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In this study, we investigate the compatibility of specific vulnerability indicators and heat exposure data and the
suitability of spatial temperature-related data at a range of resolutions, to represent spatial temperature varia-
tions within cities using data from Atlanta, Georgia. For this purpose, we include various types of known and
theoretically based vulnerability indicators such as specific street-level landscape features and urban form
metrics, population-based and zone-based variables as predictors, and different measures of temperature,
including air temperature (as vector-based data), land surface temperature (at resolution ranges from 30 m to
305 m), and mean radiant temperature (at resolution ranges from 1 m to 39 m) as dependent variables. Using
regression analysis, we examine how different sets of predictors and spatial resolutions can explain spatial heat
variation. Our findings suggest that the lower resolution of land surface temperature data, up to 152 m, and mean
radiant temperature data, up to 15 m, may still satisfactorily represent spatial urban temperature variation
caused by landscape elements. The results of this study have important implications for heat-related policies and
planning by providing insights into the appropriate sets of data and relevant resolution of temperature mea-
surements for representing spatial urban heat variations.

1. Introduction

Cities worldwide are growing fast to accommodate the increasing
global population. According to the United Nations New Urban Agenda,
by 2050, the world’s population is expected to double, which makes
urbanization an inevitable trend (Habitat, 2017). The excess heat
resulting from deforestation, land cover change, and the prevalence of
impervious surfaces is great enough to raise the cities’ average tem-
perature by several degrees over the non-urbanized and rural parts and
lead to a known phenomenon called the urban heat island effect (Oke,
1987). Increased temperature in cities impacts human health and
well-being in several ways. However, the associated effects of heat
exposure in cities are not spatially uniform (Chen et al., 2022). Land use,
landscape features, surface covers, and morphological parameters make
temperature distribution in cities disproportionate and cause disparities
in the burden of heat exposure across sociodemographic groups (Hsu
et al., 2021; Voelkel et al., 2018). While proactive heat mitigation
strategies at the local level are integral to compensate for the severity of
extreme heat exposure, a lack of spatially explicit information on hot-
spots would undermine the specificity and applicability of the policies
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(Preston et al., 2011). Hence, the demand for systematic representations
of spatial heat heterogeneity within cities is rising (Meng et al., 2018;
Peng et al., 2020).

Representation of heat exposure variation can be facilitated through
empirical measurements, allowing the direct observation of spatial and
temporal variation in temperatures. For example, LANDSAT and MODIS
images are widely applied to classify land cover/ land use changes and
assess the association between spatiotemporal factors and the urban
heat island effect (Chen, 2021; Deilami et al., 2016; Guha et al., 2018;
Mukherjee & Singh, 2020; Schwarz et al., 2011). While empirical
techniques such as satellite imagery and in-situ temperature measure-
ments have moderate spatial and temporal resolutions, physically based
modeling may provide higher resolution exposure representation by
involving an array of physical and meteorological parameters at finer
scales. Finer scales may be especially useful when engaging with resi-
dents because they enable more convincing causal relationships linked
to the variation in temperatures (Berardi et al., 2020; Gunawardena &
Steemers, 2019; Kianmehr & Lim, 2022). Moreover, modeling can
incorporate more salient aspects of urban heat than remotely sensed
infrared reflectance. For example, solar irradiance geometry models
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apply urban 3D models and meteorological data to estimate citizens’
thermal comfort level in urban areas with a high resolution and through
a human-centric point of view. Ultimately, however, the value of finer
scale data depends on its intended use. For example, Wu et al. (2019)
found that coarse regional air temperature data were sufficient to pre-
dict heat mortality during heat waves.

Urban planners are increasingly concerned with how decisions about
the built environment can influence microclimate, giving rise to a need
for models that can more precisely relate elements in the built envi-
ronment with temperature impact (Keith & Meerow, 2022). Identifica-
tion of underlying reasons for heat vulnerability and exposure variations
within cities requires choosing appropriate proxies and relevant reso-
lution of data (Karanja & Kiage, 2021). In recent years, advancements in
"big data" acquisition and analysis have facilitated the operationaliza-
tion of the known and theoretically based predictors, which could
theoretically result in more precise predictions and explanations of
spatial heat vulnerability associated with landscape elements. For
instance, Google Application Programming Interface (API) for street
view images (Google Street View, hereafter, "GSV") provides easy access
to the extensive and invaluable sets of data taken from human-centric
views (Middel et al, 2019), which allows for capturing
three-dimensional elements with much higher resolution (Xu et al.,
2012). In urban heat studies, street-level landscape features and urban
form metrics derived from profile-based GSV images have been applied
to identify the type, density, and distribution of urban greenery (Li et al.,
2015Db), track the temporal change of green index (Li, 2021b), and assess
the accessibility of different neighborhoods and communities to the
green areas (Li et al., 2015a). This promising source of data, coupled
with other social indicators of heat vulnerability, such as poverty rate,
educational attainment, ethnicity, gender, age, and historical segrega-
tion practices (Cutter et al., 2003; Dialesandro et al., 2021; Hoffman
et al., 2020; Uejio et al., 2011; Wilson, 2020) can be used to create a
picture of physical and social vulnerability of different localities toward
the heat risk with a high resolution.

Whereas such suites of individual indicators leverage fine-scale
analysis of temperature variations, aggregation techniques can change
the nature of the gained information (Abson et al., 2012). A mismatch in
spatial resolution among exposure data and physical and social
vulnerability indicators (hereafter, vulnerability indicators) obstructs
the consistent development of metrics and accurate representation of
disparities (Cutter & Finch, 2008; Ho et al., 2015). This issue mainly
emanates from a phenomenon called Modifiable Areal Unit Problem
(MAUP) (Openshaw, 1984). The MAUP happens as the result of two
distinct yet related conditions: the scale problem and the zoning effect
(Fotheringham & Wong, 1991). The scale problem is associated with the
aggregation of areal units’ (e.g., pixel) data into the adjacent units,
resulting in coarser units of analysis with the same areal size. In contrast,
the zoning problem is related to the use of an alternative unit of analysis
with different sizes while the total number of units is held constant (Ho
et al., 2015; Ju et al., 2021). Both circumstances can change the results
in multivariate analyses (Jelinski & Wu, 1996). For example, when the
unit of analysis for the exposure and vulnerability analysis is determined
arbitrarily, the analysis results may not reflect the real spatial heat
heterogeneity. Such biased results would also hinder the accurate
identification of suitable exposure and vulnerability indicators and
proxies.

Selecting appropriate vulnerability indicators and data resolutions
congruent with system dynamics is challenging, yet it is central to
ascertaining appropriate heat mitigation strategies. There are many
conceptual models in heat-related studies that scrutinize heat vulnera-
bility at a fine scale to benefit site-specific policy-making (Conlon et al.,
2020; Johnson et al., 2012; Mushore et al., 2018; Song et al., 2020).
However, except for a few studies (Ho et al., 2015; Sobrino et al., 2012;
Zhou et al., 2014), the literature lacks systematic analysis of data types
and resolutions needed for the accurate detection of spatial heat varia-
tion and explainability of that variation. Therefore, this paper aims to
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explore what information can be gained about physical and social as-
pects of heat vulnerability and heat exposure through a data-driven
approach that fuses different kinds of spatial data at a range of resolu-
tions. As high-resolution data is not readily available for many locations
due to the resource limitations and computational expenses (Deilami
et al., 2018), this study specifically aims to evaluate the feasibility of
using lower-resolution temperature data and new sources of vulnera-
bility indicators to explain intra-urban heat variations. The key research
questions this study seeks to answer are: first, what is the satisfactory
range of exposure data resolution for accurately representing spatial
temperature variations? Second, which groups of vulnerability in-
dicators can better explain the variations in air temperature, land sur-
face temperature, and mean radiant temperature? And, finally, what is
the effect magnitude of specific landscape features and urban form
metrics on changing temperatures? And how do the direction and
magnitude of this effect differ in the whole study area and high-density
zones?

2. Data and method
2.1. Study area

Taking the city of Atlanta, Georgia, in the Southern United States as
the case study, we systematically assess the compatibility of specific
vulnerability indicators and temperature data and the suitability of
specific spatial data at a range of resolutions for the representation of
spatial temperature variations within cities. For this purpose, we employ
various types of predictors, including specific street-level features, socio-
demographic-based, and zone-based variables, to explain spatial air
temperature (AT), land surface temperature (LST), and mean radiant
temperature (MRT) variation within the city of Atlanta. The vector and
raster-based data, including field measurements of air temperature,
satellite imagery, and modeling data of various resolutions, are treated
as dependent variables in the multivariate regression analyses.

The city of Atlanta has a population of around 500,000 and is also
growing quickly (United States Census Bureau, 2021). Located in Fulton
County, the city of Atlanta is characterized by humid subtropical
weather with four seasons (Sun et al., 2018). Simulation results predict
that Atlanta will experience higher frequency and longer duration of
heatwaves (Habeeb et al., 2015). According to a survey, only 57% of
respondents can afford or use central air conditioning when needed
(Larsen et al., 2022). In addition, there is a disproportionate exposure to
the heat in Atlanta, where the greater burden of the urban heat island
effect falls on the poor (Chakraborty et al., 2019).

2.2. Data

According to studies such as Adger (2006), Guillard-Goncalves and
Zezere (2018) and Turner et al. (2003), in this paper, we refer to
vulnerability indicators as the composite of biophysical and socioeco-
nomic indices. Based on theories related to physical and social vulner-
ability, we used three types of vulnerability indicators, including
street-level landscape features and wurban form metrics,
population-based, and zone-based data, as explanatory variables in the
regression analyses. Moreover, to study spatial temperature variation,
we employed three exposure data types as dependent variables in
multivariate regression analyses: air temperature, land surface temper-
ature, and mean radiant temperature. Thermal comfort provided by
shading and wind speed is highly dependent on fine-scale landscape
features and urban form metrics. Studying the variations in thermal
comfort and shading was the primary motivation for using the mean
radiant temperature as one of the exposure data types in this study. Air
and surface temperature might not capture thermal comfort as thor-
oughly as other heat indexes, yet they are the most prevalent and
accessible types of temperature data and are worth further exploration
to test their suitability for representing spatial heat variations.
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Table 1
Information about the original resolution and distribution of each type of heat
exposure data.

Air Temperature Land Surface Mean Radiant

Temperature Temperature
Original 23,386 points with At the resampled ~2ft(1 m)
resolution a 10 m distance ~100 ft (30 m)
resolution
Minimum 25.45C 31.55C 3471 C
Maximum 30.48 C 50.84 C 58.14 C
Mean 27.95C 40.11 C 49.08 C
Standard 0.81 4.13 7.46
deviation

2.2.1. Exposure data

2.2.1.1. Air Temperature (AT). Air temperature data were obtained
from urban heat campaign (UHC) measurements for Atlanta. Funded by
NOAA, over the past five years, the urban heat campaign has taken place
in several localities in the U.S. (Mapping Campaigns, 2022). In this
study, we used the afternoon measurements data (3:00 pm-4:00 pm) of
the urban heat campaign in Atlanta, which took place on September 4th,
2021, and contained 23,386 observation points. Morning and evening
measurements from this campaign are also available. However, given
the significance of heat-related studies during the hottest hours of the
day and one of the purposes of this study, which is to analyze the shading
effect of street-level elements, we utilized the afternoon data from the
UHC measurements. Further information about air temperature data
employed in this study can be found in Table 1. This vector-based source
of data is treated as one of the dependent variables in our multivariate
regression analyses. In Fig. 1, we represent the normalized (scaled to the
maximum-minimum range) spatial distribution of air temperature along
with other types of heat exposure data used in this study (land surface
temperature and mean radiant temperature) for comparison purposes.
Fig. 1(a) shows the normalized spatial distribution of air temperature
data, the study area, and the observation points of this study.

2.2.1.2. Land Surface Temperature (LST). The land surface temperature
data was acquired through the bulk download of Landsat 8 images from
the United States Geological Survey (USGS) website. Thermal infrared
sensor (TIRS) images of Atlanta for the summer months (June 1 -
September 30) of years between 2019 and 2021 were collected (a total
of 14 scenes) and used for processing the raster data, including masking
clouds and handling missing pixels. In the next step, the actual daytime
land surface temperature for each grid point was calculated by con-
verting the raster values into degrees of centigrade and taking means
across all scenes. As a result, a single-layer daytime land surface tem-
perature image was created for Atlanta city. We shall note here the
original resolution of the Landsat TIR sensor is 100 m. However, the
resolution of raster data used in this study has been changed to 30 m as a
part of the Analysis Ready Data (ARD) dataset, prepared by the USGS, to
match the resolution of other (visible band) data distributed in ARD. For
more information about the resolution of Landsat images please refer to
the USGS website (USGS, 2023). This dataset was also used as a
dependent variable in multivariate regression analysis (Fig. 1(b)).

2.2.1.3. Mean Radiant Temperature (MRT). MRT more closely repre-
sents the thermal comfort that humans feel because it is derived by
summing all shortwave and longwave radiation fluxes that the human
body is exposed to (both directly and reflected) (Lindberg et al., 2008).
However, this means that MRT cannot easily be measured as a spatial
dataset and is usually calculated through mathematical modeling. Using
SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry)
model, besides spatial variations of 3D radiation fluxes, we simulated
the shadow pattern and the sky view factor of Atlanta’s urban settings,
taking into account the influence of shade on the thermal comfort of the
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human body. The two major inputs of the model are terrain features
including ground topography and building configurations, and meteo-
rological data, such as air temperature, relative humidity, wind speed,
direct radiation, and diffuse radiation (Li, 2021a). For Atlanta, meteo-
rological data and the high-resolution (1 m) 3D urban model generated
from LiDAR and aerial images were used as inputs of SOLWEIG to
calculate the spatial distribution of average mean radiant temperature
and, thus, the human outdoor thermal exposure level across neighbor-
hoods. More information about the modeling process can be found in our
previous study (Li, 2021a). This raster-based data also was treated as the
dependent variable in our regression analysis (Fig. 1(c)). Further details
about the distribution and original resolution of this dataset can be
found in Table 1. LST and MRT data of Atlanta show a similar pattern for
the distribution of hotspots in this city, where the highest land surface
and mean radiant temperature were observed in industrial, high-density
commercial, and office institutional zones. The most elevated air tem-
peratures were observed in the southern part of the city, where the
high-density residential and single-family residentials are located. The
distinction between the distribution of hot spots and cool spots of air
temperature and other measures of heat, such as land surface temper-
ature, has been noted in other studies. This can be attributed to the
anthropogenic activities and physical and landscape parameters that
affect air temperature variations in urban areas (Amani-Beni et al.,
2022).

2.2.2. Heat vulnerability indicators

2.2.2.1. Landscape features and urban form metrics. In this study,
vulnerability indicators refer to both biophysical and social aspects of
vulnerability, such as lack of vegetation and shading, increased sky view
factor, the prevalence of impervious surfaces, and a larger population of
marginalized groups. In our study, landscape features and urban form
metrics are considered as one of the subsets of vulnerability indicators
and refer to morphological characteristics such as sky view factor and
street-level built environment and landscape features that pedestrians
can directly perceive. To collect data related to such physical aspects of
heat vulnerability, we used Google Street View images of Atlanta. Using
the Urban Heat Campaign measurement point locations, we obtained a
list of available images in different years and months for those mea-
surement points. We filtered the image list for the September years be-
tween 2017 and 2019 to get the list of the most recent and relevant
images for download. This list contained 12,321 panorama identifica-
tion numbers (I.D.). As for each panorama I.D., four images are avail-
able; overall, we downloaded 49,284 images for those specific locations.

To quantify the landscape features and built environment of down-
loaded images, we used Pyramid Scene Parsing Network (PSPNet), a
superior framework for pixel-level predictions (Zhao et al., 2017). This
image scene parsing and semantic segmentation algorithm enabled us to
quantify 150 features (including buildings, trees, grass, road, sky, water,
person, and car) that appeared in the downloaded images and analyze
the physical characteristics of desired locations. Fig. 2, created by the
authors, illustrates the process of quantifying street-level elements in
Google Street View images using PSPNet.

We further used GSV panoramas to calculate the sky view factor
(SVF), which refers to the ratio between the radiance received by a
planar ground and the entire hemispheric radiation. The value of SVF
ranges from O to 1, where O represents the total enclosure of the urban
environment by trees or buildings, and one exhibits complete openness.
We generated hemispherical images from the GSV panorama images
using a geometrical transform model and quantified the visible portions
of the sky to calculate the SVF of each observation point. For further
details about calculating SVF from GSV images, refer to Li and Ratti
(2018).

2.2.2.2. Population-based data. Besides physical and morphological
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Fig. 1. Normalized spatial distribution of air temperature (a), land surface temperature (b), and mean radiant temperature (c), the three dependent variables used in

the regression analyses.

metrics, sociodemographic variables have been shown to have explan-
atory power over spatial temperature distribution (Karanja & Kiage,
2021). This is because of discriminatory housing and urban planning
processes and residential segregation. Socioeconomic indices such as
race, income, education, gender, and age can be used to assess the social
aspects of heat vulnerability and risk associated with heat in different
localities (Harlan et al., 2006; Uejio et al., 2011; Wilson, 2020). We
obtained population data for our temperature observation points from
the City of Atlanta’s open data portal, including total population, pop-
ulation density, and the percentage of each race (White, African

American, Hispanic, and Asian) in 2010. We included those variables in
stepwise regression analysis to identify the most important
population-based variables to include in our regression models.

2.2.2.3. Zone-based data. Urban heat island intensity is associated with
the dominant land use and land cover zones (Weng et al., 2007; Yang
et al., 2017). The urban thermal environment in a city varies due to the
differences in land use and surface characteristics (Chen et al., 2023;
Hart & Sailor, 2009), and the effects of these differences may not be
captured through the street-centric landscape elements derived from
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Fig. 3. Workflow diagram of the present study.

Table 2
Selected independent and dependent variables for multivariate regression
analyses.

Independent Variables Dependent Variables

Xg: Landscape features and urban form metrics
(GSV- driven variables): Plant, grass, sidewalk,
path, house, building, car, water, sky view factor
(SVF)

Xp: Population-based variables: Population, black
population
Xz: Zone-based variables: Zone class categories

AT, LST, and MRT (Various
resolutions)

GSV. To incorporate the effect of broader land use and land cover
characteristics in the analysis of intra-urban heat variation, we included
Atlanta’s zone class categories in our analyses. Atlanta’s zone class
categories were obtained from the open data portal of the City of
Atlanta. We also examined other categorical types of data, such as land
use, neighborhood planning units, and statistical areas. However, we
found that the zone class categories contributed the most to changes in
temperatures.

2.3. Methodology

As discussed above, a variety of methods were adopted to extract and
prepare data for statistical analysis. Fig. 3 reviews the workflow of the
present study.

2.3.1. Changing data resolution

To examine the suitability of specific spatial data at a range of res-
olutions for the representation of spatial temperature variations, we
downgraded the resolution of raster-based exposure data (LST and MRT)

using the resampling method (Bilinear interpolation technique) in GIS
software. The bilinear interpolation technique, through calculating the
weighted average of each of four nearby grid cells, allowed us to
generate new values for the output grid cells and downgrade the reso-
lution of raster data. For the LST data, we downgraded the resampled
resolution of ~100 ft (30 m) to 200 ft (~61 m), 300 ft (~91 m), 400 ft
(~122 m), 500 ft (~152 m), 600 ft (~183 m), 800 ft (~ 244 m), and
1000 ft (~305 m). Also, for the MRT, we reduced the original resolution
from ~2 ft (1 m) to 8 ft (~2 m), 16 ft (~5 m), 32 ft (~10 m), 48 ft (~15
m), 64 ft (~20 m), 96 ft (~29 m), and 128 ft (~39 m). We should note
here that as our air temperature data is vector-based, changing resolu-
tion does not apply to this data type in our analysis. So, we treated LST
and MRT with various spatial resolutions alongside the original reso-
lution of AT as dependent variables in our multivariate regression
analyses.

We used coefficient determination (R-squared) that measures the
goodness-of-fit to compare the explanatory power of land surface and
mean radiant temperature data at a range of resolutions for the repre-
sentation of spatial heat variations.

2.3.2. Statistical analyses

To identify the important variables to include in our regression
models, we used forward and backward stepwise regression. Based on
the outputs of this feature selection method, we developed various
models with different groups of predictors (i.e., landscape features and
urban form metrics, population-based, zone-based variables) and
dependent variables (i.e., AT, LST, and MRT of various resolutions). We
also checked for multicollinearity and removed variables that showed a
strong relationship with each other. The final set of selected variables for
the regression model can be found in Table 2. We used JMP software to
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Fig. 4. Regression results (R-squared value) of LST models with different resolutions.
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Fig. 5. Regression results (R-squared value) of MRT models with different resolutions.

perform ordinary least squares (OLS) regression and used resulting R-
squared (and adjusted R-squared for the nested models) values to study
the power of different groups of predictors in explaining the variations
in AT, LST, and MRT over a range of resolutions (Eq. (1)). The initial
total observation points in our study were 8895, and each observation
point was located at least a 10-meter distance from the adjacent points.
Eq. (1) shows the statistical specification of the ordinary least squares
regression.

Yi =B Xei + PXpi + B3 Xei & (@)

where, Yi is one of the dependent variables, including AT, LST, and MRT
at a specific resolution at location i; Xg; is the vector of landscape fea-
tures, and urban form metrics (GSV-driven variables) observed at loca-
tion i; X, is the vector of population-based variables in the area in
which location i falls; X, ; is the vector of zone-based variables in which
location i falls; B, B2, and p3 are vectors of the estimated coefficients of
predictor variables; ¢; is the error term observed for location i.

Following OLS estimation of the coefficients, we also checked for
spatial autocorrelation. Details about those analyses can be found in
Appendix A.

To further explore the role of shading and vegetation in temperature
variations, we investigated the direction and magnitude of the effect of
specific landscape features and urban form metrics (such as plants,
buildings, and the sky view factor) on temperature exposure data using
the standardized regression coefficient (SRC). The SRC ranges between
—1 and +1 and indicates both the direction and magnitude of changes in
the response variable that occur with changes in the independent

variable. We also estimated regressions using two subsets of the data: (1)
the whole study area and (2) high-density zones (high-density residen-
tial, commercial, and office institutional zones) only. The reason for
comparing the estimated coefficients on the high-density subset of the
data is that we hypothesized very tall buildings, by providing shading
and reducing the sky view factor in these areas, would lower the mean
radiant temperature (MRT) and perhaps moderate the effect of
vegetation.

3. Results
3.1. Spatial resolution effect

Figs. 4 and 5 show the R-squared value of the regression model (Eq.
(1)) of LST and MRT data at a range of resolutions. The Y axis in these
plots represents the R-squared values of the regression models, and the X
axis shows the resolution of dependent variables (LST and MRT). Ac-
cording to Fig. 4, the R-squared value of the regression model or the
explanatory power of the independent variables included in the model
did not change significantly when the LST data resolution was down-
graded to 500 ft (~152 m). By lowering the resolution after 500 ft, the R-
squared value started to drop at a higher rate. Overall, downgrading the
LST data resolution from ~100 ft (30 m) to 1000 ft (~305 m) changed
the R-squared value from the range of 0.7 to 0.6. This pattern suggests
that even lower resolutions of LST data can still be appropriate for
explaining the variations in land surface temperature. A similar pattern
is observed for MRT while decreasing spatial resolution (Fig. 5).
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Table 3

Standardized regression coefficients with only GSV-driven variables included in
the model.

LST MRT

Original 305 m Original 39m

resolution (30 resolution resolution (1 Resolution

m) m)
Plant** —0.09* —0.08* —0.08* —0.09*
Grass —0.20* -0.21* —0.09* —0.10*
Sidewalk  0.05* 0.03* —0.00 0.05*
Path —0.02* —-0.01 —0.01 —0.01
House —0.02* —0.03* —0.04* —0.06*
Building 0.33* 0.29* 0.05* 0.06*
Car 0.07* 0.08 —0.00 0.02*
Water —0.00 —-0.01 0.01 0.02*
SVF 0.42* 0.34* 0.62* 0.47*

" Significant at 95% confidence level.
" Plant in this table refers to any types of greenery, including small trees,
shrubs, herbs, and mosses which are distinct from grass.

The higher range of R-squared values of the regression models with
LST data at various resolutions implies groups of independent variables
considered in this study (Table 2) have higher explanatory power for
explaining variations in land surface temperature compared to the mean
radiant temperature.

3.2. The explanatory power of different groups of vulnerability indicators

As mentioned in the previous sections, we included landscape fea-
tures and urban form metrics (GSV-driven variables), population-based,
and zone-based variables in our regression model as predictors. To study
the effect of each group of these variables separately, we included them
in the model one by one, ran the regression model one at a time, and
compared the adjusted R-squared. As different numbers of variables
were included in each model, an F-test also was performed to identify
whether the more complex models (models with more variables) have a
significant improvement over the simpler models (models with a
reduced number of variables). Pairwise comparisons of the F-ratio
(using the ANOVA test) demonstrate that more complex models offer
significant improvements over the simpler models for each dependent
variable. More details about the F-test comparisons can be found in
Appendix B.

Fig. 6 shows the adjusted R-squared values of each of those regres-
sion models with air temperature, land surface temperature, and mean
radiant temperature in their original resolutions (at the resampled
~100 ft (30 m) resolution for LST and ~2 ft (1 m) for MRT) as the
dependent variables. According to this plot, the regression results for the
LST data show the highest adjusted R-squared values (0.55, 0.55, 0.72)
compared to the MRT (0.52, 0.52, 0.56) and AT (0.20, 0.29, 0.47).
Moreover, this figure shows that the GSV-driven variables have higher
explanatory power for explaining MRT and LST data variations than the
air temperature. However, it appears that the population-based and
especially the zone-based variables have the most important impacts in
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Table 4

Sustainable Cities and Society 96 (2023) 104619

Standardized regression coefficients of specific landscape features and urban form metrics with all groups of variables included in the model.

Whole Study Area
AT LST MRT
Original resolution (30 m)

Original resolution (1 m)

High-Density Residential, Commercial and Office Zone
AT LST MRT
Original resolution (30 m) Original resolution (1 m)

Plant -0.11* —0.04* —0.05*
Grass —0.18* —-0.07* —0.02
Building —0.02 0.21* 0.01
SVF 0.11* 0.26* 0.55*

—0.06* —0.04* —0.08*
-0.18* —-0.10* -0.17*
0.00 0.12* —0.12*
0.06* 0.09* 0.33*

" Significant at 95% confidence level.

Table Al
Moran’s I test results.

Moran’s Index

AT 0.51
LST 0.59
MRT 0.24

Table A2
Comparison of the SLM, SEM, and OLS regression results (R-squared).
SLM SEM OLS
AT model 0.78 0.79 0.28
LST model 0.87 0.88 0.56
MRT model 0.62 0.62 0.51

Table B1
Degrees of freedom, sum and mean squares of the response variables.

Model Y DF Sum of Squares Mean Square
Reduced 1 (Xg) AT 8836 15,385.325 1.7412
Reduced 2 (Xg+Xp) AT 8834 13,582.713 1.5375
Complete (Xg+Xp-+Xz) AT 8731 10,020.990 1.1477
Reduced 1 (Xg) LST 8836 65,595.475 7.4237
Reduced 2 (Xg+Xp) LST 8834 65,088.259 7.3679
Complete (Xg+Xp-+Xz) LST 8731 40,338.703 4.6202
Reduced 1 (Xg) MRT 8836 231,002.781 26.1433
Reduced 2 (Xg+Xp) MRT 8834 230,088.591 26.0458
Complete (Xg+Xp-+Xz) MRT 8731 209,149.756 23.9548
Table B2
F-test results for regression model relations.
Partial F (Complete| Partial F (Complete| Partial F (Reduced 2|
Reduced 1) Reduced 2) Reduced 1)
AT 29.5762* 30.1284* 586.1964*
LST 52.0632* 52.0083* 34.4201~
MRT 8.6882* 8.4864* 17.5496*

* Significant at 95% confidence level.

In addition, the low adjusted R-squared value of the air temperature
regression model with GSV-driven variables implies the air temperature
data would not necessarily benefit from higher spatial resolution data
collection since it is already not explainable by high-resolution land-
scape features and urban form metrics data. However, higher temporal
resolution might mitigate the low explanatory power of these variables
in regression models, which requires further investigation.

Based on Fig. 6, we also noticed while the population-based variables
would help explain air temperature variations, they did not improve
adjusted R-squared values for the MRT and LST regressions. However,
the zone-based data had a positive effect in improving the adjusted R-
squared value of the LST regression result. Overall, among variables
considered in this study, landscape features and urban form metrics
(GSV-driven variables) were found to be the most important groups of
variables for explaining the variation in MRT and LST.

As the role of GSV-driven variables in explaining LST and MRT
variations proved to be significant, we also studied the explanatory
power of this group of variables with the lowest resolutions of LST and
MRT data. Fig. 7 represents the results (R-squared) of regression models
in which the GSV-driven variables were included as independent and the
lowest resolution LST and MRT data as the dependent variables. We also
reported the regression result with the original resolutions in this plot to
compare the impact of data resolution on the explanatory power of this
group of variables.

As expected, lowering data resolutions for LST and MRT lowered the
explanatory power of the high-resolution GSV-driven variables. How-
ever, even in the lowest resolutions studied in this paper (1000 ft (~305
m) for the LST and 128 ft (~39 m) for the MRT data), those variables still
showed a relatively moderate potential for explaining the variation in
LST and MRT (R-squared value of 0.43 for the LST and 0.35 for the MRT
regression model).

Table 3 presents standardized regression coefficients with only GSV-
driven variables included in models. As this table suggests, most of the
landscape features and urban forms metrics, even in lower data reso-
lution, have a statistically significant effect (P-value<0.05) on changing
land surface and mean radiant temperature. Moreover, according to this

Table C2
The correlation between SVF, tree, and building in the whole study area and
high-density zone.

explaining the variations in air temperature. This fact suggests air Tree Building
temperature of different locations in a city is more associated with socio- Whole Study Area (SVF) _0.73 0.14
demographic and land use/ land cover characteristics of the area rather High-Density Zone (SVF) -0.32 -0.27
than the landscape features and urban form characteristics.
Table C1
Average values of exposure data and vegetation and urban form metrics in the whole study area and high-density zone.
AT LST MRT Plant Grass Tree Building SVF GVI
Whole Study Area Ave. 82.30 39.9 49.9 0.02 0.05 0.28 0.03 0.69 40.5
Std. 1.47 4.07 7.39 0.03 0.05 0.14 0.06 0.25 23.19
High-Density Zone Ave. 82.38 42.9 52.03 0.01 0.02 0.17 0.10 0.75 21.75
Std. 1.26 3.18 5.55 0.01 0.03 0.11 0.09 0.20 16.38
Net average change —0.08 —3.00" —2.13* 0.01* 0.03* 0.11* —0.07* —0.06* 18.75*

" Significant at 95% confidence level.
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table, the direction and magnitude of the effect of GSV-driven variables
showed a consistent trend among higher and lower resolutions of LST
and MRT data. This finding demonstrates the application of GSV-driven
variables in explaining land surface and mean radiant temperature
variations. Moreover, it suggests the usefulness of the lower resolutions
of LST and MRT data for representing spatial heat heterogeneity in the
case of high-resolution data paucity.

3.3. Effect magnitude of specific landscape features and urban form
metrics on temperatures variations in the whole study area and high-
density zones

According to Table 4, plants in both the whole study area and high-
density zones are significantly (with P-value<0.05) related to the AT,
LST, and MRT. As it was the pattern with the full dataset, vegetation
parameters (plants and grass) showed a negative relationship with AT,
LST, and MRT. However, the magnitude of their effects on AT, LST, and
MRT was slightly different, with high-density zones having a slightly
reduced effect of plants and grass on air temperature (SRC value of
—0.11 and —0.18 for the whole study area compared to —0.06 and
—0.18 for the high-density zones).

The direction and strength of the relationship between buildings and
temperature-related data were found to be different in the whole study
area and high-density zones. For example, while buildings showed a
statistically insignificant positive (+0.01) relationship with MRT for the
whole study area, in the high-density zones, buildings had a significant
negative effect (—0.12) on MRT. This result implies that the 1% increase
in building density would decrease MRT by 0.12 and is related to the
shading effect of buildings in high-density residential and commercial
zones. However, the relationship between the buildings and LST (both in
the whole study area and high-density zones) remained positive, sug-
gesting that an increase in building density would lead to a rise in the
land surface temperature. The association of land cover (in this case,
built areas) and land surface temperature can explain such a pattern.
The relationship between air temperature and buildings both in the
whole study area and the high-density zones was found to be statistically
insignificant.

Table 4 also shows the significant positive relationship between SVF
and all types of temperature data in the whole study area and high-
density zones, emphasizing that the increase in the street’s openness
would lead to a rise in temperatures. SVF showed the most substantial
effect on changing MRT. However, the magnitude of this association
proved to be smaller for the high-density area compared to the whole
study area. This difference was especially significant for the LST data,
where the magnitude of association from 0.26 dropped to 0.09.

4. Discussion
4.1. The spatial resolution effect

Downgrading the resolution of both raster-based heat exposure data
examined in this study (LST and MRT) didn’t affect the R-squared values
of regression models significantly. For the LST data, the explanatory
power of predictors for explaining the variations in land surface tem-
perature remained almost stable up to the downgraded resolution of
500 ft (~152 m). It’s worth noting that, as described in the "Data" sec-
tion, we used down-sampled Landsat TIR sensor data with a resolution
of 30 m (approximately 100 feet). As the native resolution of Landsat
TIR sensor data is 100 m, aggregating pixel sizes of our data and
reducing the resolution to this range did not significantly reduce the
accuracy of the gained information. This may explain why the R-squared
values of LST regression models using data with a resolution in the range
of about 100 m did not decrease significantly.

For the MRT data, up to the downgraded resolution of 48 ft (~15 m),
the R-squared values of the regression models remained within the range
of the original data resolution. These findings support the use of lower-
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resolution LST and MRT data in explaining temperature variations when
higher-resolution data is unavailable due to resource and computational
constraints. Dropping the R-squared values of the regression models
with the downgraded data resolution can be explained by the Modifiable
Areal Unit Problem (MAUP). Coarser units of analysis resulting from
aggregating the adjacent pixels and smoothing pixel values introduce
spatial data quality concerns (Griffith et al., 2015; Marceau, 1999).
Despite this fact, according to studies such as Sobrino et al. (2012), the
spatial resolution of LST data could be as low as 165 ft (~50 m) to
represent the differences in urban heat island effect between districts
(Sobrino et al., 2012). Wu et al. (2019) also found no significant change
in the association between adverse health outcomes and land surface
temperature at three spatial resolutions (zip codes, 12.5 km grids, and 1
km grids) (Wu et al., 2019). Although these findings align with the
current study’s results and support lower data use to represent varia-
tions in MRT and LST, data resolution should be chosen based on the
specific purpose of the studies and careful consideration of the physical
phenomenon being represented. This notion is especially crucial when
producing heat risk hotspots using spatial vulnerability and exposure
data, while the data is usually aggregated to match the employed spatial
units (e.g., census tract, postal code) (Ho et al., 2015). Results of this
study have important implications for heat-related modeling and studies
that use heat exposure data for estimating heat morbidity (Wang et al.,
2021) and the citizen’s need during extreme heat events (Kianmehr &
Pamukcu, 2021).

4.2. The explanatory power of different groups of vulnerability indicators

Examining different groups of vulnerability indicators showed that
population and zone-based variables have the most important impacts in
explaining the variations in air temperature. The association of air
temperature with socio-demographics and land use/ land cover char-
acteristics can explain this observation (Ngarambe et al., 2021). More-
over, in our analyses, landscape features and urban form metrics
(GSV-driven variables) showed the highest explanatory power for
explaining LST and MRT variations. It is widely acknowledged that land
surface temperature is strongly influenced by local landscape features
(e.g., plants, trees, and grass) and urban form metrics (e.g., urban ge-
ometry, the sky view factor, aspect ratio, etc.) (Gage & Cooper, 2017;
Yang et al., 2021). Recent studies have shown the application of GSV
images for estimating sky view factor, urban greenery, shade provision,
and residents’ outdoor heat exposure (Li, 2021b; Li & Ratti, 2018,
2019). In this study, GSV-driven variables, even in the lowest resolution
of data, showed moderate explanatory power for explaining the varia-
tions in LST and MRT data. However, the lower adjusted R-squared
values of regression models with air temperature as the dependent
variable in this study can be attributed to the more compound rela-
tionship between local air temperature and factors such as anthropo-
genic activities, physical and landscape characteristics (Amani-Beni
et al., 2022).

4.3. The effect magnitude of specific landscape features and urban form
metrics

For vegetation parameters examined in this study (plant and grass),
the direction of their effects on temperatures was negative and consis-
tent across all three types of exposure data, confirming the results of
previous studies (Dimoudi & Nikolopoulou, 2003; Giridharan et al.,
2008). The most notable impact of buildings observed on MRT in
high-density zones where a significant negative effect was recorded
(—0.12), and this pattern was not observed with LST. A similar pattern
regarding the shading effect of buildings and their role in reducing MRT
levels in urban environments was observed in previous studies (Lindberg
& Grimmond, 2011; Nasrollahi et al., 2021). The role of the sky view
factor in changing temperature was also significant. The direction of the
SVF effect on temperature exposure data was consistent (a significant
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positive effect) across all variables in the whole study area and
high-density zones. This finding is in line with the other studies. For
example, a study in Phoenix, Arizona, showed that the sky view factor
derived from GSV images has a statistically significant positive corre-
lation with daytime and nighttime LST (0.52 and 0.11, respectively)
(Zhang et al., 2019). Similarly, in a study in Beijing, China, it was shown
that highly shaded areas (SVF<0.3) would significantly reduce the fre-
quency of thermal discomfort (He et al., 2015). To this, our study
additionally shows that the effect magnitude of this variable decreased
in high-density zones. This might be explained by the sparse and ho-
mogenized tree density in high-density zones (Table C1). As trees play a
central role in controlling SVF, this can affect the strength of the asso-
ciation between SVF and temperatures. However, in high-density areas,
buildings show a strong negative relationship with the SVF (Table C2),
suggesting the increase in buildings would decrease the street openness
(SVF) and would ultimately help with lowering temperatures (especially
mean radiant temperature). This finding provides an important piece of
evidence about the usefulness of other street-level elements than trees
(such as buildings) to impede direct solar radiation and improve thermal
comfort in urban environments.

4.4. Limitations and future research

This study has its limitations. In terms of data sources, we only
included air temperature, land surface temperature, and mean radiant
temperature at a range of resolutions as the heat exposure variables.
However, there are also other heat indexes such as Wet Bulb Globe
Temperature (WGBT), Universal Thermal Comfort Index (UTCI), Phys-
iological Equivalent Temperature (PET), and Predicted Mean Vote
(PMV) that involve human body characteristics and humidity, radiation,
and wind speed besides temperature to measure thermal comfort level
(Hoppe, 1999; Jendritzky et al., 2012; Wei et al., 2022a, 2022b).
Investigating the appropriate resolution ranges of such heat measures
can be the subject of future research. Moreover, in this study, we just
focused on a limited range of spatial resolution, while the effect of
temporal resolution of data is also substantial and requires further
investigation. Also, a wider range of spatial data resolution can be
applied for more comprehensive conclusions. In terms of methods, we
just employed one resampling technique (bilinear interpolation) for
changing data resolutions. However, different resampling techniques
(cubic convolution, nearest neighbor, etc.) might slightly change the
results. Therefore, further research is needed to study the choice of
resampling method and its influence on the results. Finally, we note the
current analysis was conducted only for Atlanta, so the results are not
generalizable to locations with different climates, landscapes, and de-
mographic characteristics. Cross-site evaluations can be performed in
future research to explore the consistency of observed results.

5. Conclusion

In this paper, we tried to study the satisfactory range of exposure
data resolutions for accurately representing spatial temperature varia-
tions. Moreover, by including different types of physical and social
vulnerability metrics, we explored which groups of vulnerability in-
dicators can better explain the variations in temperature-related data.
Further, we investigated the effect of specific landscape features and
urban form metrics on changing temperatures in urban environments.
Finally, we compared the effect of those variables on temperatures in the
whole study area and high-density zones to check for the role of specific
street-level elements in providing shading and thermal comfort.

The results of this study revealed that downgrading resolutions of
land surface temperature (up to 152 m) and mean radiant temperature
data (up to 15 m) would not substantially reduce the power of social and
physical vulnerability metrics in explaining the variations in tempera-
tures. Therefore, the lower resolution of LST and MRT data may still
satisfactorily represent spatial urban temperature variations. Moreover,
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among vulnerability indicators studied in this paper, landscape features
and urban form metrics showed the highest explanatory power in
regression models. While the sky view factor proved to have the most
influence in changing temperatures in the whole study area, buildings
showed a significant effect on reducing the mean radiant temperature
(with the SRC value of —0.12) in high-density zones. These findings
highlight the usefulness of street-level elements in providing shading
and thermal comfort in high-density urban areas. The results of this
study provide insights vis-a-vis appropriate sets of data and relevant
resolution of temperature measurements for representing spatial urban
heat variations which have important implications for heat-related
policies and planning.
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Appendix A. Spatial autocorrelation effect

We used Moran’s I test to check for the spatial autocorrelation effect
(the correlation among observation points due to the spatial proximity).
The positive values of Moran’s I test for AT, LST, and MRT and the (P-
value<0.001) verified the spatial autocorrelation hypothesis in our data
(Table A1). To address the concerns about the validity of OLS regression
results due to the presence of spatial autocorrelation effect, we followed
two common approaches. First, to minimize the potential effect of
spatial autocorrelation, we randomly selected 3000 points (about one-
third of the total observation points) to include in our OLS regression
analyses. Second, using GeoDa software, an exploratory spatial data
analysis tool, we ran two common spatial regression models called
spatial lag model (SLM) and spatial error model (SEM) to compare the
results with the OLS method. According to our analyses, the R-squared
values of the OLS model appeared to be less than the SLM and SEM
models (Table A2), suggesting the absence of bias due to the autocor-
relation effect in the OLS method. Moreover, no significant difference in
the value and direction of regression coefficients of SLM, SEM, and OLS
methods was noticed. So, based on these observations, we proceeded
with the OLS model with the random selection of observation points. We
shall note here that this choice was also made based on the capability of
the OLS method to include zone-based categorical variables in regres-
sion analyses which were important for the purpose of this study.

Table A1l represents the Moran’s I test using the total observation
points to detect the potential spatial autocorrelation effect

Table A2 represents the R-squared values of SLM, SEM, and OLS
method using sampled observation points; AT, LST, and MRT as
dependent variables; and street-level and population-based variables as
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independent variables (Table 2).

Appendix B. F-tests results of nested models

(Table B1, Table B2).

Appendix C. Comparison of the whole study area and high-
density zone

(Appendix C)(Table C1, Table C2).
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