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A B S T R A C T   

In this study, we investigate the compatibility of specific vulnerability indicators and heat exposure data and the 
suitability of spatial temperature-related data at a range of resolutions, to represent spatial temperature varia
tions within cities using data from Atlanta, Georgia. For this purpose, we include various types of known and 
theoretically based vulnerability indicators such as specific street-level landscape features and urban form 
metrics, population-based and zone-based variables as predictors, and different measures of temperature, 
including air temperature (as vector-based data), land surface temperature (at resolution ranges from 30 m to 
305 m), and mean radiant temperature (at resolution ranges from 1 m to 39 m) as dependent variables. Using 
regression analysis, we examine how different sets of predictors and spatial resolutions can explain spatial heat 
variation. Our findings suggest that the lower resolution of land surface temperature data, up to 152 m, and mean 
radiant temperature data, up to 15 m, may still satisfactorily represent spatial urban temperature variation 
caused by landscape elements. The results of this study have important implications for heat-related policies and 
planning by providing insights into the appropriate sets of data and relevant resolution of temperature mea
surements for representing spatial urban heat variations.   

1. Introduction 

Cities worldwide are growing fast to accommodate the increasing 
global population. According to the United Nations New Urban Agenda, 
by 2050, the world’s population is expected to double, which makes 
urbanization an inevitable trend (Habitat, 2017). The excess heat 
resulting from deforestation, land cover change, and the prevalence of 
impervious surfaces is great enough to raise the cities’ average tem
perature by several degrees over the non-urbanized and rural parts and 
lead to a known phenomenon called the urban heat island effect (Oke, 
1987). Increased temperature in cities impacts human health and 
well-being in several ways. However, the associated effects of heat 
exposure in cities are not spatially uniform (Chen et al., 2022). Land use, 
landscape features, surface covers, and morphological parameters make 
temperature distribution in cities disproportionate and cause disparities 
in the burden of heat exposure across sociodemographic groups (Hsu 
et al., 2021; Voelkel et al., 2018). While proactive heat mitigation 
strategies at the local level are integral to compensate for the severity of 
extreme heat exposure, a lack of spatially explicit information on hot
spots would undermine the specificity and applicability of the policies 

(Preston et al., 2011). Hence, the demand for systematic representations 
of spatial heat heterogeneity within cities is rising (Meng et al., 2018; 
Peng et al., 2020). 

Representation of heat exposure variation can be facilitated through 
empirical measurements, allowing the direct observation of spatial and 
temporal variation in temperatures. For example, LANDSAT and MODIS 
images are widely applied to classify land cover/ land use changes and 
assess the association between spatiotemporal factors and the urban 
heat island effect (Chen, 2021; Deilami et al., 2016; Guha et al., 2018; 
Mukherjee & Singh, 2020; Schwarz et al., 2011). While empirical 
techniques such as satellite imagery and in-situ temperature measure
ments have moderate spatial and temporal resolutions, physically based 
modeling may provide higher resolution exposure representation by 
involving an array of physical and meteorological parameters at finer 
scales. Finer scales may be especially useful when engaging with resi
dents because they enable more convincing causal relationships linked 
to the variation in temperatures (Berardi et al., 2020; Gunawardena & 
Steemers, 2019; Kianmehr & Lim, 2022). Moreover, modeling can 
incorporate more salient aspects of urban heat than remotely sensed 
infrared reflectance. For example, solar irradiance geometry models 
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apply urban 3D models and meteorological data to estimate citizens’ 
thermal comfort level in urban areas with a high resolution and through 
a human-centric point of view. Ultimately, however, the value of finer 
scale data depends on its intended use. For example, Wu et al. (2019) 
found that coarse regional air temperature data were sufficient to pre
dict heat mortality during heat waves. 

Urban planners are increasingly concerned with how decisions about 
the built environment can influence microclimate, giving rise to a need 
for models that can more precisely relate elements in the built envi
ronment with temperature impact (Keith & Meerow, 2022). Identifica
tion of underlying reasons for heat vulnerability and exposure variations 
within cities requires choosing appropriate proxies and relevant reso
lution of data (Karanja & Kiage, 2021). In recent years, advancements in 
"big data" acquisition and analysis have facilitated the operationaliza
tion of the known and theoretically based predictors, which could 
theoretically result in more precise predictions and explanations of 
spatial heat vulnerability associated with landscape elements. For 
instance, Google Application Programming Interface (API) for street 
view images (Google Street View, hereafter, "GSV") provides easy access 
to the extensive and invaluable sets of data taken from human-centric 
views (Middel et al., 2019), which allows for capturing 
three-dimensional elements with much higher resolution (Xu et al., 
2012). In urban heat studies, street-level landscape features and urban 
form metrics derived from profile-based GSV images have been applied 
to identify the type, density, and distribution of urban greenery (Li et al., 
2015b), track the temporal change of green index (Li, 2021b), and assess 
the accessibility of different neighborhoods and communities to the 
green areas (Li et al., 2015a).  This promising source of data, coupled 
with other social indicators of heat vulnerability, such as poverty rate, 
educational attainment, ethnicity, gender, age, and historical segrega
tion practices (Cutter et al., 2003; Dialesandro et al., 2021; Hoffman 
et al., 2020; Uejio et al., 2011; Wilson, 2020) can be used to create a 
picture of physical and social vulnerability of different localities toward 
the heat risk with a high resolution. 

Whereas such suites of individual indicators leverage fine-scale 
analysis of temperature variations, aggregation techniques can change 
the nature of the gained information (Abson et al., 2012). A mismatch in 
spatial resolution among exposure data and physical and social 
vulnerability indicators (hereafter, vulnerability indicators) obstructs 
the consistent development of metrics and accurate representation of 
disparities (Cutter & Finch, 2008; Ho et al., 2015). This issue mainly 
emanates from a phenomenon called Modifiable Areal Unit Problem 
(MAUP) (Openshaw, 1984). The MAUP happens as the result of two 
distinct yet related conditions: the scale problem and the zoning effect 
(Fotheringham & Wong, 1991). The scale problem is associated with the 
aggregation of areal units’ (e.g., pixel) data into the adjacent units, 
resulting in coarser units of analysis with the same areal size. In contrast, 
the zoning problem is related to the use of an alternative unit of analysis 
with different sizes while the total number of units is held constant (Ho 
et al., 2015; Ju et al., 2021). Both circumstances can change the results 
in multivariate analyses (Jelinski & Wu, 1996). For example, when the 
unit of analysis for the exposure and vulnerability analysis is determined 
arbitrarily, the analysis results may not reflect the real spatial heat 
heterogeneity. Such biased results would also hinder the accurate 
identification of suitable exposure and vulnerability indicators and 
proxies. 

Selecting appropriate vulnerability indicators and data resolutions 
congruent with system dynamics is challenging, yet it is central to 
ascertaining appropriate heat mitigation strategies. There are many 
conceptual models in heat-related studies that scrutinize heat vulnera
bility at a fine scale to benefit site-specific policy-making (Conlon et al., 
2020; Johnson et al., 2012; Mushore et al., 2018; Song et al., 2020). 
However, except for a few studies (Ho et al., 2015; Sobrino et al., 2012; 
Zhou et al., 2014), the literature lacks systematic analysis of data types 
and resolutions needed for the accurate detection of spatial heat varia
tion and explainability of that variation. Therefore, this paper aims to 

explore what information can be gained about physical and social as
pects of heat vulnerability and heat exposure through a data-driven 
approach that fuses different kinds of spatial data at a range of resolu
tions. As high-resolution data is not readily available for many locations 
due to the resource limitations and computational expenses (Deilami 
et al., 2018), this study specifically aims to evaluate the feasibility of 
using lower-resolution temperature data and new sources of vulnera
bility indicators to explain intra-urban heat variations. The key research 
questions this study seeks to answer are: first, what is the satisfactory 
range of exposure data resolution for accurately representing spatial 
temperature variations? Second, which groups of vulnerability in
dicators can better explain the variations in air temperature, land sur
face temperature, and mean radiant temperature? And, finally, what is 
the effect magnitude of specific landscape features and urban form 
metrics on changing temperatures? And how do the direction and 
magnitude of this effect differ in the whole study area and high-density 
zones? 

2. Data and method 

2.1. Study area 

Taking the city of Atlanta, Georgia, in the Southern United States as 
the case study, we systematically assess the compatibility of specific 
vulnerability indicators and temperature data and the suitability of 
specific spatial data at a range of resolutions for the representation of 
spatial temperature variations within cities. For this purpose, we employ 
various types of predictors, including specific street-level features, socio- 
demographic-based, and zone-based variables, to explain spatial air 
temperature (AT), land surface temperature (LST), and mean radiant 
temperature (MRT) variation within the city of Atlanta. The vector and 
raster-based data, including field measurements of air temperature, 
satellite imagery, and modeling data of various resolutions, are treated 
as dependent variables in the multivariate regression analyses. 

The city of Atlanta has a population of around 500,000 and is also 
growing quickly (United States Census Bureau, 2021). Located in Fulton 
County, the city of Atlanta is characterized by humid subtropical 
weather with four seasons (Sun et al., 2018). Simulation results predict 
that Atlanta will experience higher frequency and longer duration of 
heatwaves (Habeeb et al., 2015). According to a survey, only 57% of 
respondents can afford or use central air conditioning when needed 
(Larsen et al., 2022). In addition, there is a disproportionate exposure to 
the heat in Atlanta, where the greater burden of the urban heat island 
effect falls on the poor (Chakraborty et al., 2019). 

2.2. Data 

According to studies such as Adger (2006), Guillard-Gonçalves and 
Zêzere (2018) and Turner et al. (2003), in this paper, we refer to 
vulnerability indicators as the composite of biophysical and socioeco
nomic indices. Based on theories related to physical and social vulner
ability, we used three types of vulnerability indicators, including 
street-level landscape features and urban form metrics, 
population-based, and zone-based data, as explanatory variables in the 
regression analyses. Moreover, to study spatial temperature variation, 
we employed three exposure data types as dependent variables in 
multivariate regression analyses: air temperature, land surface temper
ature, and mean radiant temperature. Thermal comfort provided by 
shading and wind speed is highly dependent on fine-scale landscape 
features and urban form metrics. Studying the variations in thermal 
comfort and shading was the primary motivation for using the mean 
radiant temperature as one of the exposure data types in this study. Air 
and surface temperature might not capture thermal comfort as thor
oughly as other heat indexes, yet they are the most prevalent and 
accessible types of temperature data and are worth further exploration 
to test their suitability for representing spatial heat variations. 
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2.2.1. Exposure data 

2.2.1.1. Air Temperature (AT). Air temperature data were obtained 
from urban heat campaign (UHC) measurements for Atlanta. Funded by 
NOAA, over the past five years, the urban heat campaign has taken place 
in several localities in the U.S. (Mapping Campaigns, 2022). In this 
study, we used the afternoon measurements data (3:00 pm–4:00 pm) of 
the urban heat campaign in Atlanta, which took place on September 4th, 
2021, and contained 23,386 observation points. Morning and evening 
measurements from this campaign are also available. However, given 
the significance of heat-related studies during the hottest hours of the 
day and one of the purposes of this study, which is to analyze the shading 
effect of street-level elements, we utilized the afternoon data from the 
UHC measurements. Further information about air temperature data 
employed in this study can be found in Table 1. This vector-based source 
of data is treated as one of the dependent variables in our multivariate 
regression analyses. In Fig. 1, we represent the normalized (scaled to the 
maximum-minimum range) spatial distribution of air temperature along 
with other types of heat exposure data used in this study (land surface 
temperature and mean radiant temperature) for comparison purposes. 
Fig. 1(a) shows the normalized spatial distribution of air temperature 
data, the study area, and the observation points of this study. 

2.2.1.2. Land Surface Temperature (LST). The land surface temperature 
data was acquired through the bulk download of Landsat 8 images from 
the United States Geological Survey (USGS) website. Thermal infrared 
sensor (TIRS) images of Atlanta for the summer months (June 1 – 
September 30) of years between 2019 and 2021 were collected (a total 
of 14 scenes) and used for processing the raster data, including masking 
clouds and handling missing pixels. In the next step, the actual daytime 
land surface temperature for each grid point was calculated by con
verting the raster values into degrees of centigrade and taking means 
across all scenes. As a result, a single-layer daytime land surface tem
perature image was created for Atlanta city. We shall note here the 
original resolution of the Landsat TIR sensor is 100 m. However, the 
resolution of raster data used in this study has been changed to 30 m as a 
part of the Analysis Ready Data (ARD) dataset, prepared by the USGS, to 
match the resolution of other (visible band) data distributed in ARD. For 
more information about the resolution of Landsat images please refer to 
the USGS website (USGS, 2023). This dataset was also used as a 
dependent variable in multivariate regression analysis (Fig. 1(b)). 

2.2.1.3. Mean Radiant Temperature (MRT). MRT more closely repre
sents the thermal comfort that humans feel because it is derived by 
summing all shortwave and longwave radiation fluxes that the human 
body is exposed to (both directly and reflected) (Lindberg et al., 2008). 
However, this means that MRT cannot easily be measured as a spatial 
dataset and is usually calculated through mathematical modeling. Using 
SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry) 
model, besides spatial variations of 3D radiation fluxes, we simulated 
the shadow pattern and the sky view factor of Atlanta’s urban settings, 
taking into account the influence of shade on the thermal comfort of the 

human body. The two major inputs of the model are terrain features 
including ground topography and building configurations, and meteo
rological data, such as air temperature, relative humidity, wind speed, 
direct radiation, and diffuse radiation (Li, 2021a). For Atlanta, meteo
rological data and the high-resolution (1 m) 3D urban model generated 
from LiDAR and aerial images were used as inputs of SOLWEIG to 
calculate the spatial distribution of average mean radiant temperature 
and, thus, the human outdoor thermal exposure level across neighbor
hoods. More information about the modeling process can be found in our 
previous study (Li, 2021a). This raster-based data also was treated as the 
dependent variable in our regression analysis (Fig. 1(c)). Further details 
about the distribution and original resolution of this dataset can be 
found in Table 1. LST and MRT data of Atlanta show a similar pattern for 
the distribution of hotspots in this city, where the highest land surface 
and mean radiant temperature were observed in industrial, high-density 
commercial, and office institutional zones. The most elevated air tem
peratures were observed in the southern part of the city, where the 
high-density residential and single-family residentials are located. The 
distinction between the distribution of hot spots and cool spots of air 
temperature and other measures of heat, such as land surface temper
ature, has been noted in other studies. This can be attributed to the 
anthropogenic activities and physical and landscape parameters that 
affect air temperature variations in urban areas (Amani-Beni et al., 
2022). 

2.2.2. Heat vulnerability indicators 

2.2.2.1. Landscape features and urban form metrics. In this study, 
vulnerability indicators refer to both biophysical and social aspects of 
vulnerability, such as lack of vegetation and shading, increased sky view 
factor, the prevalence of impervious surfaces, and a larger population of 
marginalized groups. In our study, landscape features and urban form 
metrics are considered as one of the subsets of vulnerability indicators 
and refer to morphological characteristics such as sky view factor and 
street-level built environment and landscape features that pedestrians 
can directly perceive. To collect data related to such physical aspects of 
heat vulnerability, we used Google Street View images of Atlanta. Using 
the Urban Heat Campaign measurement point locations, we obtained a 
list of available images in different years and months for those mea
surement points. We filtered the image list for the September years be
tween 2017 and 2019 to get the list of the most recent and relevant 
images for download. This list contained 12,321 panorama identifica
tion numbers (I.D.). As for each panorama I.D., four images are avail
able; overall, we downloaded 49,284 images for those specific locations. 

To quantify the landscape features and built environment of down
loaded images, we used Pyramid Scene Parsing Network (PSPNet), a 
superior framework for pixel-level predictions (Zhao et al., 2017). This 
image scene parsing and semantic segmentation algorithm enabled us to 
quantify 150 features (including buildings, trees, grass, road, sky, water, 
person, and car) that appeared in the downloaded images and analyze 
the physical characteristics of desired locations. Fig. 2, created by the 
authors, illustrates the process of quantifying street-level elements in 
Google Street View images using PSPNet. 

We further used GSV panoramas to calculate the sky view factor 
(SVF), which refers to the ratio between the radiance received by a 
planar ground and the entire hemispheric radiation. The value of SVF 
ranges from 0 to 1, where 0 represents the total enclosure of the urban 
environment by trees or buildings, and one exhibits complete openness. 
We generated hemispherical images from the GSV panorama images 
using a geometrical transform model and quantified the visible portions 
of the sky to calculate the SVF of each observation point. For further 
details about calculating SVF from GSV images, refer to Li and Ratti 
(2018). 

2.2.2.2. Population-based data. Besides physical and morphological 

Table 1 
Information about the original resolution and distribution of each type of heat 
exposure data.   

Air Temperature Land Surface 
Temperature 

Mean Radiant 
Temperature 

Original 
resolution 

23,386 points with 
a 10 m distance 

At the resampled 
~100 ft (30 m) 
resolution 

~2 ft (1 m) 

Minimum 25.45 C 31.55 C 34.71 C 
Maximum 30.48 C 50.84 C 58.14 C 
Mean 27.95 C 40.11 C 49.08 C 
Standard 

deviation 
0.81 4.13 7.46  
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metrics, sociodemographic variables have been shown to have explan
atory power over spatial temperature distribution (Karanja & Kiage, 
2021). This is because of discriminatory housing and urban planning 
processes and residential segregation. Socioeconomic indices such as 
race, income, education, gender, and age can be used to assess the social 
aspects of heat vulnerability and risk associated with heat in different 
localities (Harlan et al., 2006; Uejio et al., 2011; Wilson, 2020). We 
obtained population data for our temperature observation points from 
the City of Atlanta’s open data portal, including total population, pop
ulation density, and the percentage of each race (White, African 

American, Hispanic, and Asian) in 2010. We included those variables in 
stepwise regression analysis to identify the most important 
population-based variables to include in our regression models. 

2.2.2.3. Zone-based data. Urban heat island intensity is associated with 
the dominant land use and land cover zones (Weng et al., 2007; Yang 
et al., 2017). The urban thermal environment in a city varies due to the 
differences in land use and surface characteristics (Chen et al., 2023; 
Hart & Sailor, 2009), and the effects of these differences may not be 
captured through the street-centric landscape elements derived from 

Fig. 1. Normalized spatial distribution of air temperature (a), land surface temperature (b), and mean radiant temperature (c), the three dependent variables used in 
the regression analyses. 
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GSV. To incorporate the effect of broader land use and land cover 
characteristics in the analysis of intra-urban heat variation, we included 
Atlanta’s zone class categories in our analyses. Atlanta’s zone class 
categories were obtained from the open data portal of the City of 
Atlanta. We also examined other categorical types of data, such as land 
use, neighborhood planning units, and statistical areas. However, we 
found that the zone class categories contributed the most to changes in 
temperatures. 

2.3. Methodology 
As discussed above, a variety of methods were adopted to extract and 

prepare data for statistical analysis. Fig. 3 reviews the workflow of the 
present study. 

2.3.1. Changing data resolution 
To examine the suitability of specific spatial data at a range of res

olutions for the representation of spatial temperature variations, we 
downgraded the resolution of raster-based exposure data (LST and MRT) 

using the resampling method (Bilinear interpolation technique) in GIS 
software. The bilinear interpolation technique, through calculating the 
weighted average of each of four nearby grid cells, allowed us to 
generate new values for the output grid cells and downgrade the reso
lution of raster data. For the LST data, we downgraded the resampled 
resolution of ~100 ft (30 m) to 200 ft (~61 m), 300 ft (~91 m), 400 ft 
(~122 m), 500 ft (~152 m), 600 ft (~183 m), 800 ft (~ 244 m), and 
1000 ft (~305 m). Also, for the MRT, we reduced the original resolution 
from ~2 ft (1 m) to 8 ft (~2 m), 16 ft (~5 m), 32 ft (~10 m), 48 ft (~15 
m), 64 ft (~20 m), 96 ft (~29 m), and 128 ft (~39 m). We should note 
here that as our air temperature data is vector-based, changing resolu
tion does not apply to this data type in our analysis. So, we treated LST 
and MRT with various spatial resolutions alongside the original reso
lution of AT as dependent variables in our multivariate regression 
analyses. 

We used coefficient determination (R-squared) that measures the 
goodness-of-fit to compare the explanatory power of land surface and 
mean radiant temperature data at a range of resolutions for the repre
sentation of spatial heat variations. 

2.3.2. Statistical analyses 
To identify the important variables to include in our regression 

models, we used forward and backward stepwise regression. Based on 
the outputs of this feature selection method, we developed various 
models with different groups of predictors (i.e., landscape features and 
urban form metrics, population-based, zone-based variables) and 
dependent variables (i.e., AT, LST, and MRT of various resolutions). We 
also checked for multicollinearity and removed variables that showed a 
strong relationship with each other. The final set of selected variables for 
the regression model can be found in Table 2. We used JMP software to 

Fig. 2. Street View image from Google API (left) and the result of image parsing using PSPNet (right).  

Fig. 3. Workflow diagram of the present study.  

Table 2 
Selected independent and dependent variables for multivariate regression 
analyses.  

Independent Variables Dependent Variables 

Xg: Landscape features and urban form metrics 
(GSV- driven variables): Plant, grass, sidewalk, 
path, house, building, car, water, sky view factor 
(SVF) 
Xp: Population-based variables: Population, black 
population 
Xz: Zone-based variables: Zone class categories 

AT, LST, and MRT (Various 
resolutions)  
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perform ordinary least squares (OLS) regression and used resulting R- 
squared (and adjusted R-squared for the nested models) values to study 
the power of different groups of predictors in explaining the variations 
in AT, LST, and MRT over a range of resolutions (Eq. (1)). The initial 
total observation points in our study were 8895, and each observation 
point was located at least a 10-meter distance from the adjacent points. 
Eq. (1) shows the statistical specification of the ordinary least squares 
regression. 

Yi = β1Xg,i + β2Xp,i + β3Xz,i + εi (1)  

where, Yi is one of the dependent variables, including AT, LST, and MRT 
at a specific resolution at location i; Xg,i is the vector of landscape fea
tures, and urban form metrics (GSV-driven variables) observed at loca
tion i; Xp,i is the vector of population-based variables in the area in 
which location i falls; Xz,i is the vector of zone-based variables in which 
location i falls; β1, β2, and β3 are vectors of the estimated coefficients of 
predictor variables; εi is the error term observed for location i. 

Following OLS estimation of the coefficients, we also checked for 
spatial autocorrelation. Details about those analyses can be found in 
Appendix A. 

To further explore the role of shading and vegetation in temperature 
variations, we investigated the direction and magnitude of the effect of 
specific landscape features and urban form metrics (such as plants, 
buildings, and the sky view factor) on temperature exposure data using 
the standardized regression coefficient (SRC). The SRC ranges between 
−1 and +1 and indicates both the direction and magnitude of changes in 
the response variable that occur with changes in the independent 

variable. We also estimated regressions using two subsets of the data: (1) 
the whole study area and (2) high-density zones (high-density residen
tial, commercial, and office institutional zones) only. The reason for 
comparing the estimated coefficients on the high-density subset of the 
data is that we hypothesized very tall buildings, by providing shading 
and reducing the sky view factor in these areas, would lower the mean 
radiant temperature (MRT) and perhaps moderate the effect of 
vegetation. 

3. Results 

3.1. Spatial resolution effect 

Figs. 4 and 5 show the R-squared value of the regression model (Eq. 
(1)) of LST and MRT data at a range of resolutions. The Y axis in these 
plots represents the R-squared values of the regression models, and the X 
axis shows the resolution of dependent variables (LST and MRT). Ac
cording to Fig. 4, the R-squared value of the regression model or the 
explanatory power of the independent variables included in the model 
did not change significantly when the LST data resolution was down
graded to 500 ft (~152 m). By lowering the resolution after 500 ft, the R- 
squared value started to drop at a higher rate. Overall, downgrading the 
LST data resolution from ~100 ft (30 m) to 1000 ft (~305 m) changed 
the R-squared value from the range of 0.7 to 0.6. This pattern suggests 
that even lower resolutions of LST data can still be appropriate for 
explaining the variations in land surface temperature. A similar pattern 
is observed for MRT while decreasing spatial resolution (Fig. 5). 

Fig. 4. Regression results (R-squared value) of LST models with different resolutions.  

Fig. 5. Regression results (R-squared value) of MRT models with different resolutions.  
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The higher range of R-squared values of the regression models with 
LST data at various resolutions implies groups of independent variables 
considered in this study (Table 2) have higher explanatory power for 
explaining variations in land surface temperature compared to the mean 
radiant temperature. 

3.2. The explanatory power of different groups of vulnerability indicators 

As mentioned in the previous sections, we included landscape fea
tures and urban form metrics (GSV-driven variables), population-based, 
and zone-based variables in our regression model as predictors. To study 
the effect of each group of these variables separately, we included them 
in the model one by one, ran the regression model one at a time, and 
compared the adjusted R-squared. As different numbers of variables 
were included in each model, an F-test also was performed to identify 
whether the more complex models (models with more variables) have a 
significant improvement over the simpler models (models with a 
reduced number of variables). Pairwise comparisons of the F-ratio 
(using the ANOVA test) demonstrate that more complex models offer 
significant improvements over the simpler models for each dependent 
variable. More details about the F-test comparisons can be found in 
Appendix B. 

Fig. 6 shows the adjusted R-squared values of each of those regres
sion models with air temperature, land surface temperature, and mean 
radiant temperature in their original resolutions (at the resampled 
~100 ft (30 m) resolution for LST and ~2 ft (1 m) for MRT) as the 
dependent variables. According to this plot, the regression results for the 
LST data show the highest adjusted R-squared values (0.55, 0.55, 0.72) 
compared to the MRT (0.52, 0.52, 0.56) and AT (0.20, 0.29, 0.47). 
Moreover, this figure shows that the GSV-driven variables have higher 
explanatory power for explaining MRT and LST data variations than the 
air temperature. However, it appears that the population-based and 
especially the zone-based variables have the most important impacts in 

Fig. 6. Comparing regression models with different groups of predictors and dependent variables (with original resolutions).  

Fig. 7. Comparing the explanatory power of GSV-driven variables regression models with different resolutions of LST (left) and MRT (right) data.  

Table 3 
Standardized regression coefficients with only GSV-driven variables included in 
the model.   

LST MRT 
Original 
resolution (30 
m) 

305 m 
resolution 

Original 
resolution (1 
m) 

39 m 
Resolution 

Plant** −0.09* −0.08* −0.08* −0.09* 
Grass −0.20* −0.21* −0.09* −0.10* 
Sidewalk 0.05* 0.03* −0.00 0.05* 
Path −0.02* −0.01 −0.01 −0.01 
House −0.02* −0.03* −0.04* −0.06* 
Building 0.33* 0.29* 0.05* 0.06* 
Car 0.07* 0.08 −0.00 0.02* 
Water −0.00 −0.01 0.01 0.02* 
SVF 0.42* 0.34* 0.62* 0.47*  

* Significant at 95% confidence level. 
** Plant in this table refers to any types of greenery, including small trees, 

shrubs, herbs, and mosses which are distinct from grass. 
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explaining the variations in air temperature. This fact suggests air 
temperature of different locations in a city is more associated with socio- 
demographic and land use/ land cover characteristics of the area rather 
than the landscape features and urban form characteristics. 

In addition, the low adjusted R-squared value of the air temperature 
regression model with GSV-driven variables implies the air temperature 
data would not necessarily benefit from higher spatial resolution data 
collection since it is already not explainable by high-resolution land
scape features and urban form metrics data. However, higher temporal 
resolution might mitigate the low explanatory power of these variables 
in regression models, which requires further investigation. 

Based on Fig. 6, we also noticed while the population-based variables 
would help explain air temperature variations, they did not improve 
adjusted R-squared values for the MRT and LST regressions. However, 
the zone-based data had a positive effect in improving the adjusted R- 
squared value of the LST regression result. Overall, among variables 
considered in this study, landscape features and urban form metrics 
(GSV-driven variables) were found to be the most important groups of 
variables for explaining the variation in MRT and LST. 

As the role of GSV-driven variables in explaining LST and MRT 
variations proved to be significant, we also studied the explanatory 
power of this group of variables with the lowest resolutions of LST and 
MRT data. Fig. 7 represents the results (R-squared) of regression models 
in which the GSV-driven variables were included as independent and the 
lowest resolution LST and MRT data as the dependent variables. We also 
reported the regression result with the original resolutions in this plot to 
compare the impact of data resolution on the explanatory power of this 
group of variables. 

As expected, lowering data resolutions for LST and MRT lowered the 
explanatory power of the high-resolution GSV-driven variables. How
ever, even in the lowest resolutions studied in this paper (1000 ft (~305 
m) for the LST and 128 ft (~39 m) for the MRT data), those variables still 
showed a relatively moderate potential for explaining the variation in 
LST and MRT (R-squared value of 0.43 for the LST and 0.35 for the MRT 
regression model). 

Table 3 presents standardized regression coefficients with only GSV- 
driven variables included in models. As this table suggests, most of the 
landscape features and urban forms metrics, even in lower data reso
lution, have a statistically significant effect (P-value<0.05) on changing 
land surface and mean radiant temperature. Moreover, according to this 

Table 4 
Standardized regression coefficients of specific landscape features and urban form metrics with all groups of variables included in the model.   

Whole Study Area High-Density Residential, Commercial and Office Zone 
AT LST MRT AT LST MRT  

Original resolution (30 m) Original resolution (1 m)  Original resolution (30 m) Original resolution (1 m) 

Plant −0.11* −0.04* −0.05* −0.06* −0.04* −0.08* 
Grass −0.18* −0.07* −0.02 −0.18* −0.10* −0.17* 
Building −0.02 0.21* 0.01 0.00 0.12* −0.12* 
SVF 0.11* 0.26* 0.55* 0.06* 0.09* 0.33*  

* Significant at 95% confidence level. 

Table A1 
Moran’s I test results.   

Moran’s Index 

AT 0.51 
LST 0.59 
MRT 0.24  

Table A2 
Comparison of the SLM, SEM, and OLS regression results (R-squared).   

SLM SEM OLS 

AT model 0.78 0.79 0.28 
LST model 0.87 0.88 0.56 
MRT model 0.62 0.62 0.51  

Table B1 
Degrees of freedom, sum and mean squares of the response variables.  

Model Y DF Sum of Squares Mean Square 

Reduced 1 (Xg) AT 8836 15,385.325 1.7412 
Reduced 2 (Xg+Xp) AT 8834 13,582.713 1.5375 
Complete (Xg+Xp+Xz) AT 8731 10,020.990 1.1477 
Reduced 1 (Xg) LST 8836 65,595.475 7.4237 
Reduced 2 (Xg+Xp) LST 8834 65,088.259 7.3679 
Complete (Xg+Xp+Xz) LST 8731 40,338.703 4.6202 
Reduced 1 (Xg) MRT 8836 231,002.781 26.1433 
Reduced 2 (Xg+Xp) MRT 8834 230,088.591 26.0458 
Complete (Xg+Xp+Xz) MRT 8731 209,149.756 23.9548  

Table B2 
F-test results for regression model relations.   

Partial F (Complete| 
Reduced 1) 

Partial F (Complete| 
Reduced 2) 

Partial F (Reduced 2| 
Reduced 1) 

AT 29.5762* 30.1284* 586.1964* 
LST 52.0632* 52.0083* 34.4201* 
MRT 8.6882* 8.4864* 17.5496*  

* Significant at 95% confidence level. 

Table C1 
Average values of exposure data and vegetation and urban form metrics in the whole study area and high-density zone.   

AT LST MRT Plant Grass Tree Building SVF GVI 

Whole Study Area Ave. 82.30 39.9 49.9 0.02 0.05 0.28 0.03 0.69 40.5 
Std. 1.47 4.07 7.39 0.03 0.05 0.14 0.06 0.25 23.19 

High-Density Zone Ave. 82.38 42.9 52.03 0.01 0.02 0.17 0.10 0.75 21.75 
Std. 1.26 3.18 5.55 0.01 0.03 0.11 0.09 0.20 16.38 

Net average change −0.08 −3.00* −2.13* 0.01* 0.03* 0.11* −0.07* −0.06* 18.75*  

* Significant at 95% confidence level. 

Table C2 
The correlation between SVF, tree, and building in the whole study area and 
high-density zone.   

Tree Building 

Whole Study Area (SVF) −0.73 0.14 
High-Density Zone (SVF) −0.32 −0.27  
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table, the direction and magnitude of the effect of GSV-driven variables 
showed a consistent trend among higher and lower resolutions of LST 
and MRT data. This finding demonstrates the application of GSV-driven 
variables in explaining land surface and mean radiant temperature 
variations. Moreover, it suggests the usefulness of the lower resolutions 
of LST and MRT data for representing spatial heat heterogeneity in the 
case of high-resolution data paucity. 

3.3. Effect magnitude of specific landscape features and urban form 
metrics on temperatures variations in the whole study area and high- 
density zones 

According to Table 4, plants in both the whole study area and high- 
density zones are significantly (with P-value<0.05) related to the AT, 
LST, and MRT. As it was the pattern with the full dataset, vegetation 
parameters (plants and grass) showed a negative relationship with AT, 
LST, and MRT. However, the magnitude of their effects on AT, LST, and 
MRT was slightly different, with high-density zones having a slightly 
reduced effect of plants and grass on air temperature (SRC value of 
−0.11 and −0.18 for the whole study area compared to −0.06 and 
−0.18 for the high-density zones). 

The direction and strength of the relationship between buildings and 
temperature-related data were found to be different in the whole study 
area and high-density zones. For example, while buildings showed a 
statistically insignificant positive (+0.01) relationship with MRT for the 
whole study area, in the high-density zones, buildings had a significant 
negative effect (−0.12) on MRT. This result implies that the 1% increase 
in building density would decrease MRT by 0.12 and is related to the 
shading effect of buildings in high-density residential and commercial 
zones. However, the relationship between the buildings and LST (both in 
the whole study area and high-density zones) remained positive, sug
gesting that an increase in building density would lead to a rise in the 
land surface temperature. The association of land cover (in this case, 
built areas) and land surface temperature can explain such a pattern. 
The relationship between air temperature and buildings both in the 
whole study area and the high-density zones was found to be statistically 
insignificant. 

Table 4 also shows the significant positive relationship between SVF 
and all types of temperature data in the whole study area and high- 
density zones, emphasizing that the increase in the street’s openness 
would lead to a rise in temperatures. SVF showed the most substantial 
effect on changing MRT. However, the magnitude of this association 
proved to be smaller for the high-density area compared to the whole 
study area. This difference was especially significant for the LST data, 
where the magnitude of association from 0.26 dropped to 0.09. 

4. Discussion 

4.1. The spatial resolution effect 

Downgrading the resolution of both raster-based heat exposure data 
examined in this study (LST and MRT) didn’t affect the R-squared values 
of regression models significantly. For the LST data, the explanatory 
power of predictors for explaining the variations in land surface tem
perature remained almost stable up to the downgraded resolution of 
500 ft (~152 m). It’s worth noting that, as described in the "Data" sec
tion, we used down-sampled Landsat TIR sensor data with a resolution 
of 30 m (approximately 100 feet). As the native resolution of Landsat 
TIR sensor data is 100 m, aggregating pixel sizes of our data and 
reducing the resolution to this range did not significantly reduce the 
accuracy of the gained information. This may explain why the R-squared 
values of LST regression models using data with a resolution in the range 
of about 100 m did not decrease significantly. 

For the MRT data, up to the downgraded resolution of 48 ft (~15 m), 
the R-squared values of the regression models remained within the range 
of the original data resolution. These findings support the use of lower- 

resolution LST and MRT data in explaining temperature variations when 
higher-resolution data is unavailable due to resource and computational 
constraints. Dropping the R-squared values of the regression models 
with the downgraded data resolution can be explained by the Modifiable 
Areal Unit Problem (MAUP). Coarser units of analysis resulting from 
aggregating the adjacent pixels and smoothing pixel values introduce 
spatial data quality concerns (Griffith et al., 2015; Marceau, 1999). 
Despite this fact, according to studies such as Sobrino et al. (2012), the 
spatial resolution of LST data could be as low as 165 ft (~50 m) to 
represent the differences in urban heat island effect between districts 
(Sobrino et al., 2012). Wu et al. (2019) also found no significant change 
in the association between adverse health outcomes and land surface 
temperature at three spatial resolutions (zip codes, 12.5 km grids, and 1 
km grids) (Wu et al., 2019). Although these findings align with the 
current study’s results and support lower data use to represent varia
tions in MRT and LST, data resolution should be chosen based on the 
specific purpose of the studies and careful consideration of the physical 
phenomenon being represented. This notion is especially crucial when 
producing heat risk hotspots using spatial vulnerability and exposure 
data, while the data is usually aggregated to match the employed spatial 
units (e.g., census tract, postal code) (Ho et al., 2015). Results of this 
study have important implications for heat-related modeling and studies 
that use heat exposure data for estimating heat morbidity (Wang et al., 
2021) and the citizen’s need during extreme heat events (Kianmehr & 
Pamukcu, 2021). 

4.2. The explanatory power of different groups of vulnerability indicators 

Examining different groups of vulnerability indicators showed that 
population and zone-based variables have the most important impacts in 
explaining the variations in air temperature. The association of air 
temperature with socio-demographics and land use/ land cover char
acteristics can explain this observation (Ngarambe et al., 2021). More
over, in our analyses, landscape features and urban form metrics 
(GSV-driven variables) showed the highest explanatory power for 
explaining LST and MRT variations. It is widely acknowledged that land 
surface temperature is strongly influenced by local landscape features 
(e.g., plants, trees, and grass) and urban form metrics (e.g., urban ge
ometry, the sky view factor, aspect ratio, etc.) (Gage & Cooper, 2017; 
Yang et al., 2021). Recent studies have shown the application of GSV 
images for estimating sky view factor, urban greenery, shade provision, 
and residents’ outdoor heat exposure (Li, 2021b; Li & Ratti, 2018, 
2019). In this study, GSV-driven variables, even in the lowest resolution 
of data, showed moderate explanatory power for explaining the varia
tions in LST and MRT data. However, the lower adjusted R-squared 
values of regression models with air temperature as the dependent 
variable in this study can be attributed to the more compound rela
tionship between local air temperature and factors such as anthropo
genic activities, physical and landscape characteristics (Amani-Beni 
et al., 2022). 

4.3. The effect magnitude of specific landscape features and urban form 
metrics 

For vegetation parameters examined in this study (plant and grass), 
the direction of their effects on temperatures was negative and consis
tent across all three types of exposure data, confirming the results of 
previous studies (Dimoudi & Nikolopoulou, 2003; Giridharan et al., 
2008). The most notable impact of buildings observed on MRT in 
high-density zones where a significant negative effect was recorded 
(−0.12), and this pattern was not observed with LST. A similar pattern 
regarding the shading effect of buildings and their role in reducing MRT 
levels in urban environments was observed in previous studies (Lindberg 
& Grimmond, 2011; Nasrollahi et al., 2021). The role of the sky view 
factor in changing temperature was also significant. The direction of the 
SVF effect on temperature exposure data was consistent (a significant 
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positive effect) across all variables in the whole study area and 
high-density zones. This finding is in line with the other studies. For 
example, a study in Phoenix, Arizona, showed that the sky view factor 
derived from GSV images has a statistically significant positive corre
lation with daytime and nighttime LST (0.52 and 0.11, respectively) 
(Zhang et al., 2019). Similarly, in a study in Beijing, China, it was shown 
that highly shaded areas (SVF<0.3) would significantly reduce the fre
quency of thermal discomfort (He et al., 2015). To this, our study 
additionally shows that the effect magnitude of this variable decreased 
in high-density zones. This might be explained by the sparse and ho
mogenized tree density in high-density zones (Table C1). As trees play a 
central role in controlling SVF, this can affect the strength of the asso
ciation between SVF and temperatures. However, in high-density areas, 
buildings show a strong negative relationship with the SVF (Table C2), 
suggesting the increase in buildings would decrease the street openness 
(SVF) and would ultimately help with lowering temperatures (especially 
mean radiant temperature). This finding provides an important piece of 
evidence about the usefulness of other street-level elements than trees 
(such as buildings) to impede direct solar radiation and improve thermal 
comfort in urban environments. 

4.4. Limitations and future research 

This study has its limitations. In terms of data sources, we only 
included air temperature, land surface temperature, and mean radiant 
temperature at a range of resolutions as the heat exposure variables. 
However, there are also other heat indexes such as Wet Bulb Globe 
Temperature (WGBT), Universal Thermal Comfort Index (UTCI), Phys
iological Equivalent Temperature (PET), and Predicted Mean Vote 
(PMV) that involve human body characteristics and humidity, radiation, 
and wind speed besides temperature to measure thermal comfort level 
(Höppe, 1999; Jendritzky et al., 2012; Wei et al., 2022a, 2022b). 
Investigating the appropriate resolution ranges of such heat measures 
can be the subject of future research. Moreover, in this study, we just 
focused on a limited range of spatial resolution, while the effect of 
temporal resolution of data is also substantial and requires further 
investigation. Also, a wider range of spatial data resolution can be 
applied for more comprehensive conclusions. In terms of methods, we 
just employed one resampling technique (bilinear interpolation) for 
changing data resolutions. However, different resampling techniques 
(cubic convolution, nearest neighbor, etc.) might slightly change the 
results. Therefore, further research is needed to study the choice of 
resampling method and its influence on the results. Finally, we note the 
current analysis was conducted only for Atlanta, so the results are not 
generalizable to locations with different climates, landscapes, and de
mographic characteristics. Cross-site evaluations can be performed in 
future research to explore the consistency of observed results. 

5. Conclusion 

In this paper, we tried to study the satisfactory range of exposure 
data resolutions for accurately representing spatial temperature varia
tions. Moreover, by including different types of physical and social 
vulnerability metrics, we explored which groups of vulnerability in
dicators can better explain the variations in temperature-related data. 
Further, we investigated the effect of specific landscape features and 
urban form metrics on changing temperatures in urban environments. 
Finally, we compared the effect of those variables on temperatures in the 
whole study area and high-density zones to check for the role of specific 
street-level elements in providing shading and thermal comfort. 

The results of this study revealed that downgrading resolutions of 
land surface temperature (up to 152 m) and mean radiant temperature 
data (up to 15 m) would not substantially reduce the power of social and 
physical vulnerability metrics in explaining the variations in tempera
tures. Therefore, the lower resolution of LST and MRT data may still 
satisfactorily represent spatial urban temperature variations. Moreover, 

among vulnerability indicators studied in this paper, landscape features 
and urban form metrics showed the highest explanatory power in 
regression models. While the sky view factor proved to have the most 
influence in changing temperatures in the whole study area, buildings 
showed a significant effect on reducing the mean radiant temperature 
(with the SRC value of −0.12) in high-density zones. These findings 
highlight the usefulness of street-level elements in providing shading 
and thermal comfort in high-density urban areas. The results of this 
study provide insights vis-a-vis appropriate sets of data and relevant 
resolution of temperature measurements for representing spatial urban 
heat variations which have important implications for heat-related 
policies and planning. 
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Appendix A. Spatial autocorrelation effect 

We used Moran’s I test to check for the spatial autocorrelation effect 
(the correlation among observation points due to the spatial proximity). 
The positive values of Moran’s I test for AT, LST, and MRT and the (P- 
value<0.001) verified the spatial autocorrelation hypothesis in our data 
(Table A1). To address the concerns about the validity of OLS regression 
results due to the presence of spatial autocorrelation effect, we followed 
two common approaches. First, to minimize the potential effect of 
spatial autocorrelation, we randomly selected 3000 points (about one- 
third of the total observation points) to include in our OLS regression 
analyses. Second, using GeoDa software, an exploratory spatial data 
analysis tool, we ran two common spatial regression models called 
spatial lag model (SLM) and spatial error model (SEM) to compare the 
results with the OLS method. According to our analyses, the R-squared 
values of the OLS model appeared to be less than the SLM and SEM 
models (Table A2), suggesting the absence of bias due to the autocor
relation effect in the OLS method. Moreover, no significant difference in 
the value and direction of regression coefficients of SLM, SEM, and OLS 
methods was noticed. So, based on these observations, we proceeded 
with the OLS model with the random selection of observation points. We 
shall note here that this choice was also made based on the capability of 
the OLS method to include zone-based categorical variables in regres
sion analyses which were important for the purpose of this study. 

Table A1 represents the Moran’s I test using the total observation 
points to detect the potential spatial autocorrelation effect 

Table A2 represents the R-squared values of SLM, SEM, and OLS 
method using sampled observation points; AT, LST, and MRT as 
dependent variables; and street-level and population-based variables as 
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independent variables (Table 2). 

Appendix B. F-tests results of nested models 

(Table B1, Table B2). 

Appendix C. Comparison of the whole study area and high- 
density zone 

(Appendix C)(Table C1, Table C2). 
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