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Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously
self-assemble into a desired structure. Here, we extend an inverse design methodology—relative
entropy optimization—to determine isotropic interactions that promote assembly of targeted multi-
component phases, and we apply this extension to design interactions for a variety of binary crystals
ranging from compact triangular and square architectures to highly open structures with dodecago-
nal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for
the binary assemblies to those obtained from optimization of analogous single-component systems.
This comparison reveals that self-interactions act as a “primer” to position particles at approxi-
mately correct coordination shell distances, while cross interactions act as the “binder” that refines
and locks the system into the desired configuration. For simpler binary targets, it is possible to
successfully design self-assembling systems while restricting one of these interaction types to be
a hard-core-like potential. However, optimization of both self- and cross interaction types appears
necessary to design for assembly of more complex or open structures. Published by AIP Publishing.
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Il. INTRODUCTION

The synthesis and fabrication of materials with specific
sub-mesoscale features or architectures is a desirable but
challenging design goal. While some top-down techniques
allow material patterning at these scales (e.g., lithography),
they are often prohibitively slow and expensive processes for
large-scale industrial applications.'~> Self-assembly of col-
loidal systems, on the other hand, presents one promising
bottom-up alternative whereby particles are designed to orga-
nize into specific configurations determined by their effec-
tive interparticle interactions.*~’ This approach, though still
in its infancy, is attractive due to the possibility to sys-
tematically tune the effective interparticle interactions® 19—
including those determined by particle shape!'~'* or “patch-
iness”1320—to drive self-assembly. It is also possible to
expand the available design space for assembly by employ-
ing multicomponent systems (e.g., DNA-grafted nanoparti-
cles,”'=23 binary systems of charged colloids,>*2® and oth-
ers”’3%) to augment the diversity of possible interactions and
structures.

Given the large potential parameter space available, sys-
tematic design strategies that allow one to explore how the
properties of constituent particles relate to the resulting self-
assembled structures are needed. To this end, one can consider
forward design methods whereby the phase behavior of a
system with known interactions is mapped by systematic vari-
ation of a few characteristic parameters. Alternatively, inverse
design methods can be employed, where a desired particle
assembly is explicitly targeted, and the parameters necessary
to achieve it are found by a way of solving a constrained
optimization problem.!3!1431-39
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A classic inverse design problem is the optimization
of decision variables 6 for a system of identical particles
interacting via a given isotropic pairwise interaction poten-
tial, ¢(r; 0), to stabilize a desired structure. Here, r is the
distance between particle centers and @ are the parameters
required for the pair potential. By minimizing either the ground
state energy of the ideal configuration (relative to compet-
ing structures) or the free energy of an associated configura-
tional ensemble at a higher temperature (relative to competing
phases), researchers have successfully found isotropic inter-
actions that stabilize a wide variety of structures and phases
including, for example, two-dimensional honeycomb**#? and
kagome®* lattice assemblies as well as three-dimensional
simple cubic*® and diamond*®8 crystals. Isotropic pair poten-
tials that stabilize more exotic phases have also been dis-
covered via recently introduced inverse design strategies.**~!
An analytical reformulation® of the ground-state optimiza-
tion problem*® allowed for the efficient design of potentials
that stabilize two-dimensional snub-square®” and truncated
hexagonal®® lattices. Furthermore, a strategy adapted from
the bio-molecular coarse graining community>*8 called rela-
tive entropy (RE) minimization®>**—which enables “on-the-
fly” optimization of the potential parameters directly within a
molecular simulation—Ied to the discovery of isotropic inter-
actions that promote self-assembly of a variety of two and
three dimensional crystals and quasicrystals®*>!%! as well as
clustered fluids and porous mesophases.>! 9263

While much of the earlier inverse design work focused on
the wealth of structural possibilities for single-component sys-
tems, similar demonstrations in multicomponent systems are
surprisingly lacking. Multicomponent systems are of particu-
lar interest given the expanded design space afforded to them

Published by AIP Publishing.
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through their additional self- and cross component interactions
(i.e., additional degrees of freedom). Moreover, the ability to
partition a desirable target structure into a larger number of
components suggests it may help simplify the particle inter-
actions required for a given structure relative to those of an
equivalent single-component system. Indeed, multicomponent
systems are known to stabilize entirely new and exotic struc-
tures which are inaccessible to single-component systems. For
instance, it is known that moving from single-component to
binary colloidal systems significantly diversifies the list of
crystal structures and motifs observed in experiment.?>6463
Similarly, recent theoretical and computational efforts demon-
strate that binary mixtures can produce a wide variety of
novel structures, some of which exhibit highly specific local
orderings.?%-70

Clearly, multi-component systems hold significant
promise as tailorable building blocks for novel structural archi-
tectures, but a design strategy that allows for rational design
of underlying interactions remains to be demonstrated. Here,
we adopt one such strategy and extend the RE optimiza-
tion method for inverse design of single-component materials
interacting via isotropic interparticle potentials to multicom-
ponent systems. By independently optimizing the self- and
cross interactions for species in a binary two-dimensional
mixture, we demonstrate that this methodology can success-
fully discover pair potentials that readily self-assemble a vari-
ety of simple (intercalated square and triangular) lattices as
well as more challenging target phases (stripes and highly
open structures), many of which had not yet, to our knowl-
edge, been observed to self-assemble for such systems. For
select cases, we further compare the optimized binary inter-
actions to those obtained from optimizations for the target
structures assuming single-component systems. These com-
parisons help us to understand the trade-offs associated with
using binary systems for self-assembly as well as the roles
of self- versus cross interactions in stabilizing various target
lattices.

The remainder of this paper is organized as follows.
We elaborate on the extension of the RE optimization strat-
egy to multicomponent systems and explain how our binary
crystal target structures are chosen in Sec. II. In Sec. III,
we illustrate the optimized pair potentials and demonstrate
they successfully promote self-assembly of all targeted struc-
tures. We also discuss for select cases how binary inter-
actions compare to those of analogous single-component
systems. We conclude in Sec. IV by summarizing the sim-
ilarities and differences between the binary and the single
component interaction potentials, focusing specifically on
how these observed features enable formation of the targeted
structures.

Il. METHODS
A. Relative entropy optimization

The RE course graining approach is a probabilistic opti-
mization method that addresses an inverse design problem for
self-assembly by systematically tuning the interparticle inter-
action potential U(rl@) in a system of particles via parameters
0 = {0y, ..., 0,,} to maximize the likelihood of forming
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a desired structure. One advantage of the approach is that
it can perform “on-the-fly” optimization of particle interac-
tions during the course of a simulation in order to promote
thermodynamic stability (and, with a judicious choice for the
simulation protocol,50 kinetic accessibility) of the assembled
target phase. Although RE optimization was originally applied
to single-component systems,”*>! it can be readily extended
to multicomponent materials. For a two-dimensional binary
system with components A and B, we partition the energy
and parameters in terms of self- and cross interactions as
u(r|0(k’k/)), where k, kK’ = A or B. Parameters 0*K) are then
updated with a gradient ascent procedure as

%K) — ng’k,) + o ®k) /drr [g(k,k’)(rwl(_k,k'))

i+1

= g% W] 19eu™ O r10)],_ g1 (1)

where i indicates the iteration step, g(r|0§k’k')) represents the

simulated radial distribution function (RDF), gﬁ’gg"”(r) is the
target RDF, [Vgu(r|6)] o=k denotes the gradient of the pair
potential, and a®**" is a learning rate chosen to ensure sim-
ulation stability and convergence. While it may be possible
to choose a single value of the learning rate parameter that
is effective for all interaction types, we adopt independently
tuned values for the three interaction types here to attain
faster convergence. We define u(rl(‘)(k’k/)) as a set of Akima
splines whose knots are computed from 8%*) as reported
in Ref. 50. Finally, the knot amplitudes are restricted to
increase with decreasing values of » to ensure a monotoni-
cally decreasing (i.e., repulsive) pair potential. A derivation of
the update expression presented in Eq. (1) is provided in the
supplementary material.

Briefly, an RE optimization is carried out as follows.
An iteration RE step starts by simulating a high temperature
fluid interacting through pair-potentials «**"(r|6) and cooled
slowly to a prescribed optimization temperature 7*. The sys-
tem is allowed to equilibrate and RDF statistics are collected.
Using the differences between the calculated and target RDFs,
potential parameters are updated as per Eq. (1) and this result-
ing potential used to simulate the high temperature fluid system
where the entire process is repeated in the next iteration step.
For implementation details, please see Subsection II C.

B. Crystal target selections

A tiling can be described by the vertices formed by the
underlying polygon tiles and denoted as [n.n;. . .], where n;
denotes the numbers of sides for the polygons that meet at
each vertex.”! For instance, in the case of a square lattice,
each vertex is the meeting point of 4 squares tiles; in vertex
notation, this lattice is denoted by [4.4.4.4] or [4*] for short.
Tilings consisting of k vertex types are said to be k-uniform
and denoted similarly as [nlln;, el n’{né‘ ...]. For a crys-
tal composed of particles at the vertices of regular polygon
tilings, the number of non-equivalent origins in the crystal
then corresponds to the number of k vertices necessary to
create the crystal. In this work, we only consider target lat-
tices that are 1- and 2-uniform tilings in order to guarantee
a single equivalent origin for each component in the binary
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mixture. In addition to regular polygon tilings, we consider a
tiling consisting of an octadecagonal polygon and a star poly-
gon with 3 corners with an internal angle of 27/9—denoted as
[182.35,/9]. Our chosen targets are shown in Figs. 1(a)-1(f)
in a formal vertex notation. Note that some realized crystals
are based on a single underlying vertex (e.g., square [4*]) but
with the components arranged so as to create new structural
motifs (e.g., intercalated rows of stripes) while still conserv-
ing origin equivalency. In such a case, the actual vertex seen
by the individual component may not be regular, but together
with the other component still span the original vertex of the
tiling.

C. Molecular simulations

The RE optimization algorithm described above can be
interfaced with any standard simulation engine, and here we
use the GROMACS 5.0.6 molecular dynamics package.”>’?
We define the component masses as m = m®) = m®) = 1 and
the nearest same-component neighbor distance as o = o-%-%)
= 1. The energy scale is defined by 8 = (kgT)~', where kg
is the Boltzmann constant, and we take the effective temper-
ature 7* = (8)~! to be unity at the optimization temperature.
Briefly, a binary system of particles of type A and B interacting
via independent self- (AA and BB) and cross (AB) monotonic
repulsive spline pair potentials is simulated in the canonical
ensemble using a periodically replicated rectangular simu-
lation cell with the aspect ratio chosen to accommodate the
target lattice. The corresponding simulation time step is set to
dt =0.001 for all runs. The number of A and B particles, N4
and N®), respectively, is chosen to match the ideal target con-
figuration stoichiometry N4 : N®®) and kept to a combined
total particle number of approximately N = N4 + N®) = 1000
forall targets. The system is initiated at a high temperature (7,)
and annealed to 7* = 1 over a span of 5 x 10° time steps. For
triangular binary or similar compact structures, 7, = 3, while
for more open or square-based structures, 7, = 1.5 was suffi-
cient to ensure melting. Radial distribution function g®*"(r)
statistics are collected for an additional 10° time step after
cooling to 7% = 1. Target RDFs are generated by tethering
particles to ideal crystal positions using a quadratic restor-
ing potential with spring constants chosen such that peaks are

J. Chem. Phys. 148, 104509 (2018)

FIG. 1. 1-uniform (gray dots) showing (a) triangular [3°]
and (b) square [4*] vertices. The (a) vertex is used to
generate the triangular binary crystal while (b) can be
used to generate square binary, intercalated component
rows forming single or double stripes as well as a struc-
ture consisting of a large open square with a compo-
nent in the corners and the other at the sides (dubbed
“square corral”). 2-uniform (blue and red dots) vertices
showing (c) [3%; 32.62] dubbed “triangular honeycomb”
due to internal (blue) triangular and surrounding (red)
hexagonal shapes, (d) [18%2.35,9] or “octadecagonal
star binary” due to the octadecagonal and star polygons
motifs, (e) [3.6.3.6; 32.6%] or “rectangular kagome,” and
(f) [3.12.12; 3.4.3.12] dubbed “square truncated hexago-
nal” due to the square super-orientation of the dodecagon
shape in the tessellated structure.

sharp but integrable.’>>! Appropriate spring constants were
generally in the range of 10-1000; larger values were required
for the more open targets. Using the simulated structural data,
the spline potential was updated per Eq. (1), and the process
was iterated in this manner. In practice, a®*) = 0.005-0.015s
sufficient for all crystal target structures considered here. Con-
vergence is typically achieved in about 80-150 iterations, and
optimization is considered complete once the self-assembled
crystal remains stable up to the high temperature limit 7.
For a description of the scheme used to determine inter-
action cutoff radius in our systems, see the supplementary
material.

lll. RESULTS AND DISCUSSION

Following the RE optimization protocol elaborated in
Sec. II, isotropic interparticle potentials for binary mixtures
that successfully self-assembled each of our nine binary crystal
targets were designed. The optimized potentials and assem-
blies are shown for systems featuring triangular and hon-
eycomb motifs (Fig. 2), squares and stripes (Fig. 3), and
other more complex, open structures (Fig. 4). Most of the
optimized potentials yield excellent particle assembly includ-
ing the very open and intricate “square truncated hexagonal”
(STH) or “octadecagonal star binary” lattices presented in
Fig. 4.

Considering the designed interactions and the associ-
ated assembled structures shown in Figs. 2—4, two general
observations can be made. First, targets featuring equivalent
component sites yield comparable interactions for A and B
components as should be expected based on symmetry. This
can be seen, for instance, in the square binary or square
stripe structures shown in Fig. 3 (top or middle, respectively),
where exchanging component identities would yield near-
identical configurations. Second, optimized AA, BB, and AB
pair potentials become longer ranged and exhibit more features
(i.e., shoulders and plateaus) as the target structures become
more open and complex. Compare, for instance, potentials for
square binary in Fig. 3 (top) with those of STH in Fig. 4 (mid-
dle). The former are clearly short ranged and feature a single
shoulder, while STH interactions are longer ranged and exhibit
multiple plateaus.

Y981 €202 JOQUIBAON 8T
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FIG. 2. Optimized pair potentials and representative particle configura-
tions for the triangular binary ([36]—top), rectangular kagome ([3.6.3.6;
32.6%]—middle), and “triangular honeycomb” ([3%; 32.6%]—bottom) lattice
assemblies. Black lines are drawn to highlight the ideal crystal structures.

We also find evidence for two advantages of binary mix-
tures over single-component systems for self-assembly: (1)
the optimized pair interactions of a binary system can each
be simpler than an analogous single-component interaction
designed to stabilize the same global (or overall) structure and
(2) the expanded parameter space of a binary system can help
to stabilize a richer variety of self-assembled structures than
single-component systems. To illustrate the former, we con-
sider the triangular honeycomb structure in Fig. 2 (bottom).
The underlying tiling is 2-uniform as illustrated in Fig. 1(c).
Therefore, the global structure of the lattice can be naturally
partitioned into two simpler sub-lattices: a honeycomb lattice
(red particles) and a triangular lattice with a side length of
three (blue particles). By allowing two components to occupy
the two distinct types of lattice sites, relatively simple inter-
actions can be combined to favor self-assembly of a rather
complex target. By contrast, when the same global structure
was targeted via a single-component optimization, the best
resulting interaction was not only considerably more complex,
but also self-assembly of the target structure was significantly
less satisfactory than for the binary mixture (see Fig. S1 of
the supplementary material). As a second example, a pre-
vious study reported® that single-component assembly of a
rectangular kagome lattice from a single-component system
required an interaction possessing an abrupt attractive well
within a larger repulsive profile, while the optimized binary

J. Chem. Phys. 148, 104509 (2018)

r

FIG. 3. Optimized pair potentials and representative particle configurations
for the square binary (top), square single stripe (middle), and square double
stripe (bottom) lattice assemblies. Black lines are drawn to highlight the ideal
crystal structures.

interactions reported here for the same structure are purely
repulsive and limited to a few shoulder features; see Fig. 2
(middle).

With respect to binary mixtures increasing the diver-
sity of possible self-assembled structures relative to single-
component systems, the partitioning of a desired global struc-
ture into individual sub-lattices corresponding to each species
not only allows for self-assembly of intricate structures such as
STH and octadecagonal star binary lattices (Fig. 4), but it also
opens up the possibility of segregating components in specific
local structures using an otherwise simple global lattice struc-
ture. This is seen clearly in Fig. 3 where the same underlying
square lattice is partitioned to form intercalated squares (top)
or stripes with either a 1:1 (middle) or a 2:1 (bottom) ratio. As
expected, we find that increasing the asymmetry of the particle
arrangement (as is displayed from top to bottom in Fig. 3) gen-
erally requires more complex potentials in terms of both the
interaction range and the number of shoulders. A similar argu-
ment applies to the triangular binary target, where it is known
that a single-component hard-core fluid favors a global trian-
gular lattice, but achieving assemblies possessing the specific
relative AA and BB ordering characteristic of the target lattice
requires the binary interactions shown in Fig. 2 (top). In short,
the above observations indicate that the enhanced design space
of binary systems can enable the self-assembly of structures
also available to single-component systems (but with simpler
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FIG. 4. Optimized pair potentials and representative particle configurations
for the square corral (top), square truncated hexagonal ([3.12.12; 3.4.3.12]—
middle), and octadecagonal star binary (182.3,,/0—bottom) lattice assem-
blies. Black lines are drawn to highlight the ideal crystal structures.

interactions) as well as the self-assembly of significantly more
complex structures than those attainable in a single-component
system.

Focusing on binary assemblies, we can also gain some
insight into the mechanisms for their global stabilization by
comparing the underlying component interactions to those of
single-component systems optimized to stabilize similar local
structures. Specifically, Eq. (1) recognizes that the binary sys-
tem can comprise independent self- and cross interactions that
are optimized to recreate the RDFs of the target lattice. How-
ever, the equation alone does not clarify the extent to which
the binary assembly can be considered a trivial superposi-
tion of sub-structures that can be stabilized by component
self-interactions (e.g., approximately equal to those expected
from the analogous single-component target structure) versus
amore cooperative, or coupled, assembly relying on nontrivial

J. Chem. Phys. 148, 104509 (2018)

cross interactions. In order to help address this question, we
compare the optimized self-interactions of the binary system
to analogous single-component interactions that stabilize the
same local structure.

We begin by considering the square binary, triangular
binary, and triangular honeycomb targets shown in Fig. 3 (top)
and Fig. 2 (top) and (bottom), respectively. The underlying
single-component structure is that of a square lattice for square
binary AA or BB components and a honeycomb lattice for the
BB component of both triangular binary and triangular honey-
comb structures. As such, we can plot these individual com-
ponent interactions and compare them to single-component
interactions known to stabilize these lattices.”® This compari-
son is shown in Fig. 5 for the optimized square lattice (a) and
the honeycomb lattice (b) interactions where potentials are
normalized such that ¢(r)/¢(1) = 1. As seen, the square binary
AA(BB) interaction is largely similar, though not identical,
to its single-component equivalent in range and complexity.
The BB interactions for the triangular honeycomb and trian-
gular binary [Fig. 5(b)] also approximate those of the reported
honeycomb potential, though the triangular binary BB interac-
tion deviates more strongly from the single-component results.
This larger discrepancy, as we will show below, is an indication
that individual component interactions need not exactly match
their ideal local target lattice counterpart in order to achieve
proper global assembly.

To investigate the above deviation more closely, we use
one of the self-interactions (AA or BB) from the optimized
binary system to carry out a single-component assembly sim-
ulation at the same temperature and box size as the binary
system, where the other component has been removed from
the simulation box. We then compare the resulting equilibrium
assemblies to the expected perfect local lattice for that compo-
nent. To this end, we choose the simpler square binary structure
(Fig. 3, top) and the more elaborate STH structure (Fig. 4,
middle) as two contrasting test cases. As seen in Fig. 6(a) (top
right), the square lattice is the local structure for the A(B) com-
ponent in the square binary target. However, as shown in the
bottom right of (a), particles interacting via the AA interac-
tion form a largely amorphous configuration. Despite this, the
corresponding RDF for the extracted binary interaction (blue)
shows a good match between the first two target square lat-
tice coordination shells positions (note that, for this case, the
AA pair interaction only spans the first two target coordination
shells).

Similarly for the STH target structure, the A com-
ponent locally forms a stretched truncated square lattice.
However, particles interacting with the AA potential in a

D2 D2 i - tri binary BB
—m: squ i —-m: tri honeycomb BB|
_E15 _E15 {  [=m: honeycomb FIG. 5. (a) AA component of the optimized pair inter-
=) =) ) action for the square binary structure (blue) compared to
s 1 | that reported> for the single-component square structure
S S (black). (b) BB component of the optimized pair poten-
: 0.5 S 0.5 tial for the triangular binary (solid red) and triangular
© T © T RN honeycomb binary (dashed red) lattices compared to that
0 0 \\\ reported for the honeycomb potential®® (black).
0.8 1 1.2 1.4 0.5 1 1.5
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FIG. 6. Radial distribution functions and configurations of single-component
assemblies of particles interacting via optimized binary self-interactions (blue
or red) versus behavior in the fully optimized binary system (gray) for the (a)
square binary AA interaction (same as BB by symmetry), (b) square truncated
hexagonal AA interaction, and (c) square truncated hexagonal BB interaction.

single-component simulation assemble into stripe-like phases.
Nonetheless, comparing RDF peak positions shows good
agreement with the target in the first three coordination shells
which spans the full interaction range. Finally, looking at the
STH BB component assembly in (c), we expect square clus-
ters in a square super-lattice arrangement, but simulations
yield rhomboid clusters in a triangular super-lattice orienta-
tion instead. While the peak positions in the RDFs do not
overlap as closely as in Figs. 6(a) and 6(b), visual comparison
of the target and the formed assembly shows that the mean
inter-cluster distance is approximately the same in both cases.
Together, these results demonstrate that individual component
interactions cannot be expected to fully recreate the underly-
ing local target structure in the binary target but only to ensure
proper local particle positioning on average. This is why the
optimized interactions need not (and generally will not) closely
match corresponding single-component target interactions; the
latter fail to fully stabilize the local target structures and more
specific coupling between interaction types must play a key
role.

J. Chem. Phys. 148, 104509 (2018)

To further unravel the requirements for assembly of binary
structures, we performed optimizations where one of the
three interaction types was fixed as a hard-core-like [Weeks-
Chandler-Andersen (WCA)] potential, while the rest were
optimized as usual.”* In particular, we consider the square
binary target from Fig. 3 (top) and carry out optimizations con-
trolled for annealing schedule and iteration step so as to isolate
the effects of fixing the interaction relative to the fully opti-
mized system. Results for the square binary structure, where
either AA(BB) or AB interactions are fixed, are shown in
Fig. 7 (top or bottom, respectively). In the first case, fixed
AA interactions resulted in stronger AB and BB interactions
that helped boost global structure stability—though clearly
not as efficiently as the fully optimized system (compare AA
RDF, top right). This contrast is more drastic when AB (the
cross coupling) is fixed, resulting in sharpened AA and BB
interactions that nevertheless fail to restore original system
stability (broadened peaks for all RDFs, bottom right). Fix-
ing one of the individual interactions as hard-core-like and
optimizing the others does not work at all in assembling in
the more complex binary structures. For instance, when such
a procedure was carried for the STH lattice, it resulted in
phase separation for fixed AA or BB interaction or stripe-like
configurations for fixed AB interaction (see Fig. S2 of the sup-
plementary material). Similar results hold for the square corral
structure.

Together, these results help us to highlight the individ-
ual roles of self- and cross interactions, respectively, in binary
assemblies. For simple global targets like the square binary
lattice, stronger AB and BB optimized interactions can com-
pensate for a hard-sphere-like AA interaction to resultin a suc-
cessfully self-assembled target structure. However, for more

FIG. 7. Optimized component interaction and radial distribution function
comparison for square binary optimizations where the AA (top) and AB (mid-
dle) interactions have been fixed to display a simple WCA-like repulsive form
described in the text. Note that, for both cases, the square binary assembly
with fully optimized interactions leads to sharper RDF peaks at the target
temperature.
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intricate local orderings like those in the STH lattice, sharp-
ening remaining interactions is not enough to compensate for
a neutral interparticle interaction, resulting in a failed global
assembly. Similarly, fixing the cross interaction places a larger
load on self-self-interactions to achieve correct local position-
ing, but these cannot stabilize relative component ordering by
definition and as such this strategy results in reduced overall
global stability for simple and complex targets alike.

To summarize, the analysis of Figs. 6 and 7 strongly sug-
gests that global binary assembly can be understood as follows:
self-interactions act as a “primer” that help ensure that indi-
vidual component particles assemble into the right positional
order (coordination shells), while cross interactions “bind” the
locally ordered particles into their correct, target positions.”>
This is why, despite the self-interactions failing to assemble
the target local structure in an analogous single-component
system, they nonetheless encode the relevant length scales
present in the local structure. In fact, substituting the opti-
mized single-component square lattice interaction (which nec-
essarily contains the characteristic length scales of a square)
for the self-interactions in the intercalated square binary sys-
tem results in successful assembly of the target, with greatly
enhanced local AA(BB) stability as seen in the RDFs in Fig.
S4 of the supplementary material. The analysis also highlights
the importance of the interplay among the self- and cross inter-
actions for intricate structures, as it is through mutual coupling
that the entire global structure is locked into place. This result
also implies that the self-interactions that establish a neces-
sary local structure may be much simpler than those required
for an equivalent single-component system, so long as full
system interactions are in place. Indeed, while the stretched
truncated square local structure in the binary square corral
could be achieved by the BB component interaction only span-
ning four coordination shells, the equivalent single-component
truncated square interaction required five shells and resulted
in poorer assembly (see Fig. S3 of the supplementary
material).

IV. CONCLUSIONS

In this work, we extended a recently introduced inverse
design methodology, relative entropy optimization, to discover
new isotropic interactions that favor the formation of targeted
multicomponent phases. We have used this approach here to
determine interactions for binary mixtures that stabilize a wide
variety of two-dimensional lattice assemblies and, in doing so,
have gained new insights into how adopting a multicompo-
nent system can affect the overall prospects for self-assembly.
Although the expanded parameter space for design in mul-
ticomponent systems increases the complexity of the design
problem, it helps discover simpler interparticle interactions
(as compared to single-component systems) to assemble a
desired target phase. It also allows for designed assembly of
complex phases with structures that cannot be stabilized by
single-component materials.

Mechanistically, our results suggest that optimized inter-
actions between like components in a binary mixture act as
a “primer” to help ensure that such species adopt, on aver-
age, the correct positional order for the target phase. Cross

J. Chem. Phys. 148, 104509 (2018)

interactions, in turn, act as a “binder” to further ensure that
species conform to the precise local compositional order
required by the target. For complex or open lattices, inde-
pendent design of cross and self-interactions is required to
stabilize the desired assemblies.

Physically, reported single shoulder interactions for tar-
gets such as Fig. 2 (bottom) or Fig. 3 (top) are similar to those
displayed by core-corona’® or dendritic particle systems’’ and
predict structure stability at (osmotic) pressures moderately
above 1 atm, assuming room temperature and particle size
scales on the order of ~10 nm. However, similar experimen-
tal analogs for the more complex interactions required for the
remaining structures in this work are more challenging to envi-
sion. In future work, it will be interesting to pursue related
inverse design calculations for classes of materials whose self-
and cross interactions are effectively constrained in ways that
can be encoded by fundamental physics or empirical mixing
rules.

SUPPLEMENTARY MATERIAL

See supplementary material for a derivation of the RE
update scheme and a description of how interaction cutoffs are
determined. Additionally, we include figures for the triangular
honeycomb structure assembly from a single component, self-
assembly results for the square truncated hexagonal structure
with fixed hard-core-like interactions, comparison of single
component assembly of the B component sub-lattice in the
square corral target, and an example of how using optimized
single component interactions may help boost binary assembly
stability.
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