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in off lattice systems. |. Foundations
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We demonstrate the utility of an unsupervised machine learning tool for the detection of phase tran-
sitions in off-lattice systems. We focus on the application of principal component analysis (PCA)
to detect the freezing transitions of two-dimensional hard-disk and three-dimensional hard-sphere
systems as well as liquid-gas phase separation in a patchy colloid model. As we demonstrate, PCA
autonomously discovers order-parameter-like quantities that report on phase transitions, mitigating
the need for a priori construction or identification of a suitable order parameter—thus streamlin-
ing the routine analysis of phase behavior. In a companion paper, we further develop the method
established here to explore the detection of phase transitions in various model systems controlled by
compositional demixing, liquid crystalline ordering, and non-equilibrium active forces. Published by

AIP Publishing. https://doi.org/10.1063/1.5049849

I. INTRODUCTION

Phase transitions, diverse in character and ubiquitous in
physical and biological systems, result from the correlated
response of a near-infinite number of interacting microscopic
degrees of freedom to a change in one or more macroscopic
variables.!~® Here, we focus on off-lattice models of particle-
based systems, i.e., atomic/molecular materials and their col-
loidal analogs, which are known to exhibit a rich variety of
equilibrium phase transitions including condensation, freez-
ing, and compositional demixing, as well as formation of
microphases including cluster fluids.” Phase transitions that
occur due to nonequilibrium driving forces (e.g., oscillatory
shear,®!? time dependent magnetic/electric fields,'>'* or par-
ticle self-propulsion'~!7) are also possible in these materials.
Given the diversity of microscopic degrees of freedom and
macroscopic outcomes exhibited by such systems, new types
of phase transitions and corresponding states of matter can be
challenging to detect or predict from first principles.

Typically, phase transitions are described via an abrupt
change in a coarse-grained representation of the system—
i.e., an order parameter (OP)—that is sensitive to the specific
character of the transformation and can provide insights into
its origin.'® Given the sheer number and variety of known
phase transitions in such systems, it is perhaps unsurprising
that there is no universal choice for the OP. Even for equi-
librium transitions with a well-developed statistical mechani-
cal foundation and established OPs, detection and systematic
characterization of phase transitions can be computationally
inconvenient, requiring simulations in specific ensembles. 32!
As a result, simple and general strategies for identifying
known phase transitions and discovering new ones would be
welcome.
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Toward this end, one promising approach is the use of
dimensionality reduction techniques from machine learning
to extract OP-like descriptors for phase transitions from con-
figurational data.?>~> For example, principal component anal-
ysis (PCA) has recently been used to detect phase transitions
in the two-dimensional ferromagnetic Ising, XY, and other
related spin models.?=3! Beyond PCA, research into nonlin-
ear machine learning strategies has led to the development
of (1) a so-called confusion-based scheme which successfully
detected transitions in the Kitaev chain and Ising models, as
well as in a disordered quantum spin chain,?”> and (2) neural
networks that identified emergence of subtle many-body local-
ized phases as well as those arising in the square-ice model and
in Ising lattice gauge theory.>

Here, we build upon this prior work and explore the exten-
sion of PCA to detect and characterize phase transitions for
off-lattice models of particle-based materials. Specifically, we
perform PCA on features derived from the particle coordinates,
a strategy that is straightforward to implement in simulations
but could also be applied in experiments that track particles
(e.g., confocal microscopy of colloidal dispersions). In Paper I
of a two-part series, we establish general guidelines and prac-
tices for using PCA to detect phase transitions in such systems.
In Paper II,* we test the generality of this strategy for a
variety of particle-based systems that exhibit equilibrium and
non-equilibrium phase transitions.

The balance of this manuscript is organized as follows.
In Sec. II, we describe the simulation protocols utilized in
this work, provide a brief review of PCA, and identify and
resolve complications that arise from a naive construction
of features from particle coordinate data. In Sec. III, we
present the results of PCA of the features for some canoni-
cal phase transitions: the freezing transition in monodisperse
hard disks and hard spheres and spinodal decomposition in a
three-dimensional binary mixture with complementary attrac-
tions. We present conclusions for this study in Sec. I'V.

Published by AIP Publishing.

9¥'8G:/ | £20 JOGWBNON 8T



194109-2 Jadrich, Lindquist, and Truskett

Il. COMPUTATIONAL METHODS
A. Simulation and analysis

Hard-disk and hard-sphere simulations were performed
using the hard-particle Monte Carlo integrator in the HOOMD-
blue simulation suite,>*> where N = 4096 particles were
simulated in periodically replicated square and cubic sim-
ulation boxes of side-length L, respectively. These equilib-
rium hard-particle model systems are athermal and as such
are uniquely described by an area or volume fraction (7); 1
= (N/L*)nd?/4 for disks and n = (N/L*)nd?/6 for spheres.
For the PCA, we generated equilibrium samples over a range
of n spanning below and above the freezing transition via a
successive compression, equilibration, and sampling scheme.
For hard disks, we incremented 7 from 0.55 to 0.80 in incre-
ments of 0.005, performing 1 x 107 HOOMD “time steps”
(where a time step is approximately equal to four sweeps
of MC moves over all particles) at each state point until
n = 0.695 and 5 x 107 time steps per state point thereafter.
Particle translations were restricted to 10 -30  of the parti-
cle diameter (d) along any Cartesian direction. Between 10°
and 10* evenly spaced configuration snapshots were stored at
each state point to provide sufficient data for the PCA. For
hard spheres, samples were generated for packing fractions
between 1 = 0.42-0.66 in increments of 0.005 with approxi-
mately a 23 acceptance rate. 2 x 10° time steps were used
for equilibration and production with 40 evenly spaced snap-
shots sampled from the latter. After compression, the hard
sphere configurations were re-expanded (via the same proto-
col) to capture hysteresis effects arising from the appreciable
metastability possessed by the fluid phase beyond freezing.

For the case of spinodal decomposition, we revisit sim-
ulation data acquired in Ref. 37, where we studied binary
mixtures of spherical particles decorated with six patches and
two patches, respectively. While the spherical cores exhibited
excluded volume interactions, patches on unlike particle types
were mutually attractive. More details on the model and sim-
ulation protocol for the patchy particle mixture are described
in Ref. 37. In this work, we re-analyze the simulation data for
the ratio of the number of two-patch particles to six-patch par-
ticles, ,equal to 1.3. We use PCA to detect liquid-gas phase
separation and compare the results to the (7, T) phase dia-
gram reported in Ref. 37 on the basis of k = 0 structure factor
calculations.

In all cases, PCA was carried out using the Incremen-
tal PCA (IPCA) module in Scikit-Learn.’® Importantly, IPCA
allows for training using only small portions of the full data
set at once; this is useful given the large size of the simulation
trajectories aggregated across state points.

All visualizations were rendered using the Open Visual-
ization Tool (or OVITO).?° Hard sphere renderings utilized the
built-in Polyhedral Template Matching (or PTM) capabilities
of OVITO for crystal structure identification.*’

B. Principal component analysis: Review

Principal component analysis (PCA) is a widely used
unsupervised machine learning method that systemati-
cally discovers a lower dimensional representation of high
dimensional data.’>?**! Here, we briefly review the general
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concepts behind PCA. Interested readers can find more
detailed descriptions in the literature.

PCA, like all machine learning models, requires a numer-
ical description for each of the M observations that describe
the system. A given observation is represented by a so-called
feature vector,

f= [fl,...,fm]r, (1)

where each of the features (f;) is a scalar measurable, T denotes
a transpose, and m is the dimensionality of the feature repre-
sentation. For context, observations in our work are derived
from snapshots of particle configurations. The feature vector
could describe the entire configuration or a subset of the par-
ticles. Without loss of generality, we assume that the elements
of the feature vectors are centered (i.e., their mean value is
zero). In most applications, m > 1. To conveniently denote a
data set of observations (implicitly of size M), we adopt the
notation

If multiple features are highly correlated across the M
observations, then the dataset necessarily contains redundant
information. Dimensionality reduction strategies provide a
mechanism for “concentrating” this redundant information
into fewer dimensions. Toward this end, PCA determines a
linear transformation that yields a decorrelated feature repre-
sentation of the data. The transformation provides a new set of
m directional unit vectors w; (of dimension m) that define a new
coordinate system and a corresponding m X m transformation
matrix,

W=[wi....w.. )

The projection of f along any of these new directions is sim-
ply, pi wl.Tf . This is more succinctly stated in terms of
the transformation matrix and the vector of m projections,

D= pl,p27-~-,pm]T’Via
r Wf. 3)

For linear decorrelation, W must be of a form that diagonalizes
the covariance matrix of p,

@p"y W W

4
wipj> 0,1 J, @

where (- - - )p denotes an average over the data.

Given the above prescription, W is still underdetermined.
Uniqueness is realized within PCA by requiring that W be
an orthogonal matrix (W7 = W !, where the right-hand side
notation indicates an inverse matrix). Under this constraint,
the orthogonal set of unit vectors contained in W is equiva-
lent to the sequential construction of w; such that the variance
projected along them (v,,) is maximized while maintaining
orthogonality with all previous vectors w;-w; = 0 for all
J <. The vy, are equal to the eigenvalues of the diagonalized
covariance matrix {pp’) .

The w; constructed in the aforementioned manner are
called Principal Components (PCs), and the corresponding p;
are called PC scores. Each PC contains more information than
the next, as quantified by the variance (i.e., vy, > vy, > -+ 2
Up,.)- The efficiency with which information is sequestered
toward the earlier PCs can be quantified by computing the
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