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We present a comprehensive study of stationary states in a coherent medium with a quadratic
or Kerr nonlinearity in the presence of localized potentials in one dimension (1D) for both positive
and negative signs of the nonlinear term, as well as for barriers and wells. The description is in
terms of the nonlinear Schrédinger equation (NLSE) and hence applicable to a variety of systems,
including interacting ultracold atoms in the mean field regime and light propagation in optical
fibers. We determine the full landscape of solutions, in terms of a potential step and build solutions
for rectangular barrier and well potentials. It is shown that all the solutions can be expressed
in terms of a Jacobi elliptic function with the inclusion of a complex-valued phase shift. Our
solution method relies on the roots of a cubic polynomial associated with a hydrodynamic picture,
which provides a simple classification of all the solutions, both bounded and unbounded, while the
boundary conditions are intuitively visualized as intersections of phase space curves. We compare
solutions for open boundary conditions with those for a barrier potential on a ring, and also show
that numerically computed solutions for smooth barriers agree qualitatively with analytical solutions
for rectangular barriers. A stability analysis of solutions based on the Bogoliubov equations for
fluctuations show that persistent instabilities are localized at sharp boundaries, and are predicated
by the relation of the mean density change across the boundary to the value of the derivative of the
density at the edge. We examine the scattering of a wavepacket by a barrier potential and show
that at any instant the scattered states are well described by the stationary solutions we obtain,

indicating applications of our results and methods to nonlinear scattering problems.

I. INTRODUCTION

Scattering by a localized potential is one of the fun-
damental paradigms of quantum mechanics, defining the
dynamics and interactions of many body systems [1]. The
linear problem that defines scattering of non-interacting
particles in one dimension is part of any introduction
to quantum physics [2]. On the other hand, the non-
linear problem of scattering of interacting particles is a
substantially more complex problem and a comprehen-
sive picture is lacking. A close formal analog to the
linear problem can be found in the mean field descrip-
tion of the scattering of interacting bosons in terms of a
nonlinear Schrédinger equation (NLSE), where the effect
of inter-particle interactions appears in the form of an
added quadratic nonlinear term [3].

The nonlinear Schrodinger equation arises in multiple
contexts, its initial applications in 1D propagation being
in the context of self-focussing of light [4], and thereafter
much of the subsequent studies were in the field of non-
linear and fiber optics [5, 6]. In the last few decades, with
the creation of Bose-Einstein condensates (BEC) [7, §],
it took on a revitalized role as the Gross-Pitaevskii equa-
tion, which dominated the early theoretical description
of BEC and continues to be relevant in the mean field
regime that captures much of the stationary and dynam-
ical properties of large condensates [9].

There is a vast literature on the NLSE and its solu-
tions [10, 11]. However, with some notable exceptions we
discuss below, in the context of both optical and matter
waves, prior works fall into two categories: Analytical
and numerical stationary solutions obtained assuming a

uniform system, without a potential [12-16] or with a
periodic lattice [17-21]; or time-dependent problems fo-
cused on the propagation, dispersion and, occasionally,
scattering of localized soliton wavepackets. The latter
is largely driven by applications in optical communica-
tions with influential theoretical work [22-25] supported
by experiments [26-30]. The creation of BEC provided a
new paradigm for soliton studies with the intrinsic quan-
tum nature and massive character of matter waves driv-
ing interest in scattering dynamics of solitons by local
potentials, in theory [31-37] as well as in experiments
[38, 39]. Active interest continues with possibilities of
probing quantum nonlocality with macroscopic superpo-
sitions involving soliton pairs [40-42] and with recent re-
alization of matter wave counterparts of breathers [43, 44|
previously studied only in optical systems [45].

In contrast, there are few studies of the stationary solu-
tions of the NLSE in the presence of a localized potential,
analogous to the linear scattering problem; and they are
generally limited by different constraining assumptions.
The delta potential along with the step potential were
examined in [46], and the dynamics in the presence of
delta potential impurities in [47, 48]; bound states in a
square well were examined in [49, 50]; resonant trans-
mission without the complications of reflection success-
fully utilized stationary solutions to describe scattering
in [49, 51]; solutions that neglect nonlinearity outside the
potential were studied in [52]; a perturbative study in the
limit of weak nonlinearity was done in [53]. Although the
superposition principle does not apply in the nonlinear
problem, an approximate form of was assumed in the
studies in [52, 53], but not in some subsequent studies of



stationary solutions that specifically examined rectangu-
lar barriers for repulsive interactions [54, 55]. In addition
to the limiting assumptions indicated, the studies were
also restricted to solutions that were bounded at infinity,
with one notable exception [55] which considered a spe-
cific type of bilaterally symmetric unbounded ones in the
context BEC flow through a weak link. This, as we show
here, leaves out a large class of solutions. Furthermore,
certain assumptions were made about the parameters in-
volved that are at best incomplete, as we will describe in
the relevant sections.

The purpose of this paper is to provide a comprehen-
sive landscape of analytically obtained solutions in the
presence of a localized rectangular potential in one spa-
tial dimension for a system describable by a quadratic
nonlinear Schrodinger equation, for both positive and
negative interactions and for barriers and wells; this in-
cludes solutions that are bounded as well as unbounded
at infinity, the latter allowed within a finite width po-
tential. All previously studied cases can be obtained as
subsets or limiting cases of our solutions. Notably, typ-
ical descriptions of single solitons in terms of hyperbolic
functions are limiting cases of our solutions in terms of
Jacobi elliptic functions [56].

Such stationary solutions will provide the basis for de-
scribing diverse nonlinear dynamical phenomena, includ-
ing the scattering of soliton and solitonic trains in opti-
cal or cold atomic systems, and the relative motion of a
potential through a superfluid [57, 58]. The latter has
garnered much recent interest in the context of persis-
tent currents in BEC in ring configurations [59, 60] due
to sustainable superfluidity. We also find solutions for a
potential localized along the azimuth here for such ring
configurations in this paper; elsewhere we have found
analogous solutions in the presence of a lattice [61, 62].
Using separate, numerical simulations we also show here
that our analytical solutions are in qualitative agreement
with solutions for smooth barriers with profiles similar to
those associated with focussed lasers used in experiments
on persistent flow.

A significant outcome this work is to demonstrate that
our stationary solutions can have direct utility in the de-
scription of scattering of even non-uniform wavepackets,
by numerically scattering a wavepacket on a rectangular
barrier and mapping out the resulting transmitted and
reflected densities in terms of a finite range of analyti-
cal solutions. This establishes a novel and more reliable
approach to applying analytical solutions to scattering
problems in the absence of the superposition principle.

The paper is organized as follows: Section II presents
the physical model and defines the general form of the
solutions and the roots-based approach we will utilize,
with Sec. III defining the physically imposed constraints
on those roots. Section IV defines the crucial impact of
boundary conditions at the potential edges. The effects
are contrasted with the linear limit of zero nonlinearity
in Sec. V, which helps us understand how the density
changes across the potential boundary when the nonlin-

earity is introduced in Sec. VI. In Sec. VII, we show the
solutions can have a complex phase shift and describe
the significant effects and constraints accompanying such
shifts for both positive and negative nonlinearities. Sec-
tions VIII and IX determine the allowed solutions for a
step potential for positive and negative nonlinearities re-
spectively. These are then applied to barrier and well
potentials in Secs. X and XI respectively. In Sec. XII,
we study the limitations on the solutions arising from
having a ring structure. Section XIII compares our solu-
tions with those obtained via numerical simulations for a
smooth barrier. We conduct a general stability analysis
for our solutions in Sec. XIV based on the Bogoliubov
equations [7] for fluctuations. In Sec. XV, we use our
solutions to analyze the scattering of a wavepacket on a
localized barrier. We summarize our conclusions and fu-
ture outlook in Sec. XVI. Two appendices provides some
details of our calculations and derivations.

II. PHYSICAL MODEL

We consider the nonlinear Schrédinger equation:
(=307 +V + gl*] ¥ = —idw) (1)

In the context of ultracold atoms which motivates this
study, this is a mean field equation for the expectation of
the bosonic field operator (¥) = [7, 8]. The one dimen-
sional description can be considered an effective picture
with transverse degrees of freedom integrated out due
to tight confinement [63]. Taking that to be cylindrical
and harmonic, the trap frequency w can be taken to set
our units [ = \/h/(mw),e = hw and 7 = w™!, and the
effective 1D interaction is g = 2a defined by the scatter-
ing length @ . Assuming infinite extent typical of scat-
tering problems, [|? defines the number density. The
stationary solutions ¢(z) = 1 (z,t)e*! satisfy the time-
independent version of Eq. (1) with i0; — p where the
eigenvalues p define the chemical potential.

The behavior of the physical observables can be un-
derstood best by writing the mean field stationary state
in the polar amplitude-angle form, referred to as the hy-
drodynamic picture, p(z) = /p(z)e**® leading to an
equation for the density p

5(0:p)? — 19020+ 30° +Vp* +gp® —pp® =0 (2)
and a phase equation that provides an integral of motion,
pOad—Qp = a 3)
Y«
Ad(z) = ¢(z) — ¢(0 :Q:L'Jr/ dz’.
() = 6(z) — 6(0) e

This sets the current density J = «, the superfluid ve-
locity v = a/p(z) and angular momentum per particle
L = hQ) + 27ha. We include an optional €2 to allow for
rotation in the case of a finite sized ring with periodic
boundary condition that we also consider [61].
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FIG. 1. Features of phase space curves are illustrated with upper panels for positive nonlinearity g > 0 and lower panels for
negative nonlinearity g < 0. (a,b) Schematics of the cubic function f that sets the density variation, for the case of all three
real roots {r;}; the dotted parts lie in the shaded forbidden region. (c,d) Corresponding phase space plot of p’ = 4+/f versus
p, showing the wing-loop structure; the orientation of the wing depends on the sign of the nonlinearity g. (e,f) Intersection of
curves from different potential regions (labelled ‘left’ and ‘right’) determine the matching of solutions at their boundary.

A first integration of Eq. (2) yields of the integrated expression
B =g,(0:0)" + 550 = 59" + (u=V)p.  (5)

For a constant potential V', the density solution is a Ja-
cobi elliptic function

9zp = £ f(p)
fp) = 49p> =8(u—V)p* +88p—4a®  (4)

with integral of motion 5 which can be written in terms p(x) = 71+ (ro —r1)sn?(\/g(rs — 1) « + xo,m) (6)



expressed here in terms of the roots of the cubic polyno-
mial f = 4g(p—r1)(p—7r2)(p—rs). Those roots determine
most of the relevant parameters
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a? = grirors, B = g(?"l’l“g +rry +rars).  (7)

The additional parameter xy represents translations
necessary to match the boundary conditions at the inter-
face of different potential regions. The general form of the
solution is given by Eq. (6) for the density and Eq. (3)
for the phase. Solutions that satisfy the physical con-
straints and boundary conditions are determined by the
cubic function f(p) in Eq. (4), illustrated in Fig. 1(a,b)
for positive and negative nonlinearity respectively. Since
it needs to be positive definite, the dotted segments are
forbidden. On plotting p’ = £/, the positive and neg-
ative branches match up smoothly along p = 0 to create
the shapes shown in the adjacent panels Fig. 1(c,d).

These phase space plots of p’ versus p plots have a
characteristic structure that will guide much of our anal-
ysis. They can typically have a closed loop and an open
boomerang shape which we will refer to as the ‘loop’ and
‘wing’, respectively. Alternately, when f(p) intersects
the axis at only one point, the loop and the wing merge
to create a conjoined profile. There are concrete physi-
cal implications of these segments that we will discuss at
length, but the most basic one is that the loop signifies
oscillating solutions, whereas the wing or the conjoined
parts correspond to solutions that do not oscillate and
can be unbounded.

If the derivative p’ > 0, then the density p has to in-
crease, and if p’ < 0, then p has to decrease. This means
that the variation in density can follow the loop only
in the clockwise orientation. This is true for both pos-
itive and negative nonlinearities. However, as shown in
Fig. 1(c,d), the wing opens in opposite orientations for
positive and negative nonlinearities. This means that for
g > 0, the density associated with the wing varies such
that it approaches the horizontal axis (p’ = 0) from below
and moves away from it above; while for g < 0, the be-
havior is opposite. This will have important implications
when there are intersections of phase space curves from
different potential regimes at their boundary, as sketched
for loop segments in Fig. 1(e,f).

III. CONSTRAINTS ON ROOTS

There are several factors that restrict the allowed space
of solutions. We start with some general considerations.
The ordering r; < ro < r3 will always be assumed when
the roots are real. The definition of the parameter o? =
grirers and the requirement that a has to be real to be
physically relevant both constrain the allowed roots.

For positive nonlinearity, when g > 0, there are three
cases: (i) Real roots have to be either all non-negative
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)
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FIG. 2. (Color online) (a-e) The cubic function f(p) is plotted
for both side of a potential boundary, fr with V5 = 0 and fp
for Vi # 0, along with their difference A f, for various combi-
nations of repulsive g > 0 or attractive g < 0 nonlinearity and
potential barrier Vo > 0 or wellVy < 0. The f from the two
regimes generally intersect at two points, one being always
at p = 0. The physically relevant intersections are marked
by circles, shaded regions being forbidden. (f) In the linear
case Vp = 0, the function f is quadratic, here a special case
is shown where both intersections are physical.

r1,72,73 > 0 or (ii) one can be non-negative and the
other two negative or zero, rs > 0 and r1,7o < 0; (iii)
Alternatively, there can be one non-negative root and two
complex conjugate roots, 71 > 0 and 79 = r5. The last
case has been often disregarded in prior studies [53, 54],
since the existence of complex conjugate roots implies
both a complex elliptic modulus and a complex coefficient
of the squared Jacobi elliptic function in Eq. (6); but we
will show here that they still provide physical solutions.
Together, these three combinations define the space of
the possible types of solutions for the density in a given
region. Notably for g > 0, since at least one root has
to be positive, the wing or conjoined structures of the
phase space curve must always intersect the p-axis at
p > 0. Furthermore, because they open on the right as
shown in Fig. 1(c), they must lie in their entirety in the
p > 0 regime; the loop part has no such restrictions.

For negative nonlinearity, g < 0, at least one root has
to be less than or equal to zero, but two roots cannot be
negative and three negative roots have no physical mean-
ing. Complex roots are not allowed since a conjugate pair
would have a positive norm. This means that the only



possibility is for all the roots to be real with 1 < 0, and
ro,73 > 0; and 71 marks the intersection of the wing with
the p = 0 axis. Since, the wing opens on the left, shown
in Fig. 1(d), this also means for g < 0, the entirety of the
wing lies in the p < 0 regime.

Notably, if one of the three roots is zero in any region,
with or without potential, then all of the regions of the
system will necessarily have a zero root. This simply
means that «, which is a measure of the current, needs
to be conserved across the system.

IV. BOUNDARY CONDITIONS

We will consider both step potentials and rectangular
potentials. In order to keep the notation consistent, we
will label the region of the non-vanishing potential with
subscript P and, for a rectangular barrier or well, the left
and the right of it with subscripts L and R, while for a
step potential we will only have L and P regions. The ba-
sic element of our system is a potential step, and match-
ing the boundary conditions at the edge of a step deter-
mines the complete solutions. Without loss of generality,
such a potential can be described by V(z) = V,0(z)
where O(z) is the Heaviside step function and V; can be
either positive or negative.

The chemical potential and current density are con-
served throughout the system, across segments with and
without a potential. In contrast, the parameter [ is fixed
only within each region, but changes as the potential
changes from one region to the next. Since V = 0 for
frand V £ 0 for fp, from Eq. (4) it follows

Bp = Br —Vopo
Af = fr(p) — frlp) = 8Vop(p — po) (8)

with the values in the different regions set by the density
at the boundary pr(x = 0) = pp(z = 0) = pp. The edge
of the potential is taken as our co-ordinate origin. At the
boundary, clearly fr,(po) = fr(po) = fo, which serves as
the definition of fy as the common value at the boundary.

Equation (8) implies that fp = f1, at only two points:
at p = 0 and at p = pg. Therefore the functions fp and
fr in the regimes with and without the potential can
intersect only at those two points, which will therefore
set the boundary conditions. Figure 2 illustrates this
for different scenarios we will consider. The difference
Af = fp,— fr is a parabolic function of the density p, rep-
resented by a thick green line; it is concave upwards for
Vo > 0 in panels Fig. 2(a,b,e,f) and concave downwards
for Vp < 0 in Fig. 2(c,d). Furthermore, Fig. 2(a,c,e) have
positive nonlinearity g > 0 whereas Fig. 2(b,d) have neg-
ative nonlinearity g < 0. Since f(p) > 0, the shaded
region below the p axis is not allowed, therefore, in most
cases, only one intersection is physical. The physically
relevant intersections between fp and f; are marked by
black circles in Fig. 2. A second intersection can be seen
in all the panels and always occurs at p = 0, but it is
unmarked if it occurs in the nonphysical shaded region.

The intersections in f manifest as intersections in ‘loop-
wing/ conjoined’ structures appearing in the square root
p' = ++/fo as illustrated earlier in the phase space plots
in Fig. 1(e,f). We can conclude that the phase space
curves for the two regimes can intersect only at a max-
imum of three points, with two of them being the pos-
itive and negative roots of ++/fy, appearing symmetri-
cally above and below the p axis as shown Fig. 1(e,f). A
possible third intersection can occur at p = 0, not shown
in that figure, but corresponding to allowed intersections
such as in Fig. 2(e).

When there are three intersections, the density at the
boundary can never be pg = 0 because then the RHS of
Eq. (8) becomes 8V p?, and that corresponds to a single
point of intersection of the two curves only at p = 0. So,
although it is possible that the density can vanish at the
boundary, pg = 0, that can only occur if that is the sole
intersection in the phase space plots.

Clearly, there can be intersections between the loop,
wing or conjoined structure of p’ of one regime with any
one of those from the other regimes, leading to different
pairings of solutions across the potential boundary. But,
as our analysis in the following sections will demonstrate,
not all combinations are physically possible.

V. LINEAR LIMIT

It is interesting to consider a linear system for compar-
ison. With g = 0, f(p) is a quadratic with a parabolic
shape, and the two roots of the equation yield

a® =2(u = Vo)rire, B=(p—Vo)(ri+r2),  (9)
and p is a free parameter and identical to the total energy.
When p > Vp, the parabola opens downward, like fr, in
Fig. 2(f), and when p < V; it opens upwards as assumed
for fp in that same figure.

For p < Vp physically relevant a requires either (i)
r1 < 0,79 > 0 else (ii) 1 = ro = 0. Complex conjugate
pair of roots are not possible, their product being always
positive, ruling out cases with a minimum at fp > 0 .
Case (ii) for fp is shown in Fig. 2(f) and corresponds to
solutions that decay in the region of the potential as e™"*
with kK = Vy — o . The more general case (i) where the
minimum is at fp < 0 corresponds to linear combination
of Ae™"* + Be"* within the potential. These are ruled
out for a step potential since they blow up as x — 400,
but are valid solutions for a finite width potential, a trend
we will see often for the nonlinear problem.

When p© > Vi even in the potential region, both
parabolas are downward-facing, and we have oscillatory
solutions in both regions, with at least one physical inter-
section of f, and fr, at some py > 0 similarly to the non-
linear case. If there is a second intersection at p = 0, one
of the roots r; = 0 and so the current vanishes with o = 0
and the oscillations have nodes. When r; = ry # 0 the
solutions are plane waves. Plane wave solutions for non-



zero degenerate roots are impossible with an upwards
parabola since they need to satisfy riry < 0.

We now anticipate the considerations of the next sec-
tion by first illustrating them with the linear case. Leav-
ing aside the case of exponential decay, the solutions are
sinusoidal or plane waves, so the average density is given
by (p) = %, with plane waves corresponding to degen-
erate roots. Using the expression for 5 above in Eq. (9)
in conjunction with the variation of the 8 across a po-
tential step in Eq. (8) we obtain a relation between the
mean densities in the regions with (P) and without (L)
the potential

2u((pp) — (pr)) = Vo (2{pp) — po) (10)

It is obvious that the density at the boundary pg has to
have a value between the maximum and minimum val-
ues of the density in either region, which means that for
a plane wave or oscillating solutions 2(pp) > po, so for
Vo > 0, RHS > 0 in the above relation. Since p > 0,
being the kinetic energy, it follows that (pp) > (pr). The
mean value of the density therefore increases in the region
of higher potential. This is consistent with current con-
servation: In a region of higher potential, the net velocity
is lower, therefore the mean density must be higher.

For solutions that decay within the potential, the av-
erage density would approach zero in the limit of infinite
extent of a step. Even for a finite width barrier, when
the average density does not vanish, current would van-
ish within the potential since both roots are zero. This is
consistent with current conservation because, as Fig. 2(f)
shows, the function f; outside the potential also has a
zero root, so that the density oscillations have a node
implying vanishing current.

VI. DENSITY CHANGE ACROSS BOUNDARY

Given a solution on one side of a step boundary, we
would like to determine the solution on the other side.
Since the solutions are determined by the roots of f(p),
we need to understand how the roots migrate across a
potential boundary, specifically the relation of the roots
{riL,r1r,r1r} on the left with V5 = 0 with the roots
{rip,m1p,m1p} in the region of the potential Vj # 0.

We now track the migration of the roots across the
boundary for the nonlinear problem to predict the change
of the mean density. Unlike in the linear case in the
previous section, now p as well as o and [ are fixed by
the roots as shown in Eq. (7). Using those expressions,
we rewrite the relation in Eq. (8) for 3 as

a? 2
+ L (Iu - T7LL> (11)
grnL g
a? 2 2V
= + rnp (H - TnP) + 70(00 - rnP)-
grnp g g

Due to symmetry with respect to the exchange of the
roots in the expressions for «, 8 and u, here r,, represents

any one of the three roots. Thus, the boundary condition
above can be expressed in terms of a function

a? 2 2V,
B(p;Vo) = — +p (M - p) +=(po—p) (12)
gp g g

as B(rnr; Vo = 0) = B(rpp; Vo # 0) = 5o, where we can
interpret 5y as the constant of integration for V5 = 0.
Considered as two separate equations, the roots in any
region of constant potential is determined by B(p) = So.
This is illustrated in Fig. 3 (a,b), where the function B for
each region is plotted. The intersections of the horizontal
dotted line, marking a specific value of By, with each
curve determines the roots in the corresponding potential
regime. Note the two curves mutually intersect at pg, as
should be apparent from Eq. (12).

As the function B(p; Vo) shifts with changes in the po-
tential, like in Fig. 3(a,b), the value of the roots, as set
by the intersections of B(p;Vp) curves with the line of
constant [y, will shift as well. For oscillating functions,
we can easily predict which way the roots will shift, be-
cause r1p < po, 11, < r1p, and likewise for rop and r3p,
we must have ro, < rop and r3;, > r3p, as shown in
Fig. 3(a). At a critical V; there is only one intersection
with the §y line, corresponding to one real root and two
complex roots. Increasing Vy further leads to negative
density regimes, where the curves B(p < 0; Vj) migrate
upwards to intersect the [y line leading to two negative
roots and one positive root, as shown in Fig. 3(b).

Consider oscillating solutions on both sides such as in
Fig. 3(a). The nonlinear functions are no longer sinu-
soidal, so we can no longer assume the mean density to
be the average of the roots. However, for g > 0, the
Jacobi elliptic function that defines the density Eq. (6),
becomes more ‘flat-topped’ (see Fig. 9(b) for an example)
and the mean value increases with the elliptic parameter
m, so the linear limit m = 0 when the density is sinu-
soidal marks the minimum (p) > (p)min = 252, As the

migration of the roots dictate, m = 2=+

3
within the potential, so {pp) — (0P )min > (pr) — (PL)min
and (pp)min > (PL)min. Together they imply that the
mean value increases under the influence of a positive
potential step, (pp) > (pr). The opposite trend is seen
for a negative step, Vy < 0; 1 and ro decrease while 73
increases within a potential well, (pp) < {(pr)-

If we fix the parameters on the left and increase the
potential V on the right, the density within the poten-
tial step will transition from being oscillatory on the loop
part of phase space curve, to being non-oscillatory first on
a conjoined curve then on the wing of a loop-wing struc-
ture. Those phases are marked in Fig 3(c) as a function
of Vy and r3y, for fixed r15,,72r . As Vy increases, ro, 73
eventually merge and become complex conjugates, cre-
ating the conjoined structure; further increase causes a
new loop to emerge on the left as in Fig. 3(b), so the sole
real root r1p — r3p now lies on a wing. The opposite
trend is seen in Fig 3(d) for the solutions on increasing
nonlinear strength g keeping V} fixed.

will be larger
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FIG. 3. (Color online) The function B(p) is plotted with solid red line for the left region Vo = 0 and blue dashed line for the
region of the potential Vo > 0. Any horizontal slice set by a value B = [y (thin dotted line) here mark the roots at points
of intersections and show their migration: Transition of an oscillating to another oscillating function is shown in (a) and to a
wing solution in (b) where the negative part of the function rises to meet the Sy line as the potential Vy increases. (c) Fixing
parameters on the left for Vy = 0, except for one root rsr, as the potential V5 > 0 increases the density transitions from
being oscillatory (I, green) to non-oscillatory first on a conjoined phase space curve (II, blue) then on the wing of a loop-wing

structure (II1, red). (d) The transition of the solutions when g is varied at fixed Vp, with same legend as in (c).

VII. EFFECTS OF A COMPLEX PHASE SHIFT

Positive Derivative at Step Negative Derivative at Step

K(m)  Ke)E—— ey
We now turn to a parameter that appears almost arbi- - P
trary and is often treated as such, but which, as we now
show, actually plays a significant role in defining the so- L
lutions. This is the phase shift xo in Eq. (6), which sets L
the density at the origin, -K(m’) S -Km)F
o rs o Ts

po = 11+ (ra — rl)snz(:co,m) (13)

Crucially, z¢ can in general be complex-valued, a fact
generally overlooked, with xy being tacitly assumed to be
real for a solution of this structure [10]. We plot real and
imaginary parts of zy vs pg in Fig. 4. The Jacobi elliptic
function sn(u, m) is double periodic [56] and the density
depends on its square. Thus, the values of zy are plot-
ted modulo those periods, mod (Re{xo}, K(m)) and
mod (Im{zo}, K(m')), where m" = 1 —m and K(m) is
an elliptic integral of the first kind and defines the period-
icity of the elliptic functions. The structure of the func-
tion is revealing, establishing that there are indeed strong
constraints on xg, contrary to what has been stated in
previous papers on this same topic [54]. The value of
p'(x = 0) simply changes sign of g as shown, so our
discussion will be in the context p’ > 0 in Fig. 4(a).

The values of zy are constrained by the necessity of
having real pg value. Specifically, we notice the real and
imaginary parts each varies alternately while the other
remains constant, as we illustrate with Fig. 4(a): When
po < r1, Re{xo} = 0 and Im{zo} steadily decreases to
zero at pg = r1. In the interval 1 < pg < ro, we have
constant Im{zo} = 0 while Re{zo} steadily increases
to K(m). Then for 1o < pg < 73, we have constant
Re{zo} = K(m) while Im{x¢} steadily decreases from

FIG. 4. (Color online) The real and imaginary values of the
phase shift zo at edge of the potential step, as a function of
po the density at the edge. The real and imaginary parts
never vary simultaneously over any density range. As seen,
they alternate: one varies while the other remains constant,
at either zero or + K (m) for Re{xo}, and zero or +K (m’) for
Im{zo}. The two panels also show that the sign of 2o depends
on the derivative p’(po) at the step boundary.

zero to —K(m'). Beyond that, when py > r3, the imagi-
nary part remains constant Im{z¢} = —K(m’) while the
real part asymptotically approaches zero.

We can now examine how this plays into the density
solutions with +g. For positive g, with all real roots, we
know from our discussions earlier that physical solutions
require 1 < pg < ro (oscillatory, loop) or pg > r3 (non-
oscillatory, wing). In the oscillating region we find that
Im{zo} = 0 the x¢ is just the phase shift of the sn? func-
tion. On the wing, a nonzero Re{zo} still corresponds
to a phase shift, but the Im{zp} being an odd multi-
ple of K(m’) provides an alternate picture of the how
the solution can become unbounded in that region. We
use the identity for sn with a complex argument shown
in Eq. (B1) in Appendix B and use the expressions in



Eq. (B3) for the Jacobi elliptic functions evaluated at
K (m), the sn to objain

sn(u—iK(m'),m) = m, (14)

where we denote u = \/g(rs —r1) x + Re{zo} and we

need necessarily have Im{zo} = K (m') to make the imag-
inary part vanish in Eq. (B1). Clearly the expression
above is unbounded as dn”(u,m) — 1. Notably, un-
physical negative densities are naturally excluded since
the range of dn for 0 < m < 1 is given by v1—m <
dn(u,m) <1).

For negative g, Fig. 1 indicates that for real roots, so-
lutions can lie only between r5 and rs. Technically there
is a wing pg < 71, but the density cannot be negative. In
Eq. (6), for negative g, the co-ordinate dependent part
of the argument becomes imaginary. In the oscillating
region between 79 and r3, the Im{xo} corresponds to a
phase shift while the constant real part actually ensures
that the density is oscillating. This is not so obvious in
Eq. (6), since naively the function appears to oscillate
between r; and ro. We once again use Eq. (B1) and
Eq. (B3) from the Appendix to transform the elliptic
function to get

dn(v,m’)

1 —m/sn?(v,m’)

Here v = +/|g|(r5 — r1) +Im{zo} and we need necessar-
ily have Re{xo} = K (m) for the imaginary part to vanish
in Eq. (B1). This however still does not alter the limits
of oscillation in Eq. (6). We can remedy that with some
additional identities and transformations for the Jacobi
elliptic functions detailed in the Appendix B, we can ac-
tually transform the solution in Eq. (6) for negative g to
take a more transparent form

pla) = s+ (r2 = ra)sn (Vlgl(rs — 1) @ + ol ) (16)

where Zg = K(m) + Im{zo} is a real phase shift and

r3s—r2

sn(K(m) + iv,m) = (15)

m =

Thi? e;(lpression has intuitive consistency: In the case
of positive g, we know an oscillating solution takes the
form of Eq. (6) and that ¢ is entirely real, correspond-
ing simply to a phase shift in the density function. We
can make the argument that g — —g simply reflects the
function f(p) across a vertical line through the middle
root ry , so that {ry,rs, 73} — {r3,r2,71} so that r lies
on the wing and loop occurs between 75, r3. We see that
swapping 1 > r3 in Eq. (6) yields exactly the same ex-
pression as in Eq. (16).

Similar arguments can be made for the complex roots
corresponding to conjoined solutions. The satisfying and
perhaps surprising conclusion here is that the general
form of the solution Eq. (6) works for all scenarios, re-
gardless of the sign of g; and x( plays an essential role in
determining whether the density is on a bounded or un-
bounded branch. Other solution forms used [55, 64] can

107 (a)  Case: 02 (b) AN
S v R i\
I O
0 { O S T
3 4 Voo
YW
&l ¥y
. v v v
0.5
107 . T
7 ) A W N
AU AN A
g \
, Vi
/ [
/ S
st f
\ [
" 1 vl
\ Vi
\ (Y
\ \ \/
. Al \
N -

Case: O2MM .~

4@

//J’I ; )
/N \
DensitY,P —~
§
R—
et
]
S >
::::::_-_-_

2 ..
Position, x

Density, p

FIG. 5. (Color online) Distinct classes of solutions for a pos-
itive potential step Vi > 0 with positive nonlinearity g > 0,
that are oscillating (O) in all regimes. Left panels show phase
space plots with red solid line for f;, and blue dashed line
for fp, with the intersections corresponding to the potential
boundary marked by circle. Right panels show the corre-
sponding density profiles, with the region with the potential
shaded grey. The most general scenario with two intersections
02 is shown in (a,b), and more restricted ones with three in-
tersections O3 in (c,d) and with two intersections O2 MM at
both the minimum and the maximum in (e,f).

be reduced to this by simply allowing for complex-valued
To. A important point to be stressed in this context is
that regardless of the sign of g, the imaginary and real
parts of g, respectively, cannot be chosen arbitrarily.
For positive g, Im(xg) = 0 corresponds to an oscillating
solution, and I'm(zg) = —K(m') corresponds to a wing
solution. For negative g, Re(xg) = K(m) gives oscillat-
ing solutions, with no other feasible solutions.

VIII. STEP: POSITIVE NONLINEARITY

The potential step V) for a medium with positive non-
linearity (g > 0) presents the broadest set of possible so-
lutions. Using our convention in Sec. IV, the step bound-
ary is at « = 0, with Vy > 0 in region P : = > 0, and
Vo = 0in region L : z < 0. In a scattering problem,
regions with no potential necessarily have bounded solu-
tions, since they can extend to infinity. In those regimes,
we will assume oscillatory solutions apart from some lim-
iting cases we will consider separately. Within the poten-
tial we will also consider solutions that are unbounded
as r — to00, because of their relevance for finite width
potentials, even though unphysical for an infinite extent
potential step. In the context of phase space plots, pr, ()



will therefore always lie on a loop or asymptotic struc-
ture, while pp(z) may lie on a loop, a wing, or a conjoined
curve. The last two cases contain solutions unbounded at
infinity. We will determine the distinct classes of allowed
solutions by representing the boundary conditions as in-
tersections between different types of phase space curves
in the two regions.

A. Oscillatory within the potential

We first consider solutions that are oscillatory every-
where, so that the density lies on the loop portion of the
phase space curves for both regions, and all the roots of
f(p) are r; > 0. As discussed in Sec. IV, the phase space
curves of the two regimes can intersect at a maximum of
three points. Due to the symmetry across the p-axis on
the phase space plots, intersections will generally come
in pairs, (po, =v/fo). The exception is when pg is a com-
mon root for fr, and fp in which case fo = 0 and that
would correspond to the minimum or maximum of the
loop. Based on this, we have the following distinct types
solutions, that we label with ‘O’ for oscillating, the num-
ber of intersections, and indicate whether they occur at
a minimum or maximum: O1 Min, O1 Max, 02, 03, O2
MM, where MM = Min Max.

Figure. 5 illustrates the last three cases. The most
common case is O2 when there are only two intersections
shown in panels (a,b), that correspond to oscillatory solu-
tions of different amplitudes but none with nodes. Cases
O1 Min, O1 Max are not shown since they are limiting
cases of O2, when fy = 0 and the two intersections shown
in panel (a) merge into a single point of intersection that
coincides with one of the extremes of the phase space
loops. In panel (b), the boundary density would then
correspond to a minimum or a maximum. The next most
restricted is the case O3 shown in panels (c,d), where the
loops intersect at three points with one of them necessar-
ily being at zero density. But, as noted in Sec. IV, in this
case, the density at the boundary cannot vanish py # 0,
so one of the intersections + fy # 0 marks the boundary
between the regions.

The most constrained oscillating solution O2 MM oc-
curs when the loops intersect at zero as well as their mu-
tual maximum, shown in panels (e,f). This can be viewed
as a limiting case of O3, when the two intersections at
=+ fo merge at the maximum of the two loops. Both O3
and O2 MM cases have nodes and therefore cannot carry
current. The latter is particularly special because the
density oscillations have the same amplitudes in the L
and P regions, but generally different shapes, as can be
seen in panel (f). This makes it useful for comparing the
effective potential (Vo + g|¥|?). Note if the loop for L
has a zero root, current conservation ensures that there
has to be an intersection there since the loop for P has to
have a zero root as well, as noted at the end of Sec. III.
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FIG. 6. (Color online) Similar to Fig. 5, but showing the
distinct cases with unbounded (U) solutions in the region with
the potential. (a-f) Scenarios where fp has a pair of complex
roots and (g-j) scenarios where intersections occur on the wing
segment of fp. For complex roots, panels (a,b) correspond to
Ul Max with intersection at the maximum point of the fr
loop, (c,d) the general case U2 of two points of intersection
and (e,f) the special case U3 of three points intersections.
For intersections on the wing of fp, the panels (g,h) show a
general case U2 with two intersections and all roots positive
and (i,j) when fp has one positive and two negative roots.

B. Unbounded within the potential

We now examine another large class of solutions where
the density is unbounded pp(z) — oo as © — oo which
were previously considered only for certain limiting cases
[55] or omitted entirely [53, 54]. With oscillatory behav-
ior in the L region, there are two subclasses of unbounded
density profiles in the P region: Those that lie on a con-
joined curve corresponding to a single real root, and those
that lie on a wing while a loop exists as well. Distinct
solutions of both types are shown in Fig. 6.

In a conjoined curve pp(x) has only one real root which
has to be non-negative. As in the previous subsection,



the loop in the L region can intersect the conjoined curve
of the P region at one, two or three points, and we label
the solutions accordingly with ‘U’ denoting unbounded:
Ul Min, Ul Max, U2, U3. With one of the curves being
open, the case of two point intersections at both mini-
mum and maximum of a loop is clearly not possible in
this case. The case of one intersection at the maximum of
the loop Ul Max is shown Fig. 6(a,b), and that with two
intersections where pg lies at some intermediate value on
the loop is shown in panels (c,d). The case of a single
intersection at the minimum U1l Min is simply a limiting
case of this and not shown. A case with three intersec-
tions U3, is possible as in the previous subsection, when
the single real root of the conjoined curve is at zero, as
shown in panels (e,f), and for the same reasons mentioned
in the previous subsection, the density at the boundary
po # 0 for this case. Qualitatively, the density profiles
for all of these solutions are the same except for the U3
case, when solutions have a node.

The second class of unbounded solution have the den-
sity on the wing when a loop is present as well. Solu-
tions with two intersections U2 are possible both when
all the roots are positive as shown in Fig. 6(g,h), and
when there are two negative roots and one positive root
shown in panels (i,j). Ul Max solutions can occur as a
limiting case of the former and U1l Min solutions as a lim-
iting case of the latter, when fo = 0 corresponds to the
sole non-negative root of fp(p). However U3 solutions
where all three intersections are on the L loop analogous
to panel (e) do not seem to be available, since as the P
wing gets closer to the zero it tends to get steeper and
less likely to intersect again with the L loop. In principle,
the loops from L and P could meet at zero in a variation
of that plot with the wing still intersecting at two points,
yielding a U3 case, but with the P loop in the unphysical
negative density regime, it is not relevant.

C. Degenerate Roots

When any two roots are equal, we obtain limiting cases
of oscillating or unbounded solutions discussed above, de-
pending on where intersections occur on the phase space
curve of P. Relevant cases are shown in Fig. 7.

When the lower two real roots are equal r; = ry, the
solutions are plane waves, as shown in panels (a,b). The
plane wave can be in either region, here we show it to
be on the L side. Clearly the derivative at the edge of
the potential must be zero, hence these solutions can be
considered the limiting cases of O1 Min and O1 Max
cases, where L/ P collapses to a point that coincides with
the minimum or the maximum of the P/L loop.

When the two upper roots are degenerate ro = r3, we
have asymptotic solutions that approach a constant value
away from the step boundary. Since such solutions are by
definition bounded, they can occur in all segments of a
phase space curve including wing or conjoined, and they
are valid for an infinite extent step potential. Asymptotic
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solutions can occur in either region, with or without a
potential. An example is shown in panels (¢,d) with the
degeneracy within the P region. Figure 2 implies that
increasing the potential brings the loop and the wing
closer together to create the degeneracy. This determines
what type of density solutions across the step would be
compatible with such asymptotic behavior. For g > 0
and Vp > 0, if pp is an asymptotic solution on either
the loop or the wing, pp will be unbounded. If pp is an
asymptotic solution on either the loop or the wing, pr,
must be an oscillating solution.

When the L loop intersects the P curve on the loop
section, as shown in panel (c¢), the clockwise circulation
along the curve ensures that the density approaches the
asymptote from below. That also is the reason why the
density approaches a constant asymptotic value: Once
it gets to the X-shaped part in the P curve, it cannot
continue on the upper right or lower left branches be-
cause they are discontinuous transitions within the same
region, and the only smooth transition to the lower right
branch is forbidden by the clockwise consideration be-
cause a negative p’ cannot lead to increasing density. On
the other hand, if in panel (c) the L curve extends farther
right and intersects on the wing of the P curve, then for
exactly the same reasons the density would approach an
asymptotic value from higher values, following the lower
right branch of the X-shaped part of the P curve.

Equation (7) shows that for asymptotic solutions, the
elliptic parameter m = 1, so that wavelength goes to
infinity implying no periodicity. Asymptotic solutions
would therefore correspond to gray or dark solitons [22,
23, 26, 32-37, 47, 55], where in a uniform media one
would just have the P curve with a pair of degenerate
roots in panel (¢). The asymptote in the P region can
be extended to the left creating a dip before it forms
another asymptote on the left, creating the dark soliton.
In case of a step potential, depending on whether the L
curve intersects the P curve on the loop or the wing side,
these solutions can be considered limiting cases of O2 or
U2 solutions. Only the O2 cases would be allowed in an
uniform medium, with U2 leading to diverging solutions.

A special case of the above can occur when in panel
(c) the L curve intersects the P curve exactly at the
degeneracy point, in case the asymptotic solution within
the potential would become a plane wave. Of course L
an P regimes can be switched to have the plane in the no
potential regime. Such solutions are relevant for example
in Ref. [55], where the degenerate solutions occur outside
the potential and unbounded within it.

When the degeneracy occurs at zero density, ro = r3 =
0 and the P loop lies in the negative density regime, we
have decaying solutions that approach zero asymptoti-
cally, as shown in panels (e,f). For g > 0, the decay can
only occur on the side of the higher potential, because as
mentioned above ro, r3 approach each other to create the
required merger as the potential increases. This is simply
an asymptotic solution with a vanishing limit. Compar-
ing to Fig. 6(i,j) this can also be viewed as its limiting
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FIG. 7. (Color online) Similar to Fig. 5, limiting cases are
shown where two roots are degenerate for either fr or fp.
Panels (a,b) show the case of riz = r2r for fr, yielding a
plane wave, reverse is possible as well with plane wave in the
potential with r1p = rop for fp. (c,d) rop = r3p # 0 and
the intersection occurs on the loop part of fp the density
approaches finite constant value. (e,f) rop = r3p = 0 for fp
with the relevant intersection on negative derivative p’ < 0 of
the wing leading to a decay solution.

case with three intersections instead of two, U2 — U3.
Decay, asymptotic, and plane wave solutions are all
bounded solutions with similar features. They differ in
that: Intersections for decay solutions will never occur at
a minimum and require a zero root, intersections marking
po for asymptotic solutions never occur at whichever ex-
tremum the density asymptote, and plane wave solutions
will only have intersections where the derivative vanishes.

IX. STEP: NEGATIVE NONLINEARITY

With negative nonlinearity, g < 0, as discussed at the
end of Sec. ITI, complex roots are not allowed and the
wing part of the phase space curve opens on the left and
lies in the unphysical negative density regimes. So, for
a potential step, the only allowed solutions possible, in
any region L or P, have to lie on the loop part of the
respective phase space curves. Solutions of type O2 with
two intersections are shown in Fig. 8(a,b), and clearly
type O1 Min, O2 Max and O1 MM solutions are allowed
as limiting cases similarly to the g > 0 case. Solutions
with three intersections, O3, are shown in panels (c¢,d),
where the middle root ro = 0.

The most interesting case for g < 0, and one not pos-
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FIG. 8. (Color online) Similar to Fig. 5, solutions for a pos-
itive potential step Vo > 0 with negative nonlinearity g < 0,
are shown for (a,b) a general two-intersection case 02, (c,d)
the special case O3 with three intersection in (c,d). Figures
(e,f) shows a case where pr,(x) has nodes but pp(z) does not,
impossible with g > 0. (g,h) A solution that decays on outside
the potential, in contrast with Fig. 7(c,d) for g > 0 where that
can only occur within the potential as with the linear case.

sible with g > 0, is shown in panels (e,f) when solutions
can have nodes in the L regime but are nodeless in the
P regime. Here, we do not have to obey the rule as with
g > 0 that the densities in all regions must have a node if
one region has a node. We can still satisfy current conser-
vation condition, mentioned at the end of Sec. III, which
mandates that if one region has a zero root all regions
need have at least one, because here within the potential
the zero root is on the wing r1p = 0, while the left side
has zero root at rof, = 0.

Although not shown here, comparison with Fig. 7(a,b)
confirms that plane waves in either regime are also pos-
sible, since it simply requires the two highest roots to be
degenerate ro = r3, such that one or both of the loops
shrink to a point. However asymptotic solutions that re-
quire the loop and the wing meet at a degeneracy point
r1 = 79 can only occur when density decays p — 0 be-
cause the wing and the loop lie in negative and positive
density regimes, and they can only meet at ry = 1o = 0.
Such decay solutions may exist in any potential region,
provided it transitions to bounded solutions across the
potential boundary; an example with decay occurring in



the L region is shown in Fig. 7(g,h). Here r1, = rof, =0,
but to satisfy current conservation r1p = 0.

With negative nonlinearity, these decay solutions
would correspond to a single bright soliton [22, 26, 32, 34—
37): For example, for a medium without a potential in
panel (g), if we follow the entire loop in the L region, we
would have the density profile of a single bright soliton,
with the return to (p, p’) = (0,0) marking the asymptotic
approach to vanishing density in the other direction.

X. RECTANGULAR POTENTIAL BARRIER

We can construct solutions for the rectangular barrier
using the solutions we have found for the L — P step and
their mirrored counterparts for the P — R step at the
right edge of the barrier. The complete landscape of so-
lutions discussed above for a step potential are physically
relevant for a finite width barrier. In Fig. 9, we present
some examples. With three regions, there are three phase
space curves, depicted with solid red on the left (L) of the
barrier, dashed blue within the potential (P) and dotted
green for the right (R) of the potential. There are now
two points of the intersections marking the L — P and the
P — R boundaries respectively. The density at the right
edge of the barrier at x = a is denoted p, in analogy with
po on the left edge, and a is the width of the barrier.

Panels (a-f) assume g > 0 and oscillatory solutions
outside the barrier corresponding to loop segments of the
phase space curves, but illustrates cases for the density
lying on different phase space segments within the bar-
rier: On a loop in (a,b), on a conjoined curve in (c,d) and
a wing in (e,f) when a loop is present (in this case, on
the negative density regime as in Fig. 6(i)). Outside the
barrier, we can also have plane wave or asymptotic solu-
tions, however we cannot have decay solutions since they
only occur in the region of higher potential for g > 0, as
discussed in the context of Fig. 7(i,h).

For negative nonlinearity g < 0, since the densities
have to lie on the loop segment of the phase space curves
in all regions, all the various types of oscillatory solutions
described in Sec. IX are possible here. The general behav-
ior and appearance can be surmised from our discussion
in the section. Therefore, in Fig. 9(g,h) we only show
the one exception to this, and hence the most interesting
case, where the solution decays outside the barrier. Such
localization within a region of higher potential is a curi-
ous effect of the negative nonlinearity and cannot occur
in a linear system or for positive nonlinearity.

There are however certain constraints that arise with
a finite width barrier. The primary one is that for those
solutions that are unbounded at infinity, the barrier needs
to be sufficiently narrow to intercept only a finite-valued
segment of the density. As apparent from Fig. 6, for such
unbounded solutions the density blows up periodically,
and the width of the barrier has to be less than half of
the period. Secondly, since there is only one point with a
zero derivative on wing or conjoined features of the phase
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FIG. 9. (Color online) Examples of distinct solutions for a
rectangular barrier are shown, with left panels showing the
phase space curves on the left of (solid red), within (dashed
blue) and on the right of (dotted green) of the barrier shown as
gray shaded in the right panels that plot the density profiles.
Panels (a-f) have g > 0 and assume oscillating density, lying
on the loop segment of the phase space curve. Within the
barrier, density can be (a,b) on the loop, (c,d) the conjoined
form or (e,f) on the wing. The two latter cases can blow up
and set strong constraints on the width. (gh) For g < 0
a bound state can exist within the barrier, decaying outside;
L/R curves coincide in (g) due to optional symmetry assumed.

space curves, L and R solutions cannot both have extrema
at the boundary if they are connected by an unbounded
solution within the potential.

Table I depicts all allowed combinations of solutions,
using the labelling we introduced. The solutions outside
the barrier must all be bounded, hence the labels O or
U here indicate the solution type within the potential re-
gion P. The numerical labels and the other tags indicate
number of intersections of the phase space curve of P
region with those of the adjacent L and R regions. The
column labels represents the relevant P solution type and
phase space intersection on the left edge of the barrier,
and the row labels, the right edge of the barrier.

The table shows that even when all these solutions for a
step potential satisfy the boundary conditions at on edge,
there are restrictions on those solutions they can pair up
with on the other edge. The blue shaded regions indicate
combinations that are forbidden because the density will



Ol Min | Ol Max 02 03 02 MM

01 Min
O1 Max
02
03
02 MM

Ul Min | Ul Max U2 U3

TABLE I. This table shows the allowed combinations of solu-
tions at the left (vertical labels) and right step edges (horizon-
tal labels) of a rectangular barrier. The labels O and U stand
for oscillatory and unbounded solutions within the potential.
The number represents intersections between the phase space
curves at each edge, and tags specify if they occur at a mini-
mum, maximum, or both (MM). The blue shaded cells mark
solutions that are not possible due to the density reaching
infinity before reaching the other edge, and the red crossed
cells mark solutions not allowed by current conservation. De-
cay, asymptotic, and plane wave solutions are limiting cases
of those listed, when two of the roots are degenerate.

go to infinity before having meeting the required bound-
ary condition at the other edge. The red shaded boxes
with crossed out cells in the table mark combinations
that are forbidden by current conservation, where there
would be a zero root on one side of the barrier but no
zero root on the other side. The rectangular barrier is
symmetric, so the solutions put together in this grid are
symmetric across the main diagonal. For example, the
element connecting O1 Min to O1 Max is the same solu-
tion as the element connecting O1 Max to O1 Min, just
mirrored about the center of the barrier. The table does
not explicitly list solutions with degenerate roots, since
those are limiting cases of the solutions shown.

XI. RECTANGULAR POTENTIAL WELL

When we flip the sign of the potential, changing from
a barrier to a well, V) < 0 in the P region, we switch
to stepping up in the potential value on the right edge
stepping down on the left edge. This alters the types of
solutions allowed compared to the potential barrier.

The case of attractive nonlinearity, g < 0, is straight-
forward, since one root must lie in the unphysical nega-
tive density regime which also corresponds to the wing
part of the phase space curve. Therefore, the allowed
density solutions are necessarily bound solutions that lie
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FIG. 10. (Color online) Similar to Fig. 9, but for potential
well with Vo < 0 in 0 < x < a, shown as unshaded region in
right panels. The key difference with a barrier is that only
bound solutions are permitted regardless of the sign the of
nonlinearity. For g > 0, example of a solution oscillatory
everywhere is shown in (a,b) and asymptotic outside the well
in (c,d). In the limit of a deep well |Vy| — oo and g > 0 the
density oscillates with increasing frequency between 0 and po
(e,f). Bound states, decaying outside the well exists for both
positive and negative nonlinearity, shown in (g,h) for g < 0
with optional L/R symmetry.

on the loop segment of the phase space curves, and allows
only oscillatory or decay solutions. The behavior is ba-
sically the same as for a potential barrier. So, the main
takeaway for g < 0 is that sign of the potential does not
alter the landscape of solutions available.

With repulsive nonlinearity, there are two main con-
siderations: First, comparing Fig. 2(a) and (c), changing
the sign of V} leads to opposite migration of the roots,
because the quadratic function Af in Eq. (8) has op-
posite concavity. Second, and more crucially, Fig. 3(c)
shows that for g > 0, as Vj increases the solutions tran-
sition from being oscillatory (region I in that figure) to
unbounded (regions IT and III), with the boundary be-
tween regions I and II marking decay and asymptotic
solutions. This means that unbounded solutions will not
be allowed within a potential well since Vj increases out-
side the well and that would mean physically impossible
unbounded solutions in the L and R regions as well. In
fact, the solutions within the well can only be oscillatory



in nature, since if the solution lies on the boundary of
regions I and II as mentioned above, the increase in the
potential outside the well will tip the solutions over to
the unbounded regime II. This is clearly not an issue for
a potential barriers, since the potential decreases outside
the barrier, and solutions that lie in regions II and III
within the barrier can transition to bounded solutions in
or on the edge of region I.

An example of a generic solution for a potential well,
which is oscillating in all regimes is shown in Fig.
10(a,b). However, the conditions above do still allow
plane wave, decay and asymptotic types outside the well,
an example with an asymptotic solution on the left of the
well is shown in Fig. 10(c,d).

Differently from a potential barrier, a well can support
bound states for both positive and negative nonlinear-
ities. They arise the same way as with the potential
barrier. For g < 0, outside the well, we need to have
degenerate roots r; = ro = 0 and a positive third root
rg > 0. An example is shown in Figure 10(g,h), where
decaying densities are symmetric in the L and R regimes
but such symmetry is not necessary. For g > 0, similar
bound states exist within the well, oscillating within and
decaying outside the well, provided there are degenerate
roots outside the well 7o = r3 = 0 and some negative
first root, r; < 0. These class of bound state solutions
include localized solutions studied in Ref. [50] and more
recently in Ref. [49].

Something interesting occurs uniquely for a potential
well with repulsive nonlinearity g > 0: When the well
depth Vy — —oo, density at both boundaries match
Po =~ pa as seen in Fig. 10(e,f), and the mean value of
the density approaches a finite limit pp/2 with the den-
sity oscillating between 0 < p < pg with increasingly
higher frequency. This is illustrated in Fig. 10(e,f) for
sufficiently large |Vp|. This cannot occur for g < 0, since
as the well depth is increased, the roots migrate to val-
ues that are not physical as discussed in Sec. III. For
potential barriers, Vi > 0 with repulsive nonlinearity as
the potential increases the density becomes unbounded
as we concluded from Fig. 3(c), while with attractive non-
linearity the amplitude of density oscillations blows up.

XII. BARRIER POTENTIAL ON A RING

Changing the boundary conditions to have a barrier
potential in a finite ring topology introduces some inter-
esting changes in the solutions. Clearly, only oscillating
solutions are relevant for outside the barrier, since un-
bounded ones are not possible and decay solutions would
not be significantly impacted. Instead of three regions,
the potential, its left and its right, on a ring there are
only two regions: a single region outside of the poten-
tial and the region inside. Thus, for a symmetric barrier,
the density at both edges must be equal to pg, and the
derivatives must match, up to a sign. This can be under-
stood in terms of the phase-space plot in Fig. 11, there
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FIG. 11. (Color online) Examples of solutions for a barrier on
a ring topology with (a,b) a general case of oscillating density
within the potential (c,d) an unbounded solution within the
potential shown here for conjoined case, but applies also to a
wing. There are only two regions, inside and outside of the
barrier, and hence only two phase space curves in (a,c) and
the same density at both edges (b,d) which requires the un-
bounded densities (c) in the barrier have a negative derivative
on the left edge.

being only one loop (solid red line) for outside the po-
tential, its intersections with the loop or wing for within
the barrier (dashed blue line) is the same for both edges
apart from the choice of being above or below the p =0
axis. Examples of analytical solutions for a ring topol-
ogy have been previously examined, but only in terms of
oscillating solutions in each region [13, 14].

For any given barrier width, there is at least one so-
lution which fits this criteria. For oscillating solutions,
this means that there is a solution with either an integer
number of wavelengths which matches the width of the
barrier, or some number of wavelengths which intersects
at the edge of the barrier at the same value py but at
the opposite signs of p’ at the two edges. The latter case
is shown in Fig. 11(b). In the case of extremely narrow
barriers, unbounded solutions are possible but must have
p' < 0 on the left edge and p’ > 0 on the right edge of
the barrier and remain finite in between, as shown in
Fig. 11(d) . This is the same as our condition in the
open case where oscillating densities hold for any barrier
width, and imaginary and third root solutions hold only
for a sufficiently small barrier width. Asymptotic solu-
tions are not possible, as it does not satisfy the criteria
that the density and its derivative must be the same on
either side of the barrier.

There is a significant additional restriction for solu-
tions on a ring. For open boundary conditions as we
have considered so far, the phase has not been an issue,
since for any well-defined the phase is simply defined by
Eq. (eql.2-1) with © = 0 and it is not a constraint. But,
in a ring, the phase and its derivative must satisfy the pe-
riodic boundary condition in Eq. (3) [61]. Without rota-
tion, a solution can only exist if the phase change around
the ring satisfies A¢ = 27n with integer n. However,



rotation provides a continuous parameter €2 that can be
adjusted to meet the phase constraint for any solution
that meets the density criteria specified above. But it
is very relevant that the vast majority of those solutions
will not be valid in the absence of rotation.

XIII. SMOOTH BARRIER

The choice of rectangular barrier or a step potential
which are piecewise constant is dictated by the fact that
we can find analytical solutions, for the same reason that
they are considered in the linear case. As with the linear
scattering problem, such potentials capture the essence
of scattering by more general potentials. We now show
that this is the case for the nonlinear problem as well.

For convenience of numerical simulation, we illustrate
this with a ring potential, but the primary conclusions are
generally applicable. The periodic boundary condition of
the ring makes it convenient to use a momentum space
analysis with a finite basis. We expand the state and the
relevant potential as

Np,

Ny
Y= Z Cme' ™" V(o) = Z vpe™ (17)
msz;,, —7Nh
so the time-independent nonlinear Schrédinger equation
reduces to a set of N = 2Nj, + 1 coupled equations

1 2
z(m—Q)%em + Z Un, CnyOny +ng—m

ni,n2

+g Z Chy Cna Cng Onatng—ny —m = HCm (18)

ni,m2,n3

We use a basis size of N = 51 and solve the equations
with a generalized Newton’s method [61] to find the co-
efficients ¢,, for a specific potential V(z) and nonlinear
strength ¢g. As mentioned in the previous section, we al-
low for the appropriate rotation {2 essential to match the
phase boundary condition, so that A¢(x) = 27n for a
complete circuit of the ring.

We find the solutions analytically for a rectangular bar-
rier on a ring as in Sec. XII, taking V) = 0.6, g = 5, with
the roots outside the potential r;, = {1;2;5} and den-
sity at the boundary pg = 1.5 and its derivative p’ > 0.
The ring size is specified by requiring the number of pe-
riods inside and outside the barrier to be fixed at 6 and
12 respectively. For comparison with our numerical solu-
tions on a ring we rescale the system length L — 27 and
rescale all the parameters and the solutions in proportion
and specifically ensure that the density is normalized to
unity on the ring.

In the physics of ultracold atoms, localized barri-
ers/wells can be created with tightly focussed blue/red
detuned lasers which present a Gaussian profile [59, 65].
We use a similarly shaped potential of the form Vi, =
sin®(z/2), the sinusoidal form being convenient for our
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FIG. 12. (Color online) Numerical solutions (thick red lines)
for barrier potential (shaded) on ring, morphing from a rect-
angular form constructed with its Fourier components (a,b)
to a sin*(x/2) profile of equal area in (e,f) with intermedi-
ate form 7:3 mixture of the two limits in (c,d). Left panels
show the density and the right panels show the phase. The
solutions are superimposed with the analytical solutions (thin
blue line) for a rectangular barrier potential of the same di-
mensions, with Vo = 0.6. The general features of the analyti-
cal solutions remain applicable to a smooth barrier as well.

chosen basis. In order to determine whether the ana-
lytically obtained solutions for the rectangular barrier
are also applicable for smooth barriers relevant in exper-
iments, we gradually transform the rectangular potential
Vieer of dimensions used in the analytical simulation into
the Vg, potential by ramping up the weight from 0 to 1
in the composite potential

V(z) = (1 —w) X Vieet() + w X Vi (2), (19)

and determine the solutions numerically. For relevant
comparison, Vj;, is chosen so that the area of the sinu-
soidal potential equals that of the rectangular barrier.
The results are shown in Fig. 12. The left column shows
the density profile while the right column shows the phase
of the solution. From top to bottom, the weights are
w = 0,0.3,1 respectively. The original analytical solu-
tion with rectangular barrier is always shown as thin blue
lines for comparison. The numerical solution is overlaid
in thicker red lines. The mixed potential V() together
with the rectangular barrier are also plotted in shaded
profile. The finite sized basis introduces some wiggles
in representing the rectangular potential but, as panels



(a,b) confirm, the numerical solution matches the ana-
lytical solution well.

What stands out is that both the density and phase
are not substantially altered in transitioning from the
discontinuous rectangular barrier in Fig. 12(a,b) to the
smooth sinusoidal barrier in Fig. 12. With regards to
the density, the period remains the same but the profile
is shifted; and the sudden upsurge of the mean density
within the barrier in the rectangular case is transformed
to a gradual ramping up and down across the smooth
barrier. The phase also retains the same profile and fol-
low the lateral shift in the density modulation. The more
conspicuous vertical shift is effectively a constant offset
that is physically irrelevant.

This comparison shows that the analytical solutions
determined in this paper in the context of a rectangular
barrier can be applicable to the broad range of localized
potentials cosine potentials [18, 19] or Gaussian poten-
tials typical of lasers in atomic physics. Of course, any
nonsingular potential can be approximated by a series of
adjacent rectangular potentials, in the nature of a finite
Riemann sum. Furthermore, even solutions for periodic
potentials such as Kronig-Penney [17], or optical grating
[20] can build on these solutions for unit cells in conjunc-
tion with Bloch’s theorem.

XIV. STABILITY OF SOLUTIONS

We will now explore the dynamical stability properties
of the solution by considering small perturbation around
the mean field stationary states:

Y, t) = o(x) + Jue”Ple ™ 4 fu*eHte t (20)

We solve the resulting Bogoliubov equations [3] for the
normal modes of the fluctuations.

(Ho + 2g[t0]* — p)du + gipgdv = wou
—(H{ + 2glhol* — p)ov — g(v5)?0u = wéu  (21)

where Hy = 1 (—id,)* 4+ V. The numerical solutions for
the fluctuations du and dv are done with same momen-
tum state expansion used in Eq. (17). We find the nor-
mal modes for fluctuations by diagonalizing the resultant
2N x 2N square matrix that arises from the Bogoliubov
equations. If the angular frequencies w of the normal
modes have positive imaginary components Im(w) > 0,
then the fluctuations would grow exponentially, indicat-
ing dynamical instability. For purely imaginary w, the
eigenstates of fluctuations du and dv are identical, but
typically not so for complex or real values.

We find that persistent instabilities appear primarily
as a consequence of discontinuous edges and boundaries.
Considering the infinite limit typically assumed in scat-
tering problems, the boundary effects should be less rel-
evant, but instabilities at potential edges still remain.
Our main observation about the instabilities whether at
a boundary or at a potential is as follows: Solutions are
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FIG. 13. (Color online) The eigenstates (thick green lines,
left axis label) superimposed on images of the density (thin
blue lines, right axis label). Instability is localized in places
where the density derivative p’ at an edge indicates a trend
opposite to the change of the actual mean value of the density.
Examples are shown for no potential with instability localized
at the edge of the system (a,b), a potential barrier at the
barrier edges (c,d), and a potential well at the edges of the
well (e,f).

unstable when the derivative of the density, at an edge of
a potential or the whole system, has a sign opposite to the
actual change in the mean value of the density across that
edge. This is illustrated in Fig. 13 where we plot the un-
stable modes of the Bogoliubov equations. For example,
if the density has a positive derivative at an edge of the
whole system, that solution will be unstable at that edge,
since the mean value of the density abruptly decreases to
zero outside the system. This can be seen in panels (a,b)
of that figure, with instability localized at one edge but
not at the other in each case. The remaining panels show
similar behavior at the edges of the potential, with the
instability localizing at that edge where the derivative of
the density and change in the mean density are in oppo-
sition. For example in panel (c¢), on the left edge of the
barrier p’ < 0 going into the barrier but the mean value
increases within the barrier, so there is an instability lo-
calized there, while at the right edge the p’ < 0 going out
of the barrier but the density decreases as well, so there
is no instability localized there.

We now examine the trends in the instability as the
height or depth of the barrier changes. In scattering



problems, typically infinite systems are assumed. But,
for our simulations, we have to assume a finite system
size, introducing system edges with accompanying insta-
bilities as mentioned above. Therefore in order to differ-
entiate the effects of the boundary on the stability, we
do a comparative study by progressing from a (i) closed
ring with no boundary, to (ii) a cut ring, an open system
where the system is adjusted such that the state at the
two extremes match continuously both in density and
phase, and finally to (iii) a general open system where
the density and phase of the state at the two edges can
be arbitrary and independent of each other.

The Im(w) are plotted in Fig. 14 for the three cases.
We comment on the common features before we exam-
ine the differences. The bulk of the Bogoliubov modes
are complex, as in they have a real and an imaginary
part, and they correspond to a narrow band about zero,
apart from a few exceptions we will identify below. These
modes are delocalized and span the system and more im-
portantly they go to zero as the system size is increased.
As such, we can reasonably conclude that in the infinite
limit these modes will not be a source of instability.

The most relevant modes are the purely imaginary ones
and as the strength of the potential Vj varies, they have
conspicuously the largest absolute value and are sepa-
rated from the band of complex eigenvalues. We find
that with a few exceptions, there are always at most one
or two conjugate pairs of such purely imaginary eigenval-
ues. These modes mark significant instabilities because
they persist with increasing system size.

In the case of a ring, shown in Fig. 14(a) when Vj = 0,
Im(w) =~ O there are no instabilities. For V' # 0 apart
from the complex band, there are a series of splitting
branches that increase in magnitude with stronger Vj.
These mark the purely imaginary modes: For wells,
Vo < 0 there is only one such pair while for a barrier
Vo > 0 and there are one or two pairs. The instabili-
ties localized at the potential edge correspond to the sole
imaginary one or, if a pair, the one of larger |Im(w)| with
the smaller one being delocalized like the complex modes.
These last are absent with open boundary conditions,
and hence we suspect they are due to the periodic bound-
ary conditions and the fact that a non-zero rotation € is
necessary to find the stationary solutions for each specific
potential strength. Furthermore, the jagged undulation
on the trendlines on those purely imaginary modes are
because of slight adjustments in potential width as the
strength is changed to ensure identical solutions on either
side, which is necessary for symmetric potential in a ring.
As we increase the strength, the instability steadily in-
creases due to the progressively sharper variation of the
mean density induced by the potential.

Comparing the ring with a cut ring in Fig. 14(b) con-
firms the points made above. To match the phase at
the two edges use the same solution as for a ring, in-
cluding adjusting €2, now an acceleration not a rotation
for an open ring. Close to the center there is only one
pair of imaginary roots, which match the localized modes
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in the ring, while the delocalized branches are absent.
Additionally, there is a pair of purely imaginary modes
[Im(w)| =~ 2, separated from the rest of the modes. These
mark instability localized at the boundary. The value is
constant with changing Vjy because we keep the endpoints
at the same density and phase.

In the general case, Fig. 14(c), the value of the solu-
tions at the ends of the system are not necessarily equal,
and they vary with the potential strength. This creates
an interesting periodic variation of the Im(w) of the mode
that corresponds to the boundary instability as the den-
sity at the system edges change. These are manifest as
the large loops seen in the figure. There is similar varia-
tion for the modes corresponding to the instability at the
edge of the potential, seen as smaller loops. The trace of
those modes in panel (b) form an envelope for these inner
loops confirming their similar origin. We should stress
that both set of loops are separated by regimes where
those purely imaginary modes appear to be suppressed,
these are regions where the derivative at the edges match
the trend of change of the mean density across the edge
of the potential or the system as a whole, in agreement
with our main observation about the instabilities men-
tioned at the beginning of the section.

The instabilities at the system edges will be irrelevant
in the infinite limit, but those at the barrier edges will
persist. Even with finite systems, we conclude that those
instabilities can be suppressed by adjusting the bound-
ary to have density derivatives at the edges following the
same trend as the change in the mean density. The sharp-
ness of the transition accentuates the instability and will
be softened for smoother potentials. Here we consid-
ered instabilities for bounded oscillating solutions in all
the potential regimes. This limits the range of potential
strengths V{ since with values even slightly beyond what
is shown in Fig. 14 lead to unbounded solutions.

XV. APPLICATIONS TO SCATTERING

We finally address the question of the relevance of the
stationary states to scattering by barrier potentials. To-
wards this end, we scatter a Gaussian wavepacket

W = 1 e—(a:—xg)z/Qazeikx (22)

Vovr

that is launched towards a rectangular barrier and then
examine the reflected and transmitted fractions after the
scattering is complete, as has been utilized before in
studying nonlinear scattering problems [41, 63]. We use
barrier of width 20 and strength V; = 0.1 and wavepacket
with velocity k& = 0.5. We show snapshots of the scat-
tered wavepackets in gray filled silhouettes in Fig. 15.
For the linear Schrodinger equation, this method is
very effective, with the results of the scattering match-
ing analytical values for transmission and reflection [63].
Qualitative similarity of wavepacket scattering with an-
alytical solutions was recently established for the case



()

. N U B!
Potential, V,,

FIG. 14. (Color online) Instability of nonlinear scattering solutions of potential barrier/well as a function of the strength (+Vp)
as gauged by the imaginary part of normal modes of Bogoliubov fluctuations. The behavior is shown for (a) ring boundary
(b), an intermediate cut ring case with box boundary condition but matching density and phase at system edges and (c) box
boundary condition. For all, the bulk of the modes are complex-valued, delocalized and concentrated on a central band that
shrinks with system size. The ring (a) has one pair of outermost unstable states which branches out from zero at Vp = localize
at a barrier edge, also present in the cut ring (b). Additionally, the cut ring has a pair of constant purely imaginary modes
at around +2 corresponding to instability localized at the system edge. (c) For box boundary, instabilities at the edge of the
barrier (small loops) and system (large loops) vary periodically with Vo as the p’ at the relevant edges varies with V5. The
sloping curve in (b) is an envelope for the peaks of the smaller loops in (c).
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FIG. 15. Roots associated with stationary solutions are computed for the density and the phase values across the snapshot of a
wavepacket (shaded) scattered by a barrier localized at the origin. In the upper panels all the roots are plotted as points: Real
roots {r1,r2,73} — {blue,red, green}, and for a complex root pair {ri, Re{rz,rs},Im{rz,rs}} — {blue, magenta, cyan}. Four
setups are shown; two with packet width o = 80 at (a,b) some time ¢ it takes for all of the density to scatter off and through
the barrier and 1.4 times that time, and (c,d) two with packet width 20 at t; and 1.15¢7 . The complex roots appear primarily
in regimes of negligible density and hence are not relevant. The bottom panels are counterparts of the upper row, but zooming
into the value of r1 and 72 showing that r1 = ro (hence only red dots are seen), which implies plane wave solutions.

of scattering of a soliton resonant with a bound state incident fraction from the reflected fraction unlike in the
[49]. However, in general, for the nonlinear problem it linear problem, making it challenging at best to define
is more complicated. The lack of superposition principle transmission and reflection probability as fractions of an
makes it rather meaningless to define transmission and incident beam. Only when reflection is absent, as in res-
reflection amplitudes based on any stationary solution, onant transmission, there have been meaningful utility
although such attempts were made in a recent work [54]. of stationary solutions to describe scattering [49, 51]. In
In general, it is not possible to uniquely differentiate the general, scattering problems will include some reflection.



So any comprehensive description of scattering will nec-
essarily involve a multitude of stationary solutions. We
describe a promising approach in this section.

The nonlinearity is proportional to the local density
which will vary for a finite width wavepacket that would
be typical in experiments, and hence the intrinsic non-
uniformity of the packet poses a challenge. Specifically,
to address the latter issue, we illustrate consistency for
our method with two different packet widths, ¢ = 80
and 160, to assess how the features observed would be-
have in the limit of an infinite system. For meaningful
comparison, we normalize the packets to unity and adjust
the nonlinear strength g to keep g|1)(z = z0)|? the same
so that the nonlinearity at the peak density match for
the wavepackets different width. Since the peak density
scales as 0! we use g = 2, and g = 4 respectively.

In order for our stationary solutions to be relevant for
the scattering of finite wavepackets, we need to check
whether the scattered packets can be represented with
a finite set of those solutions. Since the Jacobi ellip-
tic functions form an overcomplete basis, we must take a
different approach than deconstructing them into Fourier
components [56]. Instead, we calculate directly the phys-
ical parameters «, 3, and p at each point of the scattered
wave packet at any specific instant of time. We do this by
numerically computing the p, p’, p” and ¢’ at each point,
using Egs. (3),(2)and (4). Then using Eq.(7), we can find
the corresponding three roots {r1,r2,73} at every point
of the scattered packet.

We plot those roots in Fig. 15, superimposed on
the scattered wave packets, as colored dots; with
the three real roots in ascending order {ry,re,r3} —
{blue,red, green}, and for a pair of complex roots
the real root is in {ri,Re{rq,rs},Im{re,r3}} —
{blue, magenta, cyan}. We show all the roots in the up-
per panels (a-d) of the figure, for two different widths
and for each two different instants of time after scatter-
ing. What stands out in these panels is that the complex
roots appear predominantly in the regimes of negligible
density p ~ 0 which means that only the real solutions
are relevant.

The lower panels (e-h) zoom into the real solutions
r1, 72 with r3 off the scale, keeping the density profile at
the same scale as in the upper panels. The panels il-
lustrate a key feature, the two roots are equal r; = 79,
and hence points of only one color is visible. Further-
more, since the real roots represent values of the density,
our procedure is validated by the fact the roots follow
the shape of the density of the wavepackets, where the
density is significant, and moderately uniform. It is not
surprising the solutions match plane waves, since even
for linear scattering regime, density oscillations only arise
due to interference between incident and reflected com-
ponents, which is a consequence of a steady flow of an
infinite stream.

As the scattered packets spread with time density of
the plane waves will continue to decrease. However, as
seen in Fig. 15, the roots we find continue to match the
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density profile regardless of the packet width. As the
packet gets wider, there is a broader region of uniform
density indicating a narrow range of solutions that can
describe the bulk of the scattered packets.

We can therefore conclude that with sufficiently wide
packets and with steady stream flow like in a nonlinear
waveguide, the stationary solutions we derive can pro-
vide an adequate description of the scattering process,
similarly to linear scattering. This method of analyzing
a nonlinear scattering problem is more straightforward
than previous methods utilized to study the same prob-
lem, which are heavily dependent on splitting solitons
into free and trapped portions [31], or using split-step
Fourier methods with a hyperbolic function as an initial
guess to solve the Gross-Pitaevskii equation [33]. This
method of understanding scattering problems may shed
light on BEC flow through a penetrable barrier [57] or
BEC behavior with impurities of either a single Gaussian
defect or correlated disorder [58]. The full landscape of
solutions we have determined here can become relevant
in situations where there is incidence from both direc-
tions and there is overlap between the scattered packets
leading to density oscillations.

XVI. CONCLUSIONS AND OUTLOOK

We have determined the full landscape of stationary so-
lutions of the quadratic nonlinear Schrédinger equation
in the presence of a rectangular potential with different
boundary conditions. As a preliminary, we determined
the solutions at a potential step. A significant outcome
is the inclusion of a class of solutions unbounded at infin-
ity that have been generally left out in prior works, but
are certainly relevant for finite width barriers as shown
here. We also find a simple unified expression in terms
of a Jacobi elliptic function that describes the full spec-
trum of solutions, including those unbounded at infinity.
In these regards, allowing for a complex phase shift is
crucial, and that phase shift comes with some significant
constraints required for physical solutions, both of which
were overlooked previously.

Here we developed an approach based on using the
roots and intersections of curves in phase space, that pro-
vides an intuitive way to construct and understand the
solutions and the impact of boundary conditions. This
method has allowed us to determine physical solutions
and discard non-physical ones simply based on the loca-
tion and features of those curves and their intersections.
This method can find utility in understanding nonlinear
systems and scattering problems with more generalized
potentials and higher dimensionality.

The broad utility of the analytical solutions is estab-
lished by our comparison with numerically computed so-
lutions for a smooth barrier. The close qualitative agree-
ment of both the density and the phase show that the
results obtained here would be relevant in experiments
where smooth potentials are used, as in stirring of a BEC



by sharply focused laser beam which would have a Gaus-
sian profile similar to the one we used in our comparison.

We did a stability analysis of our solutions and found
that persistent instabilities appear at the edge of the
sharp boundaries either of the potential or the system
as a whole. Specifically, the unstable modes localize at
edges where the density derivative is correlates inversely
to the actual trend of the density across the boundary.

On the motivating question of how stationary solutions
are relevant in nonlinear scattering problems, considering
the breakdown of the quantum superposition principle,
we provide a definitive answer based on direct comparison
with a numerically simulated scattering of a wavepacket.
Instead of simply identifying density ratios as a measure
of transmission, which has meaning only in the linear
problem and only in the steady state, we take a practical
approach, where we find the stationary solutions at each
point of the scattered wave. The close agreement of our
solutions with the density profile, along with the finite
range of such solutions needed at any instant in time,
shows that the dynamical nonlinear scattering can indeed
be described with stationary solutions. We expect that
the full landscape of our stationary solutions can be used
in future works to construct descriptions of more complex
scattering scenarios that will included multiple input and
output streams.
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Appendix A: Method for Analytical Solutions

To generate the analytical solutions for step, barrier,
and well potentials, we utilized Mathematica. The input
parameters are the nonlinearity g, the potential height
Vo, the barrier width w, the value of the density at the
barrier pg, and the three roots of fy satisfying the con-
straints discussed in Sec. III. Generally, when we want an
oscillating solutions outside of the potential region, the
value of py is constrained to be between the two roots
defining the loop in the L region. In exceptional cases
for a positive nonlinearity g where asymptotic or decay
solutions are permitted in the regions outside of the po-
tential, pg is a value on the wing. Using the input pa-
rameters, Eq. (6) is solved to determine pyr(z), with the
phase shift zg7, determined by pg and a choice of the sign
of the derivative. Using fr(p) as given in Eq. (8), we
find fp(p) and solve for the center roots. Knowing the
value of the density at the edge of the potential, given
by po, we then solve for xgp by inverting Eq.(6). We
now have all the parameters needed to construct pp(z).
A piecewise combination of the densities in both regions
produces the solution for a step potential.
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We follow similar steps to solve for the solution past the
right barrier edge, pr(z), for a barrier or well potential.
To find fgr, we use

fr=fp —8Vop(p — puw) = fr +8Vop(pw — po) (Al)

where p,, = pp(z = w). Using the value of the density
at the right boundary p,, to find xgr and the roots of
fr, we have all of the information necessary to construct
pr(z). A piecewise combination of the densities in all
three regions produces the full solution for a barrier or
well potential.

Based on Eq. (3), we see that since the density is con-
tinuous, the phase will also be continuous. The phase
may be solved for directly by substituting the solutions
for the density in the appropriate regions. On a ring, the
periodic boundary condition creates another constraint;
an additional linear term involving rotation ensures that
the phase is continuous and differentiable at all points on
the ring.

Appendix B: Jacobi Elliptic Functions with
Complex arguments

In this appendix, we will derive Eq. (16) from Eq. (6)
with the only assumption that g < 0. We utilize Jacobi
elliptic identities as given in [56]. Consider a sn function
with a complex argument

1

1 —sn2(v, m/)dn®(u,m)

sn(u + iv,m) =

. X [sn(u, m)dn(v,m’)...
... +icn(u, m)dn(u, m)sn(v, m )en(v,m’)]  (B1)
Since g(rs — r1) is negative, the only real component is
that of zg. The imaginary part must vanish else the
density will be imaginary or negative, and we can ensure

that provided the real part of xy is an elliptic integral of
the first kind,

Re(zo) = K <:§_2> (B2)

This ensures that only arguments with v remain. When
our argument u is given by an elliptic integral of the
modulus used, we obtain the following values:

sn(K(m),m) =1
cn(K(m),m) =0
dn(K (m),m) = vVm/ (B3)

These limiting values, combined with the identity

dn®(u, m) + msn®(u,m) = 1 (B4)
reduce our eXpI‘eSSiOH to
_ dn(v, m’)
Sn(K(m) + v, m) = W
1

~ dn(v,m’)



Squaring both sides and again using Eq. (B4) we obtain

m’sn? (v, m’) 4 dn®(v, m’)
dn?(v,m’)

14 m'sd*(v,m’) (B6)

sn?(K(m) +iv,m) =

Inserting this back into Eq. (6), we obtain

(r2 —r1)(rs —r2)

p = T2+ (B7)
Ty —T1
xsd? <\/|g|(r3 —r1)z + Im(zg), s~ r2>
r3s —T1

Then we use the relation

en(u+ K,m) = —vVm’sd(u, m) (BY)
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and redfine 2o = K (m) + Im(zg), to write the density as

g3 — 1T
p:r2+(r3—r2)cn2< lg|l(rs — m)x + x0, 3 2)

s —T1

(B9)

Finally, using the identity
sn’(u, m) + cn?(u,m) = 1 (B10)

we arrive at the form used in Eq. (16)

rg — 1T
p:r3+(r2—r3)sn2 <\/|g|(r3r1)x+x0, 3 2>
rg —T1

(B11)

This is a far more intuitive equation for the density,
as the argument is real and elliptic modulus is between
zero and one. From this, we see that 0 < sn? < 1, and
the density oscillates between ro and r3. We could also
have derived this same equation through a symmetry ar-
gument. Looking at Eq. (6), we make the argument that
flipping the sign of ¢ is simply like reversing the behav-
iors of the roots, so that r; takes on the role of r3 and
vice versa. By simply swapping r1 and r3 in Eq. (6), we
recover Eq. (B11).
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