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ABSTRACT

We study the formation and early evolution of star clusters that have a wide range of masses and background cloud mass surface
densities, X.joud, Which help set the initial sizes, densities, and velocity dispersions of the natal gas clumps. Initial clump masses
of 300, 3000, and 30 000 M, are considered, from which star clusters are born with an assumed 50 per cent overall star formation
efficiency and with 50 per cent primordial binarity. This formation is gradual, i.e. with a range of star formation efficiencies per
free-fall time from 1 to 100 per cent, so that the formation time can range from 0.7 Myr for low-mass, high-X o, clumps to
~30 Myr for high-mass, low-%jouq clumps. Within this framework of the turbulent clump model, for a given X joug, clumps of
higher mass are of lower initial volume density, but their dynamical evolution leads to higher bound fractions and causes them
to form much higher density cluster cores and maintain these densities for longer periods. This results in systematic differences
in the evolution of binary properties, degrees of mass segregation, and rates of creation of dynamically ejected runaways. We

discuss the implications of these results for observed star clusters and stellar populations.

Key words: methods: numerical — galaxies: star clusters: general —stars: kinematics and dynamics —stars: formation.

1 INTRODUCTION

Most stars appear to form in clusters (or at least initially clustered
associations) inside molecular clouds (e.g. Gutermuth et al. 2009). A
wide range of scales is involved, including the broad distribution of
cluster masses that make up the initial cluster mass function 1CMF).
For masses 2100 Mg, and up to at least ~10°> M, the ICMF appears
to follow a power law of the form dN/dlogM o« M~! (e.g. Lada &
Lada 2003; Dowell, Buckalew & Tan 2008), so that there is an equal
mass contributed by clusters in each decade of the mass spectrum.
Thus considering a broad range of cluster masses is needed when
understanding the origin of galactic stellar populations.

Star cluster formation itself is a very complex process that involves
the interplay of many physical processes, including fragmentation of
self-gravitating, turbulent, magnetized molecular clouds, protostellar
outflow feedback from accreting stars (e.g. Nakamura & Li 2007;
Cunningham et al. 2011; Hansen et al. 2012; Federrath et al. 2014;
Nakamura & Li 2014; Geen et al. 2015), other feedback processes
from already formed, especially massive, stars (e.g. Peters et al. 2010,
2011; Rogers & Pittard 2013; Dale, Ercolano & Bonnell 2015), and
dynamical evolution of the stellar population, including dynamical
ejection of runaway stars (e.g. Banerjee, Kroupa & Oh 2012; Oh &
Kroupa 2016; Gavagnin et al. 2017). All these processes have their
own spatial regimes and time-scales over which they are important.

It is not currently possible to include all the above processes in
a unified simulation to model star cluster formation. Our approach,
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developed in a series of papers of which this is the third, explores star
cluster formation within the paradigm of the turbulent core/clump
model (McKee & Tan 2003) with approximate implementation of
the birth of stars via their gradual introduction into simulations that
follow the N-body dynamical evolution of the system. The overall
goal is to explore how the stellar population, including realistic binary
properties, is processed dynamically during the formation phase of
a star cluster, and how this processing may be affected by model
parameters. There are two basic parameters describing the initial
star-forming clumps: the clump mass, M., and the mass surface
density of the surrounding ‘cloud’ environment, X o4, Which sets
the bounding pressure of the clumps and thus their radii, R.;. High-
¥ 10ud €nvironments have high pressures, i.e. due to the self-gravity
of the cloud, which means that clumps of a given mass are denser in
such environments. The formation phase of the cluster also involves
two main parameters: the star formation efficiency per free-fall time,
€, and the overall star formation efficiency of the clump, €.

In Farias, Tan & Chatterjee (2017, hereafter Paper 1), we first
explored an extreme version of this scenario in which the star
clusters are formed instantaneously from their parent clumps. While
instantaneous formation appears to be an unrealistic case, we note
that this has been the standard practice in almost all such similar
studies so far (with the notable exception of Proszkow & Adams
2009). In our second work of this series, Farias, Tan & Chatterjee
(2019, hereafter Paper 1I), we implemented gradual formation of
stars, which enabled us to explore a wide range of formation time-
scales (achieved via a range of values of € and a fixed, fiducial value
of € = 0.5). We showed that such time-scales strongly influence the
dynamical evolution of the clusters in both the embedded phase (i.e.
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when gas is still present) and during the subsequent gas-free phase,
including the rate and amount of expansion, the fraction of stars that
remain bound, the frequency of ejection events, the establishment of
age-radius gradients and the degree of processing of binaries.

However, in these previous papers we limited the studies to a fixed
parent clump mass of 3000 M. It is not immediately obvious how
our results would scale with mass (at a fixed X jouq), since there are
several coupled processes at play with various different time-scales
and dependencies. Thus, our goal in this paper is to present a series
of N-body simulations that explore different clump masses using
the same framework as in Paper II. These simulations will help us
to elucidate how the various dynamical processes, described above,
combine to control the dynamical evolution of clusters across the
mass spectrum.

2 THEORETICAL BACKGROUND

2.1 Background gas model

We perform star cluster formation simulations following the methods
presented in Paper I and Paper II. In these models, star clusters
are assumed to be forming from gravitationally bound, initially
starless gas clumps within giant molecular clouds (GMCs), partially
supported by magnetic fields and turbulence. The structure of the
parent clumps is described following the turbulent core/clump model
of McKee & Tan (2003), i.e. they are polytropic spheres in virial and
pressure equilibrium with their surroundings. The density profile of
such clumps is modelled as

r\
pcl(r) = Ps,cl (7) s (1)

R
and the velocity dispersion profile as
, o\ @02
ou(r) = oy (Rcl) ) @)

where pgq and o are the density and velocity dispersion at the
surface of the clump, respectively, R is the clump radius, i.e. where
its boundary is located, and we adopt k, = 1.5 as the fiducial
power law of the density distribution (e.g. Butler & Tan 2012). One
important feature to note is that the velocity dispersion increases
with radius (see McKee & Tan 2003), which is a general feature of
interstellar turbulence. We refer the reader to Paper I and Paper II,
where we discuss the dynamical implications of such a characteristic
for the formation and evolution of our model star clusters.

Using our fiducial parameters for the structure of the parent clump,
the characteristic radius and velocity dispersion at the clump surface
are controlled by the surrounding cloud’s mass surface density,
¥ clouds and are given by

Ry = 0365 ( e (o T pc 3)
a= 3000 M, 1gem2 ’
and
Mcl 4 Eclc'ud 4 -1
o5 =304 —— —_— kms™. (@]
3000 My 1 gem—2

Following our previous works, we model clumps in two different
cloud environments: the high-% case with X, = 1.0 gcm_2 and
the low-X case with Z¢jouq = 0.1 gcm™2. Such a range is likely to be
relevant for a large fraction of the star-forming systems of our Galaxy
(Tan et al. 2014): for example, large portions of the samples of the
infrared dark cloud clumps of Butler & Tan (2012), of the high-mass
star-forming clumps of Mueller et al. (2002), and the massive clumps
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of Ginsburg et al. (2012) are in or near this region of parameter space.
Then, given R, defined by M, and X o4, the density at the surface
of the clump is

(3 - kp)Mcl
4Ry
In Paper II, we introduced models of gradual formation of star

clusters, i.e. in which natal gas is still present while stars are being

formed. The influence of the natal gas in the evolution of the forming

star cluster is modelled as a time-dependent background potential
derived from equation (1), i.e.

GMq(1) o\
— | = —34k
2 —ky)Ra [(Rd) i

GMcl(t)

r

Ps,cl = (5)

(r = Rcl)

5

(r > Rcl)
(0)

where G is the gravitational constant and M (7) the time-dependent
clump gas mass. Note the radius of the clump is truncated at R and
no additional gas mass is modelled beyond this radius, i.e. no further
contributions to the potential are made from the surrounding cloud.

We keep our previous assumption of a constant star formation rate
(SFR) defined using the initial parameters of the clump, i.e.

cbgas(rs 1) =

. exM,
M, = ff cl,O’ )
Ii,0

where the initial free-fall time of the clump, #x, is also defined by
Y cloud and M. Using the fiducial clump parameters, it is given by

o = 0069 ( —Meto Y Bawa Myr 8)
o= 3000 M, lgem2 '

We assume that there is a local star formation efficiency, e, i.e.
defined as the ratio between the stellar mass formed and the total
mass required to form such a stellar mass. The fiducial value of
€ = 0.5 with such a value being typical of expectations of local
star formation efficiency from individual pre-stellar cores due to
protostellar outflow feedback (e.g. Matzner & McKee 2000; Tanaka,
Tan & Zhang 2017). For simplicity, the gas that does not make it
into a star is assumed to be instantaneously lost from the clump. We
assume star formation proceeds in this way until all the gas from
the clump is exhausted. Therefore, the time evolution of the global
gaseous mass of the clump is given by

M, M*t t<t
cl,0 — P = *) (9)
0 (t > ty),

Mcl(t) =

where 7, is the time at which gas is exhausted. Since we assume a
constant SFR, the formation time is given by

€ € M 14
te = —tgo X — 3 . (10)
€t €\ Xijoud

2.2 Scaling of clump properties with mass

In this work, we explore how the formation and early evolution of
star clusters depends on the initial mass of the clump, M. Within the
context of the turbulent clump model, several important parameters
and features of the clumps and clusters vary with clump mass, which
we overview in Fig. 1. In particular, this figure shows how several
clump properties vary with M, while keeping the bounding cloud
mass surface density, X o4, constant. Values are normalized relative
to the M. = 3000 My case (and numerical values shown in the
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Figure 1. Variation of global clump parameters with mass, normalized with
respect to clumps with Mg = 3000 M. Legend shows fiducial values for this
case with Z¢joug = 0.1¢g cm™2 and Tejoud = 1 gcm_2 in parenthesis. Dotted
vertical lines show the masses of the new models introduced in this paper
with 300 and 30 000 M.

legend of the figure apply for the model with Zjouq = 0.1 gcm™2).
Naturally, increasing the mass of the clump requires a larger clump
radius to keep mass surface density constant (there is a one-to-one
relation of clump mass surface density and surrounding cloud mass
surface density; McKee & Tan 2003), with Ry o MCII/ 2 (thick green
line). From equation (3), we see that the one-dimensional velocity
dispersion at the surface of the clump, o, scales with mass as o
Mcll/ +, Thus, the crossing time varies as f; X Rgj/0g Mcll/ * The
same scaling applies to the free-fall time 75 o Mcll/ 4 (see equation 8).

For fixed star formation efficiency, the number density of stars
that would be initially contained in the volume of the clump scales as
n, x M/ Rgl o« My 12, Defining M.« as the relaxation time, frejay,
divided by the crossing time, it is known that Ny, o M/In M
(see Binney & Tremaine 2008). A star cluster needs to evolve for
about Nepox crossing times for the individual stars to lose information
of their initial orbits and reach a near dynamical equilibrium state.
Thus, a more massive cluster takes longer (both in terms of number of
crossing times and in terms of absolute time) to reach an equilibrium
configuration. This is relevant since the initial state of the stars that
are formed from the turbulent clump model are not in the equilibrium
configuration of a gas-free stellar cluster. Finally, for fixed values of
€ and €y, the formation time-scales as #, o t o< Mcll/ ‘.

3 METHODS

3.1 Gradual formation of stars

In this paper, matching the examples of Paper II, we will follow the
formation and early evolution of star clusters for up to about 20 Myr.
This involves a formation phase, i.e. when gas is still present, and
then a post-formation, gas-free phase. During the formation phase, as
the background gas model evolves, stars are gradually introduced in
the simulations according to the previously calculated constant SFR
following the same phase-space distribution of the gas. As introduced
in Paper II, we include this prescription in a modified version of the
direct N-body code NBODY6++  (Aarseth 2003; Wang et al. 2015),
where we are able to introduce stars, including primordial binaries,
at arbitrary times during runtime. The minimum number of stars we
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can model with this code is of the order of 150, which is the initial
number of stars all models start with. The primordial binary fraction
in a given simulation is held constant in time, so that if no binaries are
disrupted, then the total binary fraction would, on average, remain
constant during star formation.

As in Paper I and Paper 11, stellar mass-loss from stellar evolu-
tion was included in the simulations using the analytical models
developed by Hurley, Pols & Tout (2000); Hurley, Tout & Pols
(2002) implemented in NBODY6-++, including mass transfer between
binaries and close interacting stars, so that the full stellar evolutionary
path is not simply defined by the initial mass and metallicity, but can
change with the dynamical history of the stars. We note that these
stellar evolutionary models do not include the pre-main-sequence
phase, when stars are generally larger than their main-sequence sizes,
so that such interactions will tend to be underestimated somewhat.
However, in general, close interactions between stars occur only
very rarely in our simulations and this limitation is not expected to
influence the overall results significantly. The models also include
velocity kicks for neutron stars (but not black holes) that are formed
from asymmetrical supernovae ejections. The magnitude of the kicks
follows a Maxwellian velocity distribution with o = 265 kms™',
based on proper motion observations of runaway pulsars (Hobbs
et al. 2005).

3.2 Primordial stellar population

In this work, we aim to isolate the effects of the different parent
clump masses and so we use a stellar population that is identical
to the fiducial set of simulations in our previous works. This uses a
canonical initial mass function (IMF; Kroupa 2001) with 50 per cent
binaries in circular orbits. We construct the binary population from
a lognormal period distribution with a mean of P =293 yr and
standard deviation of oop = 2.28 according to observations of
Raghavan et al. (2010). The mass ratio distribution follows the form
dN/dg o< ¢"7 as observed in young star clusters (Reggiani &
Meyer 2011). The binary population is constructed from the full
set of individual stars (binary members and singles) that follows the
adopted IMF. We note that this construction implies that in general
low-mass stars end up with slightly higher binary fractions than
more massive stars. This is because once a primary star is selected,
the companion, which has a lower mass by construction, is selected
according to the mass ratio distribution. Therefore, low-mass stars
have higher chances of being selected to be part of a binary system.
In our scheme, brown dwarfs then have primordial binary fractions
of 60 per cent, while stars above 0.4 M, have 40 per cent primordial
binary fractions resulting in an average of 50 per cent. We note that
this disagrees with observations where most massive stars tend to
have higher multiplicity fractions (Offner et al. 2022). However, it is
possible that such a trend develops dynamically after the formation
phase, which we will assess in a future work in this series.

3.3 Different mass models

We perform two sets of simulations, i.e. with clump masses 10 times
greater and 10 times smaller than the clumps of Paper II which had
M. = 3000 M. To make the sets statistically comparable, we carry
out 200 simulations with My = 300 Mg and 2 simulations with
M = 30000 M., for each value of X jouq = 0.1 and 1 gcm~2 (here-
after low- and high-X 0,4 cases, respectively). We compare these to
20 simulations of Paper II for each ¥ 4,4 case. All the simulations
used for this comparison have a global star formation efficiency, € =
50 percent. We also explore a range star formation efficiency per
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Table 1. Simulations parameters.

Set name €ff Zcloud M (Ny) [ Itr R Os
(gem™)  (Mo) Myp  Myp (o (kms )
m300L 0.01 0.1 300 400 10.91 0.22 0.36 0.96
0.03 0.1 300 400 3.64 0.22 0.36 0.96
0.1 0.1 300 400 1.09 0.22 0.36 0.96
0.3 0.1 300 400 0.36 0.22 0.36 0.96
1.0 0.1 300 400 0.11 0.22 0.36 0.96
m3000L 0.01 0.1 3000 4000 19.40 0.39 1.15 1.71
0.03 0.1 3000 4000 6.47 0.39 1.15 1.71
0.1 0.1 3000 4000 1.94 0.39 1.15 1.71
0.3 0.1 3000 4000 0.65 0.39 1.15 1.71
1.0 0.1 3000 4000 0.19 0.39 1.15 1.71
m30000L 0.01 0.1 30000 40000 34.50 0.69 3.65 3.04
0.03 0.1 30000 40000 11.50 0.69 3.65 3.04
0.1 0.1 30000 40000 345 0.69 3.65 3.04
0.3 0.1 30000 40000 1.15 0.69 3.65 3.04
1.0 0.1 30000 40000 0.34 0.69 3.65 3.04
m300H 0.01 1.0 300 400 1.94 0.039 0.115 1.71
0.03 1.0 300 400 0.65 0.039 0.115 1.71
0.1 1.0 300 400 0.19 0.039 0.115 1.71
0.3 1.0 300 400 0.06 0.039 0.115 1.71
1.0 1.0 300 400 0.02 0.039 0.115 1.71
m3000H 0.01 1.0 3000 4000 345 0.069 0.365 3.04
0.03 1.0 3000 4000 1.15 0.069 0.365 3.04
0.1 1.0 3000 4000 0.35 0.069 0.365 3.04
0.3 1.0 3000 4000 0.12 0.069 0.365 3.04
1.0 1.0 3000 4000 0.03 0.069 0.365 3.04
m30000L 0.01 1.0 30000 40000 6.14 0.123 1.154 5.41
0.03 1.0 30000 40000 2.05 0.123 1.154 5.41
0.1 1.0 30000 40000 0.61 0.123 1.154 5.41
0.3 1.0 30000 40000 0.20 0.123 1.154 5.41
1.0 1.0 30000 40000 0.06 0.123 1.154 5.41

free-fall time with the same values as in Paper II, i.e. e = 0.01,
0.03,0.1, 0.3, and 1. Table 1 shows the simulation parameters for the
different simulations performed. For the most massive clusters, we
have utilized GPUs to run the simulations to be able to access greater
computational resources and run the calculations more efficiently.
This large set of simulations was scheduled using the automated
Simulation Monitor for Computational Astrophysics, SiMon (Qian
et al. 2017).

4 RESULTS

4.1 Evolution of global structure and kinematics

Fig. 2 shows the evolution of the Lagrangian radii of the star clusters
with reference to all the stars in the system (solid lines), along with
the bound stellar component (shaded regions), for our fiducial choice
of €5 = 0.03. We see that during the formation stage, when the gas
is still present, the clusters tend to be confined by its gravitational
potential. This behaviour was already noted for the M = 3000 Mg
case in Paper II. After star formation is completed, then the clusters
expand more quickly. This phase begins earlier for lower mass and
higher density clusters (see Table 1). Fig. 2 also shows the evolution
of the cluster core radii, discussed in more detail below.

We next consider the effect of varying e on the evolution of the
clusters. Figs 3 and 4 show the evolution of the different parameters
for the low- and high-X .4 cases, respectively. In each figure, the
first, second, and third columns show results for star clusters forming
from clumps with M, = 300, 3000, and 30000 Mg, respectively,
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while the fourth column shows the three cases together for the fiducial
value of e = 0.03.

The top rows of Figs 3 and 4 show the evolution of the bound mass
fraction, foounda. The values of fiouna Of the various models are quite
similar at the end of the formation time, which is determined mainly
by Xoug and e, but also by M, to a lesser degree (see equation 10).

In the post-formation phase, cluster dissolution and evaporation
effects then occur. The rates of these processes are mostly driven
by the rate of cluster relaxation, with lower mass clusters evolving
more quickly to smaller bound fractions. For example, by 20 Myr
in the high-X o4 case, the clusters formed from M. = 300 Mg
clumps have bound fractions of only about 0.3, i.e. these are very
low mass clusters with bound stellar masses of only ~50 M. In the
low-X j0ua case, these low-mass clusters have higher bound fractions
at 20 Myr, with values of ~0.5, mostly because their formation
took longer and the post-formation phase is a smaller fraction of the
20 Myr evolution. Considering the M = 3000 M, cases, the bound
fractions at 20 Myr are higher, i.e. ~0.6 in the low-density models
and ~0.7 in the high-density models, but with some dispersion
caused by eg. These higher bound fractions are caused, at least
in part, by the cluster relaxation times being significantly longer.
These general trends continue up to the M, = 30000 M, cases,
which retain the highest bound fractions at 20 Myr of ~0.8 for
the fiducial e = 0.03 case. This corresponds to a star cluster of
mass ~12 000 M.

The second rows of Figs 3 and 4 show the evolution of bound
cluster half-mass radii, ry,},, while the third rows show the evolution
of the average number density of stars, evaluated inside these radii.
We see that r,;, remains quite constant during the formation phase,
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Figure 2. Time evolution of Lagrangian radii enclosing 10, 20, 30, 40, 50, 60, 70, 80, and 90 per cent of the stellar mass for star clusters with different M (top,
middle, and bottom rows, as labelled), formed with € = 0.5 and e = 0.03. Left-hand panels shows the low-Xjouq case and right-hand panels the respective
simulations for the high-¥jouq case. The lines show the averages over all the simulations performed in each set. Background shaded areas show the average
Lagrangian radii for the 50, 80, and 90 per cent bound stellar masses. Dashed red lines show the average core radii. Vertical dashed lines show the respective

gas exhaustion time 7.

and then undergoes expansion once the gas has been exhausted. The
low-mass clusters end their formation with radii of 7, ~ 0.1-0.3 pc.
The clusters forming relatively quickly, i.e. with € 2> 0.1, have a
chance to enter a ‘post-formation stabilization’ (PFS) phase, when
hp Stays at a nearly constant level, i.e. ryp, prs, that is about a factor
of 2 to 3 greater than during formation. After this the clusters undergo
very dramatic expansion, driven by dynamical relaxation. Note that
the slow-forming models do not have a chance to enter the PFS phase,
since they are still forming when dynamical relaxation starts to drive
their expansion. The low-mass clusters reach sizes of about 2 pc in
the low-density case and about 5 pc in the high-density case, which

thus, in fact, achieve the lowest number density of stars of any of our
models, i.e. only ~10pc~3, after a decline of about a factor of 10%.
The effects of €4 are relatively modest on the values of r, , reached by
20 Myr, with the main differences occurring at earlier times around
~ 1 Myr due to the different durations of the formation phases and
whether or not they have a chance to enter the PFS phase.

These general trends continue for the M, = 3000Mg cases,
though with the variation in sizes due to different onsets of the
PFS phases shifted to somewhat later times, ranging from about 0.5
to 2 Myr with ry prs 2 0.7 pc in the high-density environments
and about 2 to 5 Myr with rppprs =~ 2 pc in the low-density

MNRAS 523, 2083-2110 (2023)

€202 J8qWIBAON /| UO Jasn unsny 1e sexa | 1o Ausiaaiun Aq 2809/ | 2/£802/2/SZS/31o1e/Seluw/wod dno olwapeoe//:sdny WwoJlj papeojumoq


art/stad1532_f2.eps

2088

fbound

ns,p [stars/pc3] m,p [pcl

[$)]

S 5 Oplkm/s]
. o

=N W

J. P. Farias and J. C. Tan

— g = 0.01 —_— &g = 0.03

Mg =300 M,

2cloud = 0-1glcm2
g =0.1 —_— = 0.3 —_— g =1

Mg = 30000 M

Mg = 3000 M,

Mg =300 M,
— Mg =3000 M,
—— Mg =30000 M,

~—
/
— Eid o —_——’l
- .
-
.
.
.
.
—
-
=
v
.
L et
--------- [
R taaam e, .
= IR S
= - —— T
- - -
- ——_— .,
=
= _—_————-*—_~\
~ ~

2™

R

10-! 100 10! 10-1 100 101 10! 100 10!
t [Myr] t [Myr] t [Myr]

Figure 3. Time evolution of various properties of star clusters formed within a mass surface density environment of S¢jouq = 1.0 gcm™2, global € = 0.5 and
different values of e (see legend). The lines in each panel show median values calculated from all the simulations of each set. First, second, and third columns
show the cases of M. = 300, 3000, and 30 000 M, respectively, while the fourth column shows a comparison of all masses for the fiducial choice of e =
0.03. Top row shows the fraction of bound mass in the cluster relative to the instantaneous total formed stellar mass. Second row shows the evolution of the
half-mass radius r,p for the bound stars. Third row shows the average number density of systems (np), i.e. singles and binaries, measured inside the volume
defined by . Fourth row shows the evolution of the velocity dispersion measured inside ry,p. Fifth row shows the evolution of the virial ratio of the bound
stellar component (Qp). Sixth row shows the evolution of the bound binary fraction (fyin, ). Bottom row shows the average system mass (singles and binaries)
for stellar systems with primaries less massive than 7 M, where horizontal grey dashed line shows the expected average value given the input IMF.

environments. Dynamical relaxation drives subsequent expansion, to Xoud and €, even though they can reach this size with quite
but at a much slower rate than in the low-mass clusters. Again, the different evolutionary histories, especially for the low-e and low-
slow-forming models do not have a chance to enter the PFS phase. > cloud Cases.

We note that by 20 Myr the clusters forming from M, = 3000 Mg The My =30000My, Zouq = 1 gecm™2 case produces even
clumps reach sizes of r,, ~ 3 pc, with this being quite insensitive more compact clusters with r,, ~ 2 pc at 20 Myr, independent of
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Figure 4. Same as Fig. 3, but for X¢jouq = l.Ogcm_z.

€. Again, the evolution to this state involves a phase in which the
cluster expansion is essentially halted (even with a ‘bounce’ for
e 2 0.1) at rypprs =~ 1.5 pc within the first few Myr (depending
on €g), before the cluster relaxation expansion phase, which here
occurs at a very slow rate compared to the lower mass clusters. In
the Tcoug = 0.1 gcm™2 case, the massive clusters stop expanding
at ryp.prs 2 6 pc (and with ngy, ~ 100pc—?), although the slowest
forming model with €5 = 0.01 does not have time to reach this state
within ~ 20 Myr. Furthermore, these massive, low-density clusters
do not have time to exhibit significant expansion driven by dynamical

relaxation during the duration of the simulations investigated here,
i.e. up to ~ 20 Myr.

To more fully illustrate the evolution of cluster sizes, in Fig. 5 we
show in the top rows of the top and bottom set of panels the time
evolution of r,, normalized by the initial clump radius. We see that
Thb, pEs 18 about a factor of 1.5 and 2 times larger than R, for the low-
and high-X o4 cases, respectively. Then, by about 20 Myr, clusters
have typically been able to expand by factors of 2 (for large clusters
with My = 30000 Mg,) to 40 (for small clusters with My = 300 M)
compared to the size of their natal gas clumps.
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Figure 5. Evolution of average size and number density for all simulations in this work. Top and bottom set of panels shows simulations with X¢joug = 0.1 gem™
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and Touq = 1.0 gem 2, respectively. Different colours show the adopted e with the same colour scheme as in Figs 3 and 4. The first three columns group
simulations with the same M., while the fourth column compares models with different values of M, for the eg = 0.03 case. Solid lines in the top rows show
the evolution of the average bound half-mass radii, r,, normalized by the initial clump radius, R.j. Semitransparent lines show the respective normalized core
radii. The bottom rows show the evolution of number densities within the bound half-mass radii, nsp, and within the core radii, n .

Another important radial scale is the cluster core radius, defined as
the ‘density’-weighted average distance of the stars from the density
centre in the cluster, where the ‘density’ of each star is estimated
using the mass in a sphere containing the six nearest neighbours
(Casertano & Hut 1985; Aarseth 2003). The time evolution of the
core radii, normalized by R, is also shown in Fig. 5. These cluster
core radii are relatively constant during the formation phase and
are systematically larger for the more massive clusters. In addition,
we see that core radius evolution appears to be independent of ey,
with the exception of the e = 0.01 case. In all models, we see
that the main expansion phase of the core radius begins at about
the same time, i.e. after about one crossing time of the region. The
PFS phase ends as part of this core radius expansion phase, i.e. the
half-mass radius expands in step with the core radius. The case of
e = 0.01 is different because the core radius is held in place by
the background potential, delaying the expansion of the cluster and
not going through a PFS phase since the core is already relaxed.
We see that at about 20 Myr these cluster core radii, although still

MNRAS 523, 2083-2110 (2023)

expanding, have evolved to be quite similar to the initial clump
radii.

The third rows of Figs 3 and 4 show the time evolution of the
average number densities of the stars inside r,p. These respond
accordingly to the evolution of fiouna and rp. In general, in our
models, lower mass clusters form from denser clumps and so during
the formation phase have higher number densities of stars than more
massive clusters. However, given that they start expanding earlier,
this situation reverses during the first few Myr. The slower forming
clusters take longer to build up their stellar densities, but retain these
levels for longer periods of time. We will see later that this affects
their overall efficiency at producing runaway stars via dynamical
ejections. However, we note that it is the number densities in the
densest part of the clusters, i.e. in their cores, which are important for
production of most close interactions leading to dynamical ejections.
Thus, in Fig. 5 (bottom rows of each set of panels) we also show
the time evolution of ng_, i.e. the average number density of stellar
systems within the core radius. We see that the number densities in
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Figure 6. Top: Projected number density profiles for simulations with Ejouq = 0.1 gcm™2. Profiles are measured at t = 1, 3, 10, 20 Myr and when star
formation is finished at t = ¢, (columns, left to right). Filled circle, diamond, and star symbols show the positions of the core radius (rcp), fit scale radius
(r0p), and half-mass radius (), respectively. The first three rows present the cases for M = 300, 3000, and 30000 Mg, i.e. to allow easy visualization of
the effects of ef. The fourth row compares the e = 0.03 cases for the different masses, with dotted, solid, and dashed histograms showing M. = 300, 3000,
and 30000 Mg, respectively. Thin solid lines in the fourth row show the best fits of equation (11). Radial binning is constructed so that each bin has the same
number of stars. Green dashed lines show the density profile of the ONC based on the membership list by Da Rio et al. (2016). Bottom: Time evolution of fitted
structural parameters of equation (11), measured at the same times as in the above profiles. Star symbols show the results at ¢ = ¢,.. Green horizontal bands show
the values of these parameters that are estimated for the ONC from the data of Da Rio et al. (2016).
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Figure 7. As Fig. 6, but for ¢jouq = 1.0gcm’2.

the core regions can be many times larger than that averaged over
the half-mass scale, especially for the most massive clusters. Thus,
in general, the full density profile of a cluster needs to be considered
for estimation of quantities, such as interaction rates, that depend on
local densities.

For the purposes of comparing to observed star clusters, where
the true 3D structure is hard to measure, it is better to consider
the projected surface number density profiles, i.e. Ny(r), with this
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being the number of stellar systems (singles, binaries, and higher
order multiples) per unit projected area. Figs 6 and 7 show these
projected radial profiles of the bound clusters as they evolve during
the simulations. These profiles are averages of all sets of the same
model at a given time.

Our simulated clusters tend to have a similar radial structure. We
characterize this using the model of Elson, Fall & Freeman (1987),
which was developed to describe luminosity profiles of young star
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Figure 8. In each panel, the green line shows the ONC projected number
density profile derived from the membership list provided by Da Rio et al.
(2016). Green shaded area shows the range of best-fitting ONC profiles
according to equation (11). The ONC data are compared to two of our models
with X¢jouq = 0.1 gcm*2 and M. = 3000 My measured at 3 Myr (black
solid lines). Top panel compares to our fiducial model with e = 0.03, and
bottom panel to a model with e¢ = 0.1. Dashed lines show the same modelled
profiles, but excluding stars with masses below 0.5 Mg, which is a simple
way to illustrate the effects of potential incompleteness.

clusters. Then, the surface number density profiles are described via:

2\ V2
Ny(r) = Nyo <1+r2> , (11)

rs,O

where Ny is the central surface number density, 7 is a scale radius,
and y is a power-law exponent. The best-fitting parameters at each
measured time are shown in the lower set of panels in Figs 6 and 7.
Equation (11) typically provides a good description for the models
presented here. At early stages most models have steep power-law
haloes, but as star clusters relax they tend to converge to a shallower
distribution with y ~ 2.5 for the low-mass clusters and ~3 for the
more massive ones. The scale radius tends to be between the core
and half-mass radii.

As an example comparison with an observed young star cluster,
we have constructed the number density profile of the Orion Nebula
Cluster (ONC) based on the membership list compilation provided
by Da Rio et al. (2016). We have selected stars flagged as members
by any of the methods described by Da Rio et al., working within a 2
deg radius around the ONC, which yields a total of 1464 sources. We
have transformed the coordinates of the stars to parsecs using an ONC
distance of 403 pc (Kuhn et al. 2019) and constructed the projected
number density profile using 20 bins, each with approximately equal
number of stars. The obtained best-fitting parameters of equation

Across the mass spectrum 2093
(11) to these data are
Ngo = 132 £22 pc2,
rs0 = 0.62 £ 0.09 pc,
y =22+0.1. (12)

We show the profile defined by these values with the green dashed
lines and green shaded areas in Figs 6 and 7, as well as in Fig. 8.

While our numerical models have not been specifically tailored to
the ONC properties, we see that our derived the fitting parameters,
especially of the low-X . cases, are typically quite similar to
those shown by the ONC in its current state. For instance, at
the age of the ONC (i.e. ~3 Myr), the closest models to the
ONC in terms of total mass are clusters with My = 3000 Mg. At
~3 Myr, the low-density clusters reproduce the measured scale
radius ;.. However, the ONC’s central density, N, is rather low
in comparison with our models. One potential mitigating factor is
that the observational sample of Da Rio et al. (2016) is incomplete
in the brown dwarf regime and its incompleteness may be relatively
higher in the central regions due to effects of higher extinction,
nebulosity and crowding compared to outer regions. Fig. 8 shows
more detailed comparisons of some of our model clusters, including
the effects of incompleteness below 0.5Mg, with the observed
surface number density profile of the ONC. We see here that the
ONC has a relatively shallower outer projected density distribution,
ie. with y = 2.2, compared to our simulated clusters, i.e. with
y = 2.5. While this could be a real physical discrepancy, i.e.
indicating a limitation of the model, it could also be caused by
contamination by false-positive members in the outskirts of the
ONC.

In summary, we see that our modelled star clusters develop
a surface density profile that is quite similar to that exhibited
by the ONC. However, further work on simulated clusters that
are more specifically tailored to this and other observed clusters,
including effects of observational incompleteness, are needed before
one would be able to constrain model parameters of M., X iouds
and €.

4.2 Evolution of kinematics and dynamics

The fourth rows of Figs 3 and 4 show the time evolution of the 1D ve-
locity dispersions of the bound members of the clusters, o,. The clus-
ters start with velocity dispersions given by their parental gas clumps
(see Table 1). At first, during the formation phase, these remain rela-
tively constant, although in the high-X 0,4 cases o, declines slowly
even during this phase. Following the formation phase, the velocity
dispersions decline at a faster rate as the clusters expand and lose
mass from the bound component. By ~20 Myr some clusters, e.g.
the most massive clusters forming from low-density environments,
have a chance to reach a relatively stable level of o, just larger than
1kms™!.

The fifth rows of Figs 3 and 4 show the evolution of the virial ratio
of the bound stellar system defined, in its most general form as
Ein,b

Oy = 13)

E grav,b ’
where Ey,, is the total kinetic energy of the bound stars and Egay, =
Zfi’] F; - r; is the gravitational energy of the bound stars. In this
calculation, binaries are treated as single unresolved systems.

A cluster in virial equilibrium has Q, = 0.5. As introduced
in previous papers in this series, the star clusters formed in our
framework do so from an initially supervirial state since the natal
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clump has a significant surface pressure applied to it from its
surroundings. For all simulations in this paper, the initial global Q &~
1. As the stellar systems relax from their initial configurations, they
will achieve approximate equilibrium on a time-scale of the order of
one relaxation time, feax =~ (N/In N)t,,.

As seen in Paper II, the ratio of the time-scale over which Q
relaxes into equilibrium, #.j,x, compared to the formation time, ¢,,
is important because by the end of formation, when the background
gas is exhausted, the different €4 models can then start their gas-
free stage from different dynamical states. For example, a star
cluster that forms quickly (e.g. € = 1) does not have time to
relax and is still supervirial by the time gas is exhausted. On
the other hand, a star cluster that forms slowly (e = 0.01) has
enough time to relax and starts its gas free evolution closer to virial
equilibrium.

Figs 3 and 4 show that this trend persists at different clump masses.
In general, the crossing time (and thus also the relaxation time) in the
formation phase is shorter than after gas is gone. Then, slow-forming
models are able to relax even earlier than fast forming models that
already lost their gas mass at supervirial states. Thus, slow-forming
star clusters are able to be already near virial equilibrium long before
star cluster formation is finished.

4.3 Evolution of binary properties

The sixth rows of Figs 3 and 4 show the evolution of the binary
fractions in the bound clusters, fyinb. Note that the stars are formed,
statistically, with an average binary fraction of 0.5. There is a gradual
decline seen due to disruption of binaries, which can occur via
dynamical interactions and also as a result of stellar evolution, i.e.
supernova explosions. The evolution of the binary fraction shows
significant differences depending on M., X, and €g. Small
clusters of My = 300Mg quickly process binaries during their
formation phase, especially at low e = 0.01 where fyinp reaches
a minimum of 0.4 in the high-X,,4 case. This minimum is quite
sensitive to €g, given the longer formation time compared to the
local crossing time of the regions. After reaching this minimum, a
few Myr after the start of formation, there then follows a significant
increase in fyinp-

InFig. 9, we present a more detailed exploration of the evolution of
the binary fraction, separating those for the bound (grey panels) and
unbound (white panels) populations. The rise in fi, at late times in the
low-mass simulations mostly happens within the bound clusters and
is caused by the creation of new ‘dynamically formed’ binaries. The
fifth and sixth rows in this figure show the fraction of dynamically
formed binaries in the bound and unbound populations, respectively.
These dynamically formed binaries include those that were primor-
dial but later exchanged one of their members with other binaries
or singles stars. We see that in the low-mass simulations by 20 Myr
about ~6-8 per cent of binaries in the bound cluster are formed
dynamically, while it is about half of this level (~ 3—4 per cent) in
the unbound population.

In the higher M, cases, we see that the binary fractions in the
bound clusters decrease to lower values, e.g. reaching close to 0.3
after about 20 Myr in the My = 30000Mg, Xcioug = I.Ogcm*2
case. This is caused by there being more time for disruption of
binaries by close encounters with other stars in these clusters, which
retain a high bound fraction over this period. These clusters also
have a smaller fraction of dynamically formed binaries, which is not
enough to change the global binary fractions, unlike in the lower
mass cases.

MNRAS 523, 2083-2110 (2023)

4.3.1 Binary population

Here, we examine how the binary population is processed in the
different models. We have seen in Paper I and Paper II that there
was relatively little processing of the primordial binary population.
However, we have also seen from Fig. 4 that in the clusters presented
in this paper there is a significant reduction in the fraction of binaries
by 20 Myr in the most massive, high-density model: about a third of
the initial binaries have been disrupted in this case. This change
appears to be driven by dynamical processing, rather than as a
consequence of stellar evolution.

We examine the properties of the populations of binaries, both the
ones that have been disrupted and the ones formed later during the
evolution of the cluster. We note that we have also looked for higher
order multiples in the models (as defined by the NBODY6++ code),
however these are found to form in negligible numbers, of the order
of 1 per simulation in most models and a maximum typical number
of 4 in the m30000H models. Such small number of multiples is
expected given that our initial conditions did not include them, and
we see that forming stable multiples by capture is a rare event in
these models.

In Fig. 10, for simulations with € = 0.03 we show the average
fraction of binaries that are disrupted at different times in the
evolution, i.e. from left-hand column to right-hand, at t = 1, 3, 10,
20 Myr and at t = t,, with M = 300 Mg, in red, 3000 M, in black,
and 30000 Mg in blue, and with low- and high-X o, cases with
solid and dashed lines, respectively. The first row shows the fraction
of disrupted binaries as a function of initial primary mass. We see
that at early times the mass of the primary star has little influence
on binary disruption. However, by 10 Myr the disrupted fraction
has risen for more massive stars, which is due to stellar evolution,
especially core-collapse supernovae to neutron stars that then receive
high kick velocities.

The second row of panels in Fig. 10 shows the disrupted fraction
of binaries as a function of initial semimajor axis (a). The typical
semimajor axis in our models is around 20 au. Below this value, most
binaries survive across the models, which is expected since these are
relatively hard binaries. Wider binaries (i.e. with @ 2 100 au) are the
most affected, with disruption fractions that depend sensitively on
the environment, e.g. between 10 and 80 per cent of binaries with
a ~ 1000 au are disrupted depending on the model, where the main
factor is the density of the environment as parametrized by ¥ ou4. For
the range above 100 au, the disruption fractions are clearly defined
by density and parent clump mass. The most massive clusters show
lower disruption fractions within the same X 044, since these clusters
have lower initial number densities (see Section 2.2). In general, low
eg results in a larger disruption fraction, with e having a larger
effect on low- and medium-mass models (see Appendix A), with a
variation of 25—40 per cent at a = 1000 au. In the high-mass clusters
with M, = 30000 Mg, variations in disruption fractions are less
than 5 per cent between different e cases. Most binary disruption
happens early in the evolution, so that by 1 Myr most of these features
are already set.

We also explore the details of the dynamically formed binaries
in the clusters. As shown in Fig. 9, up to 7 percent of binaries in
clusters with M, = 300 Mg, are formed dynamically, where most of
these binaries are part of the bound cluster component. The third row
of Fig. 10 shows the fraction of binaries that are dynamically formed
as a function of primary initial mass. A clear trend appears where
the more massive stars tend to capture other stars more efficiently.
This trend is strongest in the lowest mass clusters, which undergo
the highest degree of dynamical processing, and the fact in these
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Figure 9. Detailed evolution of binary properties, shown separately from the bound (grey background panels) and unbound (white background panels)
populations of stars, for simulations with E¢jouq = 0.1 gcm™2 (left) and 1.0 g cm ™2 (right). Colour scheme of the lines is the same as in previous figures denoting
the adopted €. From top to bottom, the first two rows show the binary fraction (fiin) of the bound and unbound populations. The third and fourth rows show
the fraction of binaries that are primordial, i.e. Nprim/Npin, Where Nprim and Nypi, are the number of primordial and total number of binaries, respectively. The
fifth and sixth rows show the fraction of binaries formed dynamically, with Nqy, as their total number. The seventh and eighth rows show the fraction of binary
members that were originally single stars, i.e. the number of captured singles N¢,p divided by the total number of binary members, i.e. 2Npin.

low-mass clusters, A-, F-, and even G-type stars, can be the most
massive stars in the cluster, and be the ones segregating to the
centre. Furthermore, since the overall velocity dispersion is lower,
then gravitational focusing is favoured for less massive stars in these
environments. Again, the €4 parameters appear to play only a minor
role in the formation of binaries, as can be seen in the formation
fractions at 20 Myr for other €4 (see Appendix A). Most of the
dynamically formed binaries are wide binaries with semimajor axes
larger than 1000 au, as can be seen in the fourth row of panels in
Fig. 10. Here, we can also see that higher primordial density favours
the formation of tighter binaries, since harder binaries are able to be
perturbed allowing interchange of their members.

Note that the results shown in the first to fourth rows in Fig. 10 are
fraction of binaries in each bin. The most affected types of binaries,

i.e. the wider and more massive ones, are in fact the less populated
parts of the binary distribution, representing only a small fraction
of the total number of binaries in the system. In the fifth row of
Fig. 10, we show the full distribution of binaries as a function of
semimajor axis as an average per simulation. Then after all stars are
formed, the average numbers in the m30000 case is 10 times larger
than in the m3000 case and 100 times than in the m300 case. We
see that in the m3000 and m30000 models, dynamical disruption
of binaries causes a steeper decrease of frequency for binaries with
large a, where the fractional decrease is shown in the second row of
panels. However, for m300 the dynamical formation of binaries is
considerable (~7 per cent) and concentrated in the high end of the
distributions (a > 1000 au), producing a second peak at a ~ 103 au,
with the strength of this peak being higher for the larger X 0,4 case.
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Figure 10. Distribution of primary mass and semimajor axis for different kinds of binaries, measured at (from left-hand to right-hand columns) 7 = 1, 3, 10,
20 Myr and when star formation stops (). This figure shows the results for simulations with eg = 0.03 and M) = 300 (red), 3000 (black), and 30 000 Mg, (blue),
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4.4 Evolution of the stellar mass function

The stellar mass function (MF) is expected to evolve within the
clusters due to a combination of mass segregation, binary for-
mation/disruption, ejection of walkaway/runaway stars, and stellar
evolution. The bottom rows of Figs 3 and 4 show the average
system mass, i.e. single stars, binaries, and higher order multiples
(although the latter are negligible), in the bound cluster populations
for systems with primary masses below 7Mg (i.e. so that these
are not significantly affected by stellar evolution during the period
considered). For the assumed IMF and binary sampling methods,
this average system mass has an expected value of 0.25 Mg, shown
by a horizontal grey dashed line in each of the panels.

As the clusters evolve, we see that small clusters show the
largest deviation from the expected value. Models m300 show a
remarkable variation in the average system mass, i.e. rising by a
factor of 21.6 in the high-X o4 cases with € 2 0.1. This dramatic
change is related to the fact that these clusters evolve to have the
smallest bound mass fractions, i.e. fyouna ~ 0.3 and undergo the most
significant dynamical processing, including significant formation of
new binaries (see Section 4.3). The variations in average system mass
are more modest in the m3000 and m30000 models and move in
the opposite direction, i.e. decreasing to lower values. We attribute
this behaviour to the fact that these clusters retain high bound mass
fraction and tend to destroy their primordial binaries without forming
significant numbers of new binaries.

Next, we examine signatures of mass segregation by considering
the evolution of the MF slopes in the mass range above ~1 Mg. We
measure the stellar MF at different stages during the evolution of the
modelled clusters, using only the bound stars and excluding neutron
stars and black holes. Fig. 11 shows the resulting MFs when measured
for stars within different Lagrangian radii at different times for our
fiducial models with e = 0.03. However, comparison between
the models is complicated by the large differences in formation
and dynamical time-scales for these clusters that have orders of
magnitude differences in mass and density. For instance, stellar
evolution plays a different role in each case when the formation and
relaxation times are comparable to the stellar evolution time-scales
of the most massive stars. Effects due to ejection events derived
from stellar evolution, i.e. velocity kicks of neutron stars or binary
breaking, are especially important.

In Fig. 11, we first show the MFs at the end of the formation
stage (t = t,), when all stars have formed and the clusters start their
gas-free phase. We pay special attention to the evolution of the high-
mass end of the stellar MF, i.e. the range between 0.5 and 100 Mg,
which by construction we have modelled with a canonical initial
index of oy = 2.3 (Kroupa 2001). We have performed linear fits to
this range in logarithmic space as can be seen in Fig. 11 as solid lines
within the fitting range. The fourth panel of the bottom row shows a
comparison between the different «, values obtained at the different
radii, M and X jouq for the case of e = 0.03. The same procedure
was performed at 3, 10, and 20 Myr, where the corresponding fits are
shown in the first three panels of the bottom row.

From the values of «; as a function of enclosing Lagrangian radius,
we see that, by the end of star formation (fourth panel), the MFs tend
to be more top heavy in the central regions of the cluster. However,
in the m30000L model, which has t, of 11.5 Myr, the population is
already affected significantly by stellar evolution at this time (these
clusters contain ~25 stars more massive than 10 M,).

At 3 Myr, top heavy MF signatures are most pronounced for the
lowest mass clusters and the higher X 0,4 cases, which, as discussed,
have shorter relaxation times and thus shorter mass segregation times.

Across the mass spectrum 2097

Note that the low-Xjo,q cases are all still forming stars at 3 Myr. In
particular, the m30000L model is at about 25 per cent of its ¢, and
has not yet developed significant mass segregation. Similarly, the
m3000L model is at about ~50 percent of #, at this time and also
does not show strong mass segregation.

When we consider the MFs at 10 and 20 Myr we see that mass
segregation signatures are maintained and that even though stellar
evolution mass-loss removes some of the excess of massive stars in
the centre, enough intermediate massive stars sink here to keep the
signatures present. In particular, the m3000L model has developed
the strongest top heavy feature at 20 Myr. Therefore, we see that in
all models, the central regions of the bound systems tend to become
top heavy («z < o), rather than bottom heavy, regardless of stellar
evolution mass-loss.

Fig. 12 shows the evolution of the «, parameter for all models in
this work measured at 10, 50, and 90 per cent Lagrangian radius, i.e.
o210, @250, and &z g9, respectively. The signature of mass segregation
can be more clearly seen when analysing the 10 per cent mass radius
(top row of panels in each set).

The evolution of the a5 1o parameter is stronger in the m3 00 models
since their crossing times are shorter. Also, due to IMF sampling in
small stellar clusters, the initial value of a5 o is typically relatively
high. As massive stars migrate to the centre, a ;9 decreases quickly.
The maximum level of mass segregation is reached at the point when
the core radii begin to expand, which does not happen at the end of
star formation, but after about one initial crossing time regardless
of e (see Section 4.1). The w0 parameter then stabilizes at the
onset of rapid expansion of the cluster core. Nevertheless, the central
region MFs tend to remain top heavy compared to the IMF. Note that
eventually, at later stages, o5 1o begins to increase due to the effects
of stellar evolution.

4.5 High-velocity population

One important question we have explored during this series of papers
is how the star cluster formation process is linked to the properties
of the unbound/ejected population. We have shown in Paper II that
slowly forming star clusters tend to produce more high-mass runaway
stars. However, these models have so far only been for a single mass
case of formation from a 3000 My, clump. Here, we examine how the
high-velocity distribution changes with mass and € in the framework
of our models. We expect the results to be useful for interpreting data
of runaways from young clusters, with a first application made for
the 3000 Mg models to the case of the ONC by Farias, Tan & Eyer
(2020).

Fig.13(a) shows the 2D (plane of sky) velocity distribution for the
low-X joua (left-hand column) and high-X oy (right-hand column)
cases. Distributions are constructed at the time when star formation
stops (7). The population of dynamically ejected stars manifests
itself as an excess of high-velocity stars relative to the expected
Maxwell-Boltzmann distribution for the given velocity dispersion.
The initial expected velocity distribution, given the velocity dis-
persion of the natal gas clump, is shown as shaded areas in each
panel. As time advances and gas is ejected, we have seen that the
clusters expand and lower their velocity dispersion. However, the
fastest formation models do not have time to relax and at ¢ = ¢, their
velocity dispersion is very similar to the one at birth. The resulting
high-velocity excess at r = t, can be clearly seen, where the slowest
forming clusters show a more evolved velocity distribution, with a
lower velocity dispersion and greater fraction of high-velocity stars.
However, since each cluster has a very different z, it is difficult to
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Figure 12. Evolution of o, i.e. the fitted mass function power-law parameter
for the mass range between 0.5 and 100 M. Top and bottom sets of panels
show the results for the low- and high- ¥ jouq cases, respectively, with different
initial M cases shown in the three columns. The top row in each set shows
a2,10, 1.e. the oy parameter measured within 10 per cent mass radius. Middle
and bottom rows show the same parameter measured at the 50 per cent (a2 50)
and 90 percent («2,90) mass radius, respectively, The colour scheme of the
lines and points is the same as in previous figures representing the various
efr cases. Grey dashed line in each panel shows the input mass function in
this range of o = 2.3. Star symbols mark the moment when star formation
is finished and background gas is exhausted.

make a fair comparison between the models since we need to measure
at different points in the evolution. Below, we develop a simple model
to describe the evolution of the velocity distributions.

4.5.1 Velocity distribution model

Following our analysis in Paper I and Paper II, we note that our
modelled star clusters are composed of three kinematically distinct
components: (1) bound stars, which are those with a negative
total energy; (2) unbound gently ejected stars, i.e. those that find

Across the mass spectrum 2099

themselves unbound given the rapid change in the protocluster
potential; and (3) dynamically ejected stars, which are those that
are ejected as a result of strong dynamical interactions. These groups
have distinct velocity distributions that together compose the total
velocity distribution shown in Fig. 13(a). The bound component can
be described with a cumulative 2D Maxwell-Boltzmann velocity
distribution function

2a?

'U2
CDF(v, ) = 1 — exp <_ ) (14)

with the scale parameter given by

_.J]_ 2 15
a = 4—71,’Ub. ( )

Note that for practical purposes, given the we are most interested
in the high-velocity tail of the distribution where the numbers of
stars are low, we instead use the survival function SF(v, a) = 1 —
CDF(v, a), which is the function shown in Fig. 13(a). The gently
ejected component can be modelled with the same distribution, but
with a larger velocity dispersion, which is a remnant of the dynamical
history of the cloud. Therefore, the bound and unbound components
are both described by an SF of the form:

2
SF(v, a) = exp (—%) (16)

The dynamically ejected stars follow a different distribution, i.e.
approximately a power-law tail in the velocity distribution profile
with an exponent y. Then, we model the SF of this component as

L
1+ ()"

The survival function of the total velocity distribution is thus

SF(@) = fooundSFb(v, ab)
+ funboundSFub(U» aub)
+ feiSFej (v, aw), (18)

where fiound + funbound + fej = 1. Note that the bound component
with foouna and oy, is measured directly from the stellar distribution
(see Figs 3 and 4). For the second component, even though we have
left ay, as a free parameter, we have found that this parameter is
well represented by the scale parameter obtained using the velocity
dispersion of the parent clump, o. Then, the fitting procedure is
dominated by the ejected component described in equation (17) and
its weight, i.e. y and f;;. For the scale parameter of this component,
we have used the same as for the unbound, a,;, since we want the
power-law signature to be fully developed at the velocity when the
unbound Maxwell-Boltzmann distribution becomes unimportant.
Fig.13(b) shows the time evolution of y and f;;. The evolution of

SEj(v,a) = (17)

Jfej shows how the fraction of dynamically ejected stars grows with

time. Small clusters with M = 300 M, show larger f;; values, with
a similar evolution independent of e, but mostly dependent of the
age of the clusters and the initial density. At 20 Myr, these small
clusters reach fo; ~ 0.08—0.2 for low-Xjoug models and 0.25-0.45
in the high-¥,4 case. As M, increases, the importance of the
ejected population decreases to a range between 0.01 and 0.1 for
My = 3000 Mg and between 0.001 and 0.04 in the most massive
clusters.

However, we find no clear trend for the evolution of the power-law
parameter y, with neither M or €. Rather than being dependent of
global parameters, y is more likely to depend on the population of
binaries as shown by Perets & Subr (2012). In our case, we obtained
an average value of y = 1.6 & 0.4.
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Figure 13. (a) Evolution of the transverse, i.e. 2D, high-velocity cumulative distributions normalized by the total number of stars in the clusters measured at t =
t.. Shaded area shows the respective Maxwell-Boltzmann distribution with o equal to the initial mass-averaged velocity dispersion of the clump. Rows arrange
different parent clump masses, M while columns arrange the low (left) and high (right) ¥ jouq cases. Note, stellar remnants are not included in this graph.
This figure is equivalent to fig. 10 of Farias et al. (2020), where we make direct comparison of our simulations with estimates for the Orion Nebula Cluster.
(b) Fitting parameters at different times for the excess in the velocity distribution of modelled star clusters, fe; (top rows) and y (bottom rows) for simulations
in the high-X¢joud (top set of panels) and low-Xjouq (bottom set of panels) regimes. Star symbols show the time at which star formation is finished, where the
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fitting the excess is uncertain given that is not yet fully developed, e.g. see the high-Xjouq case of M = 3000 M and €5 = 1, i.e. magenta line in the lower

right panel of figure (a).

4.6 Runaway stars

While the above description is useful at characterizing the different
components of the stellar distribution, compiling such population
data is challenging, especially for the high-velocity lower mass stars
that are now far from their origins and thus hard to find and link to a
given population. However, isolated runaway stars are easier to find,
especially O and B stars. Observations of O and B runaway stars
indicate that between 10-30 per cent of O stars and 2-10 per cent
of B stars are runaways (Gies 1987; Stone 1991; de Wit et al. 2005),
depending on precise definition of this class.

Fig. 14 shows the percentage of ejected stars per model without a
velocity cut-off (filled circles), and with velocities above 20 kms™!
that we adopt as a definition for a runaway star. These numbers
represent only dynamically ejected stars via strong interactions or
rapid change in the cluster potential, excluding supernovae related
ejections.

We show the results for three ranges of mass: all stars in the system
(left-hand column); O stars (middle column); and B stars (right-hand
column). As found in our previous work in Paper 11, there is a modest
increase in the fraction of overall ejected stars with €, shown in the

MNRAS 523, 2083-2110 (2023)

first column of Fig. 14 as filled circles, which is a result of the
increasingly rapid depletion of the background gas.

The results for high-velocity runaway stars appear to be divided
into two regimes, determined by ¥ jouq. In the low-% 5,4 case (top
panels), slowly forming clusters appear to form slightly higher
fractions of runaway stars at all masses, especially for the most
massive clusters. However, the differences are modest and within the
uncertainties.

With the exception of the m300L case at e = 0.01, we find more
O runaway stars when e approaches to 0.01, as expected given the
longer time stars remain in a dense state during the formation phase,
but increase again when € = 1. The former is a consequence of
the high peak density reached at the beginning, given that all stars
formed in half a free-fall time and collapse into the centre together.

For B stars, the fraction of runaway stars appears to be independent
of eg, but with strong dependence on M,;. Small clusters, with higher
initial densities, form higher fractions of B star runaways than the
most massive clusters. If fact, in the low-X o case m30000L
models form no runaways in the B mass range, except for the slowly
forming case with e = 0.01.
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In the high-X 4 case, results appear to be dominated by the
high-density environment, and similar fractions of runaway stars are
found in each model. In this case, B star runaways are found in all
models, but the trend remains the same as more massive clusters
produce smaller fractions of B star runaways.

About 2 and 4 per cent of B stars are ejected with high velocities
for the low- and high-X 0,4 cases, respectively. These figures are
consistent with the range of values found for B stars (see e.g.
Eldridge, Langer & Tout 2011). Increasing M brings down the
number of high-velocity B star runaways down to 0.5-1 percent
in the high-¥ 4 case, and none in the low-X o, case (with the
exception of the e = 0.01 case, where we find 2 per cent). These
results highlight the high densities reached by the low-mass clusters
at formation, but the subsequent quick expansion implies that most
of these high-velocity ejections happened very early in the evolution
of these systems.

4.6.1 Interaction rates to produce dynamical ejections

We estimate the number of ejected stars we expect at a given time,
given the dynamical history of a star cluster. For single stars, we can
estimate the cross-section 7b? of interactions that result in a closest
approach of by, where the velocity reaches a value of v,y . For two
stars approaching from infinity with relative velocity ¢ and impact
parameter b, energy and angular momentum conservation implies
that a star reaches a closest approach at a maximum velocity vyax
when

2Gmy  Umax

= o2
(Umax

b

S 19

where my, is the total mass of the interacting stars. Note that this result
is only valid for vy, > 0. The vy /o factor is the gravitational

focusing factor, which increases the impact parameter b in low-
velocity environments. Then, the interaction rate for interactions that
can potentially eject a star, is given by 7b? x ng x o, i.e.

2
Gmt Umax
—02) o

I' =4nnso { (20)

vl%’lax
The total number of interactions that will accelerate stars up to

VUmax, ffom ¢t =0to = Tis

T N
Nine = / > Tinydr, @0
L

where I'; is the interaction rate of each star in the system. This
number should be proportional to the number of observed runaway
stars with escape velocities v > vy, i.6. N,. We calculate this
proportionality factor in our models by numerically integrating
equation (21) and then comparing to the number of runaway stars
ejected with velocities greater than 20 kms~!. Specifically, we
numerically integrate equation (21) over time for each individual
simulation at each snapshot, constructing tracks in the Nj,—velocity
plane. We calculate I'; using global values of o and n, based on
the stellar population within the half-mass radius of the system. We
consider as runaway stars any star with v > vy, = 20kms~! that
is not a stellar remnant. To avoid contamination of stars close to the
centre of the potential well, where local escape velocities may be
large due episodic close encounters, we only consider stars beyond 2
stellar half-mass radius when counting the number of runaway stars.
We combine the results of each set of models by placing all Nj,—v
data pairs of each simulation at each snapshot on a single combined
set. We divided this set in Ny bins of equal number of data points and
take the average of N,. Fig. 15 shows these results for all the different
sets of models in this work. It is expected that Nj,, o N, and this
is approximately seen in Fig. 15. From these results, we calculate a
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Figure 15. Nj, versus the number of dynamically ejected high-velocity
stars, collected for all models in this work. Each point represents the average
number of high-velocity stars for measurements with the same e and M
that fall in the same Njy bin.

proportionality factor n = 1.157 ;'0. This shows that the number of
runaway stars is a direct constraint on the dynamical history of a star
cluster. For instance, this linear relation indicates that if a star cluster
is characterized with 10 stars with v > 20km s~!, then models trying
to reproduce such a system must reach the same number of strong
interactions (on average) during its age.

5 DISCUSSION

We have expanded our modelling of star cluster formation to cover
a wide range of masses of initial gas clumps and studied their
resulting star clusters. This step is important to eventually produce
a comprehensive grid of models that could be applied to interpret
populations of star clusters. Given the assumptions of the turbulent
clump model, certain scalings of properties occur as a function of
clump mass (at fixed mass surface density of surrounding cloud
environment). These scalings, e.g. of density, velocity dispersion,
etc., have implications for the dynamical evolution of the resulting
stellar system, for instance, affecting the relaxation time and degree
of binary processing.

The evolution of cluster radii (e.g. half-mass radii of the bound
components) and radial profiles with time are metrics that can be
compared to observed systems, although this will typically be best
achieved by converting model mass profiles into multiwavelength
light profiles. In our modelling programme, this step is deferred
to a future paper in the series, requiring implementation of pre-
main-sequence evolutionary tracks into the simulation framework.
However, in principle, a cluster that is observed to have a given
(mean) age, mass, half-mass (or light) radius, and radial mass (or
light) profile can be compared with the outputs of the models
presented here. There will be a range of formation parameters
(M1, Zcouds €, €5, etc.) that are consistent with a given set of
observational data. The grid of models presented here is a first
step in the process of building tools that will eventually allow
constraints to be placed on formation parameters from observed
clusters, which could then be used to estimate initial cluster
and clump mass functions and distributions of X ¢ formation
environments.

MNRAS 523, 2083-2110 (2023)

‘We find variations in cluster sizes with e for models of the same
initial mass and environmental mass surface density. This is due to the
potential of the natal gas clump restricting the expansion that arises
from the initially supervirial state. However, these differences in
sizes are most apparent only for a relatively short time period similar
to the star formation time, since after this rapid cluster expansion
occurs and the various models tend to converge to have similar sizes
at a given age.

Given such degeneracies, direct measures of €g, i.e. via mea-
surement of age spreads, remains important. However, accurately
measuring age spreads in young star clusters is a challenge that
involves model-dependent fitting to pre-main-sequence evolution-
ary tracks (e.g. Tognelli, Prada Moroni & Degl’Innocenti 2011;
Bressan et al. 2012; Baraffe et al. 2015) and is also complicated
by observational uncertainties in extinction, photometric variability
and unresolved multiplicity (e.g. Da Rio et al. 2016). Associating
individual runaway stars with a given young cluster and/or spreads
in kinematic expansion ages is another, more direct, method for
estimating € (e.g. Tan 2006; Farias et al. 2020).

We have shown that properties that depend on the time-integrated
density of the stellar systems, i.e. amount of binary processing and
fraction of dynamically ejected stars, do have significant sensitivity to
€. These tend to show the strongest variations in small clusters, due
to their short relaxation times. However, testing models via observa-
tions of such clusters faces the inherent problem of small numbers
of stars leading to larger sampling uncertainties. Overcoming this
would require observations of large numbers of low-mass clusters.

Independent from e, we have found significant variations of
behaviour between low-mass and high-mass forming clusters, which
are mostly due to the differences in their relaxation times during
the formation phase. Even slowest forming (e ~ 0.01) low-mass
clusters evolve to have relatively low bound mass fractions (<0.6
for Zoud = 0.1 gem™2; $0.4 for Touq = 1.0 gecm™2) by ~20 Myr
and that are continuing to decline quickly, while in the higher
mass systems foouna Can remain as high as ~0.8 at these times and
with much more gradual rates of decline. Related to this, lower
mass clusters are able to form a more significant high-velocity
population of dynamically ejected stars. While all of the clusters
show mass segregation leading to a more top heavy high-mass end
MF slope in their bound, central components, this effect is stronger
in lower mass clusters. Finally, the average system mass in the
bound remnants of low-mass clusters shows significant evolution to
higher values, partly driven by significant numbers of dynamically
formed binaries. In more massive clusters, such binary formation is
rare and binary processing tends to destroy the primordial binary
population, e.g. from fi;, of 1/2 down to as low as ~1/3 in the most
massive, highest density clusters considered. These are significant
variations that may be testable by future observations of young
clusters.

There are a number of caveats and limitations of the models that
we have presented. The protocluster models are globally spherically
symmetric and lack spatial and kinematic substructure that might
be expected to arise from interstellar turbulence. Allowing for such
features is planned in future papers in this series. Furthermore, in
the models presented here, higher order multiples were not part
of the initial conditions set-up and their formation by capture
was negligible. If significant fractions of triple and higher order
multiple systems are found to exist in young clusters, then this would
indicate a need to incorporate such systems as part of the primordial
population.

€202 J8qWIBAON /| UO Jasn unsny 1e sexa | 1o Ausiaaiun Aq 2809/ | 2/£802/2/SZS/31o1e/Seluw/wod dno olwapeoe//:sdny WwoJlj papeojumoq


art/stad1532_f15.eps

6 CONCLUSIONS

We have presented a set of star cluster formation simulations that span
a wide range of initial clump masses (M from 300 to 30000 M),
cloud environment mass densities (X oy from 0.1 to 1.0 gcm™2) and
star formation efficiencies per free-fall time (eg from 0.01 to 1.0).
These simulations, all involving global star formation efficiency of
50 percent and all starting with 50 percent primordial binaries,
follow the N-body dynamics of the stellar populations, including
evolution of the bound cluster, binary properties, mass segregation,
and production of high-velocity runaways.
We summarize our main results as follows:

(i) Bound mass fractions at the end of star formation are similar
in all models, i.e. around 90 percent (see Section 4.1). However,
the subsequent evolution diverges dramatically depending on M
and X joug, With low-mass clusters in high-density environments
retaining the smallest fractions (fyouna < 0.3) in their remnant bound
cores. In general, slowest forming clusters retain higher bound
fractions.

(ii) The evolution of half-mass radii of the bound clusters also
shows large differences in behaviour depending on cluster mass
and environment. Low-mass clusters in high-density environments
undergo the largest degree of expansion during the first 20 Myr
of evolution, since they form relatively quickly and have short
relaxation times that drive this dynamical evolution. Variations with
€5 are mostly related to the length of the formation phase, during
which the gravitational potential of the gas clump acts to confine
the cluster, retarding its expansion. Once the gas is exhausted,
clusters can enter a PFS phase, during which they have relatively
constant sizes (see Section 4.1 and Fig. 5). This phase ends once
the cluster has had time to undergo dynamical relaxation, which
leads to further expansion. This delay in expansion means that
clusters of a given M. and X4 have similar sizes by a time of
~ 20 Myr.

(iii) The core radius evolution is independent of €g and remains
relatively constant for about one crossing time. If gas is still present
in the system, the core radius can remain dense for longer (i.e. € <
0.03). The expansion of the core radius sets the end of the PFS phase
that star clusters undergo after gas expulsion.

(iv) The above results imply that binary systems are disrupted
efficiently in the most massive cluster during the initial ~20 Myr
period that has been modelled here. However, in lower mass systems,
binary disruption is constrained to the formation time only, given their
quick post-gas-expulsion expansion (see Section 4.3). Most disrupted
binaries have semimajor axes greater than 100—1000 au, depending
on Xeud (Fig. 10). Lower mass systems can disrupt harder binaries
relative to the most massive clusters, given their high initial densities.
Binary formation by capture is more efficient in lower mass systems
(see Fig. 9). By 20 Myr about 6-8 per cent of binaries are formed
by capture in the bound systems. This figure drops dramatically
for clusters with M = 3000 Mg, i.e. is below 1 percent and
practically zero in more massive systems. Binaries formed by capture
are concentrated at higher end of the semimajor axis distribution,
showing a noticeable secondary peak in at a = 10° au at 20 Myr.
These binaries are formed mainly after gas expulsion during the
expansion of the cluster.

(v) Young star clusters develop different levels of central mass
segregation reaching a peak at the time the core radius begins to
expand (see Section 4.4). The short dynamical time-scales of clusters
with My = 300M and small IMF sampling causes these systems
evolve to have the most top heavy central regions in relation to their
outskirts.
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(vi) The fraction of dynamically ejected stars depends on the initial
mass of the clump and the mass surface density of its environment
(Section 4.6). Low-mass clusters produce greater fractions of ejected
stars, i.e. ranging from 8 to 20 per cent in the low-X o, case and 25
to 45 percent in the high-X 4,4 case.

(vii) The percentage of runaway stars, i.e. dynamically ejected
stars, follows the same dependence, but differences are modest. B
stars, however, show the greatest differences across M., where low-
mass clusters are able to reproduce observed percentages, with an
average of 2.5 per cent in the low-X o4 case and 4 per cent in the
high-density environment.
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APPENDIX A: ANCILLARY RESULTS FOR THE
FULL SET OF BINARY PROPERTIES

Here, we present results related to binary properties over the full
range of M., X joud, and € explored in our grid of models. Figure A1
and A2 shows binary properties for M = 300 Mg, clouds, for all €4
used in this work in the low- X joyq and high- X 0,4 cases respectively.
Figures A3 and A4 shows the same properties but for clouds with
M. = 3,000 Mg in the low and high-X o4 respectively. The same
set of parameters is shown in Figures A5 and A6 but for clouds with
M = 30,0000 Mg,

€202 J8qWIBAON /| UO Jasn unsny 1e sexa | 1o Ausiaaiun Aq 2809/ | 2/£802/2/SZS/31o1e/Seluw/wod dno olwapeoe//:sdny WwoJlj papeojumoq


http://dx.doi.org/10.1086/342881
http://dx.doi.org/10.1086/517515
http://dx.doi.org/10.1088/0004-637X/783/2/115
http://arxiv.org/abs/2203.10066
http://dx.doi.org/10.1051/0004-6361/201628233
http://dx.doi.org/10.1088/0004-637X/751/2/133
http://dx.doi.org/10.1088/0004-637X/711/2/1017
http://dx.doi.org/10.1088/0004-637X/729/1/72
http://dx.doi.org/10.1088/0067-0049/185/2/486
http://dx.doi.org/10.1088/1538-3873/aa7c49
http://dx.doi.org/10.1088/0067-0049/190/1/1
http://dx.doi.org/10.1088/0004-637X/738/1/60
http://dx.doi.org/10.1093/mnras/stt255
http://dx.doi.org/10.1086/115880
http://dx.doi.org/10.3847/1538-4357/835/1/32
http://dx.doi.org/10.1051/0004-6361/200913913
http://dx.doi.org/10.1093/mnras/stv817

Disrupted fraction per bin

-
o

o
©
)

o
)
!

=]
IS
|

e
o
.

e
<)

Primary initial Mass (M)

Primary initial Mass (M)

Primary initial Mass (Mo )

Primary initial Mass (M)

Across the mass spectrum 2105
M¢ =300, Z¢oug =0.1 g/cm2
—— Youd=0.1 g/cm2 -e= Y oud=1.0 g/cm2 g =0.01 e =0.03 — &¢=0.10 — &=0.30 — &=1.00
t=1.0 Myr t = 3.0 Myr t=10.0 Myr t =20.0 Myr t=t«
P Py o 0 ey o 0 Py 9 0P Py o 0P My o O
IOI’1 l(l)0 10! 10I’1 l(l)0 1(I)1 " 10I’1 1(I)° l(l)1 1()I’1 1(I)0 l(l)l 10-! 100 10!

Primary initial Mass (M)

107! 10! 103 10°
semi-major axis (AU)

107! 10! 108 10°
semi-major axis (AU)

10-' 10! 108 10°
semi-major axis (AU)

1071 10! 108 10°
semi-major axis (AU)

=} ] ] ] ] ]
2 1.0
o
2 0.8 E E 1 1
g
7= 0.6 1 1 1 8 .
Q
<
E 0.4 4 ] 4 1 1
°
2
& 0.2 1 8 . 8 .
2
Q 0'0 1 T T T 1 T T T 1 T T T 1 T T T 1 T T T
107! 10! 103 107! 10t 103 107! 10t 103 107! 10t 103 107! 10" 103
Primordial Primordial Primordial Primordial Primordial
semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU)
Lo LY o 0P iy o 0P iy 9 0 ke 9 0 deky o 0
o
g
5 0.8 1 1 1 . .
{1
£ 0.6+ . . . .
g}
]
& 0.4 4 . . . .
9 é
15
£ 0.2 1 . . 8 .
g
o
i
0.0 - T g T u T T f T
107! 100 10t 107! 100 10! 107! 10° 10! 107! 10° 10t 107! 10° 10"
Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M)
I} 1.0 A . . q .
a
3 0.8 - : E - .
o,
5061 1 1 1 .
8
3
& 0.4 4 1 1 . .
3
é 0.2 A 1 1 . .
s}
R 0.0 1 1 1 . .
107! 10! 103 10° 107t 10! 103 10° 10-' 10! 103 10° 10-' 10! 103 10° 107! 10! 103 10°
semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU)
- 10" 5 E E E E
°g
E‘E
= 100 4 4 - - -
E2
Z 8
g 10-1 4 4 4 4 4
2 102 ] ] ] ]

1071 10! 103 10°
semi-major axis (AU)

Figure Al. Same as Fig. 10 but for models with M = 300 Mg and with E¢joug = 0.1¢ em~2 and e = 0.01 gcm’z, 0.03, 0.1, 0.3, and 1.0.

MNRAS 523, 2083-2110 (2023)

€202 J8qWIBAON /| UO Jasn unsny 1e sexa | 1o Ausiaaiun Aq 2809/ | 2/£802/2/SZS/31o1e/Seluw/wod dno olwapeoe//:sdny WwoJlj papeojumoq


art/stad1532_fA1.eps

2106

Average Number of

binaries per bin

Disrupted fraction per bin

J. P. Farias and J.

C. Tan

M¢ =300, Zcous = 1g/cm?

—— Zcoug =0.19/cm? === F o9 =1.09/cm? — g¢=0.01
t=1.0 Myr t = 3.0 Myr t=10.0 Myr t =20.0 Myr
P PRy o 0P PRy O 0 PLky o 0P PLkw o

1.0

er=0.03 — e¢=0.10 — &¢=0.30 — &¢=1.00

0F kv o O

0.8

0.6

0.4

——=®====0]

3
z340¢ =520 E
'.-.ggq

Esﬁiiilﬁ

1071 10° 10!
Primary initial Mass (M)

1071 10° 10!
Primary initial Mass (M)

1071 10° 10!
Primary initial Mass (M)

1071 10° 10!
Primary initial Mass (M)

10° 10!
Primary initial Mass (M)

o
£ 1.0 1 1 ] ] 7
8 £ ll
2 0.8 - 7 o 7_ e “;_ r"":
£ 0.6 ot e A - A i
3 [1AS 1574\ #le-gro Alg-d 4P A
4 Pyl ? b;’ \ I XY 1,8 LYAP |
& 0.4 ,Ij’ - 1977\ o] g7 Re gy A L
9 / > Iy 3 7 » ' \ 144
£02] CERY o & & Ll
- 1 Y
é .O‘? f.‘ 1 et \ Lo® \ i‘é/’
A 0.0 {reo—eo—oo= +{ 0=00—0-a=o=e Lloomooeo® 1lo-o=omeo==® b om0 oo 0 momp @S
1071 10t 108 107! 10! 108 107! 10! 108 1071 10! 103 107! 10! 103
Primordial Primordial Primordial Primordial Primordial
semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU)
0 Diky o 0P diky 2 0P Py o 0F Py @ 0P Xy o 0O
L T — T T — : T — T T — T T T T T
g
% 0.8+ . . 1 1
o
§ 0.6 . . . =
b3l 4 »
8 04 ] iz pd /
« U ,/{; /’,o /:‘,.;9 v
g o P SOt /g,_#__» /,:,f
] ] ,gﬁ i | _8
g5 =% 'I”: A’/’/:’n
o e -~ P A
0.0 | ~-.--"‘§."v . N ol mmaagnSEIAET
1071 10° 10! 1071 100 10! 1071 10° 10* 1071 10° 10! 1071 100 10!
Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M)
= 1.04 B B B 7 °§
: i 4 4 i
o
5 0.8 1 "‘g . Y Al N T
S l' L P MY "y \\ l',l'
§ 0.6 i . ! 1 7 1 A Hi
8 v ‘ H H v
& 0.4 i 1 ; 1 ] 1 n 1 {
° ! ] I
3 ! 4 Y
0.2 - 1 ' 1 H ; F. ] r
= { 1 ! 1 4 14 ]
= a-o-o-o-o-o-o-o-o-o-f. . o-o-o-o-o-oa-o-oo“‘ o—ob-o-0-0-clo00=d o-o-p-0-0-0-010-0-0=Y o-o-o-o-o-o-o-o-"‘
0.0 1 oo g i 4 e
10-' 10' 103  10° 10-' 10 10%  10° 10-' 10 103  10° 10-* 10 10%  10° 10~ 10 10%  10°
semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU)
0 8. P LY LY P LTy
10! 4 /,t 1. ] = 1 = 4 f””" 4 /' &,
100 ] . ] [4 ] [4 3 1 1 (4
k ‘\ ']
\ \
1y B
1071 4 e 1 5 5 Y
‘e w
81\ 'Y
\1 ° %\ [Y
1072 4 Al < 1 5 5 .'] .
T T T * T T T T T T T T T T T T T T T T " L T
10! 10! 103 10° 10t 10! 103 10° 10-! 10! 103 10° 10-t 10! 103 10° 10-! 10! 103 10°

semi-major axis (AU)

MNRAS 523, 2083-2110 (2023)

semi-major axis (AU)

Figure A2. Same as Fig.

semi-major axis (AU)

semi-major axis (AU)

A1 but for models with Z¢joug = 1.0 gem™2.

semi-major axis (AU)

€202 J8qWIBAON /| UO Jasn unsny 1e sexa | 1o Ausiaaiun Aq 2809/ | 2/£802/2/SZS/31o1e/Seluw/wod dno olwapeoe//:sdny WwoJlj papeojumoq


art/stad1532_fA2.eps

Average Number of

Formed fraction per bin Formed fraction per bin Disrupted fraction per bin Disrupted fraction per bin

binaries per bin

Across the mass spectrum

M¢ = 3000, Zcoug = 0.1g/cm?

2107

— Zdoud:O.lg/cmz - Zc|oud=1.Og/cm2 &g =0.01 eg=0.03 — £¢=0.10 — £=0.30 — ¢&=1.00
t=1.0 Myr t = 3.0 Myr t=10.0 Myr t =20.0 Myr t=t«
o A%y 9 o ey o 0 ke o 0F iy 9 0 %y 9 O
0.8 + . . . 5
0.6 8 . . .
0.4 4 . . . .
0.2 4 . . . .
0.0 - T T T T T T T T T T
1071 10° 10! 1071 10° 10! 1071 10° 10! 1071 10° 10! 1071 10° 10!
Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (Mo )
1.0 ] ] ] ]
0.8 4 . . . .
0.6 4 . . . .
0.4 4 . . . .
0.2 4 8 . . .
0.0 - 1 : : 1
101 10! 103 101! 10! 103 101! 10! 103 107! 10! 103 107! 10! 103
Primordial Primordial Primordial Primordial Primordial
semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU)
0T &y 9 o ke o 0F iy o 0 4%y 9 0P &%y 9 0O
0.8 8 . . .
0.6 4 8 . . .
0.4 4 . . . .
0.2 % g . g
0.0 T T ¥ T t T ? T ? T T t
1071 10° 10! 1071 100 10! 107! 10° 10! 107! 100 10t 107! 100 10t
Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M)
1.0 g g g g
0.8 4 . . . .
0.6 - . E : :
0.4 4 . . . .
0.2 - . E E E
0.0 1 . . .
107! 10! 103 10° 101! 10! 103 105 107! 10! 103 105 1071 10! 103 105 101 10! 103 105
semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU)
102 4 1 E E E
10" 4 E E E E
100 4 E E E E

10t 10! 103 10°
semi-major axis (AU)

10t 10' 103 10°
semi-major axis (AU)

10t 10* 103 10°
semi-major axis (AU)

107 10! 103 10°
semi-major axis (AU)

Figure A3. Same as Fig. Al but for models with M = 3, 000 Mg and Xjouq = 0.1 gcm_z.

MNRAS 523, 2083-2110 (2023)

10-* 10! 103 10°
semi-major axis (AU)

€202 J8qWIBAON /| UO Jasn unsny 1e sexa | 1o Ausiaaiun Aq 2809/ | 2/£802/2/SZS/31o1e/Seluw/wod dno olwapeoe//:sdny WwoJlj papeojumoq


art/stad1532_fA3.eps

2108

—_— choud=0-1g/cm2 —= zcloud=:|--og/CfT'|2

t=1.0 Myr

Q
103

>Ry 2

J. P. Farias and J. C. Tan

£ =0.01 €r=0.03 — £4=0.10 — £¢=0.30 — &¢=1.00
t = 3.0 Myr t=10.0 Myr t =20.0 Myr t=tx«
0P Pekw @ 0P PeFy o 0P ddFe o 0P d&Xy o O

M =3000, Zgoud =1 Q/sz

0.8

0.6

0.4

0.2

Disrupted fraction per bin

0.0

—m—e=ggbpmezfn,

— =0

B

—a=z==0
mmmmgzggip===8s5==
..ﬂ

E=Esg=gyeEs="

=0

PE Samt=t ou
::Iw-—--l"f:?,

1071 10°

10!

Primary initial Mass (M)

1071 10° 10!
Primary initial Mass (M)

1071 10° 10!
Primary initial Mass (M)

10°

10!

Primary initial Mass (M)

107! 10° 10!
Primary initial Mass (M)

g 1.0 1 7 g g ”;— ?
=~ Il 2.0
g i 77 | all
2, 0.8 s A P ,
g If, 1,78 15 AR /5
= 0.6 1 ”‘.ﬂ\ 8 a,, R ,;/,,9 181 2] i(,l 5
4 AY '!' ® i “ ) / II},’II °
G B - - . -
S04 Ui 4 1 J’f/}"
@ \ i,
B.0.2 1 . 2 i 4 1 il SAn
g s c" ’ o" PV
A 0.0 o0-e-0—0—0-0-0-0ul {oobooooo® 1 0= 0—0—0-0 0= 1 oo do—c—0- 0= 1 oeoo-o—eoenssfa
1071 10! 108 107! 10! 108 107! 10! 103 10! 10t 103 107! 10! 103
Primordial Primordial Primordial Primordial Primordial
semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU)
0@ P&y 9 0P deky o 0 P&y 9 0P Py 9 0P P&y o O
L T T T T
g
% 0.8+ . . 1 1
o
§ 0.6 . . . .
& 0.4 4 g g 1 S
B ﬁ ,/a ,////
» »
o2, A
=" A _ge=" _at” -
=00 I UYL I ammmasc=f” I apum=e=l | npapassd I NS =
1071 10° 10! 1071 100 10! 1071 10° 10* 1071 10° 10! 1071 100 10!
Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M) Primary initial Mass (M)
=) 1.0 ¢ A 'R ] <o
2 { s]g[ [RK
[ i i v i /|
208 / n oy i~
e 1 i\ \
S 0.6 £ ﬁ s AT AN
k3] 1 | ’ \ 2
o r L] 1 p ) »
& 0.4 1 ] . ir 1 O [ (]
< ' H [ ! {
£ 0.2 i E P 1 1 4
s A 1‘5 i &
L 0.0 {o-o-noeeseesees 1 o-0-0-0-0-000coeed H o-0-t-0-0-0o0coeee $ looepeeessssee Jo-6-8-000sossee
10~ 10! 10 10° 107! 10! 103 105 107! 10! 103 105 107! 10! 103 105 107! 10! 103 10°
semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU) semi-major axis (AU)
20 o a0, | 200,
- 102 4 "‘ =, ] o \ ] o2 \ ] e | o0 “
S o PNy P P % 7~
g8 - N\ (]
2 ¢ 7 XY 4 ¢ \ ¢
SR 10y W ' Ve | '
\
i i % Nz e !
&5 Y ' W * |
& 100 tl‘ 3 n E AR e Y5 i
jag=) [} AT} i\ I
o] ! Wy []
> P! ¢ '\\' [HY! 1)
< 1 1y e |
e e e —— =
10! 10! 103 10° 10t 10! 103 10° 10-! 10! 103 10° 10-t 10! 103 10° 10-! 10! 103 10°

semi-major axis (AU)

MNRAS 523, 2083-2110 (2023)

semi-major axis (AU)

Figure A4. Same as Fig.

semi-major axis (AU)

semi-major axis (AU)

A3 but for models with Zjouq = 1.0 gem™2.

semi-major axis (AU)

€202 J8qWIBAON /| UO Jasn unsny 1e sexa | 1o Ausiaaiun Aq 2809/ | 2/£802/2/SZS/31o1e/Seluw/wod dno olwapeoe//:sdny WwoJlj papeojumoq


art/stad1532_fA4.eps

Across the mass spectrum

M¢ = 30000, Zcouq = 0.1g/cm?

2109

Primary initial Mass (M)

Primary initial Mass (M)

Primary initial Mass (M)

Primary initial Mass (M)

—— Joud =0.1g/cm? === I g =1.0g/cm? &r=0.01 gr=0.03 — £r=0.10 — &7=0.30 — & =1.00
t=1.0 Myr t = 3.0 Myr t=10.0 Myr t =20.0 Myr t=t«
L0 ey 9 0 Py 9 0P Sy o o Sy 9 0F Py o 0
£
8 0.8 . . . -
=}
£ 0.6 4 E . . 1
g
£ 0.44 . . . .
2
50.2 1 E E . 1
8 0.0 : et e eSS I ! I
10"t 10° 10! 10-t  10° 10! 1071 100 10! 1071 100 10! 10-1 100 10!

Primary initial Mass (M)

—
(=]
L

o
©
L

o
o
|

N
IS
L

o
¥
L

o
<)
|

Disrupted fraction per bin

10t 108
Primordial
semi-major axis (AU)

1071

105 1071

10t 108 10°
Primordial
semi-major axis (AU)

10t 108
Primordial
semi-major axis (AU)

1071

105 1071

10! 108 10°
Primordial
semi-major axis (AU)

10! 108 10°
Primordial
semi-major axis (AU)

1071

-
o

o
o
)

o
)
)

=)
'S
L

o
o
.

Formed fraction per bin

e
o

s

itk 1c 3 S

_—

oY

itk 1c

o<

-

itk 15

|

o

S C 3 ) )

|

o

SRS

P d

107! 100 10!
Primary initial Mass (M)

107! 100 10!
Primary initial Mass (M)

T T T T
107! 100 10!
Primary initial Mass (M)

107! 100 10t
Primary initial Mass (M)

107! 100 10t
Primary initial Mass (M)

e o o =
o » o
) L | |

Formed fraction per bin
o
o
)

il

4

o
<)
|

107! 10! 108 10°

semi-major axis (AU)

107! 10! 108 10°

semi-major axis (AU)

107! 10! 108 10°

semi-major axis (AU)

1071 10! 108
semi-major axis (AU)

10°

1071 10! 103
semi-major axis (AU)

10°

= =

(=) (=
o ©
L .

Average Number of
binaries per bin
—_
=

-

(=}
E)
L

107! 10! 103 10°
semi-major axis (AU)

107! 10! 103 10°
semi-major axis (AU)

10~ 10! 103 10°
semi-major axis (AU)

10-' 10! 103 10°
semi-major axis (AU)
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Figure A6. Same as Fig. A5 but for models with S¢jouq = 1.0 gem™2.
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