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ABSTRACT: Using molecular simulations, we investigate the
relationship between the pore-averaged and position-depend-
ent self-diffusivity of a fluid adsorbed in a strongly attractive
pore as a function of loading. Previous work (Krekelberg, W.
P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J.
R. Connection between thermodynamics and dynamics of
simple fluids in highly attractive pores. Langmuir 2013, 29,
14527−14535, doi: 10.1021/la4037327) established that pore-
averaged self-diffusivity in the multilayer adsorption regime,
where the fluid exhibits a dense film at the pore surface and a
lower density interior pore region, is nearly constant as a
function of loading. Here we show that this puzzling behavior
can be understood in terms of how loading affects the fraction
of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-
averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in
the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We
also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for
predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual
characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.

1. INTRODUCTION

Light gas adsorption in porous materials plays a vital role in a
host of technologies such as carbon dioxide capture and natural
gas storage.1−5 One of the primary focuses in these applications
is the adsorption capacity of the adsorbent for a given
adsorbate. Consequently, considerable attention has been
paid to the measurement and prediction of adsorption
isotherms. Theory and simulation have been invaluable in
connecting the adsorbent structure, adsorbent−adsorbate
interactions, and confined-fluid structure to the resulting
adsorption isotherms.6−10

Although equilibrium adsorption is one important consid-
eration in applications involving porous materials, the dynamic
properties of the (confined) adsorbate are also important.
Although not as well understood as adsorption thermody-
namics, these dynamic properties have recently received
increased attention. For example, recent work has investigated
the self-diffusivity in porous materials11−13 and developed
simplified molecular interpretations of intrapore transport using
molecular simulations.14−16 Other studies investigated Fickian

transport diffusivity17,18 and explored nonequilibrium adsorp-
tion hysteresis related to intrapore diffusion.19,20 Theoretical
studies examined the dynamics of pore filling, capillary
condensation, cavitation, and pore-network effects using
dynamic lattice fluid models21−24 as well as developed models
for Fickian- and self-diffusivity.25,26 Considerable recent effort
has been expended in modeling position-dependent self-
diffusion in the strongly inhomogeneous direction normal to
the pore boundaries.27−30 Even with such studies, a reliable
means to estimate the dynamic properties of a confined
adsorbed fluid is lacking.
One promising approach for estimating the dynamic

properties of adsorbed fluids is based on connecting such
properties to well-understood thermodynamic characteristics.
This was our focus in two recent studies.31,32 Using exhaustive
molecular simulation data, these studies showed that the self-
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diffusivity of a fluid adsorbed in a broad range of adsorbents can
be linked to adsorption thermodynamics. In the case of weakly
attractive adsorbents, the adsorbate self-diffusivity has the same
scaling with fluid loading that the self-diffusivity of the bulk
fluid has with density, allowing for the prediction of confined
fluid self-diffusivity from pore loading and bulk data.32 In the
case of technologically important, strongly attractive adsorb-
ents, such a simple link between dynamics and thermodynamics
is not yet known to exist. However, strong qualitative links
between adsorptive thermodynamics and the resulting dynam-
ics have been observed in these systems.
Such strongly attractive systems display three distinct

adsorptive regimes, each of which can be directly tied to the
structure of the adsorbed fluid.31 At low pressure and fluid
loading, fluid particles are located adjacent to the pore surface
as a result of the strong fluid−solid attraction, leading to the
formation of a single, well-defined fluid film. Accordingly, this is
referred to as the film (or monolayer) formation regime. In this
regime, the pore-averaged axial self-diffusivity, Dtot, of the
confined fluid decreases exponentially with loading. At
moderate pressure and loading, fluid particles begin to occupy
interior portions of the pore (i.e., interior to the film layer), and
this is referred to as the multilayer adsorption regime. In this
regime, Dtot is approximately constant as a function of pore
loading, which is driven by increasing reservoir pressure, and
remains nearly constant. Finally, at high pressure and loading,
fluid particles occupy the entire pore, and increasing pressure
leads to the densification of fluid layers. This is referred to as
the pore-filling regime. In this regime, Dtot (again) decreases
with loading.
Given our general expectation that the self-diffusivity should

decrease as the amount of fluid in the pore increases, the nearly
constant value of Dtot in the multilayer adsorption regime is a
surprising finding. What leads to the constant self-diffusivity in
the multilayer adsorption regime, where fluid loading and
underlying fluid structure vary by a large degree, is an open
question. It was also observed31 in the film-formation regime at
subcritical temperatures that Dtot is directly linked to the
density of the film layer. This suggests the possibility that for
interior fluid layers, the dynamics in a layer connect to fluid

structure within that layer. It also suggests a possible
explanation of the constant value of Dtot in the multilayer
adsorption regime. Specifically, we hypothesized that the
constant value of Dtot in the multilayer adsorption regime is
the result of the simultaneous addition of slow particles in the
dense film layer and fast particles in the less dense interior
portions of the pore.
In this article, we investigate the position-dependent

dynamics of a fluid adsorbed in strongly attractive pores
using molecular simulations. The fluid and adsorbent models
were chosen to mimic a realistic adsorbate−adsorbent system
that might be encountered in practice. We use our simulation
results to address two specific questions: What leads to the
nearly constant pore-averaged axial self-diffusivity as a function
of loading in the multilayer adsorption regime, and do position-
dependent dynamics scale with local density under these
conditions? The article is organized as follows. Section 2
discusses the simulation methods and fluid and solid models
used. Section 3 presents our simulation results and discusses
the connection between position-dependent dynamics and
pore-averaged dynamics. Section 4 summarizes our main
findings.

2. THEORETICAL METHODS
2.1. Simulation Methods. We used the same model and

simulation methods as in ref 31. In brief, we simulated argon in a
single cylindrical, multiwalled carbon nanotube (CNT) using
molecular dynamics in the canonical ensemble with N = 4000
particles. The argon fluid was modeled with the Lennard-Jones
potential with particle size parameter σ and energy parameter ϵ. The
potential was truncated with a linear force shift at cutoff distance rcut =
2.5σ. The CNT adsorbent was modeled with a cylindrical Steele 10-4-
3 potential33 with pore radius parameter R.

The geometry of the simulation cell was set to 2R × 2R × Lz, where
Lz, the length of the pore in the axial and periodically replicated z
dimension, was varied to achieve the desired pore-averaged fluid
density (or loading) ρ = N/(πR2Lz). We investigated pores of size R/σ
= 5.98, 7.77, and 11.56 at reduced temperatures kBT/ϵ = 0.73, 0.85,
and 1.5. Because the bulk critical temperature of the fluid is kBTc/ϵ =
0.93,34 we refer to kBT/ϵ = 1.5 as supercritical and kBT/ϵ = 0.73 and
0.85 as subcritical. Self-diffusion data for the bulk fluid and confined

Figure 1. Representation of the (a, b) film−interior (FI) and (c, d) all-layer (ALL) partitioning schemes. (a, c) Layers in the resulting density
profiles and (b, d) layers in snapshots taken from simulations.
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fluid at R/σ = 3.99 and 8.97 and the above temperatures were taken
directly from ref 31.
2.2. Position-Dependent Dynamics. Position-dependent dy-

namics were calculated using the method detailed in ref 35. The
system was partitioned into NP cylindrical shells, labeled as = 1, 2,...,
NP with boundaries R = R1 > R2 >...> RNP

> RNP+1 = 0. A particle is in

partition if its radial position = +r x y2 2 satisfies > ≥ +R r R 1.
Therefore, = 1 is the partition closest to the solid surface, and

= NP is the partition closest to the center of the pore. Note that
these partitions are simply part of a bookkeeping strategy.
We investigated two partitioning schemes, both of which are

defined in terms of the fluid layers formed within a CNT pore. The
first divides the system into a film (F) partition encompassing the fluid
layer closest to the solid surface and an interior (I) partition
encompassing everything else. We term this the film−interior (FI)
partitioning. The second divides the system into all distinguishable
fluid layers in the pore. We term this the all-layers (ALL) partitioning.
When discussing the film−interior partitioning, we refer to partitions
explicitly as film (F) and interior (I). When discussing the all-layers
partitioning, we refer to partitions by index ∈ N[1, ]L . Note that, as
defined, the = 1 partition in the ALL scheme is identical to the film
partition in the FI scheme.
The boundaries between partitions ≥R 2 were chosen to correspond

to the boundaries between fluid layers, defined by local minima in the
density profile. We found (Supporting Information Figures S-1 and S-
2) that the locations of the minima are approximately captured by the
relationship σ= − −≥R R ( 0.55)2 . Figure 1a,b displays the film−
interior partitioning, and Figure 1c,d displays the all-layer partitioning.
As defined, a majority of individual partitions we investigated (the film
partition in the FI scheme and all the partitions in the ALL scheme)
correspond to visually confirmed fluid layers, and we will therefore
sometimes refer to such partitions as layers. The one exception to this
is the interior partition in the FI scheme, which we always refer to as
the interior partition.
The self-diffusivity in the axial direction z in a partition was

calculated as follows.35 Over the time interval [t0, t0 + t], let
+S t t t( , )0 0 denote the set of particles that stay in over the entire

interval, let +N t t t( , )0 0 denote the number of such particles, and let
N t( )0 denote the number of particles in the partition at the beginning
of the time interval. The mean-squared displacement in the z direction
in partition is defined as

∑⟨Δ ⟩ ≡ + −
∈ +

z t
N t

z t t z t( )
1
( )

[ ( ) ( )]
i S t t t

i i

t

2

0 ( , )
0 0

2

0 0
0 (1)

where ⟨·⟩t0 indicates an average over time origin t0. The self-diffusivity
in the axial direction z in partition is then defined as35

≡
⟨Δ ⟩

→∞
D

z t
tP t

lim
( )

2 ( )t

2

(2)

where ≡ ⟨ + ⟩P t N t t t N t( ) ( , )/ ( ) t0 0 0 0
is the survival probability in

partition . The pore-averaged self-diffusivity in the axial direction z,
denoted by Dtot, was calculated from the total mean-squared
displacement. This is equivalent to a partition self-diffusivity if the
pore is divided into a single partition with R1 = R and R2 = 0. In this
study, we considered only diffusivity in the axial direction and
therefore drop the explicit reference to z.
We will make reference to the term partition-averaged self-

diffusivity, defined as the molar average of D over all partitions for
a given partitioning scheme:

∑̅ ≡
∈

D x DP
P (3)

where P ∈ {FI, ALL} indicates the partitioning scheme and x is the
fraction of fluid particles in partition . For a given partition , the

number of particles in the partition is ∫ π ρ=
+

N rL r r2 d ( )
R

R
z

1
, where

ρ(r) is the radial density profile and =x N N/ .
Although not exhaustively studied, we analyzed the errors in

diffusivities by considering each time origin (eq 1) to be an
independent estimate. We found that in almost all cases the
uncertainty in the pore-averaged and partition-dependent self-
diffusivities is smaller than the symbol size used in Figures 3−6.

2.3. Partition Density and Effective Geometric Parameters.
We also require measures of the density within partitions. The density
of particles in partition is defined by ρ ≡ N V/ , where V is the
volume measure of partition . For interior partitions ( ≥ 2), the
volume is defined as the total partition volume given by

π= −≥ +V L R R( )z2
2

1
2 . For the film partition, we investigate two

volume measuresone based on the center-accessible volume and the
other based on the surface-accessible volumethat differ only in the
choice of the upper bound of the radial dimension. As discussed in ref
32, parameter R used in the fluid−solid potential is not strictly equal to
the radial positions accessible to fluid particles. Instead, we consider
the upper bound in terms of the Barker−Henderson32,36 pore size RBH,
which is effectively the radial dimension of the pore accessible to
particle centers. Note that RBH is implicitly a function of both
temperature and fluid−solid interaction. Therefore, we define the
center accessible radial dimension by Rc = RBH and the center-
accessible film volume by VF,c ≡ πLz(Rc

2 − R2
2). The radial dimension

accessible to particle surfaces is similarly defined as Rs = Rc + σBH/2,
where σBH is the Barker−Henderson particle diameter36 and the
surface-accessible film volume is defined by VF,s ≡ πLz(Rs

2 − R2
2). We

denote the film density as ρF,x, where x ∈ {c, s} denotes either the
center- or surface-accessible volume, respectively. Figure 2 displays
locations Rc and Rs at a single state point. We emphasize that Rc and Rs
are used only in the calculation of the volume measure.

When comparing results at different pore sizes and temperatures, it
is more meaningful to compare them in terms of length and times
scales based on the Barker−Henderson diameter and pore size. That
is, length is normalized by σBH, and time is normalized by

σ m k T/( )BH
2

B . For notational convenience and clarity, such
quantities will be marked with a superscript (*). For example,

σ* = −D D k T m( / )B BH
2 1/2, and ρ ρ σ* = BH

3. We also make reference
to the effective surface-accessible pore density32 (or effective loading),
defined as ρs* = NσBH

3/(πRs
2Lz), where Rs is the effective surface-

accessible radial pore dimension defined above.

3. RESULTS AND DISCUSSION
3.1. Decomposing Pore-Averaged Self-Diffusivity. We

begin by investigating the position-dependent dynamics of a
fluid in a pore of size R/σ = 5.98 when the system is divided

Figure 2. Representation of the different values used in the
determination of the film volume. The effective center-accessible
radial dimension Rc is equal to the Barker−Henderson pore size RBH,
and the surface-accessible radial dimension is Rs = Rc + σBH/2.
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Figure 3. Properties of the argon fluid in a CNT pore of size R/σ = 5.98 at temperatures kBT/∈ = 1.5, 0.85, and 0.73 indicated at the top of each
column. (a, e, i) Density profiles at indicated pore loadings of ρσ3. (b, f, j) Film, interior, and pore-averaged self-diffusivities. (c, g, k) Mole fraction of
particles in film and interior partitions. (d, h, l) Contribution to total diffusion x D , sum of contributions ∑ x D (i.e., the partition averaged self-
diffusivity defined in eq 3), and pore-averaged self-diffusivity Dtot.

Figure 4. Position-dependent self-diffusivity with the film−interior partitioning scheme versus density measure: (a) total effective surface-accessible
density ρ*

s , (b) effective center-accessible film and total interior density, and (c) effective surface accessible film and total interior density. The solid
lines in (a−c) are the bulk diffusivity (Dbulk* ) vs bulk density (ρbulk* ) at kBT/∈ = 1.5. Note that the quantities are normalized as discussed in section
2.3.
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into a film partition and a single interior partition, i.e., the film−
interior (FI) partitioning scheme described above, at the
supercritical temperature kBT/ϵ = 1.5. For reference, Figure 3a
displays the density profiles ρ(r) at several pore loadings ρ.
Figure 3b displays the self-diffusivity in the film (DF) and the
interior (DI) partitions, as well as the pore-averaged self-
diffusivity Dtot. All self-diffusivities decrease monotonically with
increasing pore loading. At low loading (ρσ3 < 0.1), the average
self-diffusivity is nearly identical to the film self-diffusivity, Dtot
≈ DF, and at higher loading, we observe that DF < Dtot. The
self-diffusivity in the interior partition is always greater than the
pore-averaged diffusivity.
These observations are easily explained in terms of the

confined fluid structure. For reference, Figure 3c displays the
fraction of particles in the film and interior partitions as a
function of loading at kBT/ϵ = 1.5. At low loading, xF ≈ 1, and
it follows that DF is very similar to Dtot. For ρσ3 ≳ 0.15,
particles begin to occupy interior potions of the pore away from

the solid−pore surface, but the maxima in the density profiles
are much higher in the film layer than in any of the interior
layers. Therefore, we expect DI > DF because particles located
in the interior partition are less frustrated than they are in the
film layer. Because Dtot is composed of contributions from the
entire pore, we expect Dtot to be bounded below by DF and
bounded above by DI (i.e., DF < Dtot < DI).
Figure 3j displays the self-diffusivities at the subcritical

temperature kBT/ϵ = 0.73. Note that at this temperature, Dtot
exhibits the three diffusivity regimes discussed previously.31 Of
particular interest, at moderate densities (0.225 ≤ ρσ3 ≤ 0.55),
Dtot is nearly constant with respect to loading. Consistent with
the results at the supercritical temperature, Dtot is very similar
to DF at low loading at this subcritical temperature. In fact, xF =
1 for ρσ3 ≤ 0.2 (Figure 3k), so it follows that Dtot = DF under
these conditions, which Figure 3j shows. We again observe that
DF < Dtot < DI. However, for ρσ

3 ≥ 0.25, note that whereas DI
is comparable at kBT/ϵ = 1.5 and 0.73, DF is significantly lower

Figure 5. Position-dependent self-diffusivities using the all-layer partitioning scheme versus (a) total effective density and (b, c) layer density. Colors
correspond to the layer index in (a, b) and temperature in (c).

Figure 6. Comparison of the pore-averaged self-diffusivity Dtot* from simulation, the ALL-based partition-averaged self-diffusivity D ALL* from
simulation, and the model prediction to the ALL-based partition-averaged self-diffusivity and the prediction from eq 4.
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at kBT/ϵ = 0.73 than at the supercritical temperature. This
decreased mobility is reflected by the increased peak height in
the film layer at the lower temperature kBT/ϵ = 0.73 (compare
Figure 3a,i and see also Supporting Information Figure s-3),
which is an indication of increased frustration. At both
temperatures, DI decreases moderately with increasing loading.
(Note that we more closely compare the position-dependent
dynamics across temperatures below.) It is interesting that for
ρσ3 ≳ 0.4, DF is nearly constant. This is due to the film layer
becoming saturated and not changing appreciably for loadings
beyond ρσ3 ≳ 0.4 (Supporting Information Figure S-3). We
note that both DF and DI behave in a qualitatively normal
manner, by which we mean that self-diffusivities decrease with
increasing fluid loading.
Figure 3f displays the self-diffusivities at the moderately

subcritical temperature kBT/ϵ = 0.85. At this temperature, Dtot
still displays the three distinct diffusivity regimes. Dtot is nearly
constant at moderate loading, decreasing only slightly with
loading. Still, the behavior at moderate loading is clearly
distinguishable from that at low loading. Again, Dtot = DF at low
loading, and DF < Dtot < DI holds. The primary difference
between the two subcritical temperatures is that DF is larger at
the higher temperature, which is due to the tendency of the film
layer density to decrease with increasing temperature
(Supporting Information Figure S-3). The behavior of DI is
similar at the two subcritical temperatures.
We now address whether the pore-averaged self-diffusivity

Dtot can be quantitatively linked to the partition-averaged self-
diffusivity D FI, defined in eq 3. We note that, in general, these
quantities do not have to be equal. The partition-averaged self-
diffusivity depends on the partitioning scheme used. Also, the
pore-average self-diffusivity includes trajectories that pass
between multiple layers, and the partition-averaged self-
diffusivity includes only trajectories that remain entirely within
a given partition. Still, if one chooses the partitioning
appropriately and if the self-diffusion in the radial direction is
negligible, then we expect that Dtot will be at least
approximately equal to D FI.
Figure 3d,h,l compares the partition-averaged diffusivity D FI

to the pore-averaged self-diffusivity Dtot. At subcritical temper-
atures, Dtot is indistinguishable from D FI. However, at the
supercritical temperatures, there are differences, especially at
moderate loadings. This is not surprising because we expect
radial diffusion to increase with temperature. Thus, D FI will not
include trajectories that cross layers in a diffusive time τ. Still,
even with this difference, we see that D FI describes Dtot, at worst
semiquantitatively.
Therefore, we can decompose Dtot into film and interior

contributions. Figure 3d,h,l displays contributions x D for the
film and interior partitions to D FI. As expected, the pore-
averaged self-diffusivity at low loading is completely described
by film contribution xFDF. Interestingly, at the subcritical
temperature kBT/ϵ = 0.73 for ρσ3 ≳ 0.25, Dtot is completely
described by the contribution from the interior partition xIDI. It
follows that xFDF ≪ xIDI. In fact, we observe that the film
contribution is approximately 3 orders of magnitude less than
the interior contribution. Therefore, the constant value of Dtot
at subcritical temperatures and moderate densities is due to the
cancellation of two effects that take place with increasing pore
loading, namely, the simultaneous increase in xI and decrease in
DI.
It is now interesting to investigate the higher, but still

subcritical, temperature kBT/ϵ = 0.85. First, note that xIDI is

very similar at the two subcritical temperatures. However, as
discussed above, DF is much higher at kBT/ϵ = 0.85 than at
0.73; therefore, xFDF is non-negligible at this temperature.
Therefore, the very slight decrease in Dtot at moderate densities
and kBT/ϵ = 0.85 is due to the increased self-diffusivity in the
film layer in comparison to the lower temperature.
The other pore sizes investigated (Supporting Information

Figures S-5 and S-6) display qualitatively identical results to
those presented here. We have also performed an identical
analysis using the all-layer partitioning scheme (Supporting
Information Figures S-7−S-9). The analysis of this partitioning
is more complicated as a result of the larger number of distinct
interior layers. Nonetheless, the partition-averaged self-
diffusvity D ALL still captures the characteristics of Dtot, although
D ALL tends to underestimate Dtot at supercritical temperatures
and at subcritical temperatures in large pores. This is expected
because radial self-diffusivity will play an increasing role in these
cases.

3.2. Position-Dependent Dynamics and Local Density.
We now turn to a more detailed investigation of how position-
dependent self-diffusivity relates to the position-dependent
structure. This is motivated by the previously discussed
observation that pore-averaged self-diffusivity in the film-
formation regime scales with film density.31 Given the above
observation that DF ≈ Dtot at low loading, this suggests that the
DF itself scales with film density. This in turn suggests the
possibility that position-dependent self-diffusivities throughout
the pore might scale with local density.
The FI-based position-dependent self-diffusivities are dis-

played as a function of loading in Figure 4a at all temperatures
and pore sizes considered in this work. Here, we present data in
terms of the Barker−Henderson normalized quantities (section
2.3). We first make some observations mentioned previously
more precise. At moderate effective surface-accessible loading
ρs*, we clearly see a large variation in DF* with temperature, with
DF*(kBT/ϵ = 0.73) being much lower than the other two
temperatures considered. We also see that the variability of DI*
is very small in comparison to that of DF*.
We next consider the position-dependent self-diffusivities in

terms of the local density. Figure 4b displays DF* as a function
of center-accessible film density ρF,c, and DI* as a function of ρI*
(section 2.3). We note that this definition of the film density is
similar to that used in ref 31. There, it was observed that Dtot in
the film-formation regime at subcritical temperatures scales as a
single universal function of film density. It was also observed in
the film-formation regime at supercritical temperatures that Dtot
scaled with film density, although with a relationship that
differed from the subcritical one. However, we see here that
that DF* is a single function of ρF,c* regardless of temperature or
pore size. Given the large differences in DF* with temperature
noted above, this universal scaling is surprising. On the other
hand, DI* is clearly not a universal function of ρI*, a point we
will return to shortly. In Figure 4b, we see that DF*→ 0 at ρF,c* ≈
2 whereas DI* → 0 at ρI* ≈ 1. That is, the scale of the position-
dependent self-diffusivities is very different for these two
density measures. Recall that ρF,c* considers the center-accessible
volume. If we instead consider DF* in terms of the surface-
accessible film density ρF,s* , as shown in Figure 4c, then we see
that the scales for DF* and DI* and even Dbulk* are similar.
Although ρF,s* shifts the divergence of DF*, it has no effect on the
universal scaling. That is, DF* remains a universal function of
ρF,s* .
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As an aside, it has been shown for a variety of fluids that the
total pore-averaged self-diffusivity is a nearly univeral function
of the surface-accessible density but not a universal function of
the center-accessible density.37 This suggests that the surface-
accessible definition of film density is more relevant to
diffusivity than a definition based on the center-accessible
volume.
Figure 4c also shows more clearly the variability of DI*. At a

fixed value of ρI*, DI* decreases with decreasing temperature
and decreasing pore size. However, it appears that the
dependence on temperature is greater than the dependence
on pore size. Interestingly, at kBT/ϵ = 1.5, DI* has the same
dependence on ρI* that the scaled bulk self-diffusivity has on
the scaled bulk density, suggesting at supercritical temperatures
that the interior of the pore is similar to the bulk fluid. (Note
that in reduced form the bulk self-diffusivity is a universal
function of density, which is shown in Supporting Information
Figure S-4.) This is consistent with the fact that structuring in
the interior layers is less pronounced at supercritical temper-
atures than at subcritical temperatures (compare Figure 3a to
Figure 3e,i.)
Of course, that DI* does not scale universally with interior

density is not surprising. The interior partition is composed of
several fluid layers whose properties depend strongly on both
temperature and pore size. We therefore next investigate how
the self-diffusivities of each fluid layer *D , as determined using

the all-layers partitioning scheme, scale with local density ρ*.
Figure 5a displays *D as a function of loading for all
temperatures and pore sizes considered. Because the = 1
layer is exactly equivalent to the film layer discussed above, we
discuss only the interior layers ≥ 2. As a function of effective
surface-accessible loading ρs*, *≥D 2 displays wide variability as a
function of , temperature, and pore size. If we instead consider

*≥D 2 as a function of layer density ρ*
≥2, as shown in Figure 5b,

we see that *≥D 2 scales at least approximately with ρ*
≥2. More

specifically, consider the temperature dependence of
ρ* *≥ ≥D ( )2 2 , shown in Figure 5c. We see two groupings of the

data at low layer density, one for supercritical and one for
subcritical temperatures. However, the variability observed in
DI*(ρI*) with pore size does not exist for ρ* *≥ ≥D ( )2 2 .
3.3. Model for Pore-Averaged Self-Diffusion. The

above observations regarding the position-dependent self-
diffusivities provide the basis for a simple model for the pore-
averaged self-diffusivity Dtot* . Specifically, given an estimator for

ρ* *D ( ) for a partitioning scheme P, we can make the
approximation

∑ρ ρ ρ* ≈ ̅ * = * *
∈

D T R D T R x D( , , ) ( , , ) ( )tot P
P (4)

where quantities x and ρ* depend only on the static density
profile ρ(r; ρ, T, R) within the pore that could, for example, be
calculated by Monte Carlo simulations or statistical mechanical
density-functional theory.
We cannot provide a model for ρ* *D ( ) based on first

principles. Instead, we view eq 4 as a means, based upon a
single series of measurements, to estimate pore-averaged self-
diffusivity over a range of different conditions (e.g., loading,
temperature, and pore size). Although Dtot is well approximated
by D FI (and hence Dtot* ≈ D FI*), DI* is not a universal function

of ρI*. On the other hand, Dtot* is at least semiquantitatively
described in terms of D ALL* (Supporting Information Figures S-
7−S-9). Additionally, both D1* = DF* and *≥D 2 are
approximately universal functions of layer density. We therefore
build our model around the all-layer partitioning.
For example, we choose as a reference our simulation data at

the state point R/σ = 7.77 and kBT/ϵ = 0.85. We calculate the
position-dependent self-diffusivities at other state points by
interpolating the reference data according to

ρ ρ

ρ ρ

* * = * *

* * = * *≥ ≥ ≥

D D

D D

( ) ( )

( ) ( )

s s1 1, 1
,ref

1,

2 2 2
,ref

2 (5)

where superscript ref denotes the reference data. Note that the
estimator for ≥ 2 is based on the reference data in the = 2
layer only. That is, we have utilized the fact that interior layers
follow an approximately universal scaling (Figure 5). Therefore,
our model is given by

∑

ρ ρ

ρ

ρ ρ

* ≈ ̅*

≈ ̅*

≡ * * + * *
≥

D T R D T R

D T R

x D x D

( , , ) ( , , )

( , , )

( ) ( )

tot ALL

ALL
,pred

1 1
,ref

1,s
2

2
,ref

(6)

where the last line defines our model prediction of the
partition-averaged self-diffusivity D ALL*,pred based on the reference
dynamic data at kBT/ϵ = 0.85 and R/σ = 7.77. Substituting
values of x and ρ* at a given combination of ρ, T, and R from
our simulation data into the last line of eq 6 leads to our
predicted pore-averaged self-diffusivities.
Figure 6 compares the values of Dtot* , D ALL* , and D ALL*,pred at

pore sizes R/σ = 5.98 and 7.77. Comparisons at additional pore
sizes are shown in Supporting Information Figure S-10. First,
note that D ALL*,pred captures the behavior of D ALL* very well,
especially at the reference state of kBT/ϵ = 0.85 and R/σ = 7.77.
The estimates at other state points are, at worst, semi-
quantitative. This verifies that the self-diffusivity in the first two
layers at a single state point can be used to extrapolate the
partition-averaged self-diffusivity to other state points accu-
rately.
The prediction of Dtot* based on eq 6 depends on the

approximation Dtot* ≈ D ALL* . As discussed above, the ALL-based
partition-averaged self-diffusivity captures the behavior of Dtot
approximately, although it tends to underestimate Dtot at
supercritical temperatures and at subcritical temperatures in
large pores as a result of the increased radial self-diffusivity in
these cases. Therefore, the model in eq 6 predicts the pore-
averaged self-diffusivity well at subcritical temperatures and
moderate pore sizes. However, given that Dtot spans more than
2 orders of magnitude, the prediction based on eq 6 is
impressive.

4. CONCLUSIONS
We have investigated how the pore-averaged self-diffusivity in
strongly attractive pores relates to position-dependent dynam-
ics using molecular simulations. We found that the pore-
averaged self-diffusivity can be decomposed into distinct
contributions from fluid particles in the film layer and the
pore interior. This observation allowed us to identify the
microscopic origins of self-diffusivity characteristics in strongly
attractive pores. Specifically, we found that the constant pore-
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averaged self-diffusivity observed in the multilayer adsorption
regime as a function of loading is linked to the constant self-
diffusivity contribution of fluid in the interior of the pore. This
contribution is insensitive to pore loading and arises from the
cancellation of two effects. The first is the increase in the
fraction of particles occupying the interior of the pore, and the
second is the decrease in mobility due to the corresponding
increase in fluid density (or frustration) in the interior of the
pore. We also found that the self-diffusivities in individual fluid
layers scale with the fluid density within each layer (with an
appropriate definition of layer volume). These observations
provide the basis of a model to estimate the pore-averaged self-
diffusivity based on the fraction of fluid in a layer and density of
fluid in a layer, both of which depend only on the static density
profile, as well as limited layer dependent self-diffusivity data.
This model captures the important characteristics of the pore-
averaged self-diffusivity in strongly attractive pores at subcritical
temperatures spanning more than 2 orders of magnitude.
This work leads to several questions for future research to

address. One important question is the impact of fluid−solid
interactions on the position-dependent dynamics. It was
previously shown32 that the pore-averaged self-diffusivity in
weakly attractive adsorbents is fundamentally different than in
strongly attractive adsorbents. For weakly attractive systems,
does the scaling of position-dependent dynamics with local
density hold, and if so, is the scaling similar to that observed
here? We speculate that because the film layer in weakly
attractive systems is less dense than in the strongly attractive
system studied here, perhaps the self-diffusivities in the film and
interior layers have similar scalings with layer densities in
weakly attractive systems as opposed to the separate scaling
observed here in a strongly attractive system. Also of interest is
how the partitioning scheme impacts the analysis presented
here. If the partitions are made infinitesimally small, then eq 4 is
invalid because the self-diffusivity in the radial direction is not
negligible and the pore-averaged self-diffusivity is instead linked
to the partition self-diffusivities through a stochastic partial
differential equation.27 Still, an analysis with infinitesimally
small partitions may show interesting self-diffusivity character-
istics within individual layers. We also emphasize that the
analysis presented here pertains to the idealized case of self-
diffusivity within an individual cylindrical pore. How our results
relate to real adsorptive materials, which are composed of
networks of many pores, is an open question. Although outside
the scope of this study, another open question is how the
simple model for pore-averaged self-diffusivity presented in eqs
4−6 compares to more complex models (e.g., the friction based
model of ref 25)? Another interesting question is how the
introduction of surface roughness will impact the position-
dependent dynamics. It seems obvious that the introduction of
microscopic roughness will lead to slower axial self-diffusion in
the film layer, but it is unclear if this in turn will affect interior
self-diffusion. Another interesting question is how the position-
dependent dynamics of mixtures behave. In the case of
mixtures, fluid layers of different species can interact in
interesting ways. For example, the first layer of one species
may span several layers of another species. In this case, how do
the layer-dependent dynamics relate to local structure? We
intend to address many of these questions in future work.
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