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A B S T R A C T 
We study the formation and early evolution of star clusters that have a wide range of masses and background cloud mass surface 
densities, ! cloud , which help set the initial sizes, densities, and velocity dispersions of the natal gas clumps. Initial clump masses 
of 300, 3000, and 30 000 M ! are considered, from which star clusters are born with an assumed 50 per cent o v erall star formation 
efficiency and with 50 per cent primordial binarity. This formation is gradual, i.e. with a range of star formation efficiencies per 
free-fall time from 1 to 100 per cent, so that the formation time can range from 0.7 Myr for low-mass, high- ! cloud clumps to 
∼30 Myr for high-mass, low- ! cloud clumps. Within this framework of the turbulent clump model, for a given ! cloud , clumps of 
higher mass are of lower initial volume density, but their dynamical evolution leads to higher bound fractions and causes them 
to form much higher density cluster cores and maintain these densities for longer periods. This results in systematic differences 
in the evolution of binary properties, degrees of mass se gre gation, and rates of creation of dynamically ejected runaways. We 
discuss the implications of these results for observed star clusters and stellar populations. 
Key words: methods: numerical – galaxies: star clusters: general – stars: kinematics and dynamics – stars: formation. 

1  I N T RO D U C T I O N  
Most stars appear to form in clusters (or at least initially clustered 
associations) inside molecular clouds (e.g. Gutermuth et al. 2009 ). A 
wide range of scales is involved, including the broad distribution of 
cluster masses that make up the initial cluster mass function (ICMF). 
For masses ! 100 M ! and up to at least ∼10 5 M !, the ICMF appears 
to follow a power law of the form d N /d log M ∝ M −1 (e.g. Lada & 
Lada 2003 ; Do well, Buckale w & Tan 2008 ), so that there is an equal 
mass contributed by clusters in each decade of the mass spectrum. 
Thus considering a broad range of cluster masses is needed when 
understanding the origin of galactic stellar populations. 

Star cluster formation itself is a very complex process that involves 
the interplay of many physical processes, including fragmentation of 
self-gra vitating, turb ulent, magnetized molecular clouds, protostellar 
outflow feedback from accreting stars (e.g. Nakamura & Li 2007 ; 
Cunningham et al. 2011 ; Hansen et al. 2012 ; Federrath et al. 2014 ; 
Nakamura & Li 2014 ; Geen et al. 2015 ), other feedback processes 
from already formed, especially massive, stars (e.g. Peters et al. 2010 , 
2011 ; Rogers & Pittard 2013 ; Dale, Ercolano & Bonnell 2015 ), and 
dynamical evolution of the stellar population, including dynamical 
ejection of runaway stars (e.g. Banerjee, Kroupa & Oh 2012 ; Oh & 
Kroupa 2016 ; Gavagnin et al. 2017 ). All these processes have their 
own spatial regimes and time-scales over which they are important. 

It is not currently possible to include all the abo v e processes in 
a unified simulation to model star cluster formation. Our approach, 
" E-mail: juan.farias@austin.utexas.edu 

developed in a series of papers of which this is the third, explores star 
cluster formation within the paradigm of the turbulent core/clump 
model (McKee & Tan 2003 ) with approximate implementation of 
the birth of stars via their gradual introduction into simulations that 
follow the N -body dynamical evolution of the system. The o v erall 
goal is to explore how the stellar population, including realistic binary 
properties, is processed dynamically during the formation phase of 
a star cluster, and how this processing may be affected by model 
parameters. There are two basic parameters describing the initial 
star-forming clumps: the clump mass, M cl , and the mass surface 
density of the surrounding ‘cloud’ environment, ! cloud , which sets 
the bounding pressure of the clumps and thus their radii, R cl . High- 
! cloud environments have high pressures, i.e. due to the self-gravity 
of the cloud, which means that clumps of a given mass are denser in 
such environments. The formation phase of the cluster also involves 
two main parameters: the star formation efficiency per free-fall time, 
εff , and the o v erall star formation efficiency of the clump, ε. 

In Farias, Tan & Chatterjee ( 2017 , hereafter Paper I ), we first 
explored an extreme version of this scenario in which the star 
clusters are formed instantaneously from their parent clumps. While 
instantaneous formation appears to be an unrealistic case, we note 
that this has been the standard practice in almost all such similar 
studies so far (with the notable exception of Proszkow & Adams 
2009 ). In our second work of this series, Farias, Tan & Chatterjee 
( 2019 , hereafter Paper II ), we implemented gradual formation of 
stars, which enabled us to explore a wide range of formation time- 
scales (achieved via a range of values of εff and a fixed, fiducial value 
of ε = 0.5). We showed that such time-scales strongly influence the 
dynamical evolution of the clusters in both the embedded phase (i.e. 
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when gas is still present) and during the subsequent gas-free phase, 
including the rate and amount of expansion, the fraction of stars that 
remain bound, the frequency of ejection events, the establishment of 
age-radius gradients and the degree of processing of binaries. 

Ho we ver, in these pre vious papers we limited the studies to a fixed 
parent clump mass of 3000 M !. It is not immediately obvious how 
our results would scale with mass (at a fixed ! cloud ), since there are 
several coupled processes at play with various different time-scales 
and dependencies. Thus, our goal in this paper is to present a series 
of N -body simulations that explore different clump masses using 
the same framework as in Paper II . These simulations will help us 
to elucidate how the various dynamical processes, described abo v e, 
combine to control the dynamical evolution of clusters across the 
mass spectrum. 
2  T H E O R E T I C A L  B  ACK G R  O U N D  
2.1 Background gas model 
We perform star cluster formation simulations following the methods 
presented in Paper I and Paper II . In these models, star clusters 
are assumed to be forming from gravitationally bound, initially 
starless gas clumps within giant molecular clouds (GMCs), partially 
supported by magnetic fields and turbulence. The structure of the 
parent clumps is described following the turbulent core/clump model 
of McKee & Tan ( 2003 ), i.e. they are polytropic spheres in virial and 
pressure equilibrium with their surroundings. The density profile of 
such clumps is modelled as 
ρcl ( r) = ρs , cl ( r 

R cl 
)−k ρ

, (1) 
and the velocity dispersion profile as 
σcl ( r) = σs ( r 

R cl 
)(2 −k ρ ) / 2 

, (2) 
where ρs,cl and σ s are the density and velocity dispersion at the 
surface of the clump, respectively, R cl is the clump radius, i.e. where 
its boundary is located, and we adopt k ρ = 1.5 as the fiducial 
power law of the density distribution (e.g. Butler & Tan 2012 ). One 
important feature to note is that the velocity dispersion increases 
with radius (see McKee & Tan 2003 ), which is a general feature of 
interstellar turbulence. We refer the reader to P aper I and P aper II , 
where we discuss the dynamical implications of such a characteristic 
for the formation and evolution of our model star clusters. 

Using our fiducial parameters for the structure of the parent clump, 
the characteristic radius and velocity dispersion at the clump surface 
are controlled by the surrounding cloud’s mass surface density, 
! cloud , and are given by 
R cl = 0 . 365 ( M cl 

3000 M !
)1 / 2 (

! cloud 
1 g cm −2 

)−1 / 2 
pc , (3) 

and 
σs = 3 . 04 ( M cl 

3000 M !
)1 / 4 (

! cloud 
1 g cm −2 

)1 / 4 
km s −1 . (4) 

Following our previous works, we model clumps in two different 
cloud environments: the high- ! case with ! cloud = 1 . 0 g cm −2 and 
the low- ! case with ! cloud = 0 . 1 g cm −2 . Such a range is likely to be 
rele v ant for a large fraction of the star-forming systems of our Galaxy 
(Tan et al. 2014 ): for example, large portions of the samples of the 
infrared dark cloud clumps of Butler & Tan ( 2012 ), of the high-mass 
star-forming clumps of Mueller et al. ( 2002 ), and the massive clumps 

of Ginsburg et al. ( 2012 ) are in or near this region of parameter space. 
Then, given R cl , defined by M cl and ! cloud , the density at the surface 
of the clump is 
ρs , cl = (3 − k ρ) M cl 

4 πR 3 cl . (5) 
In Paper II , we introduced models of gradual formation of star 

clusters, i.e. in which natal gas is still present while stars are being 
formed. The influence of the natal gas in the evolution of the forming 
star cluster is modelled as a time-dependent background potential 
derived from equation ( 1 ), i.e. 
' gas ( r, t) = 

 
   
   

GM cl ( t) 
(2 − k ρ) R cl 

[ (
r 

R cl 
)2 −k ρ

− 3 + k ρ
] 

( r ≤ R cl ) 
−GM cl ( t) 

r ( r > R cl ) , 
(6) 

where G is the gravitational constant and M cl ( t ) the time-dependent 
clump gas mass. Note the radius of the clump is truncated at R cl and 
no additional gas mass is modelled beyond this radius, i.e. no further 
contributions to the potential are made from the surrounding cloud. 

We keep our previous assumption of a constant star formation rate 
(SFR) defined using the initial parameters of the clump, i.e. 
Ṁ ∗ = εff M cl , 0 

t ff, 0 , (7) 
where the initial free-fall time of the clump, t ff,0 , is also defined by 
! cloud and M cl,0 . Using the fiducial clump parameters, it is given by 
t ff, 0 = 0 . 069 ( M cl , 0 

3000 M !
)1 / 4 (

! cloud 
1 g cm −2 

)−3 / 4 
Myr . (8) 

We assume that there is a local star formation efficiency, ε, i.e. 
defined as the ratio between the stellar mass formed and the total 
mass required to form such a stellar mass. The fiducial value of 
ε = 0.5 with such a value being typical of expectations of local 
star formation efficiency from individual pre-stellar cores due to 
protostellar outflow feedback (e.g. Matzner & McKee 2000 ; Tanaka, 
Tan & Zhang 2017 ). For simplicity, the gas that does not make it 
into a star is assumed to be instantaneously lost from the clump. We 
assume star formation proceeds in this way until all the gas from 
the clump is exhausted. Therefore, the time evolution of the global 
gaseous mass of the clump is given by 
M cl ( t) = 

 
 
 M cl , 0 − Ṁ ∗

ε
t ( t ≤ t ∗) 

0 ( t > t ∗) , (9) 
where t ∗ is the time at which gas is exhausted. Since we assume a 
constant SFR, the formation time is given by 
t ∗ = ε

εff t ff, 0 ∝ ε

εff 
(

M cl 
! 3 cloud 

)1 / 4 
. (10) 

2.2 Scaling of clump properties with mass 
In this work, we explore how the formation and early evolution of 
star clusters depends on the initial mass of the clump, M cl . Within the 
context of the turbulent clump model, several important parameters 
and features of the clumps and clusters vary with clump mass, which 
we o v erview in Fig. 1 . In particular, this figure shows how several 
clump properties vary with M cl , while keeping the bounding cloud 
mass surface density, ! cloud , constant. Values are normalized relative 
to the M cl = 3000 M ! case (and numerical values shown in the 
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Figure 1. Variation of global clump parameters with mass, normalized with 
respect to clumps with M cl = 3000 M !. Legend shows fiducial values for this 
case with ! cloud = 0 . 1 g cm −2 and ! cloud = 1 g cm −2 in parenthesis. Dotted 
vertical lines show the masses of the new models introduced in this paper 
with 300 and 30 000 M !. 
legend of the figure apply for the model with ! cloud = 0 . 1 g cm −2 ). 
Naturally, increasing the mass of the clump requires a larger clump 
radius to keep mass surface density constant (there is a one-to-one 
relation of clump mass surface density and surrounding cloud mass 
surface density; McKee & Tan 2003 ), with R cl ∝ M 1 / 2 cl (thick green 
line). From equation ( 3 ), we see that the one-dimensional velocity 
dispersion at the surface of the clump, σ s , scales with mass as σs ∝ 
M 1 / 4 cl . Thus, the crossing time varies as t cr ∝ R cl /σs ∝ M 1 / 4 cl . The 
same scaling applies to the free-fall time t ff ∝ M 1 / 4 cl (see equation 8 ). 

F or fix ed star formation efficiency, the number density of stars 
that would be initially contained in the volume of the clump scales as 
n ∗ ∝ M cl /R 3 cl ∝ M −1 / 2 

cl . Defining N relax as the relaxation time, t relax , 
divided by the crossing time, it is known that N relax ∝ M cl /ln M cl 
(see Binney & Tremaine 2008 ). A star cluster needs to evolve for 
about N relax crossing times for the individual stars to lose information 
of their initial orbits and reach a near dynamical equilibrium state. 
Thus, a more massive cluster takes longer (both in terms of number of 
crossing times and in terms of absolute time) to reach an equilibrium 
configuration. This is rele v ant since the initial state of the stars that 
are formed from the turbulent clump model are not in the equilibrium 
configuration of a gas-free stellar cluster. Finally, for fixed values of 
ε and εff , the formation time-scales as t ∗ ∝ t ff ∝ M 1 / 4 cl . 
3  M E T H O D S  
3.1 Gradual formation of stars 
In this paper, matching the examples of Paper II , we will follow the 
formation and early evolution of star clusters for up to about 20 Myr. 
This involves a formation phase, i.e. when gas is still present, and 
then a post-formation, gas-free phase. During the formation phase, as 
the background gas model evolves, stars are gradually introduced in 
the simulations according to the previously calculated constant SFR 
following the same phase-space distribution of the gas. As introduced 
in Paper II , we include this prescription in a modified version of the 
direct N -body code NBODY6 ++ (Aarseth 2003 ; Wang et al. 2015 ), 
where we are able to introduce stars, including primordial binaries, 
at arbitrary times during runtime. The minimum number of stars we 

can model with this code is of the order of 150, which is the initial 
number of stars all models start with. The primordial binary fraction 
in a given simulation is held constant in time, so that if no binaries are 
disrupted, then the total binary fraction would, on average, remain 
constant during star formation. 

As in Paper I and Paper II , stellar mass-loss from stellar evolu- 
tion was included in the simulations using the analytical models 
developed by Hurley, Pols & T out ( 2000 ); Hurley, T out & Pols 
( 2002 ) implemented in NBODY6 ++ , including mass transfer between 
binaries and close interacting stars, so that the full stellar evolutionary 
path is not simply defined by the initial mass and metallicity, but can 
change with the dynamical history of the stars. We note that these 
stellar evolutionary models do not include the pre-main-sequence 
phase, when stars are generally larger than their main-sequence sizes, 
so that such interactions will tend to be underestimated somewhat. 
Ho we ver, in general, close interactions between stars occur only 
very rarely in our simulations and this limitation is not expected to 
influence the o v erall results significantly. The models also include 
velocity kicks for neutron stars (but not black holes) that are formed 
from asymmetrical supernovae ejections. The magnitude of the kicks 
follows a Maxwellian velocity distribution with σ = 265 km s −1 , 
based on proper motion observations of runaway pulsars (Hobbs 
et al. 2005 ). 
3.2 Primordial stellar population 
In this work, we aim to isolate the effects of the different parent 
clump masses and so we use a stellar population that is identical 
to the fiducial set of simulations in our previous works. This uses a 
canonical initial mass function (IMF; Kroupa 2001 ) with 50 per cent 
binaries in circular orbits. We construct the binary population from 
a lognormal period distribution with a mean of P = 293 yr and 
standard deviation of σ log P = 2.28 according to observations of 
Raghavan et al. ( 2010 ). The mass ratio distribution follows the form 
d N /d q ∝ q 0.7 as observed in young star clusters (Reggiani & 
Meyer 2011 ). The binary population is constructed from the full 
set of individual stars (binary members and singles) that follows the 
adopted IMF . W e note that this construction implies that in general 
low-mass stars end up with slightly higher binary fractions than 
more massive stars. This is because once a primary star is selected, 
the companion, which has a lower mass by construction, is selected 
according to the mass ratio distribution. Therefore, low-mass stars 
have higher chances of being selected to be part of a binary system. 
In our scheme, brown dwarfs then have primordial binary fractions 
of 60 per cent, while stars abo v e 0.4 M ! hav e 40 per cent primordial 
binary fractions resulting in an average of 50 per cent. We note that 
this disagrees with observations where most massive stars tend to 
have higher multiplicity fractions (Offner et al. 2022 ). Ho we ver, it is 
possible that such a trend develops dynamically after the formation 
phase, which we will assess in a future work in this series. 
3.3 Different mass models 
We perform two sets of simulations, i.e. with clump masses 10 times 
greater and 10 times smaller than the clumps of Paper II which had 
M cl = 3000 M !. To make the sets statistically comparable, we carry 
out 200 simulations with M cl = 300 M ! and 2 simulations with 
M cl = 30 000 M cl for each value of ! cloud = 0.1 and 1 g cm −2 (here- 
after low- and high- ! cloud cases, respectively). We compare these to 
20 simulations of Paper II for each ! cloud case. All the simulations 
used for this comparison have a global star formation efficiency, ε = 
50 per cent. We also explore a range star formation efficiency per 
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Table 1. Simulations parameters. 
Set name εff ! cloud M cl 〈 N ∗〉 t ∗ t ff R cl σ s 

( g cm −2 ) (M !) (Myr) (Myr) (pc) (km s −1 ) 
m300L 0.01 0.1 300 400 10.91 0.22 0.36 0.96 

0.03 0.1 300 400 3.64 0.22 0.36 0.96 
0.1 0.1 300 400 1.09 0.22 0.36 0.96 
0.3 0.1 300 400 0.36 0.22 0.36 0.96 
1.0 0.1 300 400 0.11 0.22 0.36 0.96 

m3000L 0.01 0.1 3000 4000 19.40 0.39 1.15 1.71 
0.03 0.1 3000 4000 6.47 0.39 1.15 1.71 
0.1 0.1 3000 4000 1.94 0.39 1.15 1.71 
0.3 0.1 3000 4000 0.65 0.39 1.15 1.71 
1.0 0.1 3000 4000 0.19 0.39 1.15 1.71 

m30000L 0.01 0.1 30 000 40 000 34.50 0.69 3.65 3.04 
0.03 0.1 30 000 40 000 11.50 0.69 3.65 3.04 
0.1 0.1 30 000 40 000 3.45 0.69 3.65 3.04 
0.3 0.1 30 000 40 000 1.15 0.69 3.65 3.04 
1.0 0.1 30 000 40 000 0.34 0.69 3.65 3.04 

m300H 0.01 1.0 300 400 1.94 0.039 0.115 1.71 
0.03 1.0 300 400 0.65 0.039 0.115 1.71 
0.1 1.0 300 400 0.19 0.039 0.115 1.71 
0.3 1.0 300 400 0.06 0.039 0.115 1.71 
1.0 1.0 300 400 0.02 0.039 0.115 1.71 

m3000H 0.01 1.0 3000 4000 3.45 0.069 0.365 3.04 
0.03 1.0 3000 4000 1.15 0.069 0.365 3.04 
0.1 1.0 3000 4000 0.35 0.069 0.365 3.04 
0.3 1.0 3000 4000 0.12 0.069 0.365 3.04 
1.0 1.0 3000 4000 0.03 0.069 0.365 3.04 

m30000L 0.01 1.0 30 000 40 000 6.14 0.123 1.154 5.41 
0.03 1.0 30 000 40 000 2.05 0.123 1.154 5.41 
0.1 1.0 30 000 40 000 0.61 0.123 1.154 5.41 
0.3 1.0 30 000 40 000 0.20 0.123 1.154 5.41 
1.0 1.0 30 000 40 000 0.06 0.123 1.154 5.41 

free-fall time with the same values as in Paper II , i.e. εff = 0.01, 
0.03, 0.1, 0.3, and 1. Table 1 shows the simulation parameters for the 
different simulations performed. For the most massive clusters, we 
have utilized GPUs to run the simulations to be able to access greater 
computational resources and run the calculations more efficiently. 
This large set of simulations was scheduled using the automated 
Simulation Monitor for Computational Astrophysics, SiMon (Qian 
et al. 2017 ). 
4  RESU LTS  
4.1 Evolution of global structure and kinematics 
Fig. 2 shows the evolution of the Lagrangian radii of the star clusters 
with reference to all the stars in the system (solid lines), along with 
the bound stellar component (shaded regions), for our fiducial choice 
of εff = 0.03. We see that during the formation stage, when the gas 
is still present, the clusters tend to be confined by its gravitational 
potential. This behaviour was already noted for the M cl = 3000 M !
case in Paper II . After star formation is completed, then the clusters 
expand more quickly. This phase begins earlier for lower mass and 
higher density clusters (see Table 1 ). Fig. 2 also shows the evolution 
of the cluster core radii, discussed in more detail below. 

We next consider the effect of varying εff on the evolution of the 
clusters. Figs 3 and 4 show the evolution of the different parameters 
for the low- and high- ! cloud cases, respectively. In each figure, the 
first, second, and third columns show results for star clusters forming 
from clumps with M cl = 300, 3000, and 30 000 M !, respectively, 

while the fourth column shows the three cases together for the fiducial 
value of εff = 0.03. 

The top rows of Figs 3 and 4 show the evolution of the bound mass 
fraction, f bound . The values of f bound of the various models are quite 
similar at the end of the formation time, which is determined mainly 
by ! cloud and εff , but also by M cl to a lesser degree (see equation 10 ). 

In the post-formation phase, cluster dissolution and e v aporation 
effects then occur. The rates of these processes are mostly driven 
by the rate of cluster relaxation, with lower mass clusters evolving 
more quickly to smaller bound fractions. For example, by 20 Myr 
in the high- ! cloud case, the clusters formed from M cl = 300 M !
clumps have bound fractions of only about 0.3, i.e. these are very 
low mass clusters with bound stellar masses of only ∼50 M !. In the 
lo w- ! cloud case, these lo w-mass clusters have higher bound fractions 
at 20 Myr, with values of ∼0.5, mostly because their formation 
took longer and the post-formation phase is a smaller fraction of the 
20 Myr evolution. Considering the M cl = 3000 M ! cases, the bound 
fractions at 20 Myr are higher, i.e. ∼0.6 in the low-density models 
and ∼0.7 in the high-density models, but with some dispersion 
caused by εff . These higher bound fractions are caused, at least 
in part, by the cluster relaxation times being significantly longer. 
These general trends continue up to the M cl = 30 000 M ! cases, 
which retain the highest bound fractions at 20 Myr of ∼0.8 for 
the fiducial εff = 0.03 case. This corresponds to a star cluster of 
mass ∼12 000 M !. 

The second rows of Figs 3 and 4 show the evolution of bound 
cluster half-mass radii, r h,b , while the third rows show the evolution 
of the average number density of stars, e v aluated inside these radii. 
We see that r h,b remains quite constant during the formation phase, 
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(a)

(c)

(e) (f)

(d)

(b)

Figure 2. Time evolution of Lagrangian radii enclosing 10, 20, 30, 40, 50, 60, 70, 80, and 90 per cent of the stellar mass for star clusters with different M cl (top, 
middle, and bottom rows, as labelled), formed with ε = 0.5 and εff = 0.03. Left-hand panels shows the low- ! cloud case and right-hand panels the respective 
simulations for the high- ! cloud case. The lines show the averages over all the simulations performed in each set. Background shaded areas show the average 
Lagrangian radii for the 50, 80, and 90 per cent bound stellar masses. Dashed red lines show the average core radii. Vertical dashed lines show the respective 
gas exhaustion time t ∗. 
and then undergoes expansion once the gas has been exhausted. The 
low-mass clusters end their formation with radii of r h,b ∼ 0.1–0.3 pc. 
The clusters forming relativ ely quickly, i.e. with εff ! 0.1, hav e a 
chance to enter a ‘post-formation stabilization’ (PFS) phase, when 
r h,b stays at a nearly constant level, i.e. r h,b, PFS , that is about a factor 
of 2 to 3 greater than during formation. After this the clusters undergo 
very dramatic expansion, driven by dynamical relaxation. Note that 
the slow-forming models do not have a chance to enter the PFS phase, 
since they are still forming when dynamical relaxation starts to drive 
their expansion. The low-mass clusters reach sizes of about 2 pc in 
the low-density case and about 5 pc in the high-density case, which 

thus, in fact, achieve the lowest number density of stars of any of our 
models, i.e. only ∼10 pc −3 , after a decline of about a factor of 10 4 . 
The effects of εff are relatively modest on the values of r h,b reached by 
20 Myr, with the main differences occurring at earlier times around 
∼ 1 Myr due to the different durations of the formation phases and 
whether or not they have a chance to enter the PFS phase. 

These general trends continue for the M cl = 3000 M ! cases, 
though with the variation in sizes due to different onsets of the 
PFS phases shifted to somewhat later times, ranging from about 0.5 
to 2 Myr with r h , b , PFS ) 0 . 7 pc in the high-density environments 
and about 2 to 5 Myr with r h , b , PFS ) 2 pc in the low-density 
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Figure 3. Time evolution of various properties of star clusters formed within a mass surface density environment of ! cloud = 1 . 0 g cm −2 , global ε = 0.5 and 
dif ferent v alues of εff (see legend). The lines in each panel show median values calculated from all the simulations of each set. First, second, and third columns 
show the cases of M cl = 300, 3000, and 30 000 M !, respectively, while the fourth column shows a comparison of all masses for the fiducial choice of εff = 
0.03. Top ro w sho ws the fraction of bound mass in the cluster relative to the instantaneous total formed stellar mass. Second row shows the evolution of the 
half-mass radius r h,b for the bound stars. Third row shows the average number density of systems ( n s,b ), i.e. singles and binaries, measured inside the volume 
defined by r h,b . Fourth ro w sho ws the evolution of the velocity dispersion measured inside r h,b . Fifth row shows the evolution of the virial ratio of the bound 
stellar component ( Q b ). Sixth row shows the evolution of the bound binary fraction ( f bin, b ). Bottom row shows the average system mass (singles and binaries) 
for stellar systems with primaries less massive than 7 M !, where horizontal grey dashed line shows the expected average value given the input IMF. 
environments. Dynamical relaxation drives subsequent expansion, 
but at a much slower rate than in the low-mass clusters. Again, the 
slow-forming models do not have a chance to enter the PFS phase. 
We note that by 20 Myr the clusters forming from M cl = 3000 M !
clumps reach sizes of r h , b ∼ 3 pc, with this being quite insensitive 

to ! cloud and εff , even though they can reach this size with quite 
dif ferent e volutionary histories, especially for the lo w- εff and lo w- 
! cloud cases. 

The M cl = 30 000 M !, ! cloud = 1 g cm −2 case produces even 
more compact clusters with r h , b ∼ 2 pc at 20 Myr, independent of 
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Figure 4. Same as Fig. 3 , but for ! cloud = 1 . 0 g cm −2 . 
εff . Again, the evolution to this state involves a phase in which the 
cluster expansion is essentially halted (even with a ‘bounce’ for 
εff ! 0.1) at r h , b , PFS ) 1 . 5 pc within the first few Myr (depending 
on εff ), before the cluster relaxation expansion phase, which here 
occurs at a very slow rate compared to the lower mass clusters. In 
the ! cloud = 0 . 1 g cm −2 case, the massive clusters stop expanding 
at r h , b , PFS ) 6 pc (and with n s , b ∼ 100 pc −3 ), although the slowest 
forming model with εff = 0.01 does not have time to reach this state 
within ∼ 20 Myr. Furthermore, these massi ve, lo w-density clusters 
do not have time to exhibit significant expansion driven by dynamical 

relaxation during the duration of the simulations investigated here, 
i.e. up to ∼ 20 Myr. 

To more fully illustrate the evolution of cluster sizes, in Fig. 5 we 
show in the top rows of the top and bottom set of panels the time 
evolution of r h,b normalized by the initial clump radius. We see that 
r h,b, PFS is about a factor of 1.5 and 2 times larger than R cl for the low- 
and high- ! cloud cases, respectively. Then, by about 20 Myr, clusters 
have typically been able to expand by factors of 2 (for large clusters 
with M cl = 30 000 M !) to 40 (for small clusters with M cl = 300 M !) 
compared to the size of their natal gas clumps. 
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Figure 5. Evolution of average size and number density for all simulations in this work. Top and bottom set of panels shows simulations with ! cloud = 0 . 1 g cm −2 
and ! cloud = 1 . 0 g cm −2 , respecti vely. Dif ferent colours sho w the adopted εff with the same colour scheme as in Figs 3 and 4 . The first three columns group 
simulations with the same M cl , while the fourth column compares models with different values of M cl for the εff = 0.03 case. Solid lines in the top rows show 
the evolution of the average bound half-mass radii, r h,b , normalized by the initial clump radius, R cl . Semitransparent lines show the respective normalized core 
radii. The bottom rows show the evolution of number densities within the bound half-mass radii, n s,b , and within the core radii, n s,c . 

Another important radial scale is the cluster core radius, defined as 
the ‘density’-weighted average distance of the stars from the density 
centre in the cluster, where the ‘density’ of each star is estimated 
using the mass in a sphere containing the six nearest neighbours 
(Casertano & Hut 1985 ; Aarseth 2003 ). The time evolution of the 
core radii, normalized by R cl , is also shown in Fig. 5 . These cluster 
core radii are relatively constant during the formation phase and 
are systematically larger for the more massive clusters. In addition, 
we see that core radius evolution appears to be independent of εff , 
with the exception of the εff = 0.01 case. In all models, we see 
that the main expansion phase of the core radius begins at about 
the same time, i.e. after about one crossing time of the region. The 
PFS phase ends as part of this core radius expansion phase, i.e. the 
half-mass radius expands in step with the core radius. The case of 
εff = 0.01 is different because the core radius is held in place by 
the background potential, delaying the expansion of the cluster and 
not going through a PFS phase since the core is already relaxed. 
We see that at about 20 Myr these cluster core radii, although still 

e xpanding, hav e evolv ed to be quite similar to the initial clump 
radii. 

The third rows of Figs 3 and 4 show the time evolution of the 
average number densities of the stars inside r h,b . These respond 
accordingly to the evolution of f bound and r h,b . In general, in our 
models, lower mass clusters form from denser clumps and so during 
the formation phase have higher number densities of stars than more 
massi ve clusters. Ho we ver, gi ven that they start expanding earlier, 
this situation reverses during the first few Myr. The slower forming 
clusters take longer to build up their stellar densities, but retain these 
levels for longer periods of time. We will see later that this affects 
their o v erall efficienc y at producing runa way stars via dynamical 
ejections. Ho we ver, we note that it is the number densities in the 
densest part of the clusters, i.e. in their cores, which are important for 
production of most close interactions leading to dynamical ejections. 
Thus, in Fig. 5 (bottom rows of each set of panels) we also show 
the time evolution of n s,c , i.e. the average number density of stellar 
systems within the core radius. We see that the number densities in 
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Figure 6. Top: Projected number density profiles for simulations with ! cloud = 0 . 1 g cm −2 . Profiles are measured at t = 1, 3, 10, 20 Myr and when star 
formation is finished at t = t ∗ (columns, left to right). Filled circle, diamond, and star symbols show the positions of the core radius ( r c,b ), fit scale radius 
( r 0,b ), and half-mass radius ( r h,b ), respectively. The first three rows present the cases for M cl = 300, 3000, and 30 000 M !, i.e. to allow easy visualization of 
the effects of εff . The fourth row compares the εff = 0.03 cases for the different masses, with dotted, solid, and dashed histograms showing M cl = 300, 3000, 
and 30 000 M !, respectively. Thin solid lines in the fourth row show the best fits of equation ( 11 ). Radial binning is constructed so that each bin has the same 
number of stars. Green dashed lines show the density profile of the ONC based on the membership list by Da Rio et al. ( 2016 ). Bottom: Time evolution of fitted 
structural parameters of equation ( 11 ), measured at the same times as in the abo v e profiles. Star symbols show the results at t = t ∗. Green horizontal bands show 
the values of these parameters that are estimated for the ONC from the data of Da Rio et al. ( 2016 ). 
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Figure 7. As Fig. 6 , but for ! cloud = 1 . 0 g cm −2 . 
the core regions can be many times larger than that averaged over 
the half-mass scale, especially for the most massive clusters. Thus, 
in general, the full density profile of a cluster needs to be considered 
for estimation of quantities, such as interaction rates, that depend on 
local densities. 

For the purposes of comparing to observed star clusters, where 
the true 3D structure is hard to measure, it is better to consider 
the projected surface number density profiles, i.e. N s ( r ), with this 

being the number of stellar systems (singles, binaries, and higher 
order multiples) per unit projected area. Figs 6 and 7 show these 
projected radial profiles of the bound clusters as they evolve during 
the simulations. These profiles are averages of all sets of the same 
model at a given time. 

Our simulated clusters tend to have a similar radial structure. We 
characterize this using the model of Elson, Fall & Freeman ( 1987 ), 
which was developed to describe luminosity profiles of young star 
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Figure 8. In each panel, the green line shows the ONC projected number 
density profile derived from the membership list provided by Da Rio et al. 
( 2016 ). Green shaded area shows the range of best-fitting ONC profiles 
according to equation ( 11 ). The ONC data are compared to two of our models 
with ! cloud = 0 . 1 g cm −2 and M cl = 3000 M ! measured at 3 Myr (black 
solid lines). Top panel compares to our fiducial model with εff = 0.03, and 
bottom panel to a model with εff = 0.1. Dashed lines show the same modelled 
profiles, but excluding stars with masses below 0.5 M !, which is a simple 
way to illustrate the effects of potential incompleteness. 

clusters. Then, the surface number density profiles are described via: 
N s ( r) = N s , 0 

( 
1 + r 2 

r 2 s , 0 
) γ / 2 

, (11) 
where N s,0 is the central surface number density, r s,0 is a scale radius, 
and γ is a power-law exponent. The best-fitting parameters at each 
measured time are shown in the lower set of panels in Figs 6 and 7 . 
Equation ( 11 ) typically provides a good description for the models 
presented here. At early stages most models have steep power-law 
haloes, but as star clusters relax they tend to converge to a shallower 
distribution with γ ) 2.5 for the low-mass clusters and ) 3 for the 
more massive ones. The scale radius tends to be between the core 
and half-mass radii. 

As an example comparison with an observed young star cluster, 
we have constructed the number density profile of the Orion Nebula 
Cluster (ONC) based on the membership list compilation provided 
by Da Rio et al. ( 2016 ). We have selected stars flagged as members 
by any of the methods described by Da Rio et al., working within a 2 
deg radius around the ONC, which yields a total of 1464 sources. We 
have transformed the coordinates of the stars to parsecs using an ONC 
distance of 403 pc (Kuhn et al. 2019 ) and constructed the projected 
number density profile using 20 bins, each with approximately equal 
number of stars. The obtained best-fitting parameters of equation 

( 11 ) to these data are 
N s , 0 = 132 ± 22 pc −2 , 
r s , 0 = 0 . 62 ± 0 . 09 pc , 
γ = 2 . 2 ± 0 . 1 . (12) 

We show the profile defined by these values with the green dashed 
lines and green shaded areas in Figs 6 and 7 , as well as in Fig. 8 . 

While our numerical models have not been specifically tailored to 
the ONC properties, we see that our derived the fitting parameters, 
especially of the low- ! cloud cases, are typically quite similar to 
those shown by the ONC in its current state. For instance, at 
the age of the ONC (i.e. ∼3 Myr), the closest models to the 
ONC in terms of total mass are clusters with M cl = 3000 M !. At 
∼3 Myr, the low-density clusters reproduce the measured scale 
radius r s,c . Ho we ver, the ONC’s central density, N s,0 , is rather low 
in comparison with our models. One potential mitigating factor is 
that the observational sample of Da Rio et al. ( 2016 ) is incomplete 
in the brown dwarf regime and its incompleteness may be relatively 
higher in the central regions due to effects of higher extinction, 
nebulosity and crowding compared to outer regions. Fig. 8 shows 
more detailed comparisons of some of our model clusters, including 
the effects of incompleteness below 0 . 5 M !, with the observed 
surface number density profile of the ONC. We see here that the 
ONC has a relatively shallower outer projected density distribution, 
i.e. with γ = 2.2, compared to our simulated clusters, i.e. with 
γ = 2.5. While this could be a real physical discrepancy, i.e. 
indicating a limitation of the model, it could also be caused by 
contamination by false-positive members in the outskirts of the 
ONC. 

In summary, we see that our modelled star clusters develop 
a surface density profile that is quite similar to that exhibited 
by the ONC. Ho we ver, further work on simulated clusters that 
are more specifically tailored to this and other observed clusters, 
including effects of observational incompleteness, are needed before 
one would be able to constrain model parameters of M cl , ! cloud , 
and εff . 
4.2 Evolution of kinematics and dynamics 
The fourth rows of Figs 3 and 4 show the time evolution of the 1D ve- 
locity dispersions of the bound members of the clusters, σ b . The clus- 
ters start with velocity dispersions given by their parental gas clumps 
(see Table 1 ). At first, during the formation phase, these remain rela- 
tively constant, although in the high- ! cloud cases σ b declines slowly 
even during this phase. Following the formation phase, the velocity 
dispersions decline at a faster rate as the clusters expand and lose 
mass from the bound component. By ∼20 Myr some clusters, e.g. 
the most massive clusters forming from low-density environments, 
have a chance to reach a relatively stable level of σ b , just larger than 
1 km s −1 . 

The fifth rows of Figs 3 and 4 show the evolution of the virial ratio 
of the bound stellar system defined, in its most general form as 
Q b ≡ E kin , b 

E grav , b , (13) 
where E kin,b is the total kinetic energy of the bound stars and E grav , b = ∑ N b 

i= 1 F i · r i is the gravitational energy of the bound stars. In this 
calculation, binaries are treated as single unresolved systems. 

A cluster in virial equilibrium has Q b = 0.5. As introduced 
in previous papers in this series, the star clusters formed in our 
framework do so from an initially supervirial state since the natal 
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clump has a significant surface pressure applied to it from its 
surroundings. For all simulations in this paper, the initial global Q ≈
1. As the stellar systems relax from their initial configurations, they 
will achieve approximate equilibrium on a time-scale of the order of 
one relaxation time, t relax ) ( N /ln N ) t cr . 

As seen in Paper II , the ratio of the time-scale o v er which Q 
relaxes into equilibrium, t relax , compared to the formation time, t ∗, 
is important because by the end of formation, when the background 
gas is exhausted, the different εff models can then start their gas- 
free stage from different dynamical states. F or e xample, a star 
cluster that forms quickly (e.g. εff = 1) does not have time to 
relax and is still supervirial by the time gas is exhausted. On 
the other hand, a star cluster that forms slowly ( εff = 0.01) has 
enough time to relax and starts its gas free evolution closer to virial 
equilibrium. 

Figs 3 and 4 show that this trend persists at different clump masses. 
In general, the crossing time (and thus also the relaxation time) in the 
formation phase is shorter than after gas is gone. Then, slow-forming 
models are able to relax even earlier than fast forming models that 
already lost their gas mass at supervirial states. Thus, slow-forming 
star clusters are able to be already near virial equilibrium long before 
star cluster formation is finished. 
4.3 Evolution of binary properties 
The sixth rows of Figs 3 and 4 show the evolution of the binary 
fractions in the bound clusters, f bin,b . Note that the stars are formed, 
statistically, with an average binary fraction of 0.5. There is a gradual 
decline seen due to disruption of binaries, which can occur via 
dynamical interactions and also as a result of stellar evolution, i.e. 
superno va e xplosions. The e volution of the binary fraction sho ws 
significant differences depending on M cl , ! cloud , and εff . Small 
clusters of M cl = 300 M ! quickly process binaries during their 
formation phase, especially at low εff = 0.01 where f bin,b reaches 
a minimum of 0.4 in the high- ! cloud case. This minimum is quite 
sensitive to εff , given the longer formation time compared to the 
local crossing time of the regions. After reaching this minimum, a 
few Myr after the start of formation, there then follows a significant 
increase in f bin,b . 

In Fig. 9 , we present a more detailed exploration of the evolution of 
the binary fraction, separating those for the bound (grey panels) and 
unbound (white panels) populations. The rise in f bin at late times in the 
low-mass simulations mostly happens within the bound clusters and 
is caused by the creation of new ‘dynamically formed’ binaries. The 
fifth and sixth rows in this figure show the fraction of dynamically 
formed binaries in the bound and unbound populations, respectively. 
These dynamically formed binaries include those that were primor- 
dial but later exchanged one of their members with other binaries 
or singles stars. We see that in the low-mass simulations by 20 Myr 
about ∼6 –8 per cent of binaries in the bound cluster are formed 
dynamically, while it is about half of this level ( ∼ 3 –4 per cent ) in 
the unbound population. 

In the higher M cl cases, we see that the binary fractions in the 
bound clusters decrease to lower values, e.g. reaching close to 0.3 
after about 20 Myr in the M cl = 30 000 M !, ! cloud = 1 . 0 g cm −2 
case. This is caused by there being more time for disruption of 
binaries by close encounters with other stars in these clusters, which 
retain a high bound fraction o v er this period. These clusters also 
have a smaller fraction of dynamically formed binaries, which is not 
enough to change the global binary fractions, unlike in the lower 
mass cases. 

4.3.1 Binary population 
Here, we examine how the binary population is processed in the 
different models. We have seen in Paper I and Paper II that there 
was relatively little processing of the primordial binary population. 
Ho we v er, we hav e also seen from Fig. 4 that in the clusters presented 
in this paper there is a significant reduction in the fraction of binaries 
by 20 Myr in the most massive, high-density model: about a third of 
the initial binaries have been disrupted in this case. This change 
appears to be driven by dynamical processing, rather than as a 
consequence of stellar evolution. 

We examine the properties of the populations of binaries, both the 
ones that have been disrupted and the ones formed later during the 
evolution of the cluster. We note that we have also looked for higher 
order multiples in the models (as defined by the NBODY6 ++ code), 
ho we ver these are found to form in negligible numbers, of the order 
of 1 per simulation in most models and a maximum typical number 
of 4 in the m30000H models. Such small number of multiples is 
e xpected giv en that our initial conditions did not include them, and 
we see that forming stable multiples by capture is a rare event in 
these models. 

In Fig. 10 , for simulations with εff = 0.03 we show the average 
fraction of binaries that are disrupted at different times in the 
evolution, i.e. from left-hand column to right-hand, at t = 1, 3, 10, 
20 Myr and at t = t ∗, with M cl = 300 M ! in red, 3000 M ! in black, 
and 30 000 M ! in blue, and with low- and high- ! cloud cases with 
solid and dashed lines, respectively. The first row shows the fraction 
of disrupted binaries as a function of initial primary mass. We see 
that at early times the mass of the primary star has little influence 
on binary disruption. Ho we ver, by 10 Myr the disrupted fraction 
has risen for more massive stars, which is due to stellar evolution, 
especially core-collapse supernovae to neutron stars that then receive 
high kick velocities. 

The second row of panels in Fig. 10 shows the disrupted fraction 
of binaries as a function of initial semimajor axis ( a ). The typical 
semimajor axis in our models is around 20 au. Below this value, most 
binaries survive across the models, which is expected since these are 
relatively hard binaries. Wider binaries (i.e. with a ! 100 au ) are the 
most affected, with disruption fractions that depend sensitively on 
the environment, e.g. between 10 and 80 per cent of binaries with 
a ∼ 1000 au are disrupted depending on the model, where the main 
factor is the density of the environment as parametrized by ! cloud . For 
the range abo v e 100 au, the disruption fractions are clearly defined 
by density and parent clump mass. The most massive clusters show 
lower disruption fractions within the same ! cloud , since these clusters 
have lower initial number densities (see Section 2.2 ). In general, low 
εff results in a larger disruption fraction, with εff having a larger 
ef fect on lo w- and medium-mass models (see Appendix A ), with a 
variation of 25–40 per cent at a = 1000 au. In the high-mass clusters 
with M cl = 30 000 M !, variations in disruption fractions are less 
than 5 per cent between different εff cases. Most binary disruption 
happens early in the evolution, so that by 1 Myr most of these features 
are already set. 

We also explore the details of the dynamically formed binaries 
in the clusters. As shown in Fig. 9 , up to 7 per cent of binaries in 
clusters with M cl = 300 M ! are formed dynamically, where most of 
these binaries are part of the bound cluster component. The third row 
of Fig. 10 shows the fraction of binaries that are dynamically formed 
as a function of primary initial mass. A clear trend appears where 
the more massive stars tend to capture other stars more efficiently. 
This trend is strongest in the lowest mass clusters, which undergo 
the highest degree of dynamical processing, and the fact in these 
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Figure 9. Detailed evolution of binary properties, shown separately from the bound (grey background panels) and unbound (white background panels) 
populations of stars, for simulations with ! cloud = 0 . 1 g cm −2 (left) and 1 . 0 g cm −2 (right). Colour scheme of the lines is the same as in previous figures denoting 
the adopted εff . From top to bottom, the first two ro ws sho w the binary fraction ( f bin ) of the bound and unbound populations. The third and fourth rows show 
the fraction of binaries that are primordial, i.e. N prim / N bin , where N prim and N bin are the number of primordial and total number of binaries, respectively. The 
fifth and sixth rows show the fraction of binaries formed dynamically, with N dyn as their total number. The seventh and eighth rows show the fraction of binary 
members that were originally single stars, i.e. the number of captured singles N cap divided by the total number of binary members, i.e. 2 N bin . 
low-mass clusters, A-, F-, and even G-type stars, can be the most 
massive stars in the cluster, and be the ones segregating to the 
centre. Furthermore, since the o v erall v elocity dispersion is lower, 
then gravitational focusing is fa v oured for less massive stars in these 
environments. Again, the εff parameters appear to play only a minor 
role in the formation of binaries, as can be seen in the formation 
fractions at 20 Myr for other εff (see Appendix A ). Most of the 
dynamically formed binaries are wide binaries with semimajor axes 
larger than 1000 au, as can be seen in the fourth row of panels in 
Fig. 10 . Here, we can also see that higher primordial density fa v ours 
the formation of tighter binaries, since harder binaries are able to be 
perturbed allowing interchange of their members. 

Note that the results shown in the first to fourth rows in Fig. 10 are 
fraction of binaries in each bin. The most affected types of binaries, 

i.e. the wider and more massive ones, are in fact the less populated 
parts of the binary distribution, representing only a small fraction 
of the total number of binaries in the system. In the fifth row of 
Fig. 10 , we show the full distribution of binaries as a function of 
semimajor axis as an average per simulation. Then after all stars are 
formed, the average numbers in the m30000 case is 10 times larger 
than in the m3000 case and 100 times than in the m300 case. We 
see that in the m3000 and m30000 models, dynamical disruption 
of binaries causes a steeper decrease of frequency for binaries with 
large a , where the fractional decrease is shown in the second row of 
panels. Ho we ver, for m300 the dynamical formation of binaries is 
considerable ( ∼7 per cent ) and concentrated in the high end of the 
distributions ( a > 1000 au), producing a second peak at a ∼ 10 5 au, 
with the strength of this peak being higher for the larger ! cloud case. 
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Figure 10. Distribution of primary mass and semimajor axis for different kinds of binaries, measured at (from left-hand to right-hand columns) t = 1, 3, 10, 
20 Myr and when star formation stops ( t ∗). This figure shows the results for simulations with εff = 0.03 and M cl = 300 (red), 3000 (black), and 30 000 M ! (blue), 
and for simulations with ! cloud = 0.1 (solid lines) and 1.0 g cm −2 (dashed lines). First and second rows show the fraction of disrupted primordial binaries per 
primary stellar type (first row) and primordial semimajor axis bin (second row). Third and fourth rows show the fraction of binaries that are formed dynamically 
separated by stellar type (third row) and current semimajor axis. Fifth row shows the total distribution of semimajor axes averaged by simulation set. 
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4.4 Evolution of the stellar mass function 
The stellar mass function (MF) is expected to evolve within the 
clusters due to a combination of mass se gre gation, binary for- 
mation/disruption, ejection of w alkaw ay/runaw ay stars, and stellar 
e volution. The bottom ro ws of Figs 3 and 4 show the average 
system mass, i.e. single stars, binaries, and higher order multiples 
(although the latter are negligible), in the bound cluster populations 
for systems with primary masses below 7 M ! (i.e. so that these 
are not significantly affected by stellar evolution during the period 
considered). For the assumed IMF and binary sampling methods, 
this average system mass has an expected value of 0.25 M !, shown 
by a horizontal grey dashed line in each of the panels. 

As the clusters evolve, we see that small clusters show the 
largest deviation from the expected value. Models m300 show a 
remarkable variation in the average system mass, i.e. rising by a 
factor of ! 1.6 in the high- ! cloud cases with εff ! 0.1. This dramatic 
change is related to the fact that these clusters evolve to have the 
smallest bound mass fractions, i.e. f bound ∼ 0.3 and undergo the most 
significant dynamical processing, including significant formation of 
new binaries (see Section 4.3 ). The variations in average system mass 
are more modest in the m3000 and m30000 models and mo v e in 
the opposite direction, i.e. decreasing to lower values. We attribute 
this behaviour to the fact that these clusters retain high bound mass 
fraction and tend to destroy their primordial binaries without forming 
significant numbers of new binaries. 

Ne xt, we e xamine signatures of mass se gre gation by considering 
the evolution of the MF slopes in the mass range abo v e ∼1 M !. We 
measure the stellar MF at different stages during the evolution of the 
modelled clusters, using only the bound stars and excluding neutron 
stars and black holes. Fig. 11 shows the resulting MFs when measured 
for stars within different Lagrangian radii at different times for our 
fiducial models with εff = 0.03. Ho we ver, comparison between 
the models is complicated by the large differences in formation 
and dynamical time-scales for these clusters that have orders of 
magnitude differences in mass and density. For instance, stellar 
evolution plays a different role in each case when the formation and 
relaxation times are comparable to the stellar evolution time-scales 
of the most massive stars. Effects due to ejection events derived 
from stellar evolution, i.e. velocity kicks of neutron stars or binary 
breaking, are especially important. 

In Fig. 11 , we first show the MFs at the end of the formation 
stage ( t = t ∗), when all stars have formed and the clusters start their 
gas-free phase. We pay special attention to the evolution of the high- 
mass end of the stellar MF, i.e. the range between 0.5 and 100 M !, 
which by construction we have modelled with a canonical initial 
index of α2 = 2.3 (Kroupa 2001 ). We have performed linear fits to 
this range in logarithmic space as can be seen in Fig. 11 as solid lines 
within the fitting range. The fourth panel of the bottom ro w sho ws a 
comparison between the dif ferent α2 v alues obtained at the different 
radii, M cl and ! cloud for the case of εff = 0.03. The same procedure 
was performed at 3, 10, and 20 Myr, where the corresponding fits are 
shown in the first three panels of the bottom row. 

From the values of α2 as a function of enclosing Lagrangian radius, 
we see that, by the end of star formation (fourth panel), the MFs tend 
to be more top heavy in the central regions of the cluster. Ho we ver, 
in the m30000L model, which has t ∗ of 11.5 Myr, the population is 
already affected significantly by stellar evolution at this time (these 
clusters contain ∼25 stars more massive than 10 M !). 

At 3 Myr, top heavy MF signatures are most pronounced for the 
lowest mass clusters and the higher ! cloud cases, which, as discussed, 
have shorter relaxation times and thus shorter mass se gre gation times. 

Note that the low- ! cloud cases are all still forming stars at 3 Myr. In 
particular, the m30000L model is at about 25 per cent of its t ∗ and 
has not yet developed significant mass segregation. Similarly, the 
m3000L model is at about ∼50 per cent of t ∗ at this time and also 
does not show strong mass se gre gation. 

When we consider the MFs at 10 and 20 Myr we see that mass 
se gre gation signatures are maintained and that even though stellar 
evolution mass-loss remo v es some of the e xcess of massiv e stars in 
the centre, enough intermediate massive stars sink here to keep the 
signatures present. In particular, the m3000L model has developed 
the strongest top heavy feature at 20 Myr. Therefore, we see that in 
all models, the central regions of the bound systems tend to become 
top heavy ( α2 < α2, i ), rather than bottom heavy, regardless of stellar 
evolution mass-loss. 

Fig. 12 shows the evolution of the α2 parameter for all models in 
this work measured at 10, 50, and 90 per cent Lagrangian radius, i.e. 
α2,10 , α2,50 , and α2,90 , respectively. The signature of mass segregation 
can be more clearly seen when analysing the 10 per cent mass radius 
(top row of panels in each set). 

The evolution of the α2,10 parameter is stronger in the m300 models 
since their crossing times are shorter. Also, due to IMF sampling in 
small stellar clusters, the initial value of α2,10 is typically relatively 
high. As massive stars migrate to the centre, α2,10 decreases quickly. 
The maximum level of mass segregation is reached at the point when 
the core radii begin to expand, which does not happen at the end of 
star formation, but after about one initial crossing time regardless 
of εff (see Section 4.1 ). The α2,10 parameter then stabilizes at the 
onset of rapid expansion of the cluster core. Nevertheless, the central 
region MFs tend to remain top heavy compared to the IMF. Note that 
eventually, at later stages, α2,10 begins to increase due to the effects 
of stellar evolution. 
4.5 High-velocity population 
One important question we hav e e xplored during this series of papers 
is how the star cluster formation process is linked to the properties 
of the unbound/ejected population. We have shown in Paper II that 
slowly forming star clusters tend to produce more high-mass runaway 
stars. Ho we ver, these models have so far only been for a single mass 
case of formation from a 3000 M ! clump. Here, we examine how the 
high-velocity distribution changes with mass and εff in the framework 
of our models. We expect the results to be useful for interpreting data 
of runaways from young clusters, with a first application made for 
the 3000 M ! models to the case of the ONC by Farias, Tan & Eyer 
( 2020 ). 

Fig. 13 (a) shows the 2D (plane of sky) velocity distribution for the 
low- ! cloud (left-hand column) and high- ! cloud (right-hand column) 
cases. Distributions are constructed at the time when star formation 
stops ( t ∗). The population of dynamically ejected stars manifests 
itself as an excess of high-velocity stars relative to the expected 
Maxwell–Boltzmann distribution for the given velocity dispersion. 
The initial expected velocity distribution, given the velocity dis- 
persion of the natal gas clump, is shown as shaded areas in each 
panel. As time advances and gas is ejected, we have seen that the 
clusters expand and lower their velocity dispersion. Ho we ver, the 
fastest formation models do not have time to relax and at t = t ∗ their 
velocity dispersion is very similar to the one at birth. The resulting 
high-v elocity e xcess at t = t ∗ can be clearly seen, where the slowest 
forming clusters show a more evolved velocity distribution, with a 
lower velocity dispersion and greater fraction of high-velocity stars. 
Ho we ver, since each cluster has a very different t ∗ it is difficult to 
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Figure 11. Mass functions measured at different Lagrangian radii and times for star clusters with M cl = 300 M ! (red), 3000 M ! (black), and 30 000 M cl (blue). 
First and second rows show the MFs measured at the end of star formation ( t ∗). The different MFs in each panel are measured within 0.1, 0.3, 0.5, 0.7, and 0.9 
Lagrangian radii (from bottom to top). Bottom row shows linear fits to the range between 0.5 and 100 M !measured at t = 3, 10, 20 Myr and at t = t ∗. The 
horizontal green dashed line shows the input value of α2 = 2.3 from Kroupa ( 2001 ). 
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Figure 12. Evolution of α2 , i.e. the fitted mass function power-law parameter 
for the mass range between 0.5 and 100 M !. Top and bottom sets of panels 
show the results for the low- and high- ! cloud cases, respectively, with different 
initial M cl cases shown in the three columns. The top row in each set shows 
α2,10 , i.e. the α2 parameter measured within 10 per cent mass radius. Middle 
and bottom rows show the same parameter measured at the 50 per cent ( α2,50 ) 
and 90 per cent ( α2,90 ) mass radius, respectively, The colour scheme of the 
lines and points is the same as in previous figures representing the various 
εff cases. Grey dashed line in each panel shows the input mass function in 
this range of α2 = 2.3. Star symbols mark the moment when star formation 
is finished and background gas is exhausted. 
make a fair comparison between the models since we need to measure 
at different points in the evolution. Below, we develop a simple model 
to describe the evolution of the velocity distributions. 
4.5.1 Velocity distribution model 
Following our analysis in Paper I and Paper II , we note that our 
modelled star clusters are composed of three kinematically distinct 
components: (1) bound stars, which are those with a ne gativ e 
total energy; (2) unbound gently ejected stars, i.e. those that find 

themselv es unbound giv en the rapid change in the protocluster 
potential; and (3) dynamically ejected stars, which are those that 
are ejected as a result of strong dynamical interactions. These groups 
have distinct velocity distributions that together compose the total 
velocity distribution shown in Fig. 13 (a). The bound component can 
be described with a cumulative 2D Maxwell–Boltzmann velocity 
distribution function 
CDF ( v, a) = 1 − exp (− v 2 

2 a 2 
)

, (14) 
with the scale parameter given by 
a = √ 

2 
4 − π

σb . (15) 
Note that for practical purposes, given the we are most interested 
in the high-velocity tail of the distribution where the numbers of 
stars are low, we instead use the survival function SF( v, a ) = 1 −
CDF( v, a ), which is the function shown in Fig. 13 (a). The gently 
ejected component can be modelled with the same distrib ution, b ut 
with a larger velocity dispersion, which is a remnant of the dynamical 
history of the cloud. Therefore, the bound and unbound components 
are both described by an SF of the form: 
SF ( v, a) = exp (− v 2 

2 a 2 
)

. (16) 
The dynamically ejected stars follow a different distribution, i.e. 

approximately a power-law tail in the velocity distribution profile 
with an exponent γ . Then, we model the SF of this component as 
SF ej ( v, a) = 1 

1 + ( v 
a )γ . (17) 

The survi v al function of the total velocity distribution is thus 
SF ( v) = f bound SF b ( v, a b ) 

+ f unbound SF ub ( v, a ub ) 
+ f ej SF ej ( v, a ub ) , (18) 

where f bound + f unbound + f ej = 1. Note that the bound component 
with f bound and σ b is measured directly from the stellar distribution 
(see Figs 3 and 4 ). For the second component, even though we have 
left a ub as a free parameter, we have found that this parameter is 
well represented by the scale parameter obtained using the velocity 
dispersion of the parent clump, σ cl . Then, the fitting procedure is 
dominated by the ejected component described in equation ( 17 ) and 
its weight, i.e. γ and f ej . For the scale parameter of this component, 
we have used the same as for the unbound, a ub , since we want the 
power-law signature to be fully developed at the velocity when the 
unbound Maxwell–Boltzmann distribution becomes unimportant. 

Fig. 13 (b) shows the time evolution of γ and f ej . The evolution of 
f ej sho ws ho w the fraction of dynamically ejected stars grows with 
time. Small clusters with M cl = 300 M ! show larger f ej values, with 
a similar evolution independent of εff , but mostly dependent of the 
age of the clusters and the initial density. At 20 Myr, these small 
clusters reach f ej ∼ 0.08 −0.2 for low- ! cloud models and 0.25 −0.45 
in the high- ! cloud case. As M cl increases, the importance of the 
ejected population decreases to a range between 0.01 and 0.1 for 
M cl = 3000 M ! and between 0.001 and 0.04 in the most massive 
clusters. 

Ho we ver, we find no clear trend for the evolution of the power-law 
parameter γ , with neither M cl or εff . Rather than being dependent of 
global parameters, γ is more likely to depend on the population of 
binaries as shown by Perets & Šubr ( 2012 ). In our case, we obtained 
an average value of γ = 1.6 ± 0.4. 
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(a) (b)

Figure 13. (a) Evolution of the transv erse, i.e. 2D, high-v elocity cumulativ e distributions normalized by the total number of stars in the clusters measured at t = 
t ∗. Shaded area shows the respective Maxwell–Boltzmann distribution with σ equal to the initial mass-av eraged v elocity dispersion of the clump. Rows arrange 
different parent clump masses, M cl while columns arrange the low (left) and high (right) ! cloud cases. Note, stellar remnants are not included in this graph. 
This figure is equi v alent to fig. 10 of Farias et al. ( 2020 ), where we make direct comparison of our simulations with estimates for the Orion Nebula Cluster. 
(b) Fitting parameters at different times for the excess in the velocity distribution of modelled star clusters, f ej (top rows) and γ (bottom rows) for simulations 
in the high- ! cloud (top set of panels) and low- ! cloud (bottom set of panels) regimes. Star symbols show the time at which star formation is finished, where the 
corresponding fitting model is shown in figure (a). Fitting is made at different times starting from t = t ∗. Note that the large errorbars represent times where 
fitting the excess is uncertain given that is not yet fully developed, e.g. see the high- ! cloud case of M cl = 3000 M ! and εff = 1, i.e. magenta line in the lower 
right panel of figure (a). 
4.6 Runaway stars 
While the abo v e description is useful at characterizing the different 
components of the stellar distribution, compiling such population 
data is challenging, especially for the high-velocity lower mass stars 
that are now far from their origins and thus hard to find and link to a 
gi ven population. Ho we ver, isolated runaway stars are easier to find, 
especially O and B stars. Observations of O and B runaway stars 
indicate that between 10–30 per cent of O stars and 2–10 per cent 
of B stars are runaways (Gies 1987 ; Stone 1991 ; de Wit et al. 2005 ), 
depending on precise definition of this class. 

Fig. 14 shows the percentage of ejected stars per model without a 
velocity cut-off (filled circles), and with velocities above 20 km s −1 
that we adopt as a definition for a runaway star. These numbers 
represent only dynamically ejected stars via strong interactions or 
rapid change in the cluster potential, e xcluding superno vae related 
ejections. 

We show the results for three ranges of mass: all stars in the system 
(left-hand column); O stars (middle column); and B stars (right-hand 
column). As found in our previous work in Paper II , there is a modest 
increase in the fraction of o v erall ejected stars with εff , shown in the 

first column of Fig. 14 as filled circles, which is a result of the 
increasingly rapid depletion of the background gas. 

The results for high-v elocity runa way stars appear to be divided 
into two regimes, determined by ! cloud . In the low- ! cloud case (top 
panels), slowly forming clusters appear to form slightly higher 
fractions of runaway stars at all masses, especially for the most 
massi ve clusters. Ho we ver, the dif ferences are modest and within the 
uncertainties. 

With the exception of the m300L case at εff = 0.01, we find more 
O runaway stars when εff approaches to 0.01, as expected given the 
longer time stars remain in a dense state during the formation phase, 
but increase again when εff = 1. The former is a consequence of 
the high peak density reached at the be ginning, giv en that all stars 
formed in half a free-fall time and collapse into the centre together. 

For B stars, the fraction of runaway stars appears to be independent 
of εff , but with strong dependence on M cl . Small clusters, with higher 
initial densities, form higher fractions of B star runaways than the 
most massive clusters. If fact, in the low- ! cloud case m30000L 
models form no runaways in the B mass range, except for the slowly 
forming case with εff = 0.01. 
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Figure 14. Percentage of ejected stars relative to all stars in each mass range for the low (top panels) and high (bottom panels) ! cloud cases measured at 
20 Myr. The first column shows the results when using all stars in the set. The second and third columns show the fraction of O and B dynamically ejected stars, 
respectively. Shaded areas in these panels show the range of observed values (see the text). 

In the high- ! cloud case, results appear to be dominated by the 
high-density environment, and similar fractions of runaway stars are 
found in each model. In this case, B star runaways are found in all 
models, but the trend remains the same as more massive clusters 
produce smaller fractions of B star runaways. 

About 2 and 4 per cent of B stars are ejected with high velocities 
for the low- and high- ! cloud cases, respectively. These figures are 
consistent with the range of values found for B stars (see e.g. 
Eldridge, Langer & Tout 2011 ). Increasing M cl brings down the 
number of high-velocity B star runaways down to 0.5–1 per cent 
in the high- ! cloud case, and none in the low- ! cloud case (with the 
exception of the εff = 0.01 case, where we find 2 per cent). These 
results highlight the high densities reached by the low-mass clusters 
at formation, but the subsequent quick expansion implies that most 
of these high-velocity ejections happened very early in the evolution 
of these systems. 
4.6.1 Inter action r ates to produce dynamical ejections 
We estimate the number of ejected stars we expect at a given time, 
given the dynamical history of a star cluster. For single stars, we can 
estimate the cross-section πb 2 of interactions that result in a closest 
approach of b min , where the velocity reaches a value of v max . For two 
stars approaching from infinity with relativ e v elocity σ and impact 
parameter b , energy and angular momentum conservation implies 
that a star reaches a closest approach at a maximum velocity v max 
when 
b = 2 Gm t 

( v 2 max − σ 2 ) v max 
σ

, (19) 
where m t is the total mass of the interacting stars. Note that this result 
is only valid for v max ≥ σ . The v max / σ factor is the gravitational 

focusing factor, which increases the impact parameter b in low- 
velocity environments. Then, the interaction rate for interactions that 
can potentially eject a star, is given by πb 2 × n s × σ , i.e. 
* = 4 πn s σ [

Gm t 
( v 2 max − σ 2 ) v max 

σ

]2 
. (20) 

The total number of interactions that will accelerate stars up to 
v max , from t = 0 to t = T is 
N int = ∫ T 

0 
N ∑ 

i= 1 * i ( t )d t , (21) 
where * i is the interaction rate of each star in the system. This 
number should be proportional to the number of observed runaway 
stars with escape velocities v > v max , i.e. N v . We calculate this 
proportionality factor in our models by numerically integrating 
equation ( 21 ) and then comparing to the number of runaway stars 
ejected with velocities greater than 20 km s −1 . Specifically, we 
numerically integrate equation ( 21 ) over time for each individual 
simulation at each snapshot, constructing tracks in the N int –velocity 
plane. We calculate * i using global values of σ and n s , based on 
the stellar population within the half-mass radius of the system. We 
consider as runaway stars any star with v > v max = 20 km s −1 that 
is not a stellar remnant. To a v oid contamination of stars close to the 
centre of the potential well, where local escape velocities may be 
large due episodic close encounters, we only consider stars beyond 2 
stellar half-mass radius when counting the number of runaway stars. 
We combine the results of each set of models by placing all N int –v 
data pairs of each simulation at each snapshot on a single combined 
set. We divided this set in N int bins of equal number of data points and 
take the average of N v . Fig. 15 shows these results for all the different 
sets of models in this work. It is expected that N int ∝ N v and this 
is approximately seen in Fig. 15 . From these results, we calculate a 
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Figure 15. N int versus the number of dynamically ejected high-velocity 
stars, collected for all models in this work. Each point represents the average 
number of high-velocity stars for measurements with the same εff and M cl 
that fall in the same N int bin. 
proportionality factor η = 1 . 15 + 1 . 0 

0 . 7 . This shows that the number of 
runaway stars is a direct constraint on the dynamical history of a star 
cluster. For instance, this linear relation indicates that if a star cluster 
is characterized with 10 stars with v > 20 km s −1 , then models trying 
to reproduce such a system must reach the same number of strong 
interactions (on average) during its age. 
5  DISCUSSION  
We hav e e xpanded our modelling of star cluster formation to co v er 
a wide range of masses of initial gas clumps and studied their 
resulting star clusters. This step is important to eventually produce 
a comprehensive grid of models that could be applied to interpret 
populations of star clusters. Given the assumptions of the turbulent 
clump model, certain scalings of properties occur as a function of 
clump mass (at fixed mass surface density of surrounding cloud 
environment). These scalings, e.g. of density, velocity dispersion, 
etc., have implications for the dynamical evolution of the resulting 
stellar system, for instance, affecting the relaxation time and degree 
of binary processing. 

The evolution of cluster radii (e.g. half-mass radii of the bound 
components) and radial profiles with time are metrics that can be 
compared to observed systems, although this will typically be best 
achiev ed by conv erting model mass profiles into multiwavelength 
light profiles. In our modelling programme, this step is deferred 
to a future paper in the series, requiring implementation of pre- 
main-sequence evolutionary tracks into the simulation framework. 
Ho we ver, in principle, a cluster that is observed to have a given 
(mean) age, mass, half-mass (or light) radius, and radial mass (or 
light) profile can be compared with the outputs of the models 
presented here. There will be a range of formation parameters 
( M cl , ! cloud , ε, εff , etc.) that are consistent with a given set of 
observational data. The grid of models presented here is a first 
step in the process of building tools that will e ventually allo w 
constraints to be placed on formation parameters from observed 
clusters, which could then be used to estimate initial cluster 
and clump mass functions and distributions of ! cloud formation 
environments. 

We find variations in cluster sizes with εff for models of the same 
initial mass and environmental mass surface density. This is due to the 
potential of the natal gas clump restricting the expansion that arises 
from the initially supervirial state. Ho we ver, these dif ferences in 
sizes are most apparent only for a relatively short time period similar 
to the star formation time, since after this rapid cluster expansion 
occurs and the various models tend to converge to have similar sizes 
at a given age. 

Giv en such de generacies, direct measures of εff , i.e. via mea- 
surement of age spreads, remains important. Ho we ver, accurately 
measuring age spreads in young star clusters is a challenge that 
involves model-dependent fitting to pre-main-sequence evolution- 
ary tracks (e.g. Tognelli, Prada Moroni & Degl’Innocenti 2011 ; 
Bressan et al. 2012 ; Baraffe et al. 2015 ) and is also complicated 
by observational uncertainties in extinction, photometric variability 
and unresolved multiplicity (e.g. Da Rio et al. 2016 ). Associating 
individual runaway stars with a given young cluster and/or spreads 
in kinematic expansion ages is another, more direct, method for 
estimating εff (e.g. Tan 2006 ; Farias et al. 2020 ). 

We have shown that properties that depend on the time-integrated 
density of the stellar systems, i.e. amount of binary processing and 
fraction of dynamically ejected stars, do have significant sensitivity to 
εff . These tend to show the strongest variations in small clusters, due 
to their short relaxation times. Ho we ver, testing models via observa- 
tions of such clusters faces the inherent problem of small numbers 
of stars leading to larger sampling uncertainties. Overcoming this 
would require observations of large numbers of low-mass clusters. 

Independent from εff , we have found significant variations of 
behaviour between low-mass and high-mass forming clusters, which 
are mostly due to the differences in their relaxation times during 
the formation phase. Even slowest forming ( εff ∼ 0.01) low-mass 
clusters evolve to hav e relativ ely low bound mass fractions ( ! 0.6 
for ! cloud = 0 . 1 g cm −2 ; ! 0.4 for ! cloud = 1 . 0 g cm −2 ) by ∼20 Myr 
and that are continuing to decline quickly, while in the higher 
mass systems f bound can remain as high as ∼0.8 at these times and 
with much more gradual rates of decline. Related to this, lower 
mass clusters are able to form a more significant high-velocity 
population of dynamically ejected stars. While all of the clusters 
show mass se gre gation leading to a more top heavy high-mass end 
MF slope in their bound, central components, this effect is stronger 
in lower mass clusters. Finally, the average system mass in the 
bound remnants of low-mass clusters shows significant evolution to 
higher values, partly driven by significant numbers of dynamically 
formed binaries. In more massive clusters, such binary formation is 
rare and binary processing tends to destroy the primordial binary 
population, e.g. from f bin of 1/2 down to as low as ∼1/3 in the most 
massive, highest density clusters considered. These are significant 
variations that may be testable by future observations of young 
clusters. 

There are a number of caveats and limitations of the models that 
we have presented. The protocluster models are globally spherically 
symmetric and lack spatial and kinematic substructure that might 
be expected to arise from interstellar turbulence. Allowing for such 
features is planned in future papers in this series. Furthermore, in 
the models presented here, higher order multiples were not part 
of the initial conditions set-up and their formation by capture 
was negligible. If significant fractions of triple and higher order 
multiple systems are found to exist in young clusters, then this would 
indicate a need to incorporate such systems as part of the primordial 
population. 
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6  C O N C L U S I O N S  
We have presented a set of star cluster formation simulations that span 
a wide range of initial clump masses ( M cl from 300 to 30 000 M !), 
cloud environment mass densities ( ! cloud from 0.1 to 1.0 g cm −2 ) and 
star formation efficiencies per free-fall time ( εff from 0.01 to 1.0). 
These simulations, all involving global star formation efficiency of 
50 per cent and all starting with 50 per cent primordial binaries, 
follow the N -body dynamics of the stellar populations, including 
evolution of the bound cluster, binary properties, mass se gre gation, 
and production of high-velocity runaways. 

We summarize our main results as follows: 
(i) Bound mass fractions at the end of star formation are similar 

in all models, i.e. around 90 per cent (see Section 4.1 ). Ho we ver, 
the subsequent evolution diverges dramatically depending on M cl 
and ! cloud , with low-mass clusters in high-density environments 
retaining the smallest fractions ( f bound ! 0.3) in their remnant bound 
cores. In general, slowest forming clusters retain higher bound 
fractions. 

(ii) The evolution of half-mass radii of the bound clusters also 
sho ws large dif ferences in behaviour depending on cluster mass 
and environment. Low-mass clusters in high-density environments 
under go the lar gest de gree of e xpansion during the first 20 Myr 
of evolution, since they form relatively quickly and have short 
relaxation times that drive this dynamical evolution. Variations with 
εff are mostly related to the length of the formation phase, during 
which the gravitational potential of the gas clump acts to confine 
the cluster, retarding its expansion. Once the gas is exhausted, 
clusters can enter a PFS phase, during which the y hav e relativ ely 
constant sizes (see Section 4.1 and Fig. 5 ). This phase ends once 
the cluster has had time to undergo dynamical relaxation, which 
leads to further expansion. This delay in expansion means that 
clusters of a given M cl and ! cloud have similar sizes by a time of 
∼ 20 Myr. 

(iii) The core radius evolution is independent of εff and remains 
relatively constant for about one crossing time. If gas is still present 
in the system, the core radius can remain dense for longer (i.e. εff < 
0.03). The expansion of the core radius sets the end of the PFS phase 
that star clusters undergo after gas expulsion. 

(iv) The abo v e results imply that binary systems are disrupted 
efficiently in the most massive cluster during the initial ∼20 Myr 
period that has been modelled here. Ho we ver, in lo wer mass systems, 
binary disruption is constrained to the formation time only, given their 
quick post-gas-expulsion expansion (see Section 4.3 ). Most disrupted 
binaries have semimajor axes greater than 100–1000 au, depending 
on ! cloud (Fig. 10 ). Lower mass systems can disrupt harder binaries 
relative to the most massive clusters, given their high initial densities. 
Binary formation by capture is more efficient in lower mass systems 
(see Fig. 9 ). By 20 Myr about 6–8 per cent of binaries are formed 
by capture in the bound systems. This figure drops dramatically 
for clusters with M cl = 3000 M !, i.e. is below 1 per cent and 
practically zero in more massive systems. Binaries formed by capture 
are concentrated at higher end of the semimajor axis distribution, 
showing a noticeable secondary peak in at a = 10 5 au at 20 Myr. 
These binaries are formed mainly after gas expulsion during the 
expansion of the cluster. 

(v) Young star clusters develop different levels of central mass 
se gre gation reaching a peak at the time the core radius begins to 
expand (see Section 4.4 ). The short dynamical time-scales of clusters 
with M cl = 300 M ! and small IMF sampling causes these systems 
evolve to have the most top heavy central regions in relation to their 
outskirts. 

(vi) The fraction of dynamically ejected stars depends on the initial 
mass of the clump and the mass surface density of its environment 
(Section 4.6 ). Low-mass clusters produce greater fractions of ejected 
stars, i.e. ranging from 8 to 20 per cent in the low- ! cloud case and 25 
to 45 per cent in the high- ! cloud case. 

(vii) The percentage of runaway stars, i.e. dynamically ejected 
stars, follows the same dependence, but differences are modest. B 
stars, ho we ver, sho w the greatest dif ferences across M cl , where lo w- 
mass clusters are able to reproduce observed percentages, with an 
average of 2.5 per cent in the low- ! cloud case and 4 per cent in the 
high-density environment. 
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Figure A1. Same as Fig. 10 but for models with M cl = 300 M ! and with ! cloud = 0 . 1 g cm −2 and εff = 0 . 01 g cm −2 , 0.03, 0.1, 0.3, and 1.0. 
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Figure A2. Same as Fig. A1 but for models with ! cloud = 1 . 0 g cm −2 . 
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Figure A3. Same as Fig. A1 but for models with M cl = 3 , 000 M ! and ! cloud = 0 . 1 g cm −2 . 
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Figure A4. Same as Fig. A3 but for models with ! cloud = 1 . 0 g cm −2 . 
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Figure A5. Same as Fig. A3 but for models with M cl = 30 000 M ! and ! cloud = 0 . 1 g cm −2 . 
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Figure A6. Same as Fig. A5 but for models with ! cloud = 1 . 0 g cm −2 . 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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