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Abstract—Graphs have emerged as one of the most important
and powerful data structures to perform content analysis in
many fields. In this line of work, node classification is a
classic task, which is generally performed using graph neural
networks (GNNs). Unfortunately, regular GNNs cannot be well
generalized into the real-world application scenario when the
labeled nodes are few. To address this challenge, we propose a
novel few-shot node classification model that leverages pseudo-
labeling with graph active learning. We first provide a theoretical
analysis to argue that extra unlabeled data benefit few-shot
classification. Inspired by this, our model proceeds by performing
multi-level data augmentation with consistency and contrastive
regularizations for better semi-supervised pseudo-labeling, and
further devising graph active learning to facilitate pseudo-label
selection and improve model effectiveness. Extensive experiments
on four public citation networks have demonstrated that our
model can effectively improve node classification accuracy with
considerably few labeled data, which significantly outperforms
all state-of-the-art baselines by large margins.

Index Terms—node classification, graph neural networks, data
augmentation, active learning, pseudo-labeling

I. INTRODUCTION

Graphs have recently emerged as one of the most important

and powerful data structures to perform real-world content

analysis [1]–[4]. In this line of work, node classification is a

classic task, which is generally performed using graph neural

networks (GNNs) [5]–[7] through neighborhood information

aggregation. However, GNNs cannot be well generalized into

the real-world application scenario when the labeled nodes

are few. For example, it is generally expensive and time-

consuming to obtain the relation, location, or theme labels for a

large number of texts [8], [9]; when performing social network

analysis, due to privacy concerns, most social media websites

and apps limit the access to some personal information, where

attribute labels may only be available on few users [10], [11].

In other words, when applied to such datasets, GNNs may

suffer from low generalizability to the unlabeled nodes.

To address few-shot learning challenge, meta-learning has

been proposed to leverage distribution of tasks to learn a

shared initialization that adapts to new task [12]–[14]; this

leads to a surge of graph meta-learning models to leverage

prior knowledge for few-shot node classification [15]–[17].

The classes for meta-training and meta-testing are disjoint,

but the data are typically obtained from the same domain

[18], which is impractical in many real-world content analysis

settings. More importantly, these models overlook the benefits

from unlabeled nodes to facilitate few-shot node classification.

As such, self-training GNN models [19], [20] are proposed to

make use of the unlabeled nodes; however, they are still unsat-

isfying in two aspects: (1) similar to meta-learning, their model

parameters need to be initialized using prior knowledge from

base classes; and (2) the labeling and selection of the unlabeled

nodes are too simple to introduce new precise supervisory

information for classification performance improvement.

In this paper, we take initiatives to design a few-shot node

classification model via pseudo-labeling with graph active

learning to address the above issues, where this model is

only built upon one learning task with the target classes. We

first provide a simple theoretical analysis to argue that extra

unlabeled data benefit few-shot classification, especially when

the pseudo-labeling strategy is better formulated in a semi-

supervised manner. GNN itself is known as a semi-supervised

model through message passing [21], [22], but its vanilla

design suffers from over-smoothing [23] on node embedding

and over-fitting the scarce label information [24]. This leads to

low generalizability, especially for large graphs, which further

weakens GNNs to learn from few labeled nodes.

We thus propose to enhance GNN’s semi-supervised ca-

pability for pseudo-labeling by designing data augmentation

through consistency regularization [25], [26] and contrastive

regularization [27], [28]. Different from previous studies [24],

[29], to better facilitate augmenting few labeled nodes in

our learning scenario, we perform multi-level (i.e., weak

and strong) random perturbations onto node features and

graph structure that renders nodes less sensitive to specific

neighborhoods, and use contrastive regularization to com-

plement consistency regularization that diversifies the model

predictions and enables the confident labeling information to

be propagated from the labeled nodes into more unlabeled

ones at higher orders during training. Further, we introduce

an effective yet efficient graph active learning paradigm by

maximizing m-hop propagation of information gain to not

only select high-confidence and balanced pseudo-labels, but

also those most valuable ones that can best contribute to label

propagation and model improvement. The selected pseudo-

labels are then combined with true labels to learn the final

few-shot node classification model.

II. PRELIMINARIES

A. Graph Neural Networks

We denote the given graph as G = (V,E,X), where

V (n = |V |) is the set of nodes, E is the set of edges specifying

1115

2023 IEEE International Conference on Data Mining (ICDM)

DOI 10.1109/ICDM58522.2023.00133

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 D

at
a 

M
in

in
g 

(I
C

D
M

) |
 9

79
-8

-3
50

3-
07

88
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
D

M
58

52
2.

20
23

.0
01

33

979-8-3503-0788-7/23/$31.00 ©2023 IEEE



relationships among nodes, and X ∈ R
n×d is the feature

matrix. Each labeled node is associated with a ground truth

y ∈ Y = {0, 1, · · · , k − 1}. Edges E can be encoded as

an adjacency matrix A ∈ R
n×n and Aij = {0, 1}, where

if (vi, vj) ∈ E, then Aij = 1; otherwise, Aij = 0. The

GNN models are designed so that each node can aggregate

information from its neighbors and generate higher-level node

embedding. The graph aggregation layer is defined as follows:

H(l) = aggregate
(
H(l−1),A,W(l)

)
(1)

where H(l−1) and H(l) are the input and output (l ≥ 1) for

layer l, W(l) is a learnable weight matrix, and H(0) = X.

The output of GNNs with L layers can be computed as Z =
fW(A,X) = softmax

(
H(L)

)
. Accordingly, the GNN models

can be optimized by minimizing the following training loss:

W∗ = argmin
W

L(Z,yl) + λ‖W‖22 (2)

We focus on transductive inferences in this paper where all

node connections and features are accessible during training.

Therefore, L(·) is specifically formulated to improve the

GNN’s semi-supervised capability for better label propagation.

B. Few-shot Node Classification

Given the graph G = (V,E,X), nodes V can be divided

into labeled node set Vl and unlabeled node set Vu. Due to

high cost of annotation or limited access to node information,

we practically consider only few of the nodes have labels (i.e.,

|Vl| � |V |). The few-shot node classification problem can then

be defined to use labeled and unlabeled data to train a GNN

model fW(A,X) that can effectively predict the labels for

unlabeled nodes from Vu.

III. PROPOSED MODEL

In this section, we present the technical details of our pro-

posed model, the overview of which is illustrated in Figure 1.

A. Theoretical Motivation

To theoretically analyze our motivation that unlabeled data

boost the data-limited classification performance, we can use

a binary classifier with a data generation probability P that

mixes different Gaussian distributions for different labels (i.e.,

y = i ∼ N (μi, σ
2), i ∈ {0, 1}, and μ = (μ0 + μ1)/2), such

that an optimal binary classifier would classify an input x as

positive when x > μ. Accordingly, when the unlabeled data

from P is available, we can generate n̄ pseudo-labels from

them using a target classifier with n̄0 negatives {x0
i }n̄0

i=1 and n̄1

positives {x1
i }n̄1

i=1. As our training data is balanced, we assume

that the target classifier provides the same (or similar) accuracy

for different labels. To learn the decision boundary μ using

the pseudo-labels from the unlabeled data, the estimate can be

formulated as μ̄ = 1
2 (
∑n̄0

i=1 x
0
i /n̄0 +

∑n̄1

i=1 x
1
i /n̄1). Based on

the aforementioned setup for classifier and data distribution, a

theorem can be derived as follows:

Theorem 1: The estimate μ̄ satisfies |μ̄ − μ| ≤ ζ, with

probability P ≥ 1− 2e−
2ζ2

σ2 · n̄0n̄1
n̄0+n̄1 for any ζ > 0.

GNN Model 
DropF

DropN

DropE

Pseudo-Labeling 

( )

Active Learning

( )

Graph

Fig. 1. The overview of our proposed model (DropF: drop features, DropN:
drop nodes, DropE: drop edges).

Proof of Theorem 1. Given n̄ pseudo-labels with n̄0 nega-

tives and n̄1 positives, if the pseudo-label is correct, x0
i ∼

N (μ0, σ
2) and x1

i ∼ N (μ1, σ
2). As such, we can bound∑n̄0

i=1 x
0
i /n̄0 +

∑n̄1

i=1 x
1
i /n̄1 using standard Gaussian concen-

tration inequality. Accordingly, we can derive:

P(|
n̄0∑
i=1

x0
i /n̄0 +

n̄1∑
i=1

x1
i /n̄1 − (μ0 +μ1)| > t) ≤ 2e

− t2

2σ2 · 1
1/n̄0+1/n̄1

(3)

Given ζ > 0, considering the condition that the estimate μ̄
satisfies |μ̄ − μ| ≤ ζ, the formulation of the estimate μ̄ and

μ = (μ0 + μ1)/2, this inequality can be specified as:

|(
n̄0∑
i=1

x0
i /n̄0 +

n̄1∑
i=1

x1
i /n̄1)− (μ0 + μ1)| ≤ 2ζ (4)

Since we already have the concentration inequality in Eq.

(3), we can easily obtain the following lower bound on the

probability of |μ̄− μ| ≤ ζ:

P(|μ̄−μ| ≤ ζ) ≥ 1−2e
− 2ζ2

σ2 · 1
1/n̄0+1/n̄1 = 1−2e

− 2ζ2

σ2 · n̄0n̄1
n̄0+n̄1 (5)

This completes the proof of Theorem 1.

We can interpret the theorem in the way that if the target

classifier is reasonably well-performing such that the pseudo-

labels are promisingly correct, n̄0 and n̄1 can be viewed as ap-

proximations for the number of actual positives and negatives

in the unlabeled data. When n̄0 = n̄1 (n̄ = n̄0+ n̄1), n̄0n̄1

n̄0+n̄1
is

maximized, and e−
2ζ2

σ2 · n̄0n̄1
n̄0+n̄1 is minimized; accordingly, the

probability P is maximized, which implies that μ̄ is more

closely to estimate μ. In other words, more balanced pseudo-

labels from the unlabeled data with a good target classifier

are significantly useful to learn the optimal classification

boundary. When we generalize this analysis to our application

scenario that classifies nodes on graphs, the target classifier

is a GNN model. To collect more balanced pseudo-labels

from the unlabeled nodes, a semi-supervised strategy tends

to be more powerful to leverage unlabeled nodes for better

pseudo-labeling with low cost [22], [26]. This aligns with the

assumption of having “a good target classifier” in Theorem

1. Inspired by these, we probe the effectiveness of pseudo-

labels on few-shot node classification through adopting semi-

supervised learning, which is introduced in detail as follows.

1116 



B. Semi-supervised Learning

Despite its wide semi-supervised applications, the vanilla

GNN design suffers from over-smoothing [23] on node em-

beddings and over-fitting the scarce label information [24]

that leads to low generalizability. Its straightforward leverage

thus constrains the derived pseudo-labels from estimating the

optimal classification boundary and fail to enhance few-shot

performance. To this end, we elaborate data augmentation

through consistency regularization [24]–[26] and contrastive

regularization [27]–[29] to address the over-smoothing and

over-fitting issues and improve GNN’s semi-supervised capa-

bility for better pseudo-labeling.

Data Augmentation. Data augmentation aims to break the co-

dependency of specific neighborhood for each node by adding

random perturbations, such that the node labels and features

can be more effectively propagated through graph structure

to higher orders. Given node features and graph structure,

we design a multi-level random perturbation, including weak

augmentation and strong augmentation.

• Weak augmentation perturbs feature space of each node to

generate augmentations. We randomly drop features with

drop rate r by zeroing the corresponding columns in feature

matrix X without impacting graph structures and obtain a

new feature matrix X.

• Strong augmentation perturbs graph structure to induce

more significant output variations [30] by randomly drop-

ping nodes or edges with drop rate r. To drop nodes, we

zero the designated rows in feature matrix X to derive X̃.

To drop edges, we select the specified edges and set their

values in adjacency matrix A to 0 to get Â.

Each augmentation is performed by multiplying X or A
with the corresponding mask matrix to drop the specified

features, nodes, or edges. After each random perturbation,

the augmented data is fed to a GNN model to calculate the

prediction output. Based on different data augmentations, the

prediction outputs can be differently represented as follows:

Z = fW(A,X) or Z̃ = fW(A, X̃) or Ẑ = fW(Â,X) (6)

where each output Z ∈ {Z, Z̃, Ẑ} ∈ R
n×k is the prediction

probabilities for all nodes (labeled and unlabeled) in the graph.

Consistency Regularization. Consistency regularization [24],

[26] works in a way that model predictions should be invariant

to the input when masked using different perturbations [31].

We utilize it to construct the loss function to regulate our

semi-supervised learning, which consists of an unsupervised

loss LU and a supervised loss LS .

• Unsupervised loss. Given outputs {Zb}Bb=1 generated by

B random perturbations with one specific augmentation,

we first calculate the label distribution center as Z∗
i =

1
B

∑B
b=1 Z

b
i , and then optimize their prediction consistency

by minimizing the squared L2 distance between each output

Zi corresponding node i and its label distribution center Z∗
i :

Lcr =
1

B

B∑
b=1

n−1∑
i=0

‖ Zb
i − Z∗

i ‖22 (7)

Following this formulation, we can accordingly construct

the unsupervised loss as LU = Lcr−f +Lcr−n +Lcr−e by

aggregating the losses from three types of augmentations

(i.e., Lcr−f for dropping features, Lcr−n for dropping

nodes, and Lcr−e for dropping edges).

• Supervised loss. With Vl denoting the set of nodes with

labels, we minimize a standard cross-entropy loss between

the ground truth of each labeled node and its B predictions

in one specific augmentation:

Lce = − 1

B

B∑
b=1

|Vl|−1∑
i=0

yi logZ
b
i (8)

leading to the supervised loss LS = Lce−f+Lce−n+Lce−e

by aggregating the losses from three types of augmentations.

Contrastive Regularization. It can be observed from Eq. (7)

and Eq. (8) that consistency regularization that only considers

positive node pairs pulls the augmented node features in the

same label cluster but may fail to push the features in different

clusters. This might homogenize the model predictions and

restrict the active label propagation. To address this potential

issue, we further employ contrastive regularization to diversify

model predictions and enhance label propagation. Specifically,

we adjust SupContrast [32] into semi-supervised learning

setting. We define the set of positive pairs as the predictions

between the augmentations Zb
i and the corresponding labeled

nodes Z′
i, and the set of negative pairs as the predictions

between the augmentations Zb
i and the labeled nodes in

different label clusters Z′
j (i �= j). Then, the contrastive

regularization is to minimize the following loss:

Lct = − 1

B

B∑
b=1

|Vl|−1∑
i=0

log
exp(Zb

i · Z′
i/τ)

exp(Zb
i · Z′

i/τ) +
∑K

j �=i exp(Z
b
i · Z′

j/τ)
(9)

where τ is the temperature parameter, K is the number of

negative pairs for each augmentation, and · denotes the inner

(dot) product. In this way, the contrastive regularization loss

can be constructed as LC = Lct−f + Lct−n + Lct−e by

aggregating the losses from three types of augmentations.

Optimization. The final loss function of our semi-supervised

learning model for pseudo-labeling is:

L = LS + αLU + βLC (10)

where α and β are both balance parameters that are set up to

adjust the relative weight of unsupervised loss and contrastive

regularization loss, respectively.

C. Graph Active Learning
We can obtain the pseudo-labels by minimizing L using

gradient descent. As discussed in the theoretical motivation,

the correctness and balance of pseudo-labels affect the ef-

fectiveness of using pseudo-labels to estimate the optimal

classification boundary. As such, we retain the high-confidence

pseudo-labels from |Vu| unlabeled nodes whose largest pre-

diction class probability falls above a predefined threshold ν,

which can use the following formula:

Vp = {(Xi, argmax(Zi))|�(max(Zi) ≥ ν)}|Vu|
i=1 (11)
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Considering the fact that some nodes can better contribute

to label propagation and model improvement in the graph, we

would like to further design a graph active learning to facilitate

selecting the most valuable pseudo-labels.

We use a simple GNN model as an oracle, and the goal

here is to select a subset of pseudo-labels V ∗
p , such that the

GNN model trained with the supervision of V ∗
p and Vl can

get the lowest loss on the test node set. Specifically, we

leverage a criteria to maximize propagation of information

gain (i.e., entropy reduction) on graph [33]. Each pseudo-label

will propagate its label information to its m-hop neighbors and

impact them. This influence score of node vi on node vj after

m-layer propagation can be calculated as follows:

Î(vi, vj ,m) = ‖E[∂Xm
j /∂X0

i ]‖ (12)

which is the L1-norm of the expected Jacobian matrix. For-

mally, we normalize this influence score as

I(vi, vj ,m) = Î(vi, vj ,m)/
∑
v∈V

Î(v, vj ,m) (13)

where I(vi, vj ,m) represents the sum across probabilities of

all possible influential paths with length of m from vj to vi
for a m-layer GNN. This implies that the larger I(vi, vj ,m),
the more vi impacts on vj if vi is pseudo-labeled.

As such, we extend the information gain of a single node

to its m-hop neighbors in the graph as follows:

G(vi, vj ,m) = H(
∑

v∈Vl

I(v, vj ,m)Zv)−H(
∑

v∈Vl∪{vi}
I(v, vj ,m)Zv)

(14)

where H is the entropy. In this way, to select a pseudo-

label, we can proceed by maximizing the following objective

function F (Vp):

vp = argmax
Vp

F (Vp) =
∑

vi∈Vp

∑
vj∈N(vi)

G(vi, vj ,m) (15)

where N(vi) is vi and its m-hop neighbors. Considering the

influence propagation, the proposed objective can be used to

find a subset V ∗
p that can maximize the information gain of

all influenced nodes as more as possible. Accordingly, we use

greedy search to select such a subset of pseudo-labels V ∗
p from

Vp with the size of S for each label. These selected pseudo-

labels are then fed to the data-augmented semi-supervised

learning to train the final GNN model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

Datasets and parameters. In this paper, we evaluate our

model with four public citation datasets: Cora, Citeseer,

PubMed [5], and DBLP [34]. We use 5 labeled instances per

class as training data and randomly select 500 instances from

the remaining as test data. The drop rate r = 0.5 and the

size B = 4 are set for all data augmentation strategies, the

balanced parameters are set as α = 0.5 and β = 0.3, the size

of pseudo-labels selected for each class is S = 5, and the

negative pair size for contrastive regularization is K = 5. We

further evaluate the impacts of different training sizes N , the

TABLE I
COMPARISON RESULTS FOR CORA AND CITESEER (ACCURACY %)

Models Shots Cora Citeseer

GCN
1 60.33 58.44
3 75.15 67.99

SGC
1 61.64 56.91
3 75.67 65.67

Graph-SAGE
1 50.89 53.49
3 53.12 55.01

META-GCN
1 63.72 61.91
3 76.78 69.43

META-SGC
1 65.27 60.46
3 77.19 68.65

G-META
1 64.57 61.26
3 73.76 69.82

GPN
1 60.79 60.53
3 76.21 68.67

Our model
1 76.11 64.25
3 83.60 71.34

TABLE II
COMPARISON RESULTS FOR PUBMED AND DBLP (ACCURACY %)

Models Shots PubMed DBLP

GCN
3 58.89 43.90
5 65.77 51.20

SGC
3 63.37 40.20
5 64.93 50.30

META-GCN
3 - 60.70
5 - 63.10

G-META
3 - 63.20
5 - 64.20

GPN
3 - 62.60
5 - 64.40

Our model
3 76.41 64.80
5 83.80 73.42

pseudo-label size S, the drop rate r, the balance parameter α
and β, and the number of negative pairs K in Section IV-C.

Baselines. In our study, we use 7 state-of-the-art GNN models

as baselines, including graph convolutional network (GCN)

[5], Graph-SAGE [6], and simple graph convolution (SGC)

[35] for addressing over-smoothing/over-fitting; META-GCN

[16], META-SGC [35], G-META [17], and graph prototypical

network (GPN) [36] for few-shot learning.

B. Comparisons with Baselines

In this section, we compare our model with the selected

GNN baselines for few-shot node classification. The results

for baselines are taken directly from related papers for com-

parisons, while “-” means that we cannot find the result for

that specific model. As shown in Table I and Table II, we can

observe that mate-learning based few-shot models demonstrate

better performance than traditional GNNs, while our model

outperforms baselines by a large margin in different shots. For

example, when “1-shot” is applied, the classification accuracy

is 76.11% and 64.25% for Cora and Citeseer respectively with

the improvement margin ranging in (11, 26)% for Cora and

(2, 11)% for Citeseer. For PubMed and DBLP, our model

also delivers the better performance with only “ 3-shots ”

are available, where the performance increases by a margin
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of (13, 18)% and (1.5, 25)%, respectively. These comparison

results in Table I and Table II also reveal another interesting

observation: the performance of our model with just 1-shot or

3-shot is comparable to or better than that of most baselines

with a higher number of shots. This advantage is particularly

evident when the comparisons are conducted on PubMed and

DBLP. These observations demonstrate that our model can

achieve state-of-the-art performance with less labeled nodes,

making it a promising method for few-shot node classifica-

tion tasks. In summary, the comparative study confirms that

(1) regular GNNs can capture the structural information of

graphs but struggle to learn from few labeled nodes, (2)

meta-learning paradigm can improve the few-shot performance

to some extend, and (3) our model that leverages semi-

supervised pseudo-labeling with consistency regularization

and contrastive regularization, and graph activate learning for

pseudo-label selection contributes better to few-shot learning

than GNN-based meta-learning and regular GNNs.

C. Parameter Evaluation

The performance of our model can be potentially impacted

by the following parameters: training size N (number of

labeled nodes per class), number of pseudo-labels S selected

for each class using graph active learning, drop rate r for

weak/strong augmentation, number of negative pairs K for

contrastive regularization, and α and β for adjusting the

training loss weights. In this section, we evaluate our model

using accuracy under different parameter settings: N ∈ {k ×
1, k × 3, k × 5, k × 7, k × 10}; S ∈ [1, 5] with N = k × 5;

r ∈ [0.1, 0.5]; α ∈ [0, 1] with β = 0.3 and β ∈ [0, 1] with

α = 0.5; and K ∈ {1, 3, 5, 7, 10}. All the experimental results

regarding these parameters are illustrated in Figure 2.

• As illustrated in Figure 2(a), when we apply more shots

in training, the performance of our model keeps increasing,

but the increments of the performance in [5, 10] are more

stable than that in [1, 5]. With the training size increasing,

the advantage of our model narrows and the performance is

closer to the upper bound.

• Figure 2(b) indicates a relatively small accuracy increase

when we enlarge α. However, Figure 2(c) demonstrates that

when we enlarge β, the accuracy first slightly increases,

rises to a high level at β = 0.3, and then drastically drops

when β changes from 0.3 to 1. The reason behind this

trend could be: when β is relatively small, the negative pairs

can facilitate narrowing down the limitations of consistency

regularization; when β is large, the negative pairs in con-

trastive regularization might overshadow the influence of the

positive pairs enforced by consistency regularization, which

may degrade the performance of the model.

• Regarding the impact of the selected pseudo-label size S
from graph active learning, Figure 2(d) implies that the

performance of our model generally continues to improve

with the increase of S, where the model enjoys the most

benefit when the size ranges from 2 to 4.

• As for the drop rate r, Figure 2(e) shows that the accuracy

of our model across all four datasets remains stable when
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Fig. 2. Evaluation on the impacts of different parameters (accuracy %).

increasing r. This suggests that the drop rate does not have

a significant impact on the performance of our model.

• Figure 2(f) provides an insight that as more negative pairs

are incorporated, the accuracy of the model increases; the

highest accuracy is achieved when K = 5. However, as

the number of negative pairs continues to increase to a

very large number, the performance of the model begins to

decline. This observation further confirms that when intro-

ducing contrastive regularization to complement consistency

regularization, the negative pairs need to be appropriately

constructed and integrated with positive pairs to effectively

enhance the model performance.

D. Ablation Study

In this section, we design the ablation study to further inves-

tigate how different components contribute to the performance

of our model. Our model proceeds with pseudo-labeling using

data augmentation strategies (involving consistency regulariza-

tion and contrastive regularization) and graph active learning

for pseudo-label selection. We add these components respec-

tively and formulate seven GNN models: (1) GCN: use the tra-

ditional GCN directly to perform few-shot node classification;

(2) GCN+DropFeature: utilize the weak augmentation strategy

to get augmented features; (3) GCN+DropEdges: drop edges to

perturb adjacency matrix; (4) GCN+DropNodes: drop nodes to

augment node features; (5) GCN+DropAll: apply all three aug-

mentation strategies to perform semi-supervised learning with

consistency regularization; (6) GCN+DropAll+GAL: leverage

graph active learning to select nodes with pseudo-labels; (7)

GCN+DropAll+Contrast+GAL: the complete design of our

model. The results for ablation study are shown in Table III.

The experimental results suggest that the data augmentation

strategies have different effects on the performance of the

model. Specifically, strong augmentation strategies tend to

have a greater impact on performance than weak augmentation

strategies, while both types of augmentation can lead to some

improvement. Combining these data augmentation strategies

with consistency regularization further improves the results.

The graph active learning has the greatest contribution to

our model, which significantly improves the classification

performance by (5, 8)% of accuracy. Contrastive regularization

is able to further advance state-of-the-art performance to

a higher level, which implies that this operation yields an
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TABLE III
EVALUATION ON MODEL COMPONENTS (N = k × 5, ACCURACY %)

Model Cora Citeseer PubMed DBLP

GCN 75.04 65.64 65.77 51.20
GCN + DropFeatures 75.82 65.93 65.75 52.12
GCN + DropEdges 76.81 65.62 69.54 55.91
GCN + DropNodes 77.13 67.97 71.42 56.33
GCN + DropAll 79.05 68.10 74.59 60.61
GCN + DropAll + GAL 84.40 72.13 82.85 68.66
GCN + GropAll + Contrast + GAL 84.90 73.96 83.80 73.42

additional advantage for pseudo-labeling and graph-based few-

shot learning. These observations reaffirm the effectiveness of

our design for node classification with only few labeled data.

V. CONCLUSION

In this paper, we extend the task of node classification to

a more challenging and realistic case where only few labeled

data are available. To overcome this challenge, we propose a

novel few-shot node classification model, which incorporates

various techniques including semi-supervised pseudo-labeling

with multi-level data augmentation, consisting of consistency

regularization and contrastive regularization. Additionally, we

introduce graph active learning to facilitate pseudo-label se-

lection and improve the overall performance of the model.

Extensive experiments have been conducted on four citation

networks. The results demonstrate that our model achieves

state-of-the-art performance, reaffirming its effectiveness in

node classification, its superiority over baseline methods, and

its practical significance in addressing the challenges of few-

shot node classification.
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