue increasing this ratio to the configuration 5 : A =
2.5eV, Jg = 0.7eV, the system will transition to a high-
spin state at zero spin-orbit coupling. However, for the
high-spin configuration 5, at ( = 0.25eV spin-orbit cou-
pling creates a high-spin to intermediate-spin transition,
going from S = 2 to approximately S = 1.

Turning our attention now to Fig.9(b), we see that
only the high-spin £ configuration has a net magnetic mo-
ment, while all other configurations give a zero total mag-



netic moment. The total magnetic moment of the § high-
spin configuration is My /up=3.5, where Mg /up=3 and
M;/up=0.5. But at ¢ = 0.25¢V where the spin-orbit
coupling induces the high-spin to intermediate-spin tran-
sition, the magnetic moment vanishes. The transition is
also reflected in the single and zero occupancies per e4-
orbital, shown in Fig.9(c). For the § configuration and
¢ < 0.25 there are 2 electrons, 1 per eg-orbital, while for
¢ > 0.25 there is 1 electron, 1/2 per eg-orbital. Also, for
the low-spin configurations aj-as there are 0.4 electrons
in the e, orbitals, 0.2 to each orbital.

The effective spin-orbit coupling is shown in Fig. 9 (d).
The effect of the Hund’s coupling is to increase ¢ in the
intermediate spin-orbit coupling region. The spin-orbit
induced transition from high-spin to intermediate-spin of
the B configuration, by a jump at { = 0.25eV, doubles
its value from ¢ = 1.2 to ¢ = 2.4. The single particle
perturbative description gives ¢ = 4 x Sﬁ, and as it is
expected to work well at small correlation, it is compared
to Jg = 0.1eV, and for ( = 0.5eV and A = 3eV gives a
value of ( = 1.83, where the exact result gives ¢ = 1.81.

B. Comparison of t3;-e¢, model with e; only model

For filling from seven to nine electrons, we will compare
the results of the full t54-e, model with eg-only model.
The matrix elements of orbital angular momentum are
completely quenched in the eg-only model, and thus the
spin-orbit coupling as well.

1. 7 electrons

For the seven-electron configuration, we have for the
eg-only model a single electron in the eg-orbital, which
gives S = 1/2 as seen in Fig.10(a). At zero spin-orbit cou-
pling for the configurations «y : A = 2.5¢V, Jg = 0.5eV
and as : A = 2.5eV, Jg = 0.5eV, S = 1/2 there is a sin-
gle electron in the ds,2_,2 orbital and the rest completely
occupy the a4 orbitals, as seen from Fig.10(c), (d). As
a function of the spin-orbit coupling, there is a depletion
of the ¢y, orbitals, and an increase in the single occu-
pancy of the d,2_,2 orbital as seen in Fig.10(d). This
causes an analogous increase in the spin quantum num-
ber, as seen in Fig.10 (a). When one increases Hund’s
coupling at zero spin-orbit coupling, there is a low-spin
to high-spin transition. In Fig. 10(a) the configurations
ap A =3eV,Jy = 0.1eV and as : A = 2.5eV,Jyg =
0.5eV give S = 1/2. When the Hund’s coupling is in-
creased in the configuration 8 : A = 2.5eV, Jy = 0.5¢V/,
we get S = 3/2 giving two electrons in the egz-orbitals
and leaving one hole in the t94 orbitals. This is shown in
Fig.10 (c), (d) for the eg-occupancies. At spin-orbit cou-
pling ¢ = 0.12 the high-spin S8 configuration undergoes
an intermediate-spin transition from S =3/2 to S ~ 1.1
and a subsequent depletion of the dg2_,2 orbital from 1
electron to 0.5 electron, giving a total 1.5 electrons in the
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FIG. 10. (Color online) Exact diagonalization 7 electron re-
sults. (a) Spin quantum number S. (b) Angular momen-
tum quantum number L. (c) Single, double, zero occupancies
of the ds,2_,2 orbital (S4, D4, Z4). (d) Single, double, zero
occupancies of the d,2_,2 orbital (S5,Ds). (e) Total mag-
netic moment M. (f) Effective spin-orbit coupling ¢ for
ar : A = 3eV,Jg = 0.1eV, as : A = 2.5eV,Jg = 0.5€V,
B:A=25eV,Jg = 0.7eV configurations.

eg-orbitals. At spin-orbit coupling ¢ = 1.3 eV there is a
second transition, interchanging the occupancies between
the two e, orbitals, while keeping the total occupancy of
1.5 electrons in the ey orbitals constant. In Fig.10(b) we
see the total angular momentum in «q, s, 8 configura-
tions capturing these transitions as well.

In Fig.10(e) the total magnetic moment is shown. For
the configurations aq, ao there is a significant deviation
from the e4-only model in which the orbital angular mo-
mentum is completely quenched. The total moment is
only spin. In the five-orbital model My, =~ 1.5up for
¢ = 0.5, with the difference coming from the orbital mag-
netic moment M;, since the spin magnetic moment has
small deviation from Mg ~ lup as a function of spin-
orbit coupling. For the [ configuration there are two
transitions as a function of spin-orbit coupling, which
are seen as discontinuities in the My,: Fig.10(e).

The effective spin-orbit coupling is shown in Fig.10(f)
for three characteristic cases of the low-spin configura-
tions a1 (A = 3eV,Jg = 0.1eV), as(A = 2.5¢V,Jg =
0.5eV) spin, and the high-spin (A = 2.5eV,Jyg =
0.7€V) configuration. The single-electron perturbation



FIG. 11. (Color online) Exact diagonalization 8 electron
results. (a) Spin quantum number S. (b) Angular mo-
mentum quantum number L. (c) Total magnetic moment
Mo, orbital magnetic moment M;, and spin magnetic mo-
ment Mg. (d) Single S;, double D;, and zero occupancies
Z; per tag-orbital. (e) Effective spin-orbit coupling (¢) for
ar : A = 1eV,Jg = 0.5eV, as : A = 2eV,Jg = 0.5eV,
asz: A =3eV,Jg =0.5eV, as : A = 3eV, Jg = 0.1eV config-
urations.

result gives { =
what is observed in the «; configuration. Note that the
eg-only model gives ¢ = 0, so in 4d and 5d systems with
a d’ configuration, a finite effective spin-orbit coupling
can be measured.

(/QCW +3x3m7R /2+A which is close to

2. 8 electrons

For eight electrons, we naively expect two electrons in
the e, orbitals and the rest are in the completely filled
tag shell. In Fig.11(a),(b) we see the spin S, and orbital
angular momentum L quantum numbers, for three dif-
ferent values of the crystal fields, a; : A = 1leV,as :
A =2eV,az : A = 3eV, all at Jg = 0.5¢V. The de-
viation from S = 1, and L = 3 is small as a function
of spin-orbit coupling. In Fig.11(c) the total magnetic
moment M., the orbital magnetic moment M;, and the
spin magnetic moment Mg are plotted, for a; and ag
configurations. At zero spin-orbit coupling, the orbital
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FIG. 12. (Color online) Exact diagonalization 9 electron re-
sults. (a) Total magnetic moment M., orbital magnetic
moment M;, and spin magnetic moment Mg. (b) Effective
spin-orbit coupling (¢) for aq : A = 1€V, az : A = 2eV,
a3 : A = 3eV configurations.

angular momentum is completely quenched, as predicted
from the eg-only model. However, spin-orbit coupling
gives rise to a significant amount of orbital angular mo-
mentum; the smaller the crystal field (a1 ), the greater the
restoration compared to the larger crystal field configura-
tion aiz. Spin-orbit coupling causes a small reduction in
the spin magnetic moment, and as a result the difference
in the total magnetic moment between the five-orbital
model and the e4-only model is mainly from the orbital
magnetic moment M;. In Fig.11(d) the single S;, double
D;, and zero Z; occupancies per tyg-orbital are plotted.
The main effect is that there is depletion of the ¢, or-
bitals as a function of the spin-orbit coupling, with a
greater effect for smaller crystal fields.

In Fig.11(e), the effective spin-orbit coupling is plot-
ted. The smaller the crystal field, the less the quenching
of the orbital angular moment. Consequently, the effec-
tive spin-orbit coupling is larger. The single particle per—
turbative description gives ¢ = (C/sz)Q + 2 x 34/2+A,
which compared to the least mteractlng ag 2 A =
3eV,Jg = 0.1eV configuration gives a good qualitative
description, of  ~ 0.9 for A =3 eV and ( = 0.5 eV.

8. 9 electrons

For the case of nine electrons one has S = 1/2 and
L = 2. The angular momentum at ¢ = 0 is completely
quenched giving a total magnetic moment M;,; = lup.
Spin-orbit coupling gives rise to finite orbital angular mo-
mentum. For A = 1 eV and ¢ = 0.5 eV one has an
extra contribution M; = lupg, and at A = 3 eV and
¢ = 0.5 eV one has an extra contribution of M; = 0.5up,
as seen in Fig.12(a). The spin magnetic moment Mg is
only weakly affected by spin-orbit coupling and remains
very close to Mg = 1lup. The effective spin-orbit cou-
pling is shown in Fig.12(b) for different values of crys-
tal field, oy : A = 1leV,a1 : A = 2eV,a3 : A = 3eV.
As the crystal field strength increases, the orbital an-
gular momentum and the effective spin-orbit coupling ¢
decreases. The single electron perturbation result gives



— 2

¢ = 3 X S mray + 3emyas giving for A = 3¢V, ¢ =
0.5eV ¢ = 0.51, capturing what we see in Fig. 12 (b) in
as : A = 3eV. Also there is some small depletion of to4-
occupancy due to the ¢oy — e, mixing of the off diagonal
elements of the spin-orbit coupling interaction.

VII. SUMMARY AND CONCLUSIONS

In summary, we have carried out an exact diagonal-
ization study of interacting d-orbital electrons in a cu-
bic crystal field environment for all electron fillings. We
have focused on mixing effects of the t5, and e, orbitals
induced by the spin-orbit coupling and compared our re-
sults to the ty4-only and eg-only models commonly used
in the literature. For realistic interaction parameters in
Eq.(20), crystal field splitting and spin-orbit coupling
Eq.(14), we find the mixing effects can be significant.
These mixing effects can be important in the interpre-
tation of the branching ratio measured in spectroscopic
measurements, which is often used to determine the effec-
tive strength of the spin-orbit coupling. If one assumes a
tag-only model (neglecting to, and e, mixing) for iridates,
for example, one would infer an effective spin-orbit cou-
pling value smaller than the one for the full t24-e, model.

For the various electron fillings we calculated the spin
S, orbital angular momentum L, total magnetic moment
Moy, the single S;, zero Z;, and double D; occupancy
of the " orbital, and the effective spin-orbit coupling
strength ¢. In general, these quantities can show a com-
plex evolution with the strength of the crystal field split-
ting A and the bare spin-orbit coupling strength . For
certain electron fillings, crystal field splittings A and
Hund’s coupling Jg, we observe high-spin to low-spin
transitions as a function of (. An intermediate spin state
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may also be realized. The most important results are
summarized in Figs.4-12.

In present work we focused on the general effect of oc-
tahedral crystal field, however in general the local sym-
metry is usually lower than the cubic one, and tetrago-
nal or trigonal distortion (of the oxygen cage or due to
next neighboring ions) introduces additional complica-
tions, which is beyond the scope of the present work.

The results we have obtained here should be useful in
helping to derive more realistic models of local moment
interactions in the 4d and 5d transition metal oxides.
These local moment models could then be used to pre-
dict what type of magnetic phases and magnetic exci-
tations might be expected in the heavy transition metal
oxides. In this direction we can say that the off-diagonal
elements of spin-orbit coupling H g"'o"_e"’ can be accounted
perturbatively, rather than completely neglected as has
been mostly done so far. In that case, we speculate that
this effect will probably change the low-energy effective
spin models, derived with the use of the T-P equivalence
not only quantitatively, but also changes the Hamiltonian
structure of each model as well. Our local moment results
could also be used as a starting point for non-equilibrium
(Floquet) studies as well since they include an enlarged
Hilbert space and can better capture the response of a
periodic drive. These are directions for future research.
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