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ABSTRACT

As malicious bots reside in a network to disrupt network stability,
graph neural networks (GNNs) have emerged as one of the most
popular bot detection methods. However, in most cases these graphs
are significantly class-imbalanced. To address this issue, graph over-
sampling has recently been proposed to synthesize nodes and edges,
which still suffers from graph heterophily, leading to suboptimal
performance. In this paper, we propose HOVER, which implements
Homophilic Oversampling Via Edge Removal for bot detection
on graphs. Instead of oversampling nodes and edges within initial
graph structure, HOVER designs a simple edge removal method
with heuristic criteria to mitigate heterophily and learn distinguish-
able node embeddings, which are then used to oversample minority
bots to generate a balanced class distribution without edge synthe-
sis. Experiments on TON IoT networks demonstrate the state-of-
the-art performance of HOVER on bot detection with high graph
heterophily and extreme class imbalance.
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1 INTRODUCTION

Malicious bots are compromised victim computers or IoT devices in
a network by communicating in peer-to-peer (P2P) structures [27],
which can infect a system or commit other malicious activities [3,
21]. As such, graph neural networks (GNNs) have emerged as one of
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the most popular bot detection methods [1, 15, 26, 30]. Bot detection
is formulated as a node classification problem, where various GNNs
[9, 10, 13] can be devised to perform neighborhood aggregation
and label propagation through graph structure. For example, Zhao
et al. [30] customized GNNss to detect botnet nodes within Internet
communication graphs by identifying their topological patterns. Lo
et al. [15] built a graph isomorphism network (GIN) with grouped
reversible residual connections to handle performance degradation
on botnet communication graphs. The use of GNNs for bot detection
is appealing, as they provide a method to boost the expressiveness
of node presentations from network traffic.

The nodes within such communication graphs fall into two
classes: malicious bots and benign devices, where the imbalance
ratio r = #malicious bots/#benign devices (0 < r < 1) can be used to
quantify the extent of class imbalance. We calculate r over TON IoT
networks [2, 19], a dataset widely used for bot detection (detailed
in Section 4.1), where in most cases the imbalance ratios are below
0.03. This indicates a significant disparity where malicious bots are
greatly outnumbered by benign devices. When trained on class-
imbalanced graphs, GNNs may favor the majority class over the
minority class and degrade their detection performances [11]. Un-
fortunately, existing graph-based bot detection methods have rarely
explored this class-imbalanced issue. Oversampling has recently
been generalized to imbalanced graphs [8, 28], which synthesizes
nodes in the embedding space and then generates edges to con-
nect them with existing nodes. However, this formulation has two
shortcomings: (1) class imbalance in graphs is often accompanied
by heterophily [29], where minority nodes tend to connect with
majorities and their embeddings can be easily smoothed [25, 31];
and (2) edges generated using weighted inner products of node
embeddings may not represent real-world relations between nodes
with constraints (e.g., device communications can be only enabled
by TCP), leading to noisy neighborhoods for message passing.

In this paper, we propose HOVER, which implements Homophilic
Oversampling Via Edge Removal for class-imbalanced bot detec-
tion on graphs. Instead of oversampling nodes and edges within
initial graph, HOVER follows the GNN learning steps to first ac-
quire higher-level node representations that capture node features
and graph structure by employing heterophily-aware neighborhood
aggregation, and then apply an oversampling algorithm over the
learned minority node representations to generate a balanced class
distribution for bot detection, without the need for edge synthesis.
Unlike adaptive aggregation techniques [7, 20], HOVER leverages a
simpler yet effective edge removal method to mitigate homogeniza-
tion and over-smoothing on minority node embedding resulting
from heterophily. With examination of edge patterns, we design
a set of heuristic criteria to guide edge removal, which increases
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graph homophily and the effectiveness of subsequent oversampling,
and thus improves class-imbalanced bot detection performance.

2 PROBLEM STATEMENT

In this paper, we explore graph-based class-imbalanced bot de-
tection, where bots and benign devices are distributed in a net-
work. We represent this network as a graph G = (V, &, X), where
V(n = |V|) is the set of devices, & is the set of edges, and X € Rxd
is feature matrix. Each labeled node has a ground truth y € {0,1}
where 0 denotes benign device and 1 denotes malicious bot. Edges E
can be organized as an adjacency matrix A € R™" and A;; = {0, 1},
where if (v;,0;) € E, then A;j = 1; otherwise, A;j = 0 [12]. We cast
bot detection as a node classification problem, and aim to mitigate
the impact of imbalanced classes, such that a GNN model f can be
learned on G to correctly identify malicious bots and benign devices.
Specifically, this model is to train fiw (A, X) in a semi-supervised
manner by minimizing the training loss:

W* = argmin £(fiw (A, X),y1) 8
W

where W is weight matrix, and y; is class vector. We use a graph

convolutional network (GCN) [10] to facilitate node representation

learning that performs neighborhood aggregation as:

HD = o (AHC-DWO) ®)
Atlayer [ (I > 1), H=1 and H?) are its input and output, W() is
weight matrix, o is an activation function, A=D"2AD": A = A+
and D is the diagonal degree matrix defined on A.

3 PROPOSED MODEL: HOVER

In this section, we present our designed class-imbalanced bot detec-
tion model HOVER, the overview of which is illustrated in Figure 1.

3.1 Unsupervised Edge Removal

Given a communication graph G, edges can be divided into three
types: bot edge that connects two bot nodes, benign edge that
connects two non-bot nodes, and inter-class edge that connects
a bot node to a benign node. Bot nodes are often connected with
benign nodes, leading to heterophily issue [29, 32]. The heterophily
ratio in G can be defined as follows:

{(0i,0)) : (0i,0)) € E Ayo; # Yo, }
3]

We calculate h over TON IoT networks, where the heterophily ratios
for some graphs are above 0.70, indicating high heterophily.

Due to neighborhood aggregation, bot node embeddings gen-
erated by GCNs in a graph with high heterophily tend to be ho-
mogenized by benign node embeddings, resulting in smoothed and
indistinguishable embedding space for subsequent oversampling.
To address graph heterophily, the prevalent methods attend to refine
neighborhood aggregation to adaptively exploit homophilic and
heterophilic information [7, 14, 16, 20], which improve the learning
performance, but complicate the models with extra computational
cost. In this paper, we take a different direction to formulate a sim-
ple yet effective edge removal method to mitigate the impact of
heterophily. Edge removal has proved to yield advantages for graph

h= 3)
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Figure 1: Overview of HOVER: unsupervised edge removal is
performed to mitigate heterophily and learn distinguishable
node embeddings, which are then used to oversample bots
to generate a balanced class distribution for bot detection.

learning, such as preventing over-smoothing [5, 22], enhancing ro-
bustness [6, 17], and increasing homophily [18]. This thus provides
a great potential to address heterophily problem.

Heuristics. Edge removal involves selectively removing certain
edges from the graph based on specific criteria to influence infor-
mation flow. From a typical perspective, edges connecting nodes
with dissimilar features contribute to the heterophily issue. Simi-
larity between node features are thus measured as criteria to select
such edges to drop [6, 24]. But heterophilic edges in a graph do not
necessarily degrade the GNN performance [18]. This motivates us
to reconsider edge removal criteria. With a close examination of
edge patterns, we propose two heuristics: (1) edges with similar
semantics, carrying homophily or heterophily information, exert a
similar influence on information propagation with the graph; (2)
edges captured by distributions of different properties should be
discrepant, contributing differently to graph connections.

Edge clustering. To generalize the heuristics into edge removal
criteria, the most direct way is utilizing edge clusters. We first
produce a collection of edge vectors to characterize edges, each of
which is defined as difference between initial feature vectors Xy,
and X,; of nodes v; and v; connected by the given edge:

= |XZJ,- _ijl, (Uisvj) €& 4)

Ey, 0, provides a quantitative measure of every edge in G, which
is easily feasible for edge clustering. Specifically, edge vectors are
clustered using DB-SCAN [23], which allows for non-circular and
abnormal cluster shapes to be discovered. The upper half of Figure 1
shows a visualization of edge types and the resulting clusters using
DB-SCAN. To further differentiate edge distributions across clus-
ters, we examine the properties of distributions by calculating the
mean and standard deviation for a collection of cluster metrics M,
including number of edges in a cluster, width, centroid magnitude,
and average intra-cluster distance. In this way, for each cluster, we
can determine the number of standard deviations from the mean
for each metric. Then all the clusters are binned with one standard
deviation size. This produces a set of deviation bins denoted by
DB,,, », where m is the metric and b is the bin index for metric m.

EUi,Uj

Criteria. According to the heuristics, for each cluster, we can uti-
lize available training labels to estimate the cluster’s probability
distribution. Our goal is to understand the probability that any
edge in a cluster c is a bot edge P(bot|c), benign edge P(ben]c),
or inter-class edge P(int|c). Each probability is calculated using
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the training edges in a cluster, where the number of edges of each
type in training set is divided by the total number of training edges.
Note that edges in test set or edges that straddle the test and train-
ing nodes are omitted from this calculation. Given the clusters in
each deviation bin DB,,, ;,, we aggregate this distribution with these
probabilities to give us three conditional probabilities regarding
cluster metric m and deviation bin b:

1
P(int|m, b) = P(int|c 5
(intlm, b) = 755— % (intle) )
ceE m,b
P(bot|m, b) = ——— Z P(bot|c) (6)
|DBm,b| ceDB,,
P(ben|m,b) = _t Z P(ben|c) (7)
|DBm,b| DB
ce mb

Afterwards, we use a statistics-based approach to decide the specific
edge removal criteria for relative simplicity, explainability, and
flexibility. Specifically, we leverage the conditional probabilities
listed above to develop three edge removal criteria: maximum inter-
class edge probability (MxIEP), minimum benign edge probability
(MnBEP), and maximum probability difference (MxPD):

MXIEP: ¢ = argmax P(int|c) s.t. (m,b) = argmax P(int|m,b) (8)
ceDB,, meM,beB

MnBEP: ¢ = argmin P(ben|c) s.t. (m,b) = argmin P(ben|m,b) (9)
ceDB,,;, meM.,beB

MxPD: ¢ = argmax P(int|c) — P(ben|c)
ceDB,,, p
’ . (10)
s.t. (m,b) = argmax P(int|m,b) — P(ben|m,b)

meM,beB
Each criteria returns a cluster to guide the edge removal.

These criteria allow HOVER to reason about graphs with dif-
ferent properties regarding high homophily, high heterophily, or
unique structural complexities: MXIEP targets inter-class edges,
MnBEP avoids disturbing homophilic edges, and MxPD considers
multiple probabilities to precisely target clusters of mostly inter-
class edges. The edge removal process is iterative, where the edges
in the cluster with the highest (or lowest) value for the criteria
in use are removed. If the desired number of edges has not been
reached yet, the next most appropriate cluster is returned, from
which edges are removed.

3.2 Oversampling in Node Embedding Space

The unsupervised edge removal step accepts G and produces a
reduced-edge graph G’, which is fed to a GCN to obtain improved
node embeddings that are distinguishable and encode graph struc-
ture and node features. In this node embedding space, we can
directly synthesize new bot samples to balance class distribution.
Here we employ SMOTE as our oversampling algorithm [4], due
to its popularity and performance in oversampling. Given node
embeddings H’ generated on G’ using Eq. (2), for a bot node v and
a random bot node u from v’s nearest neighbors, their embeddings
are Hy and Hj,, such that a new bot sample can be synthesized as:

h = (1-8)H, + 6H,, (11)
where § is a random variable ranging from 0 to 1. Since both H}, and
H], are bot nodes, h equalizes the same class distribution. In this

way, we can oversample bot nodes that are appended to previous
nodes for classifier training.
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Table 1: Statistics of bot detection datasets

File | Bots | Benigns | Im-Ratio | Edges | Heterophily Ratio
3 32 1,604 0.020 9,492 0.349
4 38 1,623 0.023 9,644 0.730
5 41 1,638 0.024 9,716 0.731
10 56 2,048 0.027 11,928 0.332
15 57 14,009 0.004 60,372 0.067

3.3 Model Optimization

After oversampling, H is augmented by concatenating representa-
tions of initial labeled nodes with those of synthetic nodes. As H
is of balanced class distribution, we feed it to an MLP directly to
calculate the prediction output Z = MLP(H) and the loss as follows:
1 ||
L=-—"yi+log(Z) (12)
M| i

As oversampling relies on node embeddings, HOVER pre-trains a
GCN on G’ as embedding generator, and minimizes the loss £ to
optimize the final classifier. We also evaluate the difference between
training GCN and MLP separately and as a whole in ablation study.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Experimental Setup

Datasets. We test HOVER on TON IoT networks [2, 19], which is
an assortment of Industry 4.0/IoT and IIoT datasets. Each network
is recorded in a capture file that is translated into a communication
graph, where protocol used, packet size, and amount of data trans-
mitted and received are used as node features. To represent unique
graph constructs, we select graphs with high heterophily (h > 0.6),
high homophily (h < 0.4), and extreme class imbalance (r < 0.01)
respectively. Table 1 details the data statistics. We separate nodes
in each graph into an 80-20 split for training and testing.

Baselines. We select baselines using rebalance and edge removal
for comparison, including GCN [10], SMOTE+GCN (GCN operat-
ing on data oversampled with SMOTE), GCN+SMOTE (oversam-
pling on graph embeddings), GraphSMOTE [28], Euclidean+SMOTE
(oversampling on updated embeddings from graph with the most
dissimilar edges removed), and Random+SMOTE (oversampling on
updated embeddings from graph with random edges removed).

Parameters. HOVER has three hyperparameters. n_pts and € are
from DB-SCAN: n_pts = 3 is the minimum number of edges to
form a cluster; € is the radius of an edge’s neighborhood in a cluster.
drop_rate is the ratio of removed edges to all edges. The impacts of
€ and drop_rate are evaluated in Section 4.2. The GCN in HOVER
consists of two graph convolution layers, and MLP comprises two
fully connected layers. Both models employ Adam configured with
0.01 learning rate and 5e — 4 L2 regularization on the weights. F1-
score is used as the primary evaluation metrics to provide insight
into a model’s effectiveness classifying the minority class.

4.2 Evaluation of HOVER

Effectiveness. In this section, we evaluate the performance of
HOVER with € € [0.1,0.5], drop_rate € [0.1,0.5], and edge re-
moval criteria include MxIEP, MnBEP, and MxPD. The experimental
results are illustrated in Figure 2. As we can see, HOVER achieves
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Table 2: Comparison of HOVER with baselines

Model File 3 File 4 File 5 File 10 File 15
Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1

GCN 98.5 0.000 97.6 0.000 97.0 0.000 95.5 0.000 99.7 0.000
SMOTE+GCN 97.6 0.526 97.0 0.546 97.9 0.666 99.1 0.900 96.8 0.165
GCN+SMOTE 98.5 0.000 97.6 0.000 97.2 0.000 95.5 0.000 99.7 0.000
GraphSMOTE 98.0 0.495 97.7 0.642 97.5 0.494 91.8 0.494 89.1 0.499
Euclidean+SMOTE 97.6 0.556 97.6 0.667 98.1 0.625 97.9 0.740 94.2 0.089
Random+SMOTE 98.8 0.667 97.6 0.334 96.7 0.417 99.0 0.556 99.7 0.000
HOVERpx1EP 100.0 1.000 99.1 0.762 99.1 0.824 99.3 0.914 99.9 0.750
HOVERMnBEP 99.1 0.769 98.5 0.778 98.5 0.667 99.3 0.914 99.9 0.800
HOVERpMxpPD 100.0 1.000 99.1 0.769 99.1 0.824 99.1 0.889 99.9 0.750

*Despite the frequency of zero values (0.000) in this table, these are not errors or neglected placeholders. The zero values have been verified during review.

the state-of-the-art results of bot detection when the classes are
extremely imbalanced on graphs. The best F1-scores are 1.000, 0.778,
0.824, 0.914, 0.800 for five datasets, respectively.

Impact of €. As shown in Figure 2(a) (using MxIEP and drop_rate =
0.4), when € is small (0.1) or large (0.5), edge removal is ineffective
that leads to low F1-score. Small € increases outliers and the risk of
clustering only edges in test set; large € renders clusters monolithic
with similar probability densities. When € = 0.3, HOVER presents
a good trade-off with best performance. Therefore, we use € = 0.3
throughout the following evaluations.

Impact of drop_rate. We use MxIEP with € = 0.3 to run the ex-
periments across different drop rates, and report the results in
Figure 2(b). As drop_rate increases, the F1-score increases as well
because of lower heterophily and higher oversampling effective-
ness. When drop_rate = 0.3, the performance rises to a stable high
level, demonstrating the effectiveness of edge removal that removes
relatively small number of edges to preserve graph structure.

Impact of edge removal criteria. We report the results using
three edge removal criteria in Table 2, where MXIEP and MxPD
outperform MnBEP by 20% F1-score difference in some cases. We
also see that MxIEP is generally the best choice, which is logical
as MxIEP targets heterophilic edges. When the graph is extremely
homophily (e.g., file 15), MnBEP has a better potential than MxIEP
and MxPD for class-imbalanced node classification.

4.3 Comparison with Baselines

The comparative results are presented in Table 2. We can observe
that GCN suffers from heterophily and imbalanced classes that lead
to 0.000 F1-score across all datasets. As the learned node embed-
dings are homogenized, oversampling in such embedding space is
ineffective, resulting in 0.000 F1-socre for GCN+SMOTE and low
performance for GraphSMOTE. Surprisingly, SMOTE+GCN per-
forms well, which may be due to the expressiveness of raw node
features. Euclidean+SMOTE removes edges with top dissimilarity
(drop_rate = 0.5), delivering better performance than other base-
lines. However, HOVER outperforms Euclidean+SMOTE by a large
margin, especially for file 15. This confirms the reasonability of our
heuristics and effectiveness of our edge removal criteria.

4.4 Ablation Study

An ablation study is conducted using MxIEP on files 4 and 5. We
individually eliminate one component from the model, and evaluate
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Figure 2: Evaluation on € and drop_rate using MxIEP.

Table 3: Ablation study: Edge Removal (ER), Oversampling
(OS), and Separate Training (ST)

ER oS ST F1 on File 4 F1 on File 5
v v 0.000 0.000

v v 0.667 0.667

v v 0.047 0.571

v Vv v 0.762 0.824

their performance. The results are reported in Table 3. A lack of
edge removal prevents the GCN from generating useful embed-
dings for oversampling, where bot nodes are obscured by benign
nodes leading to 0.000 F1-score. A lack of oversampling improves
results, demonstrating the significance to address heterophily and
effectiveness of edge removal in this respect. Also, model perfor-
mance suffers from drastic drop when GCN and MLP are trained as
a whole. This may be because that the GCN fails to receive super-
vision from synthesized data, which are still affected by imbalance
classes. These observations reaffirm the effectiveness of our design.

5 CONCLUSION

In this paper, we introduce HOVER, an approach to detect bots on
graphs with high heterophily and imbalanced classes. HOVER pro-
ceeds by designing an edge removal method with heuristic criteria
to mitigate heterophily and learn high-level and distinguishable
node embeddings, and then synthesizing minority bot nodes in
such node embdding space to generate a balanced class distribution.
The state-of-the-art bot detection results validate HOVER’s effec-
tiveness in overcoming graph heteropholy and class imbalances,
and its simplicity and feasibility to detect bots in practice.
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