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We investigate the impact of electrostatics on the proximity effect between a magnetic insulator and a
semiconductor wire in semiconductor—superconductor—-magnetic-insulator hybrid structures. By performing
self-consistent Schrodinger-Poisson calculations using an effective model of the hybrid system, we find that
large effective Zeeman fields consistent with the emergence of topological superconductivity emerge within a
large parameter window in wires with overlapping layers of magnetic insulator and superconductor, but not in
nonoverlapping structures. We show that this behavior is essentially the result of electrostatic effects controlling
the amplitude of the low-energy wave functions near the semiconductor-magnetic-insulator interface.

DOLI: 10.1103/PhysRevB.104.195433

I. INTRODUCTION

The successful experimental realization of Majorana zero
modes (MZMs)—non-Abelian anyons [1] representing the
condensed-matter analogs of Majorana fermions [2,3] that
provide a promising platform for topological quantum com-
puting [4-7]—depends critically on the robustness of the
topological superconducting phase that hosts them [8—14].
In the absence of naturally occurring one-dimensional topo-
logical superconductors, the research has focused on hybrid
structures [15-17], particularly semiconductor (SM) wires
proximity coupled to s-wave superconductors (SCs) in the
presence of a magnetic field parallel to the wire [18-24].
A large enough field-induced Zeeman splitting ensures the
emergence of a topological superconducting phase, even in
the presence of some weak/moderate system inhomogeneity.
However, in addition to suppressing the gap of the parent
superconductor, in which orbital effects play an important
role [25] and which severely limits the realization of robust
topological superconductivity, the applied magnetic field im-
poses serious constraints on the possible device layout for
Majorana-based topological qubits [26].

A possible solution is to create the required Zeeman field
by proximity coupling the semiconductor to a magnetic in-
sulator [16,27]. Recently, this possibility has been explored
experimentally using InAs nanowires with epitaxial layers of
superconducting Al and ferromagnetic EuS [28-30]. A key
finding was that an effective Zeeman field I'S of order 1 T
(~0.05 meV) emerges in the superconductor in the absence
of an applied magnetic field, but only in nanowires with over-
lapping shells of superconductor and ferromagnetic insulator
[28]. Correlated with the emergence of an effective Zeeman
field in the superconductor was the observation of zero-bias
conductance peaks for charge tunneling into the end of the
semiconductor wire, which is consistent with the presence
of topological superconductivity. These features are absent in
hybrid structures with nonoverlapping Al and EuS covered
facets [28].
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The crucial question concerns the physical mechanism
responsible for the startling contrast between the phe-
nomenologies observed in the two setups. Furthermore, one
may ask if, based on the understanding of this mechanism, one
can identify efficient knobs for controlling the magnitude of
the effective Zeeman field emerging in the nanowire, to ensure
that the topological superconducting phase is accessible and
robust.

A natural candidate for explaining the difference between
the behaviors associated with the two setups is the ferro-
magnetic exchange coupling occurring inside the SC in the
overlapping geometry due to spin-dependent scattering at the
Al-EuS interface [31-35]. In turn, the proximity effect gen-
erated by the exchange-coupled superconductor inside the
spin-orbit coupled nanowire could lead to the emergence of
a topological superconducting state. In this scenario, the ef-
fective Zeeman field I'SY required to drive the SM nanowire
into the topological regime is induced “indirectly,” via the
Al layer. Consequently, it is controlled by the strength ¥ of
the effective coupling between the semiconductor and su-
perconductor, which also determines the size of the induced
superconducting gap and the critical Zeeman field associated
with the topological quantum phase transition (TQPT) [36].
In particular, the minimum value of the critical field is given
by ¥, and it can be significantly larger than the induced gap in
the strong-coupling limit [36]. This poses a serious problem
for the “mediated proximity” scenario. As explicitly shown
below, the topological condition Fesfl;/[ > Y is inconsistent with
the experimental parameters reported in Ref. [28] and, more
importantly, is generally inconsistent with robust topological
superconductivity.

In this paper, we investigate a different scenario involving
the “direct” proximity effect at the semiconductor—magnetic-
insulator (SM-MI) interface. We show that the strength of
the effective Zeeman field Fesfl}’l induced in the wire by prox-
imity to the MI is controlled by electrostatic effects, which,
in turn, depend on the geometry of the SC layer and on
the applied gate potential. In essence, because of the finite
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FIG. 1. Top panels: Schematic representation of the hybrid struc-
ture studied in this work corresponding to a semiconductor nanowire
(yellow) with (a) nonoverlapping (setup 1) and (b) overlapping (setup
2) layers of superconductor (pink) and magnetic insulator (green).
An external potential is applied using a back-gate (black) separated
from the wire by an insulating dielectric layer (gray). Parameters:
R =50 nm, d = 10 nm. Bottom panels: Wave-function profile of the
second lowest transverse mode for parameters corresponding to this
mode being near the Fermi level: V, ~ —1.1V, V5 =0.15 V.

work-function difference between the SM wire and the SC
shell, the wave functions characterizing the low-energy states
in the wire are strongly “attracted” toward the supercon-
ductor, regardless of whether the SM and SC are in direct
contact or separated by a MI layer. This means away from
the SM-MI interface in the nonoverlapping setup and toward
the SM-MI interface in the system with overlapping MI and
SC layers (see Fig. 1). As a result, the induced Fgfl}" has
significantly higher values in the overlapping structure as
compared to the nonoverlapping setup. By performing self-
consistent Schrodinger-Poisson calculations, we demonstrate
that the overlapping setup is consistent with the emergence of
topological superconductivity over a large window of system
parameters and applied gate potentials, in sharp contrast with
the nonoverlapping structure. Our findings support the feasi-
bility of topological superconductivity in SM-SC-MI hybrid
structures, and they provide guidance for controlling the sys-
tem and enhancing the robustness of the topological phase.

II. MEDIATED PROXIMITY SCENARIO

Before we present our model calculations, let us briefly
discuss the “mediated proximity” scenario. In the strong-
coupling limit, satisfying the topological condition I“esfl}/l >y
requires a large effective Zeeman field I Sffj inside the SC,
possibly exceeding the Chandrasekhar-Clogston (CC) limit

[37,38]. Even assuming that spin-orbit coupling induced by
proximity to the SM wire prevents the closing of the SC gap,
its value (and, implicitly, the size of the topological gap) will
be very small. On the other hand, in the weak/intermediate
regime, the induced SC gap and effective Zeeman field are
approximately given by [36]

in ~+A’ eff —)7+A’

where A is the order parameter of the SC, and ¥ is the
effective coupling between the SC and the SM subband of
interest. The factor ¥ /(A +¥) in Eq. (1) accounts for the
renormalization effects of the SC on the SM. Note that A is
reduced from its zero Zeeman field value by the presence of
the ferromagnetic insulator, which we assume to already be
taken into account for A throughout this section. Satisfying
the topological condition requires [36]

M >y @)
in the limit of vanishing chemical potential, u = 0, with
respect to the bottom of an SM subband. Note that this is
different from the often cited expression for the topological
condition, '3} > Ajng, due to the renormalization effects of
the SC. Combining Eqgs. (1) and (2) yields

SC A?
r > A. 3
S N 3)
First, we note that the parameters characterizing the recent
experiment [28], i.e., 'S¢ ~ Aing ~ 0.05 meV, do not satisfy
Eq. (3). Second, note that the CC limit restricts the Zeeman
field to [37,38]

A

s < - 4
in order for the superconducting state to survive. Clearly,
Egs. (3) and (4) cannot be satisfied simultaneously. This leads
to the conclusion that the “mediated proximity” mechanism
does not enable the realization of robust topological supercon-
ductivity in SM-SC-MI hybrid structures, and it suggests that
the investigation of the “direct” proximity effect at the SM-MI
interface is critical for understanding the low-energy physics
in these systems.

III. MODEL

The SM-SC-MI hybrid system studied in this section is
represented schematically in the top panels of Fig. 1. We focus
on two setups corresponding to the nonoverlapping (setup 1 in
Fig. 1) and overlapping (setup 2) configurations investigated
in the recent experiment [28]. We do not address explicitly
the proximity effect between the MI and the SC (in setup 2),
but we focus instead on the impact of electrostatics on the
proximity-induced Zeeman field and pairing potential at the
SM-MI and SM-SC interfaces, respectively. The SM-SC-MI
hybrid system, assumed to be infinitely long, is described by
the Hamiltonian

H(k;) = H,(k;) + Hp. &)
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FIG. 2. Finite-element mesh used for simulation of setup 1 of
Fig. 1. A basis function is associated with each vertex in the mesh.
The SM region is shown in red. A single layer of the MI and SC
meshes is shown in green and blue, respectively. The rest of the
MI and SC regions extend to infinity by repeating the shown single
layers, but the degrees of freedom from these regions are integrated
out. The spacing between vertices is exaggerated in this figure for
clarity. In the actual simulation mesh, the vertex spacing in the SM is
2 nm, while in the MI and SC regions the vertex spacing is 0.01 nm.

The first term, which includes the SM wire and the SC and MI
layers, is given by

n? n*k?

)t ey A

Hy(k;) = |:_VJ_ :

—ep(r1)+ I (rp)o; +alry )kzay] Tz
AG Doy, ©)

where m* is the subsystem-dependent effective mass, V and
r, are the gradient and position operators in the xy-plane (i.e.,
transverse to the wire axis), respectively, u is the chemical po-
tential, ¢ is the electrostatic potential, I' is the Zeeman energy,
« is the Rashba spin-orbit coefficient, A is the superconduct-
ing pairing, k, is the Bloch wave number along the length of
the wire, and o; and 1; are Pauli matrices acting in spin and
particle-hole space, respectively. Note that these parameters
are piecewise functions with respect to the SM, SC, and MI
regions. In particular, o, A, and I" are uniform and nonzero
only within the SM, SC, and MI regions, respectively. Each
region, therefore, provides a necessary ingredient for topolog-
ical superconductivity, as captured by, e.g., the minimal 1D
models [18,19]. For simplicity, we have neglected transverse
spin-orbit coupling. The three regions are characterized by
different effective masses and chemical potential values (rel-
ative to the bottom of the corresponding bands). Specifically,
we have m§,, = 0.023m,, m§- = m,, myy; = m, [39] (where
m, is the free-electron mass), usm = 0, wsc = 10 eV, and
puvt = —1 eV [29].

We model the SC region of the device as a semi-infinite
bulk superconductor, which avoids including disorder as an
ingredient needed to reproduce the experimentally observed
induced gaps [40] for systems with thin superconductor lay-
ers. As shown in Fig. 2, a bulk superconducting region is

attached to each facet of the SM which is in direct contact with
the SC. Note that we do not attach a bulk superconducting
region to the top of the MI region in setup 2 [see Fig. 1(b)],
since we are not considering the direct proximity effects be-
tween the MI and SC regions. To control the coupling between
the SM and bulk SC(s), we include a barrier potential at the
SM-SC interface,

Hy =V, Y 8(u, — V/3R/2)z, )

where V}, is the barrier strength, § is the Dirac delta function,
the sum runs over all SM-SC interfaces, and u,, is the coordi-
nate normal to the nth SM-SC interface.

Similarly, we also model the MI as a bulk magnetic insu-
lator by attaching a bulk MI region to each facet of the SM
which is in direct contact with the MI (see Fig. 2). Note that
the wave function exponentially decays into the MI due to the
large negative chemical potential pyy of the MI. The decay
length is extremely small (<1 nm), so even a MI layer of a
few nm’s behaves essentially identical to a semi-infinite MI
region. Note that inclusion of semi-infinite bulk SC and MI
regions inhibits us from performing a straightforward, brute-
force numerical calculation in which the SC and MI degrees
of freedom are included in a finite-dimensional Hamiltonian
matrix. To overcome this issue, we employ a Green’s function
approach in which the degrees of freedom of the bulk SC and
MI regions are integrated out and included as a self-energy.
After integrating out the MI and SC degrees of freedom,
the SM wire is described by the energy-dependent effective
“Hamiltonian,”

Heii(kz, ) = Hgm(k;) + ik, @) + Xscl(kz, w),  (8)

where k, is the wave number along the wire axis, Hgy is
the bare SM Hamiltonian, and Xy and Xgc are self-energies
characterizing the proximity effects at the SM-MI and SM-
SC interfaces, respectively. Details regarding the self-energy
method are provided in the Appendix.

Finally, the electrostatic potential ¢ is governed by the
Poisson equation,

=V e@)Vig(ry) = p(ry), ®

where ¢ is the region-dependent permittivity, and p is the
charge density. The relative permittivity of the SM, MI, di-
electric, and surrounding air are given by 15.2, 11.1, 24, and
1, respectively. The potential is subject to Dirichlet boundary
conditions on the back-gate, V,, and superconductor, Vsc,
which accounts for band-bending at the SM-SC interface.
In addition, we impose von Neumann—type boundary con-
ditions on the top, left, and right surfaces of a box of side
length b surrounding the wire. We emphasize that the potential
within the nanowire is negligibly affected by these boundary
conditions—e.g., the exact value of b or whether we choose
von Neumann or Dirichlet boundary conditions on the top,
left, and right surfaces of the box—provided b > R. The
charge density in (9) is determined by the occupied states
of the Hamiltonian (5), which in turn depend upon the elec-
trostatic potential, ¢. Therefore, Eqs. (5) and (9) represent
a coupled set of Schrodinger-Poisson equations requiring a
self-consistent solution for the charge density and electrostatic
potential [41]. Solving the Schrodinger-Poisson equations in
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FIG. 3. Blue disks: Subband occupancy as a function of the ap-
plied gate potential V, for (a) setup 1 and (b) setup 2. The values
of V, correspond to the bottom of a certain subband n being at the
chemical potential. Note the negligible difference between the two
setups. Red crosses: Linear susceptibility xr, = Fesf]}f[n /T character-
izing the direct proximity effect at the SM-MI interface. Note the
significant difference between (a) setup 1 and (b) setup 2, indicative
of a much stronger direct SM-MI proximity effect in the overlapping
configuration as compared to the nonoverlapping setup. The system
parameters are V;, — 0o, I' — 0, and Vsc = 0.15 V.

the presence of the bulk superconductor is a nontrivial task
due to the continuum of states with energies outside of the su-
perconducting gap. We therefore work in the limit of V, — oo
(e.g., the SC is uncoupled from the SM and MI regions within
the Hamiltonian) when solving for the electrostatic potential,
¢, self-consistently. The resulting potential is then used in
the Hamiltonian for noninfinite V,. Note that the presence
of the superconductor still plays a key role in determining
the potential since it provides a boundary condition for the
Poisson equation.

The eigenstates of the Hamiltonian (8) are found using
finite-element methods [42,43]. A linear Lagrange basis set
is used on a structured triangular mesh with 2 nm between
vertices within the SM region as shown in Fig. 2. The mesh
within the MI and SC regions has a much smaller vertex
spacing of 0.01 nm in the direction normal to the SM-MI
and SM-SC interfaces to handle the large effective masses of
these regions. The finite-element package FENICS [44] is used
when solving the Poisson equation (9). Meshes for the Poisson
equation are generated using GMSH [45] with characteristic
vertex spacings within the SM, MI, dielectric, and surround-
ing air chosen to be 1.5, 1, 2, and 10 nm, respectively.

IV. RESULTS

First, we determine the dependence of the number of occu-
pied subbands on the applied gate potential (V,) and identify
the values of V, corresponding to the bottom of a certain
subband n being at the chemical potential, which provides the
optimal condition for the emergence of topological supercon-
ductivity. The results are shown in Fig. 3 (blue disks). Note
that the differences in subband occupancy between setups 1
and 2 are very small, which demonstrates that electrostatic ef-

fects depend weakly on the location of the magnetic insulator
layer. Next, we solve the equation HeiYy = wi corresponding
to V, = oo and I' — 0 and calculate the (linear) susceptibil-
ity xr.n = I‘Sfl}’_[n /T" characterizing the direct proximity effect

at the SM-MI interface. Here, Fffl}fn = %(En,T —E, ), where
E, + and E, | are the energies of the spin-up and spin-down
eigenstates of the nth SM subband for k, = 0 and V}, — oo.
The results are shown in Fig. 3 (red crosses). Note the striking
difference between the two setups. Particularly significant is
that in the low-occupancy regime n < 5, which is expected
to be most favorable for realizing robust topological super-
conductivity [46], the susceptibility for setup 2 (overlapping
layers) is 5-50 times higher than the corresponding suscepti-
bility for setup 1. This behavior is determined by electrostatic
effects, which result in the wave function of the lowest-energy
mode (relative to the Fermi level) being localized in the
vicinity of the superconductor, as shown, for example, in
Figs. 1(c) and 1(d). For setup 1, this implies a wave func-
tion localized away from the SM-MI interface (hence, weak
SM-MI proximity effect), while for setup 2 the wave function
has a significant amplitude at the interface with the magnetic
insulator, leading to large values of x. We note that the wave
functions associated with higher energy transverse modes are
more delocalized, reducing the difference between the two
setups. However, the high-occupancy regime is characterized
by a small intersubband spacing, which makes the topolog-
ical phase susceptible to disorder and other types of system
inhomogeneity [46].

Having elucidated the key role played by electrostatics in
determining the strength of the SM-MI proximity effect, we
calculate the topological phase diagram as a function of the
bare Zeeman field I' and the applied gate voltage V, for a
hybrid system with A, = 0.3 meV [47] and a SM-SC inter-
face barrier V, = 2.75 eV nm. The phase boundary separating
the trivial and topological superconducting phases is obtained
by finding I such that the equation Heg(k, = 0, o = 0)yy =0
is satisfied. The results are shown in Fig. 4. Note that the
overlapping configuration (setup 2) is consistent with the
emergence of a topological phase for I' ~ 100-200 meV and
V, near the optimal values corresponding to the bottom of a
certain subband being at the Fermi level [see Fig. 4(a)]. By
contrast, the nonoverlapping structure (setup 1) cannot sup-
port topological superconductivity for I' < 500 meV, except
in the high-occupancy regime [see Figs. 4(b) and 4(c)]. We
emphasize that including the “indirect” proximity effect for
setup 2 reduces the parent SC gap A and generates an effective
Zeeman field T35 inside the parent superconductor, which
favors the emergence of topological superconductivity and
further enhances the already substantial difference between
the two setups.

To demonstrate the robustness of our results, we inves-
tigate the dependence of the minimum critical field I'! .
characterizing the topological phase transition associated with
subband 7 on the strength of the effective SM-SC coupling y
for two values of the SM-SC work-function difference Vsc.
The effective coupling is calculated from Eq. (1) as ¥ =
AindV Ay + Aing/v/ Ay — Ajng [36], where Ajyq is the induced
gap for 'S} = 0. The results shown in Fig. 5 confirm the
striking difference between the overlapping (dashed lines) and
the nonoverlapping (solid lines) setups. More specifically, the
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FIG. 4. Topological phase diagram as a function of the (phe-
nomenological) Zeeman field I" characterizing the MI and the
applied gate potential V, for (a) the overlapping structure (setup
2) and (b) the nonoverlapping structure (setup 1). Panel (c) is an
inset corresponding to the high-occupancy regime in panel (b).
Note that setup 2 is consistent with the emergence of topological
superconductivity within a significant parameter window, in sharp
contrast with setup 1. The system parameters are Vsc = 0.15 V and
V, =2.75 eV nm.

(bare) minimum critical Zeeman fields required for the emer-
gence of a topological SC phase are systematically larger (by
up to three orders of magnitude) in the nonoverlapping config-
urations as compared to the overlapping setup. A comparison
between panels (a) and (b) in Fig. 5 shows that this trend in-
creases with Vsc. Including the “indirect” proximity effect can
only enhance the difference between the two configurations.
Note that the spin splitting in EuS, I" &~ 0.14-0.19 eV near the
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FIG. 5. Dependence of the minimum critical Zeeman field I'” .
on the effective SM-SC coupling ¥ for two values of the SM-SC
work-function difference: (a) Vsc = 0.15 V and (b) Vsc = 0.3 V. The
full lines correspond to setup 1, while the dashed lines are for
the overlapping structure (setup 2). Note that the minimum critical
Zeeman fields required for the emergence of a topological SC phase
are systematically larger (by up to three orders of magnitude) in the

nonoverlapping configuration as compared to the overlapping setup.

zone center [48], is consistent with the emergence (in overlap-
ping structures, within a significant y range) of topological SC
induced by the “direct” proximity effect (alone).

V. CONCLUSION

In conclusion, we have demonstrated that electrostatic
effects play a critical role in determining the strength of
the (direct) proximity effect between a magnetic insulator
and a semiconductor wire in semiconductor—superconductor—
magnetic-insulator (SM-SC-MI) hybrid structures. This deci-
sive impact of electrostatics is rather generic in proximity-
coupled hybrid nanostructures, beyond the SM-SC-MI system
discussed as a specific example. Here, the electrostatic effects
are controlled by the applied gate potential and by the ge-
ometry of the superconducting layer, regardless of whether
the SM and SC are in direct contact or separated by a MI
layer. We have argued that the “indirect” proximity effect
emerging in structures with overlapping SC and MI layers is
generally insufficient for the realization of a topological su-
perconducting phase in the hybrid system. However, in these
overlapping structures, electrostatics favors the realization of
low-energy transverse modes with large amplitudes near the
SM-MI interface, which, in turn, results in a strong proximity
effect between the MI and the SM wire and the emergence
of a large effective Zeeman field consistent with the pres-
ence of topological superconductivity. By contrast, such large
proximity-induced Zeeman fields do not occur in nonover-
lapping structures within similar parameter windows. On the
one hand, our results suggest that the recently reported exper-
imental findings [28] are consistent with the presence of small
proximity-induced Zeeman fields and topologically trivial su-
perconductivity in nonoverlapping structures and significant
effective Zeeman fields in the overlapping setup, large enough
to generate topological superconductivity in a homogeneous
system. On the other hand, our findings suggest possible
strategies for enhancing the robustness of the topological su-
perconducting phase realized in a SM-SC-MI hybrid system.
For example, using a lateral gate (instead of or in addition to
a back gate) may enable a better control of the amplitudes of
the relevant wave functions at the interfaces between the SM
wire and the magnetic insulator or the parent superconductor.
In addition, changing the areas of the SM-SC and SC-MI
interfaces (e.g., having three facets covered by superconduc-
tor) can significantly affect the strength of the induced SC
pairing potential and effective Zeeman field. Finally, since the
“indirect” proximity effect alone cannot generate topological
superconductivity and is not required to generate it, as shown
in this study, but has the rather undesired effect of reducing
the superconducting order parameter of the parent SC, it may
be convenient to reduce the effective coupling at the SC-MI
interface, e.g., by adding a thin nonmagnetic insulating layer.
This would have a minimal impact on the electrostatics, while
enhancing the induced SC gap. Of course, quantitative esti-
mates of the topological gap within these scenarios require a
more detailed modeling of the hybrid structure that explicitly
includes the proximity effect at the SC-MI interface.
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APPENDIX: GREEN’S FUNCTION METHOD

As stated in Sec. III of the main text, inclusion of semi-
infinite bulk SC and MI regions inhibits us from performing
a straightforward, brute-force numerical calculation in which
the SC and MI degrees of freedom are included in a finite-
dimensional Hamiltonian matrix. To overcome this issue, we
employ a Green’s function approach in which the degrees of
freedom of the bulk SC and MI regions are integrated out and
included as a self-energy. The Green’s function restricted to
the SM is given by

Gsm(k;, 0, ') = (wSsm — Hsm(k;)

— Smilk;, @, T) — Ssclk, @), (Al

where Hgy is the matrix representation of the Hamiltonian (5)
restricted to the SM region (red region in Fig. 2), ¥y and
Ysc are the momentum- and energy-dependent self-energies
due to the MI and SC semi-infinite regions, respectively, and
Ssm 1s the overlap matrix whose elements are the overlap
of the SM basis functions. The self-energies are computed
using the surface Green’s functions of the semi-infinite re-
gions, which are calculated using the accelerated iterative
algorithm of Refs. [49,50]. The MI self-energy is only weakly
dependent on k, and w over the relevant inverse length and
energy scales of the problem due to the large effective mass
myy and the large negative chemical potential ung of the
ML. It can therefore be well approximated by simply ignor-
ing such dependencies. We approximate the MI self-energy
as

ik, o, T) — Spi(0, 0, ) = Ziate(r), (A2)

As stated in the main text, solving the Schrédinger-Poisson
equations in the presence of the bulk superconductor is a
nontrivial task due to the continuum of states with energies
outside of the superconducting gap. We therefore work in the
limit of V,, - oo (e.g., the SC is uncoupled from the SM
and MI regions within the Hamiltonian) when solving for
the electrostatic potential, ¢, self-consistently. The relevant
effective Hamiltonian is then

HY(k;, T) = Hsm(k,) + Syate(), (A3)

where we have used the superscript ¢ to indicate that
this effective Hamiltonian is used only for solving for ¢
self-consistently. Importantly, this effective Hamiltonian is
energy-independent due to the static approximation of the MI
self-energy, which allows for efficient self-consistent calcula-
tion of ¢ [41].

Eigenstates of the full Hamiltonian (including the bulk SC)
are indicated by the poles of the Green’s function (Al). We
are particularly interested in finding zero-energy states, since
they indicate topological phase transitions. This is equivalent
to finding the zero-energy states of another effective, energy-
independent Hamiltonian,

Hel (ke, T) = Hsmi(ko) + Sy (D) + Zsc(ke, 0),  (Ad)

where the zero-energy SC self-energy is used. This effective
Hamiltonian completely describes the system with respect
to calculating the topological phase diagram. Note that we
have used the superscript “top” to indicate that this effec-
tive Hamiltonian is used solely to calculate the topological

E/A

w/A

FIG. 6. The lowest positive eigenvalue (red solid line) of
H(k,, w) is plotted as a function of input @ for some example
system parameters with ' = 0. The energy of a subgap state is found
where the eigenvalue curve intersects (indicated by a green dot) the
line £ = w (black dashed line).

phase diagram. Importantly, the effective Hamiltonian (A4)
lends itself to numerical calculations since it only contains
the finite number of SM degrees of freedom. We are also
interested in calculating the induced superconducting gap with
I' =0 to assess the coupling strength between the SM and
SC. To do so, we need to calculate subgap states, i.e., states
below the superconducting gap of the parent superconductor.
Both of the self-energies in (Al) are purely real within the
superconducting gap of the parent superconductor, implying
that any subgap states must satisfy the generalized eigenvalue
equation,

HM(k,, 0)yr (k) = wSsmy (k) (A5)

where || < |Al, and HI is defined as

HY(k,, ) = Hsm(k,) + T30 = 0) + Sse(k,, o).
(A6)

Note that we have used the superscript “ind” to indicate that
this energy-dependent, effective Hamiltonian is used for cal-
culating the induced gap at I' = 0. Also note that in Eq. (AS5)
w appears both within the effective Hamiltonian and as the
eigenvalue. Therefore, we must solve the eigenvalue equation
self-consistently, e.g., the input @ needs to be equal to one
of the eigenvalues of the effective Hamiltonian. To under-
stand how we can find the eigenvalue w self-consistently, we
plot in Fig. 6 the lowest positive eigenvalue (red solid line)
of Hei?fd(kz, ) as a function of w for some example system
parameters with I' = 0. Equation (AS) is satisfied when the
eigenvalue curve interests the line E = w (black dashed line).
We notice that the lowest positive eigenvalue of Hei‘f’fd(kz, )
is monotonic over the range 0 < w < |A|. Therefore, a sim-
ply bisection algorithm allows us to find w satisfying (AY),
provided it exists, by iteratively reducing the subinterval in
which w = E|(w) is possible, where E| is the lowest positive
eigenvalue of the effective Hamiltonian (A6).
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